
Pibiri ﻿Algorithms for Molecular Biology (2023) 18:3
https://doi.org/10.1186/s13015-023-00226-2

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Algorithms for
Molecular Biology

On weighted k‑mer dictionaries
Giulio Ermanno Pibiri1,2* 

Abstract 

We consider the problem of representing a set of k-mers and their abundance counts, or weights, in compressed
space so that assessing membership and retrieving the weight of a k-mer is efficient. The representation is called a
weighted dictionary of k-mers and finds application in numerous tasks in Bioinformatics that usually count k-mers as
a pre-processing step. In fact, k-mer counting tools produce very large outputs that may result in a severe bottleneck
for subsequent processing. In this work we extend the recently introduced SSHash dictionary (Pibiri in Bioinformat-
ics 38:185–194, 2022) to also store compactly the weights of the k-mers. From a technical perspective, we exploit
the order of the k-mers represented in SSHash to encode runs of weights, hence allowing much better compression
than the empirical entropy of the weights. We study the problem of reducing the number of runs in the weights to
improve compression even further and give an optimal algorithm for this problem. Lastly, we corroborate our findings
with experiments on real-world datasets and comparison with competitive alternatives. Up to date, SSHash is the only
k-mer dictionary that is exact, weighted, associative, fast, and small.

Keywords  k-mers, Compression, Hashing, Graphs, Path cover

Introduction
Recent advancements in the so-called Next Generation
Sequencing (NGS) technology made possible the avail-
ability of very large collections of DNA. However, before
being able to actually analyze the data at this scale, effi-
cient methods are required to index and search such col-
lections. One popular strategy to address this challenge
is to consider short sub-strings of fixed length k, known
as k-mers. Software tools based on k-mers are predomi-
nant in Bioinformatics and they have found applications
in genome assembly [1, 2], variant calling [3, 4], pan-
genome analysis [5, 6], meta-genomics [7], sequence
comparison [8–10], just to name a few ones.

For several such applications it is important to quantify
how many times a given k-mer is present in a DNA data-
base. In fact, many efficient k-mer counting tools have

been developed for this task [11–15]. The output of these
tools is a table where each distinct k-mer in the data-
base is associated to its abundance count, or weight. The
weights are either exact or approximate (in this work, we
focus on exact weights). These genomic tables are usually
very large and take several GBs—in the range of 40–80
bits/k-mer or more according to recent experiments [13,
16, 17]. Therefore, the tables should be compressed effec-
tively while permitting efficient random access queries
in order to be useful for on-line processing tasks. This is
precisely the goal of this work. We better formalize the
problem as follows.

Problem 1  (The Weighted k-mer Dictionary Problem)
Let S be a long DNA string and K be the set of the n dis-
tinct pairs 〈g ,w(g)〉 , where g is a k-mer of S and w(g) is
the weight of g, i.e., the number of times g occurs in S. We
want a compressed representation of K that permits to
efficiently check the exact membership of g to K and, if g
actually belongs to K , retrieve w(g).

In a previous investigation, we proposed a sparse and
skew hashing scheme for k-mers (SSHash, henceforth)

*Correspondence:
Giulio Ermanno Pibiri
giulioermanno.pibiri@unive.it
1 Department of Environmental Sciences, Informatics and Statistics (DAIS),
Ca’ Foscari University of Venice, Venice, Italy
2 ISTI-CNR, Pisa, Italy

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-023-00226-2&domain=pdf

Page 2 of 20Pibiri ﻿Algorithms for Molecular Biology (2023) 18:3

[18]—a compressed dictionary that relies on k-mer mini-
mizers [8] and minimal perfect hashing [19, 20] to sup-
port fast membership (in both random and streaming
query modality) in succinct space. These features make
SSHash useful for several applications, including refer-
ence indexing and pseudo-alignment [21]. However, we
did not consider the weights of the k-mers. In this work,
therefore, we enrich the SSHash data structure with the
weight information to solve Problem 1. The main prac-
tical result is that, by exploiting the order of the k-mers
represented in SSHash, the compressed exact weights
take only a small extra space on top of the space of
SSHash. This extra space is proportional to the number
of runs (maximal sub-sequences formed by all equal sym-
bols) in the weights and not proportional to the number
of distinct k-mers. As a consequence, the weights are
represented in a much smaller space than the empirical
entropy lower bound.

We study the problem of reducing the number of runs
in the weights and model it as a graph covering problem,
for which we give an optimal, linear-time, algorithm. The
optimization algorithm effectively reduces the number
of runs to the minimum, hence improving space even
further.

When empirically compared to other weighted dic-
tionaries that can be either somewhat smaller but much
slower or much larger, SSHash embodies a robust trade-
off between index space and query efficiency.

Related work
A solution to the weighted k-mer dictionary problem
can be obtained using the popular FM-index [22]. The
FM-index represents the original DNA string taking the
Burrows-Wheeler transform (BWT) [23] of the string.
Reporting the weight of a k-mer is solved using the count
operation of the FM-index which involves O(k) rank que-
ries over the BWT.

Another solution using the BWT is the so-called BOSS
data structure [24] that is a succinct representation of the
de Bruijn graph of the input—a graph where the nodes
are the k-mers and the edges model the overlaps between
the k-mers. The BOSS data structure has been recently
enriched with the weights of the k-mers [16], by delta-
encoding the weights on a spanning branching of the
graph. Since consecutive k-mers often have equal (or very
similar) weights, good space effectiveness is achieved by
this technique.

Other solutions, instead, rely on hashing for faster
query evaluation compared to BWT-based indexes.
For example, both deBGR [17] and Squeakr [13] use a
counting quotient filter [25] to store the k-mers and the
weights. They can either return approximate weights,
i.e., wrong answers with a prescribed (low) probability,

for better space usage of exact weights at the price of
more index space. In any case, the memory consumption
of these solutions is not competitive with that of BWT-
based ones as they do not employ sophisticated compres-
sion techniques and were designed for other purposes,
e.g., dynamic updates.

A closely related problem is that of realizing maps from
k-mers to weights, i.e., data structures that do not explic-
itly represent the k-mers and so return arbitrary answers
for out-of-set keys. In the context of this work, we distin-
guish between such approaches, maps, and dictionaries
that instead represent both the k-mers and the weights.
Besides minimal perfect hashing [19, 20], some efficient
maps have been proposed and tailored specifically for
genomic counts, such as based on set-min sketches [26]
and compressed static functions (CSFs) [27]. These pro-
posals leverage on the repetitiveness of the weights (low-
entropy distributions) to obtain very compact space.

Lastly in this section, we report that other works [28,
29] considered the multi-document version of the prob-
lem studied here, that is, how to retrieve a vector of
weights for a query k-mer, where each component of the
vector represents the weight of the k-mer in a distinct
document. Also such count vectors are usually very “reg-
ular” (or can be made so by introducing some approxima-
tion) [28] and present runs of equal symbols that can be
compressed effectively with run-length encoding (RLE).

Representing runs of weights
In this section we describe the compression scheme for
the weights that we use in SSHash. Recall that we indicate
with K the set of n distinct 〈 k-mer, weight〉 = 〈g ,w(g)〉
pairs, that we want to store in a dictionary. With a little
abuse of notation, we write “ g ∈ K ” for a k-mer g to mean
that there is a pair of K whose k-mer is g. We first high-
light the main properties of SSHash that we are going to
exploit in the following to obtain good space effectiveness
for the weights (for all the other details concerning the
SSHash index, we point the interested reader to our pre-
vious work [18]).

From a high-level perspective, SSHash implements the
function h : �k → {0, 1, . . . , n} , where n = |K| and �k is
the whole set of k-length strings over the DNA alpha-
bet � = {A,C,G,T} . In particular, h(g) is a unique value
1 ≤ i ≤ n if g ∈ K ; or h(g) = 0 otherwise, i.e., if g /∈ K . In
other words, SSHash serves the same purpose of a min-
imal and perfect hash function (MPHF) [20] for K but,
unlike a traditional MPHF, SSHash rejects alien k-mers.
This is possible because the k-mers of K are actually rep-
resented in SSHash whereas the space of a traditional
MPHF does not depend on the input keys.

The value i = h(g) for the k-mer g ∈ K is the handle
of g, or its “hash” code. The hash codes can be used to

Page 3 of 20Pibiri ﻿Algorithms for Molecular Biology (2023) 18:3 	

associate some satellite information to the k-mers such
as, for example, the weights themselves using an array
W[1..n] where W [h(g)] = w(g).

SSHash takes advantage of the fact that the input
set K can be processed into a so-called spectrum-pre-
serving string set (or SPSS) S —a collection of strings
S = {S1, . . . , Sm} where each k-mer of K appears exactly
once. We omit the details here on how the collection S
can be built; we only report that there are efficient algo-
rithms for this purpose that also try to minimize the total
number of symbols in S , i.e., the quantity

∑m
i=1 |Si| . One

such algorithm is the UST algorithm [30] that we also
use to prepare the input for SSHash. The key property
of SSHash in which we are interested is that—after K is
processed into the SPSS S—the function h preserves the
relative order of the k-mers, that is: if g1[1..k] and g2[1..k]
are two k-mers with g1[2..k] = g2[1..k − 1] (i.e., g2 comes
immediately after g1 in a string), then h(g2) = h(g1)+ 1 .
Therefore, consecutive k-mers, i.e., those sharing an
overlap of k − 1 symbols, are also given consecutive hash
codes.

Therefore, once an order S1, . . . , Sm for the strings
of S is fixed, then also an order i = 1, . . . , n for the k
-mers gi is uniquely determined. Let W[1..n] be the
sequence of weights in this order. Then, we have:
h(gi) = i andW [i] = w(gi), for i = 1, . . . , n.

This order-preserving behavior of h induces a prop-
erty on the sequence of weights W[1..n] that significantly
aids compression: W contains runs, i.e., maximal sub-
sequences of equal weights. This is so because consecu-
tive k-mers are very likely to have the same weight due to
the high specificity of the strings. This a known fact, also
observed in prior work [16, 27, 28]. Here, we are exploit-
ing the order of the k-mers given by SSHash to preserve

the natural order of the weights in W. Note that this can-
not be achieved by approximate schemes that do not rep-
resent the k-mers themselves, like a generic MPHF or a
CSF. Even if the k-mers were available, those schemes
are unable to assign consecutive hashes to consecutive k
-mers, actually shuffling the weights at random and, thus,
making W very difficult to compress.

It is standard to represent a sequence W featuring r
runs of equal symbols using run-length encoding (RLE),
i.e., W is modeled as a sequence of run-length pairs
RLW = �w1, ℓ1��w2, ℓ2� · · · �wr , ℓr� where wi and ℓi are,
respectively, the value of the run and the length of the i-
th run in W. Figure 1 shows an example of RLW for a col-
lection S with 4 weighted strings.

Encoding RLW
 Let D be the set of all distinct wi in RLW. Clearly,
r ≥ |D| as we must have at least one run per distinct
weight. We store D using |D|⌈log2max⌉ bits where
max ≥ 1 is the largest wi . We use D to uniquely rep-
resent each wi in RLW with ⌈log2 |D|⌉ bits. Since runs
are maximal sub-sequences in W by definition, then
wi = wi+1 for every i = 1, . . . , r − 1 (adjacent weights
must be different). Then we take the prefix-sums of the
sequence 0, ℓ1, . . . , ℓr−1 into an array L[1..r] and encode
it with Elias-Fano [31, 32].1 By construction we have that

Fig. 1  An example collection S of 4 weighted sequences (for k = 31 ) drawn from the genome of E. coli (Sakai strain). With
alternating colors we render the change of weight in the runs. There are 111 k-mers in the example but just 6 runs in the weights:
RLW = �5, 14��4, 18��2, 8��1, 31��4, 33��13, 7�. Note that a run can cross the boundary between two (or more) sequences, as it happens for the run
〈4, 18〉 which covers completely the third but also the part of the second sequence

1  Elias-Fano represents a monotone integer sequence S[1..n] with S[n] ≤ U in
at most n⌈log2(U/n)⌉ + 2n bits. With o(n) extra bits it is possible to decode
any S[i] in constant time and support predecessor queries in O(log(U/n))
time. For a complete description of the method, we point the reader to the
survey by Pibiri and Venturini [33, Section 3.4]. We also remark that Elias-
Fano has been recently used in many compressed, practical, data structures,
e.g., inverted indexes [33–37], tries [38–40], and full-text indexes [41].

Page 4 of 20Pibiri ﻿Algorithms for Molecular Biology (2023) 18:3

∑r
i=1 ℓi = n since the runs must cover the whole set of k-

mers. So the largest element in L is actually n− ℓr and we
spend at most r⌈log2(n/r)⌉ + 2r + o(r) bits for L. Sum-
ming up, we spend at most

for representing RLW on top of the space of SSHash. In
conclusion, the weights are represented in space propor-
tional to the number of runs in W (i.e., r = |RLW | ) and
not proportional to the number of k-mers, which is n. As
a consequence, this space is likely to be considerably less
than the empirical entropy H0(W) as we are going to see
with the experiments in “Experiments” section.

To retrieve the weight w(g) from i = h(g) , all that is
required is to identify the run containing i. This opera-
tion is done in O(log(n/r)) time with a predecessor query
over L given that we represent L with Elias-Fano. If the
identified run is the j-th run in W, then wj is retrieved in
O(1) from D.

The problem of reducing the number of runs
In “Representing runs of weights” section we presented
an encoding scheme for the k-mer weights whose space
is proportional to the number of runs in the sequence
of weights W. Therefore, in this section we consider the
problem of reducing the number of runs in the weights to
optimize the space of the encoding.

Rules of the game
 We assume that the strings in S are atomic entities: it
is not allowed to partition them into sub-strings (e.g.,

r ·

(

⌈log2 |D|⌉ +

⌈

log2

(

n

r

)⌉

+ 2+ o(1)
)

+ |D|⌈log2 max⌉ bits

in correspondance of the runs of weights in the strings).
In fact, since the strings are obtained by the UST algo-
rithm [30] with the purpose of minimizing the number
of nucleotides as we explained in “Representing runs of
weights” section, breaking them will lead to an increased
space usage for the k-mers, actually dwarfing any space-
saving effort spent for the weights. With this constraint
specified, there are only two degrees of freedom that can
be exploited to obtain better compression for W: (1) the
order of the strings, and (2) the orientation of the strings.
Altering S using these two degrees of freedom does not
affect the correctness nor the (relative) order-preserving
property of the function h : �k → {0, 1, . . . , n} imple-
mented by SSHash. In fact, as evident from our descrip-
tion in “Representing runs of weights” section, the output
of h will still be {1, . . . , n} as the k-mers themselves do
not change (even when taking reverse-complements
into account as they are considered to be identical).
What changes is just the absolute order of the k-mers
as a consequence of permuting the order of the strings
{S1, . . . , Sm} in S.

Therefore, our goal is to permute the order of the
strings in S and possibly change their orientations to
reduce the number of runs in W. We now consider an
illustrative example to motivate why both these two
operations—those of changing the order and orienta-
tion of a string—are important to reduce the number of
runs. Refer to Fig. 2a which shows an example collection
of m = |S| = 4 weighted strings (for k = 3) . Applying the
permutation π = [1, 4, 2, 3] as shown in Fig. 2b reduces
the number of runs by 1 because the run at the junction
of string 4 and 2 can be glued. Lastly, applying the signed

Fig. 2  In a, an example input collection S of m = |S| = 4 weighted strings (for k = 3 ), where the end-point weights are highlighted in bold font. In
b, the order of the strings is changed according to the permutation π = [1, 4, 2, 3] and, as a result, the number of runs is reduced by 1 (the last run
in string 4 is glued with the first run of string 2). Lastly, in c, it is shown that changing the orientation of string 3 (taking the reverse complement of
the string and reversing the order of the k-mer weights) makes it possible to glue other two runs. Given that reducing the number of runs by m− 1
is the best achievable reduction, the number of runs in c is therefore the minimum for the original collection in a 

Page 5 of 20Pibiri ﻿Algorithms for Molecular Biology (2023) 18:3 	

permutation π = [+1,+4,−2,+3] as in Fig. 2c reduces
the number of runs by 3, which is the best possible. Our
objective is to compute such a signed permutation π for
an input collection of strings, in order to permute S as
shown in Algorithm 1.

Algorithm 1 The Permute algorithm takes as input a collection S = {S1, . . . , Sm}
of weighted strings and a signed permutation π and returns the permuted collection
S∗ = π(S). The function Reverse takes the reverse-complement of a string and
reverse the order of its weights.
1: function Permute(S, π)
2: let S∗ = {S∗

1 , . . . , S
∗
m} be a new collection of empty strings

3: for i = 1..m do
4: j = π[i]
5: if j < 0 then S∗

−j = Reverse(Si) else S∗
j = Si

6: return S∗

Figure 2 also suggests that the final result π solely
depends on the weight of the first and last k-mer of each
sequence—which we call the end-point weights (or just
end-points) of a sequence—and not on the other weights
nor the nucleotide sequences. Therefore, it is useful to
model an input collection S using a graph, defined as
follows.

Definition 1  (End-point weight graph) Given a collec-
tion of weighted sequences S , let G be a graph where:

•	 There is a node u for each sequence of S and u has
two sides—a front and a back side—respectively
labelled with the first and last weights of the sequence
(end-point weights).

•	 There is an edge between any two nodes u and v that
have a side with the same weight.

The graph G is called the end-point weight graph for S
and indicated with G(S).

In the following, we assume the collection S to be
clear from the context and we refer to G(S) simply as
G. We indicate a node u ∈ G using the identifier (id) of

the corresponding sequence of S . Also, we associate
to u a sign ∈ {−1,+1} (also called “orientation”), indi-
cating whether the sequence should be reverse-com-
plemented. In summary, a node u ∈ G is the 4-tuple
(id, front, back , sign).

Definition 2  (Oriented path) An oriented path of
length ℓ in G is either a single node ( ℓ = 1 ) or a sequence
of nodes u1 → · · · → uℓ where each consecutive pair
of nodes ui → ui+1 is oriented in such a way that
ui.back = ui+1.front , for any 1 ≤ i < ℓ , ℓ ≥ 2.

Since we will be interested only in oriented paths, we
just refer to them as “paths”. For ease of notation, we will
indicate a path in our examples as a sequence of signed
numbers (i1 → · · · → iℓ) where each number represents a
node’s id and its sign represents the node’s sign. The first
and the last node of a path P are indicated, respectively,
with the P.front and the P.back . The weights P.front.front
and P.back .back are the two end-points of the path.

Given this graph model, it follows that the problem of
finding a signed permutation π for S is equivalent to that
of computing a (disjoint-node) path cover C for G, i.e., a set
of paths in G that visit all the nodes and where each node
belongs to exactly one path. In fact note that, given a cover
C for G, there is a linear-time reduction from C to π as
illustrated in Algorithm 2. Since the cover C is a disjoint-
node path cover, the correctness of the algorithm is imme-
diate as well as its complexity of �(m).

Page 6 of 20Pibiri ﻿Algorithms for Molecular Biology (2023) 18:3

Algorithm 2 The algorithm Reduce takes as input a path cover C computed for G
and returns the corresponding signed permutation π.
1: function Reduce(C)
2: j = 1
3: let π[1..m] be a new array
4: for each path P ∈ C do
5: for each node u ∈ P do
6: π[u.id] = u.sign · j
7: j = j + 1
8: return π

Figure 3 illustrates the same example of Fig. 2 but with
end-point weight graphs. In Fig. 3b we would obtain a
cover C = {(+1 → −3 → +4 → +2)} formed by a sin-
gle path. In this case the permutation π , following Algo-
rithm 2, would be π [1] = +1 , π [3] = −2 , π [4] = +3 ,
and π [2] = +4 . This is indeed the same permutation dis-
cussed in Fig. 2c. Another example: for the graph in Fig. 3c,
the cover would be C = {(+2 → −3 → +4), (+1)} and
the permutation π would be π [2] = +1 , π [3] = −2 ,
π [4] = +3 , and π [1] = +4.

Computing a minimum‑size path cover
We showed that changing the order and orientation of
the strings in S can reduce the number of runs in the
weights. The question we now ask is: by how much? We
are interested in computing an optimal signed permu-
tation π for S , i.e., a permutation π such that π(S) has

the minimum number of runs. Since we modeled the
problem of computing π as the problem of finding a path
cover for G, we reason in terms of G and a path cover C
for G.

Let ri be the number of runs in Si and let R be the total
number of runs, i.e., R =

∑m
i=1 ri . Let also |C| be the

number of paths in the cover C. We observe that the
final number of runs r in the permuted S will be equal
to R−m+ |C| . In fact, every path in C must begin (resp.
end) with a node whose front side (resp. back side) can-
not be glued with any other path’s side. Therefore, a new
run begins with the first node of every path. Since we
wish to minimize the quantity R−m+ |C| , and consid-
ering that R−m is constant for a given S , it follows that
the problem reduces to that of minimizing |C|, the num-
ber of paths in the cover. In other words, the problem of

Fig. 3  The same example of Fig. 2 but modeled using end-point weight graphs. Each node is represented using an arrow-like shape with
two-matching sides. Only opposite sides having the same weight can be matched. The numbers inside the shapes represent the end-point
weights; the extra darker square contains the node identifier. An arrow oriented from left-to-right models a node with positive sign; vice versa, an
arrow oriented from right-to-left models a node with negative sign. Gray edges represent edges that cannot be traversed without changing the
orientation of one of the two connected nodes. Black edges represent edges that can be traversed. Lastly, we highlight in red the edges that
belong to paths in a graph cover. The example in a corresponds to that of Fig. 2b where no node has changed orientation and, therefore, we have
three paths in the cover: (+4 → +2) , (+3) , and (+1) . Other two different covers are shown in b and c. In b the cover contains the single path
(+1 → −3 → +4 → +2) and corresponds to the example of Fig. 2c where the node 3 was changed orientation from + to—(shown in yellow
color). In c the cover contains the two paths (+2 → −3 → +4) and the singleton path (+1)

Page 7 of 20Pibiri ﻿Algorithms for Molecular Biology (2023) 18:3 	

minimizing the number of runs r is equivalent to that of
finding a minimum-cardinality path cover C for G.

We recall that the problem of computing a minimum-
cardinality path cover for directed graphs is NP-hard.
However, in this section we show that the problem can
be solved optimally using linear time and space on end-
point weight graphs. Specifically, we explain the steps of
the min-cover algorithm (Algorithm 3) and prove its
optimality.

Algorithm 3 The Min-Cover algorithm takes an input end-point weight graph G and
computes a minimum-size path cover C∗.
1: function Min-Cover(G)
2: G′ = Preprocess(G)
3: I = ∅
4: U = ∅
5: for u ∈ G′ do
6: Insert(u, I, U)
7: Merge-Even(I, U)
8: C∗ = Greedy-Cover(I, U)
9: return C∗

Preliminaries and notation
Our focus is on the end-point weights of the nodes, thus
throughout “Computing a minimum-size path cover”
section we will denote a node (id, front, back , sign)
just by its weights (front, back) . Without loss of gen-
erality, we assume that each u ∈ G is such that

u.front ≤ u.back since we can change the orientation of
u if u.front > u.back with a primitive change-orienta-
tion. In this way, two nodes (x, y) and (y, x) are consid-
ered as equal regarding their end-points.

Let W(G) be the set of the distinct end-point weights
of G and C∗(G) a minimum-size (i.e., optimal) path cover
for G. Whenever clear from the context, we will avoid
specifying G and refer to W(G) and C∗(G) simply as W
and C∗ respectively. Let |G| denote the number of nodes
in G.

Definition 3  (Incidence set and weight frequency) The
set Iw of nodes where w appears as end-point is called
the incidence set of w, for every w ∈ W . We call the fre-
quency of w the number of times w appears in the nodes
of Iw and indicate this quantity with n(Iw).

Fig. 4  An end-point weighted graph G with m = 32 nodes that is used as example throughout this section. The graph has 3 connected
components, highlighted with different background colors, and |W| = 16 distinct weights

Page 8 of 20Pibiri ﻿Algorithms for Molecular Biology (2023) 18:3

Example 1  Consider the graph G in Fig. 4. The graph
has m = 32 nodes, 3 connected components, and
|W| = 16 distinct weights. For example, the incidence set
for the weight 3 is

and n(I3) = |I3| = 10 . Another example: I8 = {(3, 8),

(8, 8), (8, 8)} and n(I8) = 5 but |I8| = 3.

Graph simplification
In general, a path u1 → · · · → uℓ in G can be logi-
cally replaced by the single node of endpoints
(u1.front,uℓ.back) . When we do so, we say that G is
“simplified” to a new graph where nodes {u1, . . . ,uℓ} are
removed and the single node (u1.front,uℓ.back) is added.
(When ℓ = 2 and nodes u and v are merged on weight
w, we refer to this operation as Merge(u, v,w) (see Algo-
rithm 5). However, we remark that the simplification is
only logical and not physical, i.e., the nodes removed
from G are not truly discarded since each node of G must
appear once in C∗ . We therefore assume that the new
node (u1.front,uℓ.back) keeps track of its inner struc-
ture and, when visited (e.g., in the for-loop in lines 5–7
of Algorithm 2), it actually visits each node in the path
u1 → · · · → uℓ.

I3 = {(1, 3), (1, 3), (1, 3), (1, 3), (3, 7), (3, 7), (3, 7), (3, 6), (3, 6), (2, 3)}

Lemma 1  Let Ex,y be the subset of all equal nodes (x, y)
of G. Let d = |Ex,y| . If d is even, then the d nodes can be
oriented to form a maximal path of either end-points
(x, x) or (y, y). If d is odd, then the path has end-points
(x, y).

Proof  We proceed by induction on d. Base case: if
d = 1 (odd case), then there is only the singleton path
(x, y); if d = 2 (even case), then we can either form the
path (x, y) → (y, x) of end-points (x, x) or the path
(y, x) → (x, y) of end-points (y, y). So the base case is ver-
ified. Now we assume the Lemma holds true for a generic
d > 2 and we want to prove it for d + 1 . If d is even, then
d + 1 is odd and we can either have a path (x, x) → (x, y)
or a path (x, y) → (y, y) . In both cases the end-points are
(x, y). Symmetrically: if d is odd, then d + 1 is even and
we can either have a path (x, y) → (y, x) with end-points
(x, x) or a path (y, x) → (x, y) with end-points (y, y). �

Using Lemma 1 we can simplify G using a routine pre-
process as follows.

•	 All nodes from the sets Ex,x are oriented to form a
single path of end-points (x, x). Hence all these nodes
are removed from G and replaced with a new node

Fig. 5  Graph simplification steps a for the graph from Fig. 4 and the resulting simplified graph b 

Page 9 of 20Pibiri ﻿Algorithms for Molecular Biology (2023) 18:3 	

(x, x). This new node is then merged to another node
(x, y), if any, into a two-node path of end-points (x, y).

•	 All nodes from sets Ex,y are oriented to form a single
path of end-points (x, y) if |Ex,y| is odd or two paths,
both of end-points (x, y) if |Ex,y| is even. In this latter
case, two equal nodes (x, y) are added to G.

After preprocess, G has the following form: there are
no nodes of the form (x, x) and nodes of the form (x, y)
appear at most twice. Without loss of generality, we are
going to assume that G has this form from now on.

After preprocess, two sets are built (lines 3–6 of
Algorithm 3), I and U, that are manipulated by the sub-
sequent steps merge-even and greedy-cover. The set
I is the collection of all incidence sets Iw , ∀w ∈ W . Note
that, since nodes (w, w) are not present in G after pre-
process, n(Iw) = |Iw| for any w. The set U represents the
set of all nodes that are still to be added by the algorithm
to some path of C∗.

Whenever a node u = (x, y) is to be inserted in G, u is
actually added to U, Ix , and Iy . This steps are illustrated
in Insert(u, I ,U) (Algorithm 5). Symmetrically, we use
Erase(u, I ,U) to erase the node u = (x, y) from U, Ix , and
Iy.

Example 2  Figure 5 shows the simplification steps for
the graph G from Fig. 4. Let G′ be the simplified graph. In

the example graph G we have: |E1,3| = 4 , hence G′ has two
nodes of end-point (1, 3); also |E1,5| = 4 , hence G′ has two
nodes of end-point (1, 5); |E3,7| = 3 , hence G′ has a sin-
gle node (3, 7); |E11,12| = |E21,43| = |E17,43| = |E3,6| = 2 ,
hence G′ has all the nodes in these sets.

Odd‑frequency end‑points
Let us first consider the odd-frequency end-points, i.e.,
those end-points w such that |Iw| is odd.

Lemma 2  If |Iw| is odd then w appears as end-point of
some path in C∗.

Proof  Since each node has two matching sides, one
node u in Iw will remain unmatched. Hence u will be an
end-point of some path in C∗ . �

Let W be defined after preprocess of G. We parti-
tion W into two sets, Wodd and Weven : if |Iw| is odd, then
w ∈ Wodd ; otherwise, w ∈ Weven.

Lemma 3  |Wodd | is even.

Proof  Observe that
∑

w∈W |Iw| is even and equal to 2|G|
because each node has two end-points. Since W = Wodd
∪Weven and Wodd ∩Weven = ∅ , the above sum can
be re-written as

∑

w∈W |Iw| =
∑

w∈Wodd
|Iw| +

∑

w∈Weven

|Iw| = 2|G|. It follows that also
∑

w∈Wodd
|Iw| = 2|G|

−
∑

w∈Weven
|Iw| must be even since it is obtained by dif-

ference of even quantities. Since each term in the sum
∑

w∈Wodd
|Iw| is odd by definition, the whole sum is even

if and only if |Wodd | is even, as the sum of an odd number
of odd numbers is odd. �

Fig. 6  A graphical visualization of line 7 in Algorithm 4 which
extends the path P with a node u. When P is not empty, four
different cases can arise, as illustrated in a–d. In cases b and
d, change-orientation(u) is called to match one of the two path’s
end-points

Fig. 7  The merge operations performed by the algorithm merge-even on the graph from Fig. 5b. The order of the operations is represented by the
numbers on the edges

Page 10 of 20Pibiri ﻿Algorithms for Molecular Biology (2023) 18:3

Lemma 4  If Weven = ∅ then |C∗| = |Wodd |/2 and the
greedy-cover algorithm (Algorithm 4) is optimal.

Proof  For Lemma 2, any w ∈ Wodd will appear as end-
point of some path in C∗ . Since each path must necessar-
ily have two end-points, then |C∗| = |Wodd |/2.

Consider now the greedy-cover algorithm (Algo-
rithm 4). We want to show it computes a solution C with
exactly |Wodd |/2 paths. At the beginning of each iteration
of the main while-loop (lines 3–12), the algorithm takes
an unvisited node from U (line 4) and begins a new path

P from there. Nodes are appended to either the front or
the back of P, for as much as possible (inner while-loop
in the lines 6–11). For each node u = (x, y) appended to
P (see Fig. 6), it is also removed from U, Ix , and Iy with
Erase(u, I ,U) . Suppose now P cannot be extended any
further. Then P must end with two weights that cannot
appear as end-points of any other path since P is of maxi-
mal length. Hence, each time the inner while-loop (lines
6–11) ends, we have two weights less in Wodd that can
appear as end-points. It follows that greedy-cover finds
a solution with exactly |Wodd |/2 paths. �

Fig. 8  The execution of algorithm greedy-cover on the graph from Fig. 7 after the execution of merge-even. The resulting minimum-size path cover has
|C∗| = 5 paths

Algorithm 4 The Greedy-Cover algorithm computes a cover C for the nodes in I.
1: function Greedy-Cover(I, U)
2: C = ∅
3: while U �= ∅ do
4: u = U.Take()
5: P = []
6: while True do
7: Append(u, P)
8: Erase(u, I, U)
9: let x = P.front.front and y = P.back.back
10: if Ix �= ∅ then u = Ix.Take() else
11: if Iy �= ∅ then u = Iy.Take() else break
12: C.Insert(P)
13: return C

Page 11 of 20Pibiri ﻿Algorithms for Molecular Biology (2023) 18:3 	

Algorithm 5 Utilities used in Greedy-Cover and Merge-Even algorithms.
1: function Merge(u, v, w)
2: if u.front = w then Change-Orientation(u)
3: if v.back = w then Change-Orientation(v)
4: let p be an empty new node
5: p.front = u.front
6: p.back = v.back
7: return p

8: function Insert(u, I, U)
9: U.Insert(u)
10: let x = u.front and y = u.back
11: Ix.Insert(u)
12: Iy.Insert(u)

13: function Erase(u, I, U)
14: U.Erase(u)
15: let x = u.front and y = u.back
16: Ix.Erase(u)
17: Iy.Erase(u)

Algorithm 6 The Merge-Even algorithm.
1: function Merge-Even(I, U)
2: while ∃w ∈ Weven ∧ |Iw| > 1 do
3: w∗ = argminw∈Weven∧|Iw|>1 |Iw|
4: u = Iw∗ .Take()
5: v = Iw∗ .Take()
6: p = Merge(u, v, w∗)
7: Erase(u, I, U)
8: Erase(v, I, U)
9: let x = p.front and y = p.back
10: if x = y and Ix �= ∅ then
11: u = p

12: v = Ix.Take()
13: p = Merge(u, v, x)
14: Erase(v, I, U)
15: Insert(p, I, U)

Page 12 of 20Pibiri ﻿Algorithms for Molecular Biology (2023) 18:3

Even‑frequency end‑points
Now note that the number of paths in C∗ is surely at
least the number of connected components of G since
there must be at least one path for each connected
component. Let C be the set of connected components
of G. The size of an optimal path cover for G is there-
fore |C∗| =

∑

c∈C |C
∗(c)| where C∗(c) is a minimum-size

path cover for the connected component c.

Lemma 5  Let c be a connected component of G. At the
end of the merge-even algorithm (Algorithm 6), c is sim-
plified to a graph where: either there is a single node, or
Iw = ∅ ∀w ∈ Weven(c).

Proof  We show that the merge-even algorithm
maintains the following loop invariant: if Iw = ∅ and
w ∈ Weven(c) , there are at least two nodes u and v in Iw ;
otherwise |c| = 1.

The invariant is true at the beginning of the algo-
rithm before the first iteration, because: (1) either
Weven(c) = ∅ , or (2) |Iw| ≥ 2 for each w ∈ Weven(c) given
that there are no nodes (w, w) in c, or (3) |c| = 1.

Assume the invariant is true at the beginning of each iter-
ation of the while-loop. We show it remains true after the
iteration. At each iteration of the while-loop, let w∗ be a
weight of minimum even frequency (line 3). Two nodes
are removed from Iw∗ and merged into a parent node p
with Merge(u, v,w∗) . One of the following two cases can
happen.

•	 The nodes u and v are such that u = (x,w∗) and
v = (w∗, y) , and p is therefore of end-points (x, y).
Suppose either |Ix| or |Iy| is even (or both are). With-
out loss of generality, assume |Ix| is even. Then it
must be |Ix| ≥ |Iw∗ | ≥ 2 because w∗ has minimum
frequency, thus there are at least two nodes in Ix if
|c| > 1 after merge, and the invariant is preserved
(or p is the only node left in c and the invariant still
holds). Otherwise, both |Ix| and |Iy| are odd. In this
case, since both |Ix| and |Iy| remain odd after merge,
nor x nor y will be considered by the algorithm at
line 3.

•	 The nodes u and v are such that u = (x,w∗) and
v = (w∗, x) , and p is therefore of end-points (x, x).
It could be that p is the only node where x appears,
i.e., Ix = {(x, x)} , and the invariant would be vio-
lated unless |c| = 1 after merge. However, the algo-
rithm again merges p with any other node from Ix
(lines 10–14) if Ix = ∅ at line 10. Note that it must

be that Ix = ∅ at line 10 if |Ix| is odd, hence the sec-
ond merge at line 13 is always possible. We now
show that, if Ix = ∅ instead at line 10 then it must
also be that |c| = 0 and (x, x) will be the only node
in c after the iteration, hence preserving the invari-
ant. Assume by absurd that this is not the case, i.e.,
Ix = ∅ but |c| �= 0 at line 10. Since |c| �= 0 , there
must be other nodes in Iw∗ otherwise c cannot be
a connected component at the beginning of the
algorithm, i.e., |Iw∗ | > 2 . But this would imply that
|Ix| < |Iw∗ | because |Ix| = 2 before merge, which
contradicts the hypothesis that w∗ is a minimum
even frequency weight. The algorithm therefore
maintains the invariant that there are no nodes
(x, x) in Ix , thus |Ix| ≥ 2 unless |c| = 1.

In all cases, it is easy to see that at each iteration: the
parity of |Ix| and |Iy| do not change, |Iw∗ | decreases by 2,
and the number of nodes in c decreases by 1 or 2. Sum-
ming up, merging on a weight of minimum even fre-
quency preserves the loop invariant.
At the end of the algorithm, since at every iteration the
even frequency of a weight is decreased by 2, either
Iw = ∅∀w ∈ Weven(c) or |c| = 1 (or both). Note that if
Wodd(c) = ∅ at the beginning of the algorithm then the
loop invariant guarantees that |c| = 1 at the end of the
algorithm.

Example 3  Consider Fig. 7 showing the merge opera-
tions performed by algorithm merge-even. In the input
graph, there are 8 weights whose frequency is even: 4, 5,
6, 8, 10, 17, 21, 43. After the execution of merge-even,
each of the three connected components of the graph has
no node whose weights have even frequency, except for
the one with the green background whose nodes all have
weights with even frequency, according to Lemma 5.
Indeed, note that the green component is simplified to a
single node. Lastly, Fig. 8 shows the execution of the algo-
rithm greedy-cover after the action of merge-even.
In this case, the final (optimal) path cover has 5 paths of
end-points: (3, 7), (1, 2), (9, 12), (11, 13), and (43, 43).

The final algorithm
We can now state and prove the optimality of the min-
cover algorithm.

Theorem 1  Let Ceven be the set of connected components
of G whose nodes only have end-points of even frequency.

�

Page 13 of 20Pibiri ﻿Algorithms for Molecular Biology (2023) 18:3 	

Then |C∗| = |Ceven| + |Wodd |/2 and the min-cover algo-
rithm (Algorithm 3) is optimal.

Proof  Consider the min-cover algorithm (Algo-
rithm 3). Since any pair of connected compo-
nents have disjoint set of nodes by definition,
|C∗| =

∑

c∈C |C∗(c)| =
∑

c∈Ceven
|C∗(c)| +

∑

c/∈Ceven
|C∗(c)| . If

c ∈ Ceven then Wodd(c) = ∅ and C∗(c) = 1 for Lemma 5
since c will be simplified to one single node by merge-
even. Hence,

∑

c∈Ceven
|C∗(c)| = |Ceven| . If c /∈ Ceven then

after merge-even there will only be nodes with odd
weights in c. Thus, for Lemma 4, C∗(c) = |Wodd(c)|/2
and

∑

c/∈Ceven
|C∗(c)| = |Wodd |/2 . In conclusion, the min-

cover algorithm is optimal.

Time and space complexity
If we use hash tables to implement the sets I and U,
then the operations take, insert, and erase, are all
supported in O(1) on average. Also append can be per-
formed in constant amortized time using a double-ended
queue to represent the path P. The merge function in
Algorithm 5 obviously takes constant time.

�

With these remarks in mind, it follows that the min-
cover algorithm runs in �(m) amortized time, where
m = |G| is the number of nodes in the input graph G.

In fact, the preprocess routine can be implemented
by sorting the m nodes in O(m) time with radix sort, and
scanning the nodes in sorted order. The greedy-cover
algorithm also takes O(m) time because each node is vis-
ited and appended to a path exactly once. The complex-
ity of the merge-even algorithm (Algorithm 6) critically
depends, instead, on the complexity of the step at line
3—the identification of the weight of minimum even fre-
quency. In “Reporting the minimum weight in constant
time” section we will show how to perform this opera-
tion in O(1) time. Hence, since the number of nodes in G
reduces by 1 or 2 at each iteration of the while-loop and
all operations in the body of the loop take constant time,
the complexity of merge-even is O(m).

Lastly, the algorithm also consumes �(m) space
because: (1) at most 2m nodes (and at least m) are
inserted in I and exactly m in U during the initialization
(lines 5–6 of min-cover); (2) the merge-even algorithm
creates at most 2m new nodes.

Fig. 9  In a, an example array A with 8 pairs. In b, we show how A, P, and R are updated by decrease-value(e). After Swap(i, j) and the decrease of the
value of e from 8 to 6, there is no element 6 in R, hence 6 → [5, 6) is added to R (line 11 of Algorithm 8) and R[8].begin incremented by 1. Note that if
the value of y were 6, then the test at line 10 would have succeeded, hence R[6].end would have been updated

Page 14 of 20Pibiri ﻿Algorithms for Molecular Biology (2023) 18:3

Algorithm 7 The Min-Key and Has-Next algorithms.
1: function Min-Key()
2: i = R[0].end
3: return A[i].key

4: function Has-Next()
5: return R[0].end ≤ |A|

Algorithm 8 The Decrease-Value algorithm.
1: function Decrease-Value(x)
2: j = P [x]
3: v = A[j].value
4: i = R[v].begin
5: y = A[i].key
6: Swap(A[i], A[j])
7: P [x] = i

8: P [y] = j

9: v = A[i].value
10: if R.Contains(v − 2) then R[v − 2].end = R[v − 2].end+ 1
11: else R[v − 2] = [i, i+ 1)
12: R[v].begin = R[v].begin+ 1
13: if R[v].begin = R[v].end then R.Erase(v)
14: A[i].value = A[i].value− 2

Reporting the minimum weight in constant time
In this section we solve the following problem. We have
an array A of (key, value) pairs, initially sorted by value .
Keys are all distinct and values are even integers larger
than or equal to 2. We want to answer min-key queries
over A, i.e., to report the key of minimum value, under

the condition that the value of a key x can be decreased
by 2 with a decrease-value(x) operation.

Since we use a solution to this problem to implement
the reporting of the weight of minimum even frequency
in the merge-even algorithm (line 3 of Algorithm 6),
we work under the assumption that decrease-value(x)

Table 1  Some basic statistics for the datasets used in the experiments, for k = 31 , such as: number of distinct k-mers (n), number of
distinct weights ( |D| ), largest weight (max), expected weight value (E), and empirical entropy of the weights ( H0(W))

Dataset n |D| ⌈log2 |D|⌉ max ⌈log2 max⌉ E H0(W)

E-Coli 5,235,781 22 5 27 5 1.05 0.206

S-Enterica-100 12,408,741 620 10 7956 13 38.94 4.155

Human-Chr-13 90,911,778 806 10 6354 13 1.08 0.160

C-Elegans 94,006,897 398 9 3478 12 1.07 0.223

Page 15 of 20Pibiri ﻿Algorithms for Molecular Biology (2023) 18:3 	

cannot be called if the value associated to the key x is
already 0. The minimum values in A can therefore be 0
but we want to report the key with minimum value larger
than 0.

Let K and V be the set of keys and values of A
respectively. We use two linear-space maps (imple-
mented as hash tables), R : V → {1, . . . , |A|}2 and
P : K → {1, . . . , |A|} . Before answering any query on
A, R and P are initialized such that R[v] = [begin, end)
indicates that the values of the elements A[begin, end)
are all equal to v, and such that P[x] = i indicates that
A[i].key = x . Also we add the special value 0 to R and let
R[0] = [1, 1) at the beginning.

We want to show that the algorithm decrease-value
(Algorithm 8) maintains the following invariants: (1)
A is sorted by value; (2) all the values of the elements
A[begin, end) are equal to v if R[v] = [begin, end) for each
v ∈ V ∪ {0} ; (3) if P[x] = i then A[i].key = x for each
key x ∈ K  . If these invariants hold true after each call of
decrease-value, then R[0].end is the position of the key
of minimum value larger than 0 and min-key can simply
return A[R[0].end].key in O(1).

The invariants are all trivially satisfied by construction
before answering any query: A is sorted and R[0].end = 1 ,
hence A[1].key is the key of minimum value.

Suppose now that the invariants are true for some
1 < R[0].end ≤ |A| . We want to show that they are also
true after decrease-value(x). The position j of x is
determined at line 2 and its value v at line 3. By assump-
tion, v ≥ 2 . Then the algorithm identifies the beginning
of the range of values equal to v in A, i.e., position i.

It then swaps A[i] with A[j] and update P consequently
so that, at line 9, i indicates the position of the key x
whose value v has to be decreased by 2. Hence, lines
2-9 maintain the invariant that A is sorted by value
as well as the invariants on R and P. Before decreas-
ing the value A[i].value by 2 at line 14, the algorithm
adjusts R[v] and R[v − 2] . Since the value v is going to
be decreased by 2, R[v − 2].end has to be increased by 1
and, symmetrically, R[v].begin has to be decreased by 1.
Whenever we decrease a value, it is possible that v − 2
does not yet exist in R. If that is the case, then R[v − 2]
is initialized with [i, i + 1) at line 11, which is correct
because i is the position of the key x whose value has to
be decreased. Whenever we increase the beginning of a
range instead, it is possible that the range is exhausted,
i.e., R[v].begin = R[v].end . If that is the case, it means
that there is only one key with value v and, since v is
going to be decrease, v is correctly erased from R. Fig-
ure 9 shows an example for an array A of 8 pairs and
how the invariants on A, P, and R are preserved after
decrease-value(e).

In conclusion, all the invariants are preserved after
every call of decrease-value. Therefore—if all values
are decreased to 0—then there will only be the value
0 in R and R[0] = [1, |A| + 1) . Note that each step of
decrease-value takes O(1) time since R and P are
implemented with hash tables, hence the overall time
of decrease-value is O(1).

Table 2  Space for the weights in SSHash reported in bits/k-mer,
before and after the run-reduction optimization

For reference, we also report how many times the achieved space is better than
the empirical entropy of the weights H0(W)

Dataset H0(W) Before After

E-Coli 0.206 0.017 (12.35×) 0.014 (15.10×)

S-Enterica-100 4.155 0.464 (8.96×) 0.328 (12.66×)

Human-Chr-13 0.160 0.135 (1.18×) 0.108 (1.50×)

C-Elegans 0.223 0.069 (3.23×) 0.055 (4.05×)

Table 3  The number of input strings (m) for SSHash as
computed by UST [30], the number of runs (r) computed by the
min-cover algorithm (Alg. 3)

The last two columns show the run-time of min-cover, in total milliseconds (ms)
and average nanoseconds per node (ns/node)

Dataset m r Alg.3 (ms) Alg. 3
(ns/
node)

E-Coli 2115 3720 0.2 54

S-Enterica-100 111,254 208,700 9.2 82

Human-Chr-13 266,263 461,917 14.2 54

C-Elegans 140,422 247,941 7.3 52

Page 16 of 20Pibiri ﻿Algorithms for Molecular Biology (2023) 18:3

Algorithm 9 The Merge-Even algorithm implemented using the data structure de-
scribed in Section 6, referred to as M in the pseudo-code. The gray lines of the pseudo-
code are identical to those in Algorithm 6.
1: function Merge-Even(I, U)
2: M.Build(U)
3: while M.Has-Next() do
4: w∗ = M.Min-Key()
5: M.Decrease-Value(w∗)
6: if |Iw∗ | = 1 then continue
7: u = Iw∗ .Take()
8: v = Iw∗ .Take()
9: p = Merge(u, v, w∗)
10: Erase(u, I, U)
11: Erase(v, I, U)
12: let x = p.front and y = p.back
13: if x = y then
14: M.Decrease-Value(x)
15: if Ix �= ∅ then
16: u = p

17: v = Ix.Take()
18: p = Merge(u, v, x)
19: Erase(v, I, U)
20: Insert(p, I, U)

Let M be the data structure holding the array A, the
maps R and P, and exposing the functions build, has-
next, min-key, and decrease-value. Algorithm 9
illustrates how to use the data structure to implement
the merge-even algorithm previously described as
Algorithm 6. The data structure is built from the nodes
in U by letting the weights be the keys in A and the fre-
quencies of the weights be the values in A. Since there
are at most m = |G| nodes in U, the initialization of A,
R, and P takes O(m) time and the whole data structure
consumes O(m) space.

Note A solution to the problem of maintaining a sorted
list of integers subject to increments/decrements was
also given by Knuth [42] to implement the adaptive
Huffman coding algorithm, but using a different combi-
nation of elementary data structures. The presentation
given here is specifically suited for Algorithm 6 (see also
Algorithm 9).

Experiments
In this section we evaluate the proposed weight com-
pression scheme for SSHash and compare it to several
competitive baselines. We first describe our experimen-
tal setup. Experiments were run using a server machine
equipped with a Intel i9-9900K CPU (clocked at
3.60 GHz) and 64 GB of RAM. All the tested soft-
ware was compiled with gcc 11.2.0 under Ubuntu 19.10
(Linux kernel 5.3.0, 64 bits), using the flags -O3 and
-march=native. Our implementation of SSHash is
written in C++17 and available at https://​github.​com/​
jermp/​sshash.

All timings were collected using a single core of the
processor. The dictionaries are loaded in internal mem-
ory before executing queries. For all the experiments, we
fix k to 31.

https://github.com/jermp/sshash
https://github.com/jermp/sshash

Page 17 of 20Pibiri ﻿Algorithms for Molecular Biology (2023) 18:3 	

Datasets
 We use the following genomic collections: E-Coli and
C-Elegans are, respectively, the full genomes of E.
Coli (Sakai strain) and C. Elegans that were also used in
the experimentation by Shibuya et al. [27]; S-Enter-
ica-100 is a pan-genome of 100 genomes of S. Enter-
ica, collected by Rossi et al. [43]; Human-Chr-13 is
the 13-th human chromosome from the genome assem-
bly GRCh38. Table 1 reports some basic statistics for
the collections. The weights were collected using the
tool BCALM (v2) [44] without any filtering (option
-all-abundance-counts). In general, note the
very low empirical entropy of the weights, H0(W) . This
is expected since most k-mers actually appear once for
large-enough values of k. Instead, the weights on the pan-
genome S-Enterica-100 have much higher entropy
due to the fact that many k-mers have weight equal to
the number of genomes in the collection (in this specific
case, equal to 100). This is useful to test the effectiveness
of our encoding on both low- and high- entropy inputs.

All datasets, in raw and pre-processed form, are avail-
able on Zenodo at https://​zenodo.​org/​record/​77723​16.

Weight compression in SSHash
 We now consider the space effectiveness of the encod-
ing scheme described in “Representing runs of weights”
section. Table 2 reports the space as average bits per k-
mer: we see that, in all cases, the space is well below the
empirical entropy lower bound H0(W)—usually below
by several times. The optimization strategy described in
“The problem of reducing the number of runs” section
brings further advantage. (The space shown is compre-
hensive of the |D|⌈log2max⌉ bits used to represent the
distinct weights in the collection. Note that this space
takes a negligible fraction of the total space since |D| is
very small as reported in Table 1).

Table 3, instead, shows the performance of the path
cover Algorithm 3. As already mentioned in “Represent-
ing runs of weights” section, the set of strings indexed by
SSHash is obtained by building a spectrum-preserving
string set (SPSS) from the raw genome, using the algo-
rithm UST [30] over the output of BCALM [44]. (At
the code repository https://​github.​com/​jermp/​sshash
we provide further details on how to take these prelimi-
nary steps before indexing with SSHash). The number of
strings in each collection, m, determines the run-time of
Algorithm 3 whose complexity is �(m) . The linear-time
complexity is evident from the reported timings and
makes the algorithm very fast, taking ≈50-80 nanosec-
onds per node.

In Appendix we report additional experimental results.

Overall comparison
 In Table 4 we show a comparison between the following
weighted k-mer dictionaries:

•	 The dBG-FM index [45]2 based on the popular FM-
index [22]. In particular, this representation imple-
ments a weighted k-mer dictionary via the count
query which returns the number of occurrences of
a given k-mer in the input. The count query, in turn,
is implemented using rank queries over the BWT.
The dBG-FM implementation has a main trade-off
parameter, s, to control the practical performance of
rank queries. We test the values s = 32, 64, 128.

•	 The cw-dBG [16]3 dictionary based on the data
structure called BOSS [24]. Similarly to an FM-index,
also cw-dBG has a trade-off parameter that we vary
as s = 32, 64, 128 . (The authors used s = 64 in their
own experiments).

•	 The non-weighted SSHash itself coupled with the
fast compressed static function (CSF) tailored for
low-entropy distributions, proposed by Shibuya et al.
[27].4 As reviewed in “Related work” section, a CSF
does not represent the k-mers but just realizes a map
from k-mers to their weights. Such map is collision-
free only over the set of k-mers that was used to
actually build the function. Therefore, we use SSHash
as an efficient dictionary for the k-mers and the CSF
to represent the weights. The authors proposed two
different versions of their approach, BCSF and AMB,
with different space/time trade-offs.

•	 The weighted SSHash dictionary proposed in this
work, which we refer to as w-SSHash in the follow-
ing, after the run-reduction optimization (Tables 2
and 3). We use the regular index variant of SSHash.
The main parameter of the index—the minimizer
length—is always set to ⌈log4 N⌉ + 1 where N is the
number of nucleotides in the SPSSs of the datasets,
following the recommendation given in the previous
paper [18]. Therefore, we use the following minimizer
lengths: 13, 14, 15, and 15, for respectively, E-Coli,
S-Enterica-100, Human-Chr-13, and C-Ele-
gans. Also the AMB algorithm by Shibuya et al. [27]
is based on minimizers and we use the same lengths.

We did not compare against deBGR [17] and Squeakr
[13] as the authors of cw-dBG showed in their experi-
mentation [16] that both tools take considerably more
space than cw-dBG, e.g., one order of magnitude more

3  https://​github.​com/​nicol​aprez​za/​cw-​dBg.
4  https://​github.​com/​yhhshb/​locom.

2  https://​github.​com/​jts/​dbgfm.

https://zenodo.org/record/7772316
https://github.com/jermp/sshash
https://github.com/nicolaprezza/cw-dBg
https://github.com/yhhshb/locom
https://github.com/jts/dbgfm

Page 18 of 20Pibiri ﻿Algorithms for Molecular Biology (2023) 18:3

space. Here, we are interested in a good balance between
space effectiveness and query efficiency. The same con-
sideration applies to the popular k-mer counting tool
KMC3 [12] which stores both k-mers and their abun-
dances in a hash table without compression.

To measure query-time—the time it takes to retrieve
the weight w(g) given the k-mer g—we sampled 106 k-
mers uniformly at random from the collections and use
them as queries. We report the mean between 5 meas-
urements. Half of the queries were transformed into their
reverse complements to make sure we benchmark the
dictionaries in the most general case.

The space of w-SSHash is generally competitive with
that of the fastest variant of dBG-FM ( s = 32 ), but
w-SSHash has (more than) one order of magnitude bet-
ter query time. Note that on S-Enterica-100 the
dBG-FM index is space-inefficient since it redundantly
represents many repeated k-mers. Using a higher sam-
pling rate reduces the space of dBG-FM at the price of
slowing down query-time; however, the most space-effi-
cient variant tested ( s = 128 ) is not even 2× smaller than
w-SSHash.

The cw-dBG index is the smallest tested dictionary.
Its space effectiveness is comparable to that of dBG-FM
s = 128 , and indeed generally twice as better as that of
w-SSHash. The price to pay for this enhanced compres-
sion ratio is a significant penalty at query-time. Indeed,
w-SSHash can be two order of magnitude faster than cw-
dBG. Consider, for example, the two dictionaries built
for S-Enterica-100: we have 0.5 vs. ≈60–110 μs per
query.

The two CSFs, BCSF and AMB, make SSHash consist-
ently slower and larger than w-SSHash This compari-
son motivates the need for a unified data structure to

handle efficiently both the k-mers and the weights, like
w-SSHash. While the increase in space due to the CSF
is not much for the low-entropy datasets because both
BCSF and AMB are very space-efficient in those cases,
the gap is more evident on S-Enterica-100.

As a last note, observe that there is no significant slow-
down in accessing the weights in w-SSHash compared
to a simpler membership query (the time reported in
shaded color in Table 4), hence proving the RLE-based
scheme to be efficient too and not only very effective.

Conclusions
In this work we extended the recent SSHash [18] diction-
ary to also store the weights of the k-mers in compressed
format. In particular, we represented the weights using
compressed runs of equal symbols. While using run-length
encoding to compress highly repetitive sequences is not
novel per se and indeed a folklore strategy at the basis of
many other data structures, this allows to use a very small
extra space (e.g., much less than the empirical entropy of
the weights) on top of SSHash with only a slight penalty
at retrieval time. The crucial point is that it is possible to
use run-length encoding because SSHash preserves the
(relative) order of the k-mers in the indexed sequences. The
main practical take-away is, therefore, that SSHash handles
weighted k-mer sets in an exact manner without noticeable
extra costs. Our software is publicly available to encourage
its use and reproducibility of results.

We also introduced the concept of end-point weight
graph and showed its usefulness in reducing the number
of runs in the weights. Precisely, we showed that mini-
mizing the number of runs in a collection of sequences
corresponds to the problem of computing a minimum-
cardinality path cover for the end-point weight graph of the

Table 4  Dictionary space in average bits/k-mer (bpk) and total MB, and query time in average μs/k-mer (qtm)

For reference, we report in bold the space and time of SSHash without the weight information

Dictionary E-Coli S-Enterica-100 Human-Chr-13 C-Elegans

bpk MB qtm bpk MB qtm bpk MB qtm bpk MB qtm

dBG-FM, s = 128 3.20 2.00 12.42 118.23 174.90 14.00 3.23 34.97 14.94 3.18 35.60 15.44

dBG-FM, s = 64 4.02 2.51 6.57 147.84 218.70 9.43 4.07 44.07 9.98 4.01 44.89 9.60

dBG-FM, s = 32 5.65 3.53 3.74 206.53 305.51 7.03 5.73 62.15 7.25 5.67 63.49 7.10

cw-dBG, s = 128 2.79 1.82 96.84 5.43 8.42 111.43 2.80 31.77 92.80 2.77 32.54 119.73

cw-dBG, s = 64 2.86 1.87 62.97 5.58 8.66 76.74 2.86 32.55 67.63 2.84 33.34 77.72

cw-dBG, s = 32 2.99 1.96 46.49 5.87 9.11 62.21 2.99 34.02 54.48 2.97 34.87 56.67

SSHash+BCSF 5.02 3.29 0.48 11.43 17.73 0.52 6.12 69.55 0.88 5.94 69.80 0.9

SSHash+AMB 4.85 3.17 0.57 9.15 14.19 0.68 6.05 68.75 1.06 5.82 68.39 1.07

w-SSHash 4.80 3.14 0.35 5.97 9.26 0.46 6.04 68.66 0.82 5.75 67.52 0.85

SSHash 4.79 3.14 0.32 5.63 8.73 0.39 5.93 67.39 0.73 5.69 66.86 0.77

Page 19 of 20Pibiri ﻿Algorithms for Molecular Biology (2023) 18:3 	

sequences. We presented an optimal algorithm that com-
putes a cover of minimum size in linear-time (in the num-
ber of nodes of the graph). As a result of this optimization,
the space spent to represent the weights is unlikely to be
improved using run-length encoding.

Although several approaches in the literature [13, 26–28]
also consider approximate weights, we did not pursue this
direction here as the weights are already encoded space-
efficiently in SSHash and in an exact way, so there may be
no need for approximation.

The distribution of weights in large collections is usually
expected to be very skew, i.e., most k-mers actually appear
once and few of them repeat many times [26, 27]. A com-
mon strategy to save space is then to avoid the represen-
tation of the most frequent weight(s). Note that, since we
represent runs of weights and not the individual weights,
we are already optimizing (potentially very large) sub-
sets of weights equal to the most frequent one. That is,
run-length encoding is also a good match for such skew
distributions.

Appendix: Additional experimental results
In Tables 5 and 6 we report the performance of the min-
cover algorithm and of w-SSHash on four additional,
larger, collections that we also used in our previous work
[18], namely the full genomes of G. morhua (Cod), F.
tinnunculus (Kestrel), and H. sapiens (Human), and a
collection of more than 8000 bacterial genomes (Bacte-
rial) [46]. Precisely, the results in Table 6 are for regu-
lar w-SSHash dictionaries with minimizer lengths equal
to 17, 17, 20, and 20, for respectively, Cod, Kestrel,
Human, and Bacterial.

Acknowledgements
The author wishes to thank an anonymous reviewer of this work for pointing
out the connection between the data structure described in “Reporting the
minimum weight in constant time” section and the Knuth’s algorithm for
adaptive Huffman coding.

Author contributions
Not applicable given that G. E. P. is the only author of the manuscript. The
author read and approved the final manuscript.

Funding
Funding for this research has been partially provided by the European Union’s
Horizon Europe research and innovation programme (EFRA project, Grant
Agreement Number 101093026).

Availability of data and materials
The SSHash software is available on GitHub at https://​github.​com/​jermp/​
sshash. The datasets used in this article are available on Zenodo at https://​
zenodo.​org/​record/​77723​16.

Declarations

Competing interests
The author declares no competing interests.

Received: 30 March 2023 Accepted: 13 May 2023

References
	1.	 Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin

VM, Nikolenko SI, Pham S, Prjibelski AD, et al. Spades: a new genome
assembly algorithm and its applications to single-cell sequencing. J
Comput Biol. 2012;19(5):455–77.

	2.	 Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA,
Jahesh G, Khan H, Coombe L, Warren RL, et al. Abyss 2.0: resource-
efficient assembly of large genomes using a bloom filter. Genome Res.
2017;27(5):768–77.

	3.	 Khorsand P, Hormozdiari F. Nebula: ultra-efficient mapping-free structural
variant genotyper. Nucl Acids Res. 2021;49(8):47–47.

	4.	 Standage DS, Brown CT, Hormozdiari F. Kevlar: a mapping-free framework
for accurate discovery of de novo variants. Iscience. 2019;18:28–36.

	5.	 Baier U, Beller T, Ohlebusch E. Graphical pan-genome analysis with com-
pressed suffix trees and the Burrows-Wheeler transform. Bioinformatics.
2016;32(4):497–504.

	6.	 Marcus S, Lee H, Schatz MC. Splitmem: a graphical algorithm for pan-
genome analysis with suffix skips. Bioinformatics. 2014;30(24):3476–83.

	7.	 Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence clas-
sification using exact alignments. Genome Biol. 2014;15(3):1–12.

Table 5  The performance of the min-cover algorithm (Alg. 3)
on the datasets Cod, Kestrel, Human, and Bacterial,
for which we report the number of distinct k-mers (n) and the
number of strings (m) after running UST [30] on the collections

The performance of the algorithm is expressed as the number of runs (r) after
the run-reduction optimization and running time (in total seconds and average
ns/node)

Dataset n m r Alg. 3
(sec)

Alg. 3
(ns/
node)

Cod 502,465,200 2,406,681 4,183,202 0.14 57

Kestrel 1,150,399,205 682,444 1,140,743 0.03 49

Human 2,505,445,761 13,013,742 22,680,047 0.76 59
Bacte-
rial

5,350,807,438 26,448,286 56,662,230 1.64 62

Table 6  The performance of w-SSHash on the permuted string
collections Cod, Kestrel, Human, and Bacterial 

We report the empirical entropy of the weights ( H0(W) ), the dictionary space
in average bits/k-mer (bpk) and total GB, and query-time in average μs/k-mer
(qtm). The space is indicated as x + y , where x is the space of SSHash (without
the weights) and y is the space for the encoding of the weights. In parentheses
we report the space reduction of the encoded weights compared to the
empirical entropy of the weights

Dataset H0(W) bpk GB qtm

Cod 0.441 6.98 + 0.19 (2.35×) 0.45 1.3

Kestrel 0.089 6.49 + 0.02 (3.80×) 0.94 1.1

Human 0.453 8.28 + 0.22 (2.06×) 2.66 1.7

Bacterial 1.890 8.22 + 0.24 (7.81×) 5.66 1.7

https://github.com/jermp/sshash
https://github.com/jermp/sshash
https://zenodo.org/record/7772316
https://zenodo.org/record/7772316

Page 20 of 20Pibiri ﻿Algorithms for Molecular Biology (2023) 18:3

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	8.	 Roberts M, Hayes W, Hunt BR, Mount SM, Yorke JA. Reducing storage
requirements for biological sequence comparison. Bioinformatics.
2004;20(18):3363–9.

	9.	 Sahlin K. Effective sequence similarity detection with strobemers.
Genome Res. 2021;31(11):2080–94.

	10.	 Sahlin K. Strobemers: an alternative to k-mers for sequence comparison.
bioRxiv (2021).

	11.	 Deorowicz S, Kokot M, Grabowski S, Debudaj-Grabysz A. Kmc 2: fast and
resource-frugal k-mer counting. Bioinformatics. 2015;31(10):1569–76.

	12.	 Kokot M, Długosz M, Deorowicz S. Kmc 3: counting and manipulating
k-mer statistics. Bioinformatics. 2017;33(17):2759–61.

	13.	 Pandey P, Bender MA, Johnson R, Patro R. Squeakr: an exact and approxi-
mate k-mer counting system. Bioinformatics. 2018;34(4):568–75.

	14.	 Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers. Bioinformatics. 2011;27(6):764–70.

	15.	 Rizk G, Lavenier D, Chikhi R. DSK: k-mer counting with very low memory
usage. Bioinformatics. 2013;29(5):652–3.

	16.	 Italiano G, Prezza N, Sinaimeri B, Venturini R. Compressed weighted de
Bruijn graphs. In: 32nd annual symposium on combinatorial pattern
matching (CPM 2021), vol. 191. 2021. p. 16–11616. https://​github.​com/​
nicol​aprez​za/​cw-​dBg.

	17.	 Pandey P, Bender MA, Johnson R, Patro R. deBGR: an efficient and near-
exact representation of the weighted de Bruijn graph. Bioinformatics.
2017;33(14):133–41.

	18.	 Pibiri GE. Sparse and skew hashing of k-mers. Bioinformatics.
2022;38(Supplement_1):185–94.

	19.	 Pibiri GE, Trani R. Parallel and external-memory construction of minimal
perfect hash functions with PTHash. CoRR arXiv:​2106.​02350 (2021)

	20.	 Pibiri GE, Trani R. PTHash: revisiting FCH minimal perfect hashing. In:
SIGIR ’21: the 44th international ACM SIGIR conference on research and
development in information retrieval, virtual event, Canada, July 11–15,
2021. 2021. p. 1339–48.

	21.	 Fan J, Khan J, Pibiri GE, Patro R. Spectrum preserving tilings enable sparse
and modular reference indexing. In: Research in computational molecular
biology. 2023. p. 21–40.

	22.	 Ferragina P, Manzini G. Opportunistic data structures with applications.
In: Proceedings 41st annual symposium on foundations of computer
science. New York: IEEE; 2000. p. 390–8.

	23.	 Burrows M, Wheeler D. A block-sorting lossless data compression algo-
rithm. In: Digital SRC research report. Citeseer; 1994.

	24.	 Bowe A, Onodera T, Sadakane K, Shibuya T. Succinct de Bruijn graphs. In:
International workshop on algorithms in bioinformatics (WABI). Berlin:
Springer; 2012. p. 225–35.

	25.	 Pandey P, Bender M.A, Johnson R, Patro R. A general-purpose counting
filter: making every bit count. In: Proceedings of the 2017 ACM interna-
tional conference on management of data. 2017. p. 775–87.

	26.	 Shibuya Y, Belazzougui D, Kucherov G. Set-min sketch: a probabilistic
map for power-law distributions with application to k-mer annotation. J
Comput Biol. 2022;29(2):140–54.

	27.	 Shibuya Y, Belazzougui D, Kucherov G. Space-efficient representation of
genomic k-mer count tables. Algorithms Mol Biol. 2022;17(1):1–15.

	28.	 Marchet C, Iqbal Z, Gautheret D, Salson M, Chikhi R. Reindeer: efficient
indexing of k-mer presence and abundance in sequencing datasets.
Bioinformatics. 2020;36(Supplement_1):177–85.

	29.	 Karasikov M, Mustafa H, Rätsch G, Kahles A. Lossless indexing with count-
ing de Bruijn graphs. bioRxiv (2021)

	30.	 Rahman A, Medvedev P. Representation of k-mer sets using spectrum-
preserving string sets. In: International conference on research in com-
putational molecular biology. Berlin: Springer; 2020. p. 152–68. https://​
github.​com/​medve​devgr​oup/​UST.

	31.	 Elias P. Efficient storage and retrieval by content and address of static files.
J ACM. 1974;21(2):246–60.

	32.	 Fano RM. On the number of bits required to implement an associative
memory. Memorandum 61, Computer Structures Group, MIT. 1971.

	33.	 Pibiri GE, Venturini R. Techniques for inverted index compression. ACM
Comput Surv. 2021;53(6):125–112536.

	34.	 Ottaviano G, Venturini R. Partitioned Elias-Fano indexes. In: Proceedings of
the 37th international ACM SIGIR conference on research & development
in information retrieval. 2014. p. 273–82.

	35.	 Pibiri GE, Venturini R. Clustered Elias-Fano indexes. ACM Trans Inf Syst.
2017;36(1):2–1233.

	36.	 Pibiri GE, Venturini R. On optimally partitioning variable-byte codes. IEEE
Trans Knowl Data Eng. 2020;32(9):1812–23.

	37.	 Vigna S. Quasi-succinct indices. In: Proceedings of the sixth ACM interna-
tional conference on web search and data mining. 2013. p. 83–92.

	38.	 Perego R, Pibiri GE, Venturini R. Compressed indexes for fast search of
semantic data. IEEE Trans Knowl Data Eng. 2021;33(9):3187–98.

	39.	 Pibiri GE, Venturini R. Efficient data structures for massive n-gram data-
sets. In: Proceedings of the 40th international ACM SIGIR conference on
research and development in information retrieval. 2017. p. 615–24.

	40.	 Pibiri GE, Venturini R. Handling massive N-gram datasets efficiently. ACM
Trans Inf Syst. 2019;37(2):25–12541.

	41.	 Ma D, Puglisi SJ, Raman R, Zhukova B. On elias-fano for rank queries in
fm-indexes. In: 2021 data compression conference (DCC). New York: IEEE;
2021. p. 223–32.

	42.	 Knuth DE. Dynamic Huffman coding. J Algorithms. 1985;6(2):163–80.
	43.	 Rossi M, Silva MSD, Ribeiro-Gonçalves BF, Silva DN, Machado MP, Oleastro

M, Borges V, Isidro J, Viera L, Halkilahti J, Jaakkonen A, Palma F, Salmen-
linna S, Hakkinen M, Garaizar J, Bikandi J, Hilbert F, Carriço JA. INNUENDO
whole genome and core genome MLST schemas and datasets for Salmo-
nella enterica. 2018.

	44.	 Chikhi R, Limasset A, Medvedev P. Compacting de Bruijn graphs
from sequencing data quickly and in low memory. Bioinformatics.
2016;32(12):201–8.

	45.	 Chikhi R, Limasset A, Jackman S, Simpson JT, Medvedev P. On the repre-
sentation of de Bruijn graphs. In: International conference on research
in computational molecular biology. Berlin: Springer; 2014. p. 35–55.
https://​github.​com/​jts/​dbgfm.

	46.	 Almodaresi F, Sarkar H, Srivastava A, Patro R. A space and time-efficient
index for the compacted colored de Bruijn graph. Bioinformatics.
2018;34(13):169–77.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://github.com/nicolaprezza/cw-dBg
https://github.com/nicolaprezza/cw-dBg
http://arxiv.org/abs/2106.02350
https://github.com/medvedevgroup/UST
https://github.com/medvedevgroup/UST
https://github.com/jts/dbgfm

	On weighted k-mer dictionaries
	Abstract
	Introduction
	Related work
	Representing runs of weights
	Encoding RLW

	The problem of reducing the number of runs
	Rules of the game

	Computing a minimum-size path cover
	Preliminaries and notation
	Graph simplification
	Odd-frequency end-points
	Even-frequency end-points
	The final algorithm
	Time and space complexity

	Reporting the minimum weight in constant time
	Experiments
	Datasets
	Weight compression in SSHash
	Overall comparison

	Conclusions
	Appendix: Additional experimental results
	Acknowledgements
	References

