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Summary

Modern software systems accommodate complex configurations and execution con-
ditions that depend on the environment where the software is run. While in house
testing can exercise only a fraction of such execution contexts, in vivo testing can
take advantage of the execution state observed in the field to conduct further testing
activities. In this paper, we present the Groucho approach to in vivo testing. Groucho
can suspend the execution, run some in vivo tests, rollback the side effects introduced
by such tests, and eventually resume normal execution. Differently from the state-of-
art approach Invite, Groucho can be transparently applied to the original application
code, even if only available as compiled code, and is fully automated. Our empirical
studies of the performance overhead introduced by Groucho under various configu-
rations showed that this may be kept to a negligible level by activating in vivo testing
with low probability. Our empirical studies about the effectiveness of the approach
confirm previous findings on the existence of faults that are unlikely exposed in house
and become easy to expose in the field. Moreover, we include the first study to quan-
tify the coverage increase gained when in vivo testing is added to complement in
house testing.
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1 INTRODUCTION

In recent years the practice of continuing software testing in production has passed from a bad reputation, symptomatic of a poor
quality assurance process, to its acceptance as an indispensable strategy for mastering the growing complexity and dynamism
of configurations and environmental conditions. Both in the white and in the grey literature, this practice is referred to using
different terms, which include “field testing”, “live testing”, “post-release testing”, “in vivo testing”. For the purposes of this
paper, we consider all such terms as synonyms.
Despite the common denominator of analyzing the behavior of an application under test (AUT) while it is in operation and

accessed by actual users, in reality the practice of field testing can comprise quite different approaches and strategies. Some
approaches, such as canary releases, dark launches, or A/B testing, consist of controlled online experiments1 in which an organi-
zation aims to evaluate some change by measuring the users’ reactions. This kind of live testing is especially useful in continuous
deployment processes for supporting data-driven decisions2, and mostly consists of passively monitoring a system configuration
in the field. We do not consider controlled online experiments in this work.
Different is the case of field testing approaches that actively intervene on the AUT, either by launching test invocations

mimicking users’ invocations, or by altering the system state. Such proactive techniques aim at detecting field failures before
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the actual users experience them, trying out the AUT resilience to (intentional or unintended) breakages. Indeed, despite all the
efforts, faults that escaped in house testing will eventually manifest themselves after the software is released for production use.
An early report on the impacts of inadequate infrastructure for software testing estimated that 10% of the faults introduced during
the coding/unit testing phase are found only after the product is released3. Those faults are missed not necessarily because the
testing process is poor; some faults are genuinely hard to detect in house, mainly because it is hard to predict all the interactions
that will occur in the production environment. More recent studies4, 5 highlight that a large percentage of failures occurring in
the field yield characteristics that would be difficult and costly to reproduce in the lab. Hence, there are signals indicating that
this trend of right-shifting testing6 towards the production stage is here to stay. In the latest World Quality Report7, organizations
were asked to rate the importance of mechanisms for improving test efficiency, and 40% of the respondents qualified “shift test
right” as essential or very important. Correspondingly, we are experiencing a growing interest in this topic in academic research,
as reported in a systematic study of the literature8.
While it would be desirable that tests launched in production do not interfere with actual users’ invocations, if executed without

any protection mechanism, they usually would impact the state of both the AUT and the environment, producing visible side
effects. By and large these effects can be contrasted taking three different approaches: (i) just accepting them; (ii) isolating the
test execution from live operations; (iii) rolling-back the AUT to its original state after testing terminates.
The first approach is taken, for instance, in Chaos Monkey testing9, introduced by Netflix, in which outages are intentionally

and regularly caused in production to test the network resilience. However, not all systems are apt for tolerating breakages
without serious consequences, and moreover functional testing aiming at finding field failures may require more sophisticated
interventions, e.g., launching end-to-end tests in production, than just introducing a disconnection.
The Invite framework by Murphy et al.10 is an example of the second approach to in vivo testing. Its solution consists of

isolating the test execution context from the operation environment, by duplicating the system state within a separate sandbox.
Such type of solution mitigates the risk that any impact leaks from testing to production. However, it can be demanding in terms
of resources required, and hence may not scale up to large AUTs.
This paper presents the Groucho framework, which is a solution pertaining to category (iii). Groucho supports checkpointing,

testing and reverting of the AUT, while other threads not involved in the online testing session are suspended, to be resumed
when the test is over.
A preliminary version of Groucho has been early introduced in a prior work11. Both Invite and that prior version of Grou-

cho require, as a prerequisite for application, that the source code of the AUT undergoes some substantial manipulation. This
requirement assumes that either the AUT has been prepared ad hoc by its developers who anticipate the subsequent needs of
vivo testing, or its source code can be accessed and modified by the testers. This underlying prerequisite can be an issue because
the source code is not always accessible or, even if accessible, the version modified for testing purposes cannot be released in
production.
In this paper, we introduce an extended version of the Groucho framework that can support in vivo testing of Java applications

as they are, i.e., without requiring any code modification and without even requiring the availability of AUT source code. To
the best of our knowledge Groucho provides the first unobtrusive field testing framework.
We have evaluated Groucho along several directions: we have compared it against Invite in a qualitative evaluation (we could

not conduct a quantitative study because Invite is not made available); we have evaluated empirically the overhead implied
by the introduction of in vivo testing; and finally we have evaluated empirically the functionality of Groucho, showing that
indeed Groucho can detect failures that would escape in house testing (as previously also shown with regard to Invite). We also
conducted a study comparing the coverage achieved by Groucho against that reached in the lab. While several works claim that
in vivo testing can provide a more extensive coverage of stateful applications, this is the first study actually providing such an
evidence.
The paper is structured as follows: in the next section we overview relevant related work; then in Section 3 we briefly introduce

as an illustrative example a small AUT. The details of the solutions implemented in Groucho are given in Section 4, while the
qualitative comparison between Invite and Groucho is reported in Section 5. The results of the conducted empirical studies
are reported and discussed in Section 6 for what concerns the overhead evaluation, and in Section 7 with regard to Groucho’s
effectiveness. Finally we discuss the threats to validity affecting all three studies in Section 8 and draw conclusions in Section 9.
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2 RELATEDWORK

Recent literature provides evidence that field failures are often difficult to reproduce during pre-release, in house testing. We
report about such evidence, and then continue with a summary of field testing approaches proposed to address the problem.

Field Failures
Testing in the field is motivated by several studies that analyzed the prevalence and the characteristics of failures arising in
production. Gazzola et al.4 performed a wide empirical investigation of field failures in three open source systems (Eclipse,
OpenOffice and Nuxeo). The authors inspected 119 bug reports and concluded that 70% of the faults could be classified as field-
intrinsic faults, i.e., faults that would be hard to reveal during in house testing. The main cause to miss field-intrinsic failures
was found to be the combinatorial growth of the states to be tested.
In order to improve their field quality predictions, Li et al.12 examined usage information and failure reports from millions

of Windows 7 OS users. Among their findings, the authors identified the most important usage characteristics that differentiate
pre-release and post-release versions, including, e.g., the number of applications executed in the user machine and the type of
installation.
Another study over industrial software (37 projects by BHL BNP Paribas) was conducted by Rwemalika et al.5 who analyzed

the differences between pre-release and post-release bug fixes. Their conclusions support the intuition that post-release patches
are larger than pre-release ones, and are also more dispersed among several source code files and configuration files.

Approaches to Field Testing
All the above studies motivate to continue testing beyond the deployment boundary6. Indeed, as we report in a recent systematic
study8 to which we refer for a more extensive survey of literature, many different approaches have been proposed.
Some authors13, 14 observe the system in the field to collect data and information on its actual usage, but then use such data

and information to test the system in the lab. This approach is sometime referred to as ex-vivo testing. A notable example of
ex-vivo testing is Pankti15, an approach that monitors in-field executions and collects serialized data to automatically construct
off-line unit test cases. The tests generated by Pankti perform differential testing and make use of a differential test oracle based
on the execution results observed in production. Another approach that does not interfere with field execution is called passive
testing16. In the passive testing approach, no test input is provided: the system is observed (i.e., monitored) while in operation
and the traces produced are collected and analysed. Originally proposed for failure detection in network management17, different
passive testing techniques have been investigated with the goal of improving trace analysis. They have been applied in several
domains, such as, among others, service-oriented systems18 and timed systems19.
Other authors proposed instead to launch test invocations on the software directly in the deployment/production environment.

Actually, this has been advocated as a viable alternative for testing of service-oriented architectures20, 21, for which testing in
house may be impossible. In other cases, field testing is motivated by the opportunity of leveraging the participation of a wide
number of machines using different configurations, as in the early Skoll approach to distributed quality assurance22. At Netflix,
engineers inject disruptions into the production system in order to improve resilience, because some failures cannot be easily
exercised in house or in a simulated environment. This approach is known as Chaos Engineering23.
In between passive observation and chaos, some frameworks have been proposed that try to limit the impact of proactively

launching test cases in production. The RTF4ADS framework24 supports run-time testing by using several strategies. In par-
ticular, it can apply different policies for isolating the on-line tests from operation, depending on the system to be tested. Such
isolation policies may include cloning the system under test, blocking user-requests, using a dedicated built-in-test interface, col-
laborating with a tagged test-aware system, or adopting aspects. While proposing an extensive and articulated framework, built
on the standard TTCN-3, this approach specifically targets reconfiguration actions at system architecture level. In comparison,
our approach addresses unit testing of Java applications. The ATLAS architecture25 for runtime testing leverages built-in-testing
and assumes that the component under test is aware of being field-tested. Thus it is the component that must ensure that field
testing does not interfere with the normal operation, while in our approach the AUT is transparently isolated by our framework.
The approaches closer to this work are those that test a system in production in order to observe its behavior under a state that

is difficult or impossible to reproduce in house, and among them the most notable one is Invite10. The Invite framework supports
in vivo testing of Java applications that have been previously instrumented. Then, when the AUT is running in production, its
in vivo tests are launched with some pre-defined probability. Test execution happens in a separate sandbox, which replicates the
production environment. The main disadvantage of this approach is that it can introduce a large resource overhead, associated
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FIGURE 1 Steps required to apply Groucho: manual source-code annotation (a), and automatic binary injection (b)

with the creation of a sandboxed replication of the execution environment. With the aim of reducing such overhead, we devel-
oped the Groucho framework, which supports in vivo testing of Java applications using an opportunistic strategy that isolates
only the objects tested in the field, and selectively suspends/resumes the existing threads. Our experimental results show that
Groucho’s performance overhead is negligible when a reasonably low activation probability of in vivo test execution is set (see
Section 6). Moreover, while Invite requires that the AUT undergoes some non-trivial preparation by the software engineering
teams, Groucho does not require any previous preparation of the AUT nor even its source code availability (see Section 5).

3 ILLUSTRATIVE EXAMPLE

For illustrative purposes, this section introduces a simple example that will be used through the rest of the paper in order
to discuss the in vivo testing process, the technical assumptions associated with the referred frameworks, the responsibilities
assigned to the AUT software engineering teams (i.e., design, development, deployment teams), and the associated implications
on the life-cycle of the considered AUT.

1 package org.application.utils;
2 ...
3 public class ListOfElements {
4 ...
5 public Object setElementAt(int index, Object element) {
6 ...
7 }
8 ...
9 }

Listing 1: Class under in vivo testing

Specifically, let us assume that we are interested in launching an in vivo test campaign over the class ListOfElements
reported in Listing 1. More precisely, each time the method setElementAt is invoked, before its execution an in vivo testing
session is activated and the launched in vivo test execution will refer to the actual state reached by the AUT (i.e., the runtime
state of org.application.utils.ListOfElements). Indeed, after being automatically parametrized by Groucho, existing
(e.g., manually designed) test cases are executed on such in vivo states.

4 IN VIVO TEST AND ROLLBACK APPROACH

Groucho provides an automation framework for in vivo testing thanks to the following features:
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i) declarative source-code annotation for enabling in vivo testing (see Section 4.1);

ii) on-the-fly manipulation of plain AUT binaries (see Section 4.2);

iii) thread-safe rollback capability during in vivo testing (see Section 4.3);

iv) multiple isolation layering within one in vivo test session (see Section 4.4).

Features i) and ii) are somehow alternative, or better complementary: the former relies on the assumption that Test Engineers
are involved in the development process of the AUT and can manually annotate its source-code; on the other hand, the case
referred by item ii) releases such assumption and does not require any previous preparation of the AUT, nor even its source code
availability like in the case of 3rd party or legacy libraries.
In addition to the above features that are specific to theGroucho framework, by its same definition any in vivo testing approach

requires that the test cases are launched from some state/configuration the AUT will actually meet at run-time. Therefore the
potential of in vivo testing is best achieved by using parametric and configurable test cases (see Section 4.5).

4.1 Declarative annotation of AUT source code
When planning the execution of in vivo testing, Test Engineers are in charge of selecting the units under test, and of defining and
customising the activation policies for the test cases to be executed at run-time. Hence, Groucho works under the assumption
that Test Engineers are knowledgeable about organisation and responsibilities of the main classes in the AUT, and are also aware
of implementation details relevant for in vivo testing.
Similarly to other in vivo testing frameworks (e.g., Invite10 as wewill depict in Figure 2), the basic use case inGroucho expects

that tests are selected and enabled for in vivo execution in advance, before compiling the AUT source code11. The granularity
for both test case selection, and activation policies is at method level. Test Engineers manually annotate the AUT producing the
instrumented version AUT + in vivo (SRC) (see Figure 1-a),
Specifically, the manual annotation of the AUT source code requested by Groucho is relatively lightweight and relies on the

Java Annotation technology. Each annotation declares the methods subject to in vivo testing and, for each of them, the test
program to be executed when an in vivo testing session is launched. With reference to the example of Listing 1, the instrumented
version enabling in vivo testing by means of Groucho is shown in Listing 2.
The in vivo test annotations to be added for Groucho target methods definitions11. Any method potentially subject to in

vivo testing activities (e.g., setElementAt) is marked with a Java annotation (see line 5 in Listing 2), which declares meta-
information that includes the name of the test case to be executed in vivo (i.e., invivoTestMethod), coded as a (public) method
of a given Java class (i.e., org.invivoTestPackage.InVivoTestClass).

1 package org.application.utils;
2 ...
3 public class ListOfElements {
4 ...
5 @TestableInVivo( invivoTestClass = "org.invivoTestPackage.InVivoTestClass", invivoTest = "

invivoTestMethod")
6 public Object setElementAt(int index, Object element) {
7 ...
8 }
9 ...

10 }

Listing 2: Enabling in vivo testing with Groucho by declarative annotations

4.2 On-the-fly manipulation of AUT binaries
Beyond the case described in the previous section, there can be development contexts in which the canonical iterations over
software design and development might be completely agnostic of any kind of in vivo testing activities, either foreseen at
production time or not. To account for such contexts, Groucho also enables in vivo testing without any assumption on the life-
cycle of the considered AUTs. As we depict in Figure 1-b, the original AUT (SRC) can be compiled into the AUT (BIN) and only
afterwards Groucho is applied to the plain AUT binaries. Therefore, in order for Groucho to work, we do not necessarily need
to modify Listing 1 with a manual annotation of the source-code, as discussed in Section 4.1.
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In this scenario, Groucho applies Java bytecode analysis and manipulation techniques to the binary version of the considered
AUT, deployed on any off-the-shelf JVM. The launch of an in vivo testing campaign over such JVM refers to the Groucho agent
and to a JSON configuration file (see Figure 1-b).
The latter allows Software Testers to specify the classes that will be subject to in vivo testing. In particular, for each class, it

is sufficient to declare the methods acting as entry points for the in vivo sessions, the test program to be executed in vivo, plus
other optional parameters that affect some isolation policies (e.g., data consistency in multi-thread applications). In Listing 3
we report such JSON configuration file for the illustrative example introduced in Section 5.

1 {
2 ...
3 "lst" : [
4 ..., {
5 "className" : "org.application.utils.ListOfElements",
6 "methodName" : "setElementAt",
7 "annotation" : {
8 "invivoTestClass" : "org.invivoTestPackage.InVivoTestClass",
9 "invivoTest" : "invivoTestMethod",

10 "carvingDepth" : 1,
11 "pauseOtherThreads" : true
12 }
13 }, ... ]
14 ...
15 }

Listing 3: Enabling in vivo testing with Groucho: example of JSON configuration file

The Groucho agent is responsible for both the analysis of each class the JVM dynamically loads and the on-the-fly manipula-
tion of the bytecode. Specifically, each time the JVM loads in memory the definition of an undeclared class, the Groucho agent
checks if the name of such novel class is included in the JSON configuration file. In case the class is found, Groucho scans the
class bytecode, looking for the declarations of its methods. For each method that is also listed in the JSON configuration file,
Groucho processes the method declaration by plugging into it a jump-off to the in vivo testing session and by configuring it with
the parameters reported in the JSON file. When the bytecode transformation is over, the manipulated declaration of the class is
actually included within the JVM run-time data structures.
Hence, in vivo testing by Groucho does not force the AUT producers to ad hoc instrument their applications with dedicated

features, neither to deal with different releases (production vs testing) of the same application. Also, solution/service providers
have not to adapt their integration with 3rd party or legacy libraries in case they decide to take advantage of in vivo capabilities.
Once the modified bytecode of a class has been loaded into the JVM, any of its instances is transparently referred and used

by the other class instances in the application.

4.3 Thread-safe test and rollback
Whenever the JVM fetches an invocation to one of the class methods that are subject to in vivo testing, the run-time layer of
Groucho evaluates the activation of a testing session1. When an in vivo testing session is activated,Groucho enforces a set of iso-
lation policies following a “test & rollback” approach: to do this, Groucho leverages the framework Crochet26, which provides a
general purpose approach enabling fully automatic and fine-grained manipulation of runtime objects in the JVM, by altering the
behaviour coded in some of their methods. Crochet uses such manipulation in order to support a lightweight copy of individual
objects and an opportunistic, lazy copy-propagation over their references across the JVM heap. In addition, Groucho conserva-
tively grants execution only to the JVM thread that enabled the in vivo session. More selective thread management policies can
be enforced, by specifying them as parameters of the JSON configuration file (see pauseOtherThreads in Listing 3).
Thus, Groucho isolates the state of all in-memory objects affected by in vivo testing. The isolation procedure follows a lazy

strategy: only when an instance is explicitly invoked, its state is copied and saved. Once the in vivo testing session is over, before
resuming the canonical execution of the AUT, Groucho rolls back the state of all saved instances to the state they had just before
the AUT entered the in vivo testing session. Furthermore, all the other JVM threads are also rolled back either to runnable or to
any other thread-state associated with their blocking conditions.

1The investigation of advanced, intelligent activation policies and their evaluation is part of our future research.
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4.4 Multiple isolation layering
Concerning isolation, Groucho distinguishes between in-memory data, and persisted/exported data. In the former case Groucho
performs a lazy deep copy of the objects involved in the testing session, leaving all other objects unaffected. The in-memory iso-
lation ofGroucho is applicable also to multi-thread applications11. In the latter case, similarly to other in vivo testing frameworks
(e.g. Invite10), Groucho does not offer any general solution for dealing with data external to the memory of the AUT. It is under
the responsibility of the AUT software engineers to foresee the needed isolation procedures. Specifically such additional isola-
tion procedures have to be invoked within the definition of the in vivo test method referred by the annotation @TestableInVivo
(i.e., invivoTest = "invivoTestMethod", see Listing 2 at line 5).
It should be noted that the in-memory isolation policies offered in previous work11 are limited to prevent any user data

corruption due to the execution of a single in vivo testing session: once an in vivo testing session is started, the isolation policies
are enforced, while they are reverted once the in vivo test execution ends. Correspondingly, such solution allows for the execution
of just one test case per in vivo session, as the AUT state is saved and then restored only once. To the best of our knowledge this
limitation holds also for Invite10. In this work, we address such limitation by introducing the possibility to compose multiple
isolation layers within a single in vivo testing session.
Specifically, developers of the test program to be executed in vivo can programmatically query Groucho asking for the acti-

vation of one or more additional isolation layers. The objective of each additional layer is to preserve the current state of the
instances referred within the same in vivo testing session. At the same time, Groucho can be asked to restore such preserved
states locally to the on-going in vivo session. In this way, Groucho enables the possibility to isolate the evolution of multiple
computations, all of them starting from a known initial state, to which it is always possible to rollback. Thanks to this function-
ality, developers can plan the execution of multiple and independent tests within the same in vivo testing session, each of which
can start from the desired application state (e.g., all from the same state, encountered at the beginning of the in vivo testing
session).
Listing 4 reports an example of an in vivo test where multiple test cases are executed independently. All of them start

from the same initial state (i.e. the state the AUT has before the activation of the in vivo test session). According to the con-
figuration reported in Listing 3, whenever Groucho activates an in vivo testing session, the state of the AUT is saved and
invivoTestMethod is invoked (see Listing 4, line 5). As a first step the in vivo test accesses the current instance under test
(line 7). Then, it enables Groucho to host multiple isolation layers (line 9). When inside the in vivo testing session (i.e., inside
invivoTestMethod), for each test to be executed in vivo and possibly obtained from an in house test suite (lines 12- 26), line 15
shows how to query Groucho in order to apply an additional isolation layer on top of the considered instance under test (and
its referred instances, if needed); thereafter, line 23 reverts all the modifications done since the latest isolation layer. The actual
invocation of each (in house) test takes place between these two statements (see lines 18- 19).
If the intent of the Tester Engineers is to explicitly combine the effects of two or more (in house) tests they can consider to

remove the statements at line 15 and line 23 at Listing 4, or to surround themwith appropriate decision logic. Thesemodifications
would create dependencies among the test cases, because they would be run from an AUT state that is affected by the execution
of all the other tests launched after the creation of the latest isolation layer.
For the sake of clarity we remark that the isolation features of Groucho are limited to in-memory data. As said it is the

responsibility of the in vivo testers to implement any needed strategies to isolate data external to the memory of the AUT (see
line 16 and line 24).

1 package org.invivoTestPackage;
2 ...
3 public class InVivoTestClass {
4 ...
5 public boolean invivoTestMethod(Context c) throws InvocationTargetException{
6 ...
7 ListOfElements list = ((ListOfElements) c.getInstrumentedObject());
8 ...
9 RuntimeEnvironmentShield shield = new RuntimeEnvironmentShield();

10 ...
11 // Execute in vivo some in house test from ListOfElementsInHouseTestClass
12 for (Method method: getSomeInHouseTestMethods()){
13 ...
14 try {
15 shield.applyCheckpoint(list);
16 // Isolate data from persistency if needed
17
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18 ListOfElementsInHouseTestClass inhouseTest = new ListOfElementsInHouseTestClass(list)
;

19 method.invoke(inhouseTest);
20 }
21 ...
22 finally {
23 shield.applyRollback(list);
24 // Restore data from persistency if needed
25 }
26 }
27 ...
28 return getInvivoTestExitStatus();
29 }
30 ...
31 }

Listing 4: Example of multiple isolation layering

4.5 Parametric and configurable test cases
The benefits of in vivo testing are conditioned to the possibility to execute the tests from some state/configuration the AUT
actually reaches at run-time. Consequently, it is important that any test code to be executed in vivo is implemented as a parametric
test with parametric assertions, where parameters are introduced to let the test refer to the objects/variables being observed in the
AUT at runtime, in the field, and to let the assertions compute the expected outcome of the test based on such objects/variables.
Thus Groucho requires that testing engineers develop parametric and configurable test cases (this is also the case of other in
vivo testing framework such as Invite10).
While this requirement may imply some additional effort for the software engineering team, which may have e.g., to re-

engineer the existing testing code, on the other hand the practice of keeping the configuration part of the tests separate from their
actual implementation is today widely used and is also promoted by the most common frameworks for writing and executing
test programs27. In this respect, the assumption on parametric test cases can be considered viable and maybe even desirable in
many realistic settings.
Listing 5 reports an example of parametric configuration that Groucho would require on top of an in house test program, in

order to make it executable also in vivo, on the runtime AUT state. Specifically, any reference declaration to the instance under
test is removed from all the test methods, and is included as an attribute of the test class (see line 6). While the in house test
class may already include its own default constructor (line 10), test engineers are required to include either another parametric
constructor (line 16), or another configuration mechanism that could be invoked for the initialisation of the instance under test.
Finally, the implementation of each test should avoid statements referring to hard coded constants that hold the values observed
during in house testing, as those values might change during in vivo testing. Such constants should be replaced with expressions
that compute the associated values from test parameters. The assertions should be also formulated in terms of parametric logical
expressions (lines 23-31).

1 package org.application.utils.tests;
2 ...
3 public class ListOfElementsInHouseTestClass {
4 ...
5 // Subject of the test
6 private ListOfElements listUnderTest;
7 private int minSize;
8 ...
9 // Default Configuration

10 public ListOfElementsInHouseTestClass (){
11 this .listUnderTest = new ListOfElements(10);
12 this .minSize=0;
13 ...
14 }
15 // Configuration to be used while running an in vivo session
16 public ListOfElementsInHouseTestClass (ListOfElements list) {
17 this .listUnderTest = list;
18 this .minSize=0;
19 ...
20 }
21 ...
22 @Test
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FIGURE 2 Steps required to apply Invite

23 public void replaceElementTest(){
24 int index = RandomGenerator.nextInt(this.minSize, this.listUnderTest.getSize());
25

26 Object item = new Object();
27 Object oldItem = this.listUnderTest.setElementAt(index, item);
28

29 assertFalse(oldItem.equals(this.listUnderTest.getElement(index)));
30 assertTrue(item.equals(this.listUnderTest.getElement(index)));
31 }
32 ...
33 @Test
34 public void clearListTest(){
35 ...
36 }
37 ...
38 }

Listing 5: Example of parametric test

5 QUALITATIVE COMPARISONWITH Invite

An interesting study in terms of in vivo testing frameworks would be the empirical comparison between Groucho and Invite,
aiming at assessing the respective benefits and drawbacks of the two technologies. Unfortunately, to the best of our knowledge
and also according to the feedback received from one of the former contributors to the Invite project, no version of Invite exists
that could be actually run within a custom empirical study. Therefore, in this section, we discuss only qualitatively the differences
between Invite and Groucho, highlighting their respective technical assumptions, the responsibilities they assign to the AUT
software engineering teams (i.e., design, development, deployment teams), and the associated implications on the life-cycle of
the considered AUT. Along such comparison, we refer to the illustrative example introduced in Section 3.
As sketched in Figure 2, the application of Invite involves manual manipulation of the source code of the AUT, to produce

an ad hoc instrumented version (in the figure, AUT + in vivo (SRC)). With reference to Listing 1, Section 4.1 already described how
Groucho instruments the AUT in order to enable in vivo testing capabilities (i.e., see Listing 2). The corresponding capabilities
can be achieved within Invite by modifying the AUT code as reported in Listing 6. Specifically, for each method on which in
vivo testing will be applied, Invite assumes28 that the AUT developers or the in vivo testers perform the following steps: (i) they
add a method (e.g. __INVtest_setElementAt) implementing the decision logic for in vivo testing (see lines 9-12); (ii) they
change the name of the method subject to in vivo testing (e.g., setElementAt into __setElementAt see line 6), and (iii) they
replace the original method with an ad hoc wrapper that activates the in vivo session after sandboxing the current execution
environment (see body of setElementAt at line 18). In addition, AUT developers must ensure that the in vivo test methods
reside in the same class as the code to be tested or in any super-class along the inheritance hierarchy29 10.
Clearly, the technical requirements listed above have been imposed in order to ease the access to the internal state of the class

under test, but they might severely constrain the way developers can organise their code (e.g., the test code must belong to the
class under test; computation of coverage metrics must filter out the contribution from instrumentation code). In contrast, as
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discussed in Section 4.2, Groucho includes native features for the automated binaries manipulation of both the AUT, and 3rd
party/legacy libraries.
In earlier versions of Invite29, its authors discussed the possibility to leverage the Singleton design pattern30 in order to bring

more flexibility to the in vivo testing campaigns, as usage of a Singletonwould allow removing some of the constraints mentioned
above, such as the coexistence of production and test code in the same class. However, even from their own conclusions, such a
solution would require a strong design refactoring of the AUT and might not be generally applicable. Invite imposes also precise
rules about the names of the tests and of the other methods the instrumentation process injects into the classes of the AUT10.
Even though these naming rules do not imply any technical limitation, they however require that AUT designers and developers
are aware of them and apply them consistently.

1 package org.application.utils;
2 ...
3 public class ListOfElements {
4 ...
5 /* Original method */
6 public Object __setElementAt(int index, Object element) {
7 ...
8 }
9 /* Invivo test method */

10 boolean __INVtest_setElementAt(int index, Object element) {
11 ...
12 }
13 /* Logic enabling Invivo test*/
14 boolean __should_run_INVtest_setElementAt(int index, Object element) {
15 ...
16 }
17 /* Wrapper function */
18 public Object setElementAt(int index, Object element) {
19 if (__should_run_INVtest_setElementAt(index, element)) {
20 create_sandbox_and_fork();
21 if (is_test_process()) {
22 if (__INVtest__setElementAt(index, element) == false)
23 fail();
24 else
25 succeed();
26 destroy_sandbox();
27 exit();
28 }
29 }
30 return __setElementAt(index, element);
31 }
32 ...
33 }

Listing 6: Class instrumented to enable in vivo testing with Invite

As noted by the authors of Invite10, the instrumentation process and the compilation phase could be further engineered into
a single processing step. Indeed, as an alternative solution to the above manual procedures, Invite hints at a dedicated pre-
compiler that could produce an instrumented version of the AUT along the above requirements, following some configuration
rules reported in an XML file. This is represented in Figure 2 within a grey-shadowed box, though, because we are not aware of
any release of Invite that includes this feature.
In any case, it is clear that with Invite two versions of the same AUT would exist: the plain, original one and the one equipped

with in vivo testing features, denoted in Figure 2 as AUT + in vivo (BIN). Thus both the provider of the AUT and those building
solutions/services on it have to be aware that they are dealing with two different products. As noted by the authors29, any
source code modification made to the AUT should take into account the associated implications on the in vivo testability of the
application and should be propagated to the in vivo enabled version. Moreover, users of the AUT must take care of installing the
right version of the AUT in their environment if they want to activate/remove in vivo testing capabilities. Conversely, Groucho
can enable in vivo testing capabilities by working directly on Java binary codes (see Section 4.2); thus just one version of the
AUT is expected to be released.
For what concerns the sandboxing mechanism, Invite distinguishes between:

i) the isolation of local data of the AUT stored in-memory

ii) the preservation of the integrity of the data stored in some local/remote persistence layer or shared with other applications.
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As for case i), Invite offers facilities that can duplicate the whole OS process in which the AUT is deployed. In other words, the
isolation of in-memory data is achieved by forking the OS process running the whole JVM. In the general case, this solution
could be computationally demanding and could impact the resources available on the machine hosting the AUT execution.
Indeed, within the demonstrative example in Listing 1, even though just one class of the AUT is subject to in vivo testing, the
activation of each in vivo session requires the creation of a newOS process that will reserve the samememory as if a new instance
of AUT were launched. In comparison, Groucho offers a lightweight isolation of individual in-memory objects as reported in
Section 4.3. As for case ii), and similarly to Groucho, Invite leaves to the software engineering teams the responsibility to deal
with AUT-specific isolation strategies that could prevent actual changes of shared data.
In summary, both Invite and Groucho foresee use cases where the Test Engineers directly access the source-code of the AUT

and modify it to enable in vivo testing. However, the modifications requested by Invite appear more invasive than those required
by Groucho. Moreover, Groucho includes a well defined automated solution that does not require access to the source-code and
can be applied even when using 3rd party or legacy libraries. The Invite in-memory sandboxing mechanism operates at the level
of the OS process, while Groucho adopts a “test & rollback” approach built upon efficient checkpointing technologies. On the
other hand, both frameworks do not offer any general solution for isolating data external to the memory of the AUT, leaving
such responsibility to the Test Engineers. Finally, Invite does not explicitly provide support for executing multiple test cases
starting from the same field execution context, as Groucho does.

6 OVERHEAD EVALUATION

A key aspect for any platform enabling in vivo testing is to keep its unavoidable overhead as low as possible so as to produce
a reduced impact on the actual execution in-the-field. Indeed, acceptability of the proposed technology by both the engineering
team and the final users of the AUT strongly depends on such a requirement.
The validation of such non functional requirement has to focus on the measurement of the performance overhead introduced

by Groucho under various configurations, differing by number of threads executed in parallel and by probability of activating
an in vivo testing session. In this section we report the experimental methodology, the results collected while measuring the
performance penalties introduced by ofGroucho and a discussion about when those become imperceptible. This part ofGroucho
evaluation has been anticipated in our prior preliminary work11, and is included here for the sake of self-containedness.

6.1 Methodology
The performance impact of Groucho has two main sources: (1) the overhead introduced by the platform, and (2) the cost
associated with the execution of each in vivo test case. Evaluation of the latter is application-specific and remains among the
responsibilities of the test engineers, who should design in vivo test cases that have minimum execution costs (e.g. comparable to
small unit test execution time) . In our empirical validation we focused on the first source of performance impact, by answering
the following research questions (RQs):
RQ1:What amount of overhead does Groucho introduce, when varying the frequency of in vivo test execution and the number

of parallel threads involved?
RQ2: What are the configurations of Groucho under which its overhead can be considered small or negligible?
As subject of the study, we have identified a benchmark application to be executed in the following conditions: first as a plain

application running on a JVM, and then as an AUT instrumented for Groucho, so that it can be potentially subjected to in vivo
testing activities. Specifically, in the former setup no Java Agent was attached to the JVM, while in the latter the same JVM was
enabled with instrumentation capabilities, such that the Groucho Agent can be attached to it. Our objective was to measure the
execution time of the benchmark in both scenarios, with and without Groucho.
For this performance evaluation we have decided to define a custom Java application as benchmark, instead of reusing an

existing one, to have full control on the threads it creates. In fact, multi-threading affects Groucho’s performance to a major
extent, so it is important to control for this important experimental factor.
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FIGURE 3 Variable Number of Threads and Fixed Activation Probability

In particular, the benchmark application was designed to instantiate multiple threads, each configured randomly, but all con-
figured with the possibility to perform both CPU-intensive tasks and time-consuming activities (e.g., simulating the hang out
for IO or remote interactions).2.
Hence, the two independent variables of our empirical study are (1) the number of active threads and (2) the activation

probability of an in vivo testing session.
We conducted two experiments: in Experiment 1, we fixed the activation probability and varied the number of active threads

in the benchmark application; in Experiment 2, the role of the independent variables has been exchanged: the number of active
threads in the benchmark was fixed and the activation probability of an in vivo session was gradually changed. As a consequence
of the randomised behaviour implemented by the AUT, the estimated execution time for a given pair of independent variable
values was measured as the average obtained across multiple runs, all in the same setting.

6.2 Empirical Estimation of the Overhead
This section presents the results collected in our experiments and answers our RQs.

6.2.1 Overhead analysis (RQ1)
In Figure 3, we compare the running times measured when Groucho is either activated (in vivo) or not (no in vivo) within
the JVM hosting the execution of the benchmark AUT. The x-axis displays the number of concurrent threads under execution,
while the y-axis reports the running time in seconds. Square-marked lines (blue) depict the execution time in seconds when in
vivo testing is enabled, whereas the diamond-marked lines (red) refer to the scenario where in vivo testing is disabled. Each mark
(square or diamond) in the solid lines is the average running time observed in 100 executions of the benchmark. When in vivo
testing was enabled, the activation probability was fixed to 1%, which means that the annotated method is expected to trigger
Groucho only once in 100 invocations. When in vivo testing was disabled the benchmark was running as a plain application on
a JVM (this is our baseline for comparison). We changed the degree of parallelism of each execution by varying the number of
concurrent threads from 5 to 100 (x-axis). To better visualize the run time trend when the number of active thread is changed,
we show also a linear regression line in both scenarios (see the dashed lines).
As expected, the no in vivo scenario has an execution time that is not strongly influenced by the number of concurrent

threads. The in vivo scenario, on the other hand, is characterised by a linear increase of the execution time with the number of
threads, and the regression line has a non negligible, positive slope (the coefficient of determination of the linear regression is
quite high: 0.79). We conclude that, as expected, the lower bound overhead introduced by in vivo testing with Groucho is linear
with respect to the number of active threads in the JVM. Indeed, this is a consequence of the isolation policy on threads adopted
in this experiment, which pauses all running threads except the one that is undergoing the in vivo testing session. Such a policy
represents the worst case scenario in terms of added overhead. Actually, a real application may not need to pause all running
threads, since only some of them interfere with the one subjected to in vivo testing.

2The benchmark is distributed with the source-code repository of Groucho.
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FIGURE 4 Fixed Number of Threads and Variable Activation Probability

In Figure 4, we compare the execution time measured on the benchmark AUT with number of threads set to 30 and activation
probability varied from 0.1% to slightly less than 10% (see x-axis). We also conducted a regression analysis of the execution
time with respect to the frequency of in vivo testing. We observed a flat trend for the no in vivo scenario, while in the in
vivo case, there is a positive, non negligible linear relation between the activation probability and the execution time (with
high coefficient of determination: 0.78). Thanks to the linearity of the relation between in vivo test execution probability and
overhead, test engineers can fine tune the expected overhead, making it acceptable for the end users, by adopting a test activation
policy that ensures a test execution probability associated with a negligible overhead. The corresponding number of in vivo test
executions in a given time window T will also vary linearly, being roughly equal to N × p × E(T ), where N is the number of
users running the application in parallel; p is the in vivo activation probability; E(T ) is the average number of executions of the
method under test in a time window of duration T .

RQ1: The overhead introduced by Groucho grows linearly with the number of threads and with the probability of in
vivo test case execution.
This result supports fine tuning of the framework’s impact by test engineers, who can reduce the in vivo activation
probability until an acceptable overhead is achieved.

6.2.2 Acceptable configurations (RQ2)
To answer RQ2, we conducted a second experiment, under the assumption that the user base is large (large N in the formula
N × p × E(T )), such that the activation probability (p in the same formula) can be kept extremely small. The goal is to assess
the impact of the number of active threads (from 5 to 100) when the in vivo activation probability is low (i.e. 10−4), as well as
the impact of variable activation probabilities (from 10−5 to 10−4) when the number of threads is set to 30. The results reported
for each configuration have been computed as the average over 200 executions of the AUT.
Table 1 and Table 2 report the collected empirical results. The p-value of theWilcoxon test comparing the distributions of exe-

cution times with/withoutGroucho is above the commonly adopted threshold � = 0.05. This suggests that the impact ofGroucho
is statistically insignificant when the in vivo activation probability is 10−4 or lower. Since we cannot rule out the possibility of
a Type II error (accepting a wrong null hypothesis), we also measured the Vargha-Delaney effect size (A12 measure)31, which
is always small (S) or negligible (N). This means that even if our analysis were subject to a Type II error, the corresponding
effect size would be anyway small or negligible, indicating a practically small/negligible impact of the framework.

RQ2: When the probability of in vivo activation is 10−4 or lower, even with 30 threads executing in parallel, the overhead
of Groucho is statistically insignificant and practically negligible or small.
This result indicates that applications with a large user base can correspondingly adopt a very low activation probability,
making the impact of the framework imperceptible.
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Max Secs Secs Diff Diff (%) A12
Threads (In Vivo) (No In Vivo) (Secs)
5 16,52 15,93 0,59 3,74 S
10 17,15 14,60 2,55 17,50 N
15 16,31 15,79 0,52 3,32 N
20 16,14 15,79 0,34 2,21 N
25 15,39 16,67 -1,27 -7,62 S
30 15,29 16,63 -1,34 -8,06 S
35 15,44 15,16 0,27 1,84 N
40 17,39 16,56 0,82 5,00 N
45 15,51 14,67 0,83 5,71 S
50 14,58 16,07 -1,49 -9,28 S
55 15,66 15,09 0,56 3,73 N
60 16,58 15,30 1,27 8,32 N
65 16,83 15,76 1,07 6,81 N
70 16,39 16,42 -0,03 -0,22 N
75 15,54 15,97 -0,43 -2,70 S
80 15,83 16,08 -0,24 -1,53 N
85 16,39 17,62 -1,22 -6,93 S
90 15,56 17,27 -1,70 -9,85 S
95 15,45 15,13 0,31 2,11 N
100 15,48 16,39 -0,91 -5,56 N
Average 15,97 15,95 0,02 0,43

TABLE 1 Impact of the Number of Activated Threads – In Vivo Activation Probability: 10−4

Max Secs Secs Diff Diff (%) A12
Threads (In Vivo) (No In Vivo) (Secs)
1E-05 16,00 16,28 -0,28 -1,73 S
6E-05 14,78 16,00 -1,22 -7,66 S
0,00011 14,74 15,44 -0,70 -4,54 S
0,00016 14,43 15,86 -1,43 -9,05 S
0,00021 15,89 16,74 -0,84 -5,06 S
0,00026 16,49 15,62 0,87 5,59 N
0,00031 15,58 16,70 -1,12 -6,71 S
0,00036 15,33 17,33 -2,00 -11,57 S
0,00041 16,44 15,34 1,09 7,16 N
0,00046 16,61 14,711 1,90 12,94 N
0,00051 16,33 15,72 0,60 3,87 N
0,00056 16,42 15,34 1,08 7,07 N
0,00061 15,39 15,06 0,33 2,22 N
0,00066 16,18 15,55 0,63 4,08 N
0,00071 17,32 16,95 0,37 2,20 S
0,00076 16,92 17,65 -0,72 -4,11 S
0,00081 16,61 15,37 1,24 8,08 N
0,00086 16,17 16,70 -0,52 -3,17 S
0,00091 15,54 17,37 -1,82 -10,51 S
0,00096 16,11 16,14 -0,03 -0,19 S
Average 15,96 16,09 -0,13 -0,57

TABLE 2 Impact of In Vivo Activation Probability (10−5 …10−4) – Max Num. of Threads: 30

7 FUNCTIONAL EVALUATION

In this section we report the results of our study to evaluate the effectiveness of Groucho in terms of failure exposure and
statement coverage in comparison to traditional testing in house.

7.1 Experimental Design
The goal of our empirical evaluation is to assess the effectiveness of the proposed “test & rollback” approach, which we expect
to be able to exposing more faults and achieving higher code coverage than traditional testing in house. Correspondingly, our
empirical study aims at answering the following two research questions:
RQ3: Can in vivo test execution supported by Groucho expose failures that go undetected when running the same test suite

during in house testing?
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Our first research question addresses the main motivation behind our approach for in vivo testing: detecting faults that are
very difficult to expose in the lab, as they require peculiar execution conditions that are not reproduced by stand alone, in house
tests, whereas they may occasionally occur in the field. We execute the same test suites in house and in the field on our subject
systems, and we monitor the occurrence of failures in the two settings.
Metrics: We collect the number of failures (i.e., exceptions and runtime errors) occurring during in house and in vivo testing.
We report the total number of failures observed during in house test suite execution and during in vivo sessions that simulate
various field execution conditions of the AUTs. We also report the number of unique faults.
RQ4: Can in vivo test execution supported by Groucho cover instructions or branches that remain uncovered when running

the same test suite during in house testing?
The ability to cover more code during in vivo testing is a key enabler toward fault exposure, since faults residing in uncovered

statements go definitely undetected. So, another important indicator of the advantages possibly brought by in vivo testing is its
capability to cover statements that were not covered during in house testing, thanks to the runtime state of the application under
test, which could make some parts of the code reachable upon in vivo test case execution.
Metrics: We measure statement coverage achieved by the test suites available with our subject systems when executed in house.
Then we collect coverage information during the in vivo testing session and compare the statements covered in vivo with those
covered in house. We report the number of additional statements covered by the available test suite in the in vivo setting.

7.1.1 Subject Systems
Unfortunately, there is no repository of known in vivo failures that could be used for our empirical evaluation and creating
such a repository is highly demanding as it involves executing and monitoring possibly many different software systems in their
production environment. For this reason, we have run our experiments on two systems that have been used as a benchmark for
the Invite approach10. Indeed, during in vivo testing of these two systems Invite was able to expose two in vivo faults requiring
very specific runtime conditions, which are hardly met during in house testing. We want to observe if Groucho can also expose
these two faults during in vivo testing (RQ3).

System TC CUT Instructions CUT Branches
OSCache 23 3622 442
JCS 3 364 58

TABLE 3 Number of TCs of the two subject systems, followed by instructions and branches in the CUT

The characteristics of the test cases used to test the subject systems are shown in Table 3: number of Test Cases (TC) and
number of instructions/branches in the Classes Under Test (CUT). It should be noticed that the classes under test are those
implementing the caching functionality of both systems and represent a subset of the classes implementing the entire set of
functionalities available in the two systems. We have chosen to focus on these classes as they contain the in vivo failures reported
by Invite.
OSCache 3 is a system that supports multi-level caching for web pages and web content generated by means of servlets. It

represents an interesting subject for in vivo testing because the state of the cache that is exercised during in house testing might
differ substantially from the state of the cache that is observed in real execution.
OSCache does not come with any test suite defined by its developers. Hence, we have contacted a colleague of one of the

authors, who was not involved in the present research in any way. The contacted person has more than 10 years of industrial
experience as software developer, among which seven spent in several companies as a software tester and a senior software
tester. She was given the task to develop an extensive set of JUnit test cases for the class LRUCache, covering all relevant corner
cases. The result consists of a test suite containing 23 test cases.

3https://web.archive.org/web/20101009184819/http://opensymphony.com/oscache/

https://web.archive.org/web/20101009184819/http://opensymphony.com/oscache/
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JCS (Java Caching System)4 is an alternative caching system developed by Apache and also supposed to be used with Java
servlets within Apache Tomcat. Similarly to OSCache, its runtime state is richer than the in house one, so this is also a good
candidate for in vivo testing.
JCS comes with a test suite created by its developers for in house testing. We have reused such test suite after some syntactic

adaptation according to the principles described in Section 4.5, to make it suitable for in vivo testing. Such adaptations did not
affect in any way the logic of the individual test cases.

7.1.2 Experimental Procedure
We have instrumented the two subject systems to collect coverage information using JaCoCo5. Then, we have executed in house
the test suites available for the two subjects. In such executions we have collected failure and coverage information, useful for
the comparison with in vivo execution.
The in vivo execution followed the instrumentation schema for Groucho discussed in Figure 1-b. The two subjects have been

executed on a JVM whose arguments were both the Groucho agent, and the JSON configuration file declaring the entry-points
for the in vivo testing sessions (see Section 4). Specifically, the two methods annotated with @TestableInVivo in the JSON file
(one per subject) have been chosen based on the detailed descriptions of the issue reports JCS-166 and CACHE-2367 10, because
we want to test Groucho’s capability to expose known in vivo faults.
Whenever the execution invokes any of these methods and the in vivo testing features are enabled, Groucho recognises the

annotation, it suspends the application control flow, and it starts an in vivo testing session. At the end of the session, the appli-
cation state is rolled back and the main execution is resumed. During in vivo test execution, the failure and coverage data are
collected as done for in house testing. To speed up the experimental evaluation, the activation probability of in vivo testing was
set to 100%, but the same functional results would be obtained with a lower activation probability, except that the experiment
would last substantially longer. In a real setting, where multiple users run the application in parallel, a low activation probability
is definitely possible.
The field execution context of the two systems was simulated bymeans of similar drivers, each one: (i) performing randomised

configurations of a fresh cache instance, (ii) causing the invocation of the entry-point methods, so as to activate an in vivo testing
session, (iii) collecting failure/coverage data.
The randomised configurations instantiated by the driver consist of a random uniform selection over three different scenarios

for the cache instance: almost empty or empty cache, cache filled around half of its capacity, almost full or full cache. In all
three cases, the test driver uses fresh randomic entries values in order to populate the cache instance.
Upon activation of each in vivo testing session, an in vivo test method is invoked according to the configuration reported in

the JSON file. The in vivo tests have been coded so as to execute the whole set of test cases considered for each subject (see
Section 7.1.1). Furthermore, their implementations leveraged the API provided by Groucho in order to grant for isolation among
different test case executions: the execution of each test case starts in the state the cache had just before the activation of the in
vivo session. This means that execution is rolled-back also between test cases, not only between in vivo test session and main
execution.
The outcome of each in vivo session is expected to depend on the current configuration of the cache instance, which is chosen

non-deterministically. Thus, the test driver stimulated the considered subjects in 15 different runs (runi). In addition, each
experiment aggregating these runs has been repeated on a fresh execution environment for 10 iterations (itj). Hence, in total
150 in vivo test sessions have been launched against fresh and randomised cache instances for JCS (jcs-itj-runi), and 150
for OSCache (osc-itj-runi).

7.2 Experimental Results
In this section, we present the results obtained for RQ3 and RQ4.

4https://commons.apache.org/proper/commons-jcs/
5see at:https://www.jacoco.org
6see at: https://issues.apache.org/jira/browse/JCS-16
7see at: https://web.archive.org/web/20090214001824/http://jira.opensymphony.com/browse/CACHE-236

https://commons.apache.org/proper/commons-jcs/
https://www.jacoco.org
https://issues.apache.org/jira/browse/JCS-16
https://web.archive.org/web/20090214001824/http://jira.opensymphony.com/browse/CACHE-236
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FIGURE 5 Experiment JCS

FIGURE 6 Experiment OSC

7.2.1 Failure detection (RQ3)
No failure was observed during in house execution of the available test suites. Figure 5 displays the number of failed in vivo
tests as well as the cache configurations for each one of the 150 sessions launched for the JCS subject. The x-axis displays the
session identifiers, whereas the y-axis carries two pieces of information: The left vertical axis displays the cache load, varying
from 0 to 100%, represented as a (red) vertical bar. The right vertical axis displays the number of failing in vivo tests, varying
from 0 to 3 (the maximum number of test cases for JCS), represented as a (black) diamond.
Looking at the individual sessions, the number of failed in vivo tests was always either 0 or 2. The exposed fault when two

tests fail is always the same (i.e., 1 unique fault was exposed). This indicates that either the (unique) fault was not triggered or it
was triggered by two tests cases from the JCS test suite. As we can see, the JCS failure could be revealed only in sessions where
the cache is almost full or full. This was the case for 42 out of the 150 sessions. For any other possible cache configuration, the
in vivo tests were not able to trigger the fault.
Figure 6 is analogous to Figure 5 – axes description and interpretation are the same. It displays the number of failed in vivo

tests as well as the cache configuration for each of the 150 sessions launched on the OSC subject. Similarly to the observation
done for JCS, the OSC fault was also triggered only in sessions where the cache was full or almost full (49 out of the 150
sessions). The main difference observed was that the number of failed in vivo tests varied across the sessions between 2 and 3.
This happened because one of the tests requires specific cache content and capacity to fail, which is not necessarily satisfied by
all execution contexts with an almost full cache. Similarly to JSC, there is one unique fault exposed by the test cases executed in
vivo. So, regardless of the number of failing tests (2 or 3), when the cache is almost full there is one unique fault affecting this
system that is always exposed.
Despite the non-determinism associated with the randomised cache configurations, the results on failure exposure obtained

on both subjects are completely deterministic: when the cache is full or almost full, the in vivo failure is exposed. Given the
deterministic nature of such outcome, statistical analysis of the results was not necessary.

RQ3: Grouchowas able to reproduce the two in vivo faults known from the Invite’s benchmark. Reproduction happened
deterministically whenever the cache was full or almost full.
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The numbers in the horizontal axis represent the CUT for the in vivo sessions: 1: JCS-ShrinkerThread; 2: OSC-AbstractConcurrentReadCache;
3: OSC-AbstractConcurrentReadCache.Entry; 4: OSC-AbstractConcurrentReadCache.HashIterator;
5: OSC-AbstractConcurrentReadCache.HashIterator.new.AbstractSet(); 6: OSC-LRUCache; 7: OSC-AbstractDiskPersistenceLiestener

FIGURE 7 Coverage achieved by in house and in vivo testing

7.2.2 Coverage achieved (RQ4)
The coverage achieved by in house and in vivo testing is reported in Figure 7. Results are grouped by coverage granularity (branch
or instruction) and by CUT. Numbers in the horizontal axis represent the classes under test. Group #1 is the only CUT for the
JCS subject, and groups #2 to #7 are classes from the OSCache subject. The vertical axis displays the coverage, in percentage,
achieved by the two testing strategies, in house and in vivo.
While there is non-determinism in the randomised cache configurations, in our experimental setting in vivo test suites are

executed always and entirely in each run. As a consequence, the reported coverage increases were observed with no variation
in each of the 10 experimental iterations. In fact, the 15 runs executed in each iteration include always at least one instance of
full or almost full cache, which is responsible for the coverage increase. Given the deterministic nature of the coverage increase
observed across iterations, statistical analysis of the results was not necessary.
Overall, the in vivo testing sessions were able to increase both branch coverage and instruction coverage for both subjects.

The in vivo sessions were able to cover two previously-uncovered CUT, namely 4:OSC-AbstractConcurrentReadCache.

HashIterator – 68% and 78% of branch and instruction coverage, respectively – and 5:OSC-AbstractConcurrentRead

Cache.HashIterator.new.AbstractSet(). For what concerns the other CUTs, the largest coverage increase was observed
for branch coverage of 3:OSC-AbstractConcurrentReadCache.Entry with a relative improvement of 100% (from 7% to
14% of branches covered). The smallest coverage improvement, on the other hand, was observed for branch coverage of 1:JCS-
ShrinkerThread, with a relative improvement of ≈5% (from 41% to 43%). Running in vivo sessions resulted in an overall
average coverage improvement of ≈45% when compared with the in house sessions.



Bertolino ET AL 19

RQ4: By running in vivo test sessions, Groucho was able to increase instruction and branch coverage by a significant
amount. This is an important precondition to expose failures that may go undetected during in house testing.

Qualitative Analysis
We have analysed qualitatively the difference between the in-field test executions that expose the faults affecting our subjects and
the offline test executions, which did not expose them. We also contrasted the in-field test executions responsible for coverage
increase to the online ones. What we discovered is a confirmation of the usefulness of in-field testing: none of the offline test
case was designed to produce the rare condition in which the cache is almost, but not completely, full. On the other hand, in-
field execution of the same tests, but on the variety of different execution states observed in the field, was able to occasionally
reproduce such rare condition.

8 THREATS TO VALIDITY

In this section we discuss the threats to validity for the different evaluations we performed.
Qualitative comparison with Invite (Section 5). Threats to content validity concern the appropriateness of those aspects

that have been taken in consideration while structuring contents for a validation campaign or a qualitative comparison. The
assessment of the content validity is often a non-statistical procedure, which refers to area experts who evaluate the selection
of the covered aspects. In this respect, the qualitative comparison discussed in Section 5 has been organized according to the
authors’ knowledge, which could have affected the comprehensiveness of the discussed aspects. We tried to mitigate such a
threat by collecting all the resources that have been published or discussed about Invite. Furthermore, we also interacted with
former contributors of the Invite project, asking for feedback on any available release or technical support. Starting from all the
collected information, we critically analysed both differences and similarities with Groucho, considering all relevant software
engineering concerns that have to be to addressed when managing or executing the tests in the field8.
Overhead evaluation (Section 6). With respect to the external validity, the more critical aspect refers to the choice of the

case-study. Though the benchmark application has been conceived to simulate realistic activities of the SUT (i.e., both CPU-
intensive and time-consuming tasks), the realisation of such abstractions might not fully reflect the complexity of all the possible
scenarios occurring with a real-world application. We tried to mitigate this threat by means of randomness. Specifically we
randomly configured: the delays in the rump up during the thread activation, the number and the duration of the CPU-intensive
tasks per thread, as well as the number and the duration of the time-consuming tasks per thread. In this respect, by leveraging
the number of repetitions we could increase the possibility to explore a wide range of different combinations in the thread life-
cycle so as to cover many different contexts while performing in-vivo testing of a hypothetical multi-thread application. Yet,
we are aware that the choice of the benchmark application might affect the validation of Groucho. As for the construct validity,
the maximum level of parallelism in both experiments has been bounded to 100 threads. Our decision takes into account the
default configurations of the popular multi-thread Java application Apache Tomcat (i.e., default max thread is 200). As it is not
realistic to run in-vivo testing under critical conditions, we identified the range 5 − 100 as a valuable no-stress scenario for our
experimentation. Similar considerations were discussed during the definition of the maximum number of concurrent threads in
the experiments with a variable activation probability (i.e., 30). Nevertheless, it is not easy to address these threats on a generic
multi-thread application. Thus, possible future work could concern further studies, focusing on a single specific application.
Regarding the activation probability in the in-vivo scenario, we used small values that work well for applications with a large
user base (see Section 6.2.1 and Section 6.2.2).
Functional evaluation (Section 7).Themain threat that affect our findings is an external validity threat, as we only considered

two case study systems. Considering additional subjects would require non negligible effort as we need also to simulate what
happens in the production environment and this may require domain knowledge that only the actual software developers possess.
The chosen case studies are however part of large size and complex systems, and they have been used as benchmarks in previous
studies on in vivo testing techniques10. For what concerns the construct validity, we used consolidated and widely used metrics
for fault detection and coverage, but of course different metrics may yield different results. The conclusion validity is possibly
threatened by the impossibility to run statistical tests, due to the fully deterministic behaviours that we observed. However, the
deterministic outcomes of our experiments fully support our answers to the two considered research questions.
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9 CONCLUSIONS AND FUTUREWORK

In vivo testing is a specific kind of field software testing8 where testing activities are launched directly in the production
environment during actual end-user sessions.
Among others, the main intuitive motivation for in-vivo testing is that every testing process (even a good one) conducted

in house achieves just partial exploration of the scenarios that could occur in the production environment. In other words, it is
unfeasible to reproduce all the scenarios that may occur in production, and often the most difficult or costly corner cases may
escape the in house testing sessions.
These arguments are especially valid for object-oriented applications where in vivo testing brings an opportunity for tack-

ling the combinatorial explosion of the configurations a state of an object instance can assume in the production environment.
However, the application of in vivo testing comes with challenging obstacles such as: the isolation between the actual execution
context and the in vivo test environment; the isolation across several execution of tests in the same in vivo session; the overhead;
the impact the in vivo testing technology has against the software design/development process, its life-cycle, its stakeholders.
In this paper we introduced Groucho, a framework to conduct in vivo testing of Java applications transparently, which does

not necessarily require any source code modification nor even source code availability. Groucho adopts a fully automated “test &
rollback” strategy that makes it an unobtrusive field testing framework. Ultimately, our approach contributes to further advance
in vivo testing towards a scalable and largely automated technique.
The evaluation of Groucho presented in this work covers several aspects, both qualitative and quantitative. For what concerns

the qualitative evaluation, we provide a reasoned comparison between Groucho and Invite, a pioneer framework for in vivo
testing of Java application. For what concerns the quantitative evaluation, we conceived two studies, in order to assess two major
aspects of in-vivo testing with Groucho. The former study focused on the overhead that test engineers have to consider when
enabling in vivo testing with Groucho. The collected results show that Groucho supports a fine, linear overhead tuning and that
under some conditions (i.e., activation probability lower than 10−4) it can be considered irrelevant or imperceptible. The latter
study investigates the effectiveness of Groucho in terms of failure exposure. This empirical study was performed against two
open source systems (i.e. OSCache and JCS) that have been also used as a benchmark for Invite10. The collected results show
that our framework can detect failures that would escape in house testing. Moreover, when executed in vivo by Groucho, the
available test suites achieved a significant increase of instruction and branch coverage.
As part of our future work, an immediate follow upwill address an important question related to the activation policy, i.e.,when

should a new in vivo test session be run? While existing approaches28 run a new in vivo test session on every previously-unseen
application state, we aim for an in vivo test execution policy that balances the testing load across all users of the AUT while
at the same time recognizing the occurrence of novel states that deserve in vivo testing. Moreover, we would like to challenge
Groucho in real continuous integration and continuous delivery environments, to consider other possible process factors that
might impact the efficiency and scalability of our approach. We also plan to extend Groucho in order to collect in vivo execution
states that are deemed interesting for developers (e.g., because they trigger a failure), so as to simplify in-house reproduction of
test executions performed in the field.

10 DATA AVAILABILITY

The replication package that supports complete reproduction of the results reported in this paper is available from the following
Github repository: https://github.com/IASI-SAKS/groucho.
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