
State of Practical Applicability of Regression Testing Research: A Live

Systematic Literature Review

RENAN GRECA, Gran Sasso Science Institute, Italy and ISTI-CNR, Italy

BRENO MIRANDA, Universidade Federal de Pernambuco, Brazil

ANTONIA BERTOLINO, ISTI-CNR, Italy

Context: Software regression testing refers to rerunning test cases after the system under test is modiied, ascertaining that
the changes have not (re-)introduced failures. Not all researchers’ approaches consider applicability and scalability concerns,
and not many have produced an impact in practice. Objective: One goal is to investigate industrial relevance and applicability
of proposed approaches. Another is providing a live review, open to continuous updates by the community. Method: A
systematic review of regression testing studies that are clearly motivated by or validated against industrial relevance and
applicability is conducted. It is complemented by follow-up surveys with authors of the selected papers and 23 practitioners.
Results: A set of 79 primary studies published between 2016-2022 is collected and classiied according to approaches and
metrics. Aspects relative to their relevance and impact are discussed, also based on their authors’ feedback. All the data are
made available from the live repository that accompanies the study. Conclusions: While widely motivated by industrial
relevance and applicability, not many approaches are evaluated in industrial or large-scale open-source systems, and even
fewer approaches have been adopted in practice. Some challenges hindering the implementation of relevant approaches are
synthesized, also based on the practitioners’ feedback.

1 INTRODUCTION

Regression testing (RT) consists of rerunning the previously executed tests when the software under test (SUT)
evolves to verify that no new failures, or regressions, have been introduced. RT is quite a prominent problem
in industry that can draw a large part of the testing budget [51, 60]. The reason is that, as development proceeds,
the test suite size tends to grow signiicantly, making the re-execution of all test cases (the retest all strategy)
impractical. Besides, with the growing adoption of short release cycles and Continuous Integration practices,
the role of RT becomes ever more central [74, 105].
As a consequence, RT is a very active research topic. Since the ‘80s [63, 121], many approaches have been

investigated for making RT more efective and eicient, including diferent techniques: test case prioritization
(TCP) [56] determines an execution ordering that ideally gives precedence to the most efective test cases; test case
selection (TCS) [55] takes a sample of test cases for execution generally based on the recently introduced changes;
test suite reduction (TSR) [95], also referred to as test suite minimization [121], aims at removing redundant
test cases according to some criterion, for instance code or requirements coverage; and test suite augmentation

(TSA) [101] supports the creation of new test cases, if needed, for testing the changed program behavior.
Unfortunately, the research community eforts over the years to mitigate RT cost and complexity do not seem

to have produced the desired impact. A 2010 study [33] aiming at understanding RT practice already highlighted
several divergences between software testing research and practice, notwithstanding in 2017 Garousi and Felderer

Authors’ addresses: Renan Greca, renan.greca@gssi.it, Gran Sasso Science Institute, L’Aquila, Italy and ISTI-CNR, Pisa, Italy; Breno Miranda,

bafm@cin.ufpe.br, Universidade Federal de Pernambuco, Recife, Brazil; Antonia Bertolino, antonia.bertolino@isti.cnr.it, ISTI-CNR, Pisa, Italy.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0360-0300/2023/1-ART $15.00

https://doi.org/10.1145/3579851

ACM Comput. Surv.

HTTPS://ORCID.ORG/0000-0002-0148-0662
HTTPS://ORCID.ORG/0000-0001-9608-9393
HTTPS://ORCID.ORG/0000-0001-8749-1356
https://orcid.org/0000-0002-0148-0662
https://orcid.org/0000-0001-9608-9393
https://orcid.org/0000-0001-8749-1356
https://doi.org/10.1145/3579851
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579851&domain=pdf&date_stamp=2023-01-12

2 • Renan Greca, Breno Miranda, and Antonia Bertolino

[39] still called them as łworlds apartž. Indeed, in a recent systematic review of the RT literature aiming at
identifying approaches with industrial relevance and applicability (henceforth referred to as IR&A), bin Ali et al.
[11] could only select 38 primary studies out of an initial pool of 1068 collected works. In other words, their
study would imply that less than 4% of the published works on RT could be of interest to industry.
It is disappointing that so many solutions proposed by the research to improve RT cost/efectiveness do not

ind their way into practice. In this study we provide a Systematic Literature Review (SLR) with the purpose of
reviewing the IR&A of RT approaches published in the latest years, i.e., since 2016. For the sake of comprehensive-
ness, we characterize as having IR&A not only those studies that report an evaluation on industrial applications
(as was done by bin Ali et al. [11]), but also approaches that are explicitly motivated by industrial problems, or
by related concerns, such as costs, scalability, or impact on the development procedures. Within this scope, we
performed a systematic search over the ive main digital libraries (ACM, IEEE, Springer, Scopus and Wiley) for
RT studies mentioning industry or practice or applicability or scalability (or similar wordings) in their abstract,
and completed this search with a snowballing cycle. We collected 1320 candidate papers published between 2016
and 2022 (780 via query, 540 via snowballing), and after applying a systematic selection process we identiied
a total of 78 primary studies that present IR&A approaches. However, we understand that there is not a direct
mapping between motivation and results, and approaches stemming from applicability concerns could end up
with having low signiicance. In order to get a better assessment of the long-term impact of the papers after
publication, we complemented our literature review with a survey sent to the authors of all the selected studies,
asking them about the outcome of their research post-publication. We received responses from authors of 64%
of the papers, reporting both positive and negative outcomes, including some of the reasons why an approach
was successful or unsuccessful after attempts of implementation. Some of the authors also signaled additional
papers for consideration of the review, out of which we selected only 1.
Our review includes a total of 79 primary studies. Based on a full reading of the selected papers and on the

feedback received by their authors, we discuss the main characteristics of IR&A approaches, how they tackle
applicability concerns, and whether they produced in impact in practice and why (or why not). We then also
conducted a further survey among test practitioners to get their opinion in order to comment and possibly validate
our conclusions. By applying a convenience samplingmethodwe got answers from 23 practitioners who conirmed
our indings and provided further useful insights in our study of investigating IR&A of proposed RT approaches.

Finally, as the paper title indicates, this review is conceived as a live systematic review1. In our analysis of recent
secondary studies, we noticed that a gap of one or even two years elapses between the covered period of literature
and the year the review appears. This is understandable because the authors may need substantial time for analyz-
ing the selected studies and then writing the article, and then several months will typically be taken for the peer
reviewing process. Moreover, even if this temporal gap is reduced to a minimum, as long as the investigated topic
remains active, new primary studies will always appear, soon distancing any SLR from the status of literature. If the
purpose of a SLR is to provide an up-to-date summary of existing work on a topic, frequent updates are required
to include newly appearing relevant studies. Also, it can happen that the original research questions and indings
lose relevance, or are superseded by newer results. As previously questioned in other disciplines [38], Mendes et
al. [75] have recently investigated the issue of SLRs in SE becoming obsolete and of when and how they would need
to be updated. Speciically, in line with [38], they conclude that SLRs should be updated based on two conditions:
i) new relevant methods, studies or information become available; or ii) the adoption or inclusion of previous
and new research cause an impact to the indings, conclusions or credibility of the original SLR. In consideration

1We notice that our concept of a łlivež systematic review, while inspired by similar aims, should not be confused with the muchmore formalized

approach for conducting living systematic reviews recently adopted in medicine, as illustrated by https://community.cochrane.org/review-

production/production-resources/living-systematic-reviews.

ACM Comput. Surv.

https://community.cochrane.org/review-production/production-resources/living-systematic-reviews
https://community.cochrane.org/review-production/production-resources/living-systematic-reviews

State of Practical Applicability of Regression Testing Research: A Live Systematic Literature Review • 3

of these challenges, rather than providing a static repository of the studies found while conducting the review,
together with the article we release an open and updatable repository, which is an integral part of this review work.
The intent is to invite the community to contribute with newly published works that propose or discuss

approaches to RT satisfying IR&A, or even with works published in the period we cover but that for some reason
escaped our selection. This will allow us not only to keep track of newly published studies, but also to recover
papers with purely theoretical motivations that eventually provided beneits in practice. At periodic intervals
(planned to be once per year), we will re-run the queries and check suggestions from the community to decide
how to update the collection of studies.

In conclusion, this work provides the following contributions:

• A systematic literature review of recent RT techniques emphasizing IR&A;
• A survey among the authors of the selected primary studies that provides information about their impact;
• A survey among practitioners to validate and complement our indings;
• A live repository of primary studies in IR&A of RT techniques, allowing for continuous and periodic updates
of this SLR2.

The paper is structured as follows: in the next section we overview related reviews, and in Section 3 we
describe the study methodology, including the three Research Questions (RQs) we formulate, the selection and
data extraction process and the authors’ survey. We then answer the RQs: in Section 4 we answer RQ1, by
overviewing and classifying existing techniques; in Section 5 we answer RQ2, which addresses IR&A concerns;
in Section 6 we answer RQ3, about the impact obtained by the collected studies. In Section 7 we discuss threats
to the validity of the study, and in Section 8 we present the live repository. Finally, in Section 9, we conclude
the paper with a list of challenges identiied in the study, including some suggestions of how to handle them,
which may serve as future research directions.

2 EXISTING SECONDARY STUDIES

The irst recommended step before undertaking any new systematic review is to verify that such a study is actually
needed [58]. Indeed, in view of the large set of papers published every year on RT techniques and related topics, it is
natural that a good number of secondary studies reviewing the regression testing literature has also been produced.
The already cited study by bin Ali et al. [11] has previously veriied whether existing reviews of literature

regarding RT techniques took into consideration IR&A. After a systematic search, they found eleven secondary
studies spanning over 2008-2017, including [15, 16, 34, 36, 47, 55, 92, 97, 106, 121, 124]. After a thorough analysis
of those reviews they concluded that at the time none of them addressed satisfactorily such aspects. The authors
hence used such studies3 as the start-set for a snowball sampling search, launched in August 2016. In order to
verify if another review is needed, it is hence necessary to conduct a thorough examination of existing secondary
studies on RT published since 2016.

We performed a search for secondary studies on RT over the same libraries queried for the primary studies (see
Section 3.3) and complemented the search results with a snowballing cycle. We eventually identiied 22 works
published since 2016 that are listed in the irst column of Table 1, whereas the second column includes the year
the review was published.
In the third column of Table 1 we report which RT techniques are covered in the study. Most reviews only

focus on TCP approaches [2, 3, 9, 46, 48, 49, 56, 66, 77, 78, 91, 100]. One study is dedicated solely to TCS [55], one
other study to TSR [95], and again only one to TSA [26]. Finally, seven secondary studies investigate primary
studies on multiple RT techniques [8, 11, 27, 87, 97ś99].

2Available at: https://renangreca.github.io/literature-repository/.
3Actually 10 of them, as the authors explain that the 2017 survey [55] only appeared after they had concluded the analysis.

ACM Comput. Surv.

https://renangreca.github.io/literature-repository/

4 • Renan Greca, Breno Miranda, and Antonia Bertolino

Paper Year Techniques Nº Period Systematic? Context

Do [27] 2016 TCP, TCS, TSR 12 2010-2016
Hao et al. [46] 2016 TCP 27 2010-2016
Rosero et al. [97] 2016 TCP, TCS, TSR 25 2000-2014

Kazmi et al. [55] 2017 TCS 47 2007-2015
Bajaj and Sangwan [8] 2018 TCP, TCS, TSR 15 1999-2016 Nature-inspired

Khatibsyarbini et al. [56] 2018 TCP 80 1999-2016

Mukherjee and Patnaik [78] 2018 TCP 90 2001-2018

Rehman Khan et al. [95] 2018 TSR 113 1993-2016

Bajaj and Sangwan [9] 2019 TCP 20 2006-2018 Genetic
bin Ali et al. [11] 2019 TCP, TCS, TSR 38 2002-2017 Mix

Danglot et al. [26] 2019 TSA 491 1993-2017

Lou et al. [66] 2019 TCP 191 1997-2016

Hasnain et al. [48] 2020 TCP 65 2001-2017 Web services

Prado Lima and Vergilio [91] 2020 TCP 35 2009-2019 Continuous integration

Abdul Manan et al. [2] 2021 TCP 20 2011-2020 Combinatorial

Hasnain et al. [49] 2021 TCP 24 2007-2019 Ontology-based

Mohd-Shaie et al. [77] 2021 TCP 222 2005-2018 Model-based

Rosero et al. [98] 2021 TCP, TCS, TSR 40 2002-2020

Samad et al. [100] 2021 TCP 52 2007-2019

Ahmed et al. [3] 2022 TCP 21 2001-2019 Value-based

Pan et al. [87] 2022 TCP, TCS 29 2006-2020 Machine learning

Sadri-Moshkenani et al. [99] 2022 TCP, TCS, TSR 132 2015-2019 Cyber-physical

1: Ref. [26] covers test ampliication, which is a wider scope than test augmentation, and the reported number of 49 primary studies includes the whole ield. 2.:
For Refs. [77] and [99] the reported number of primary studies also includes papers addressing test generation.

Table 1. Overview of existing secondary studies on RT.

In the 4th and 5th columns, we report the number of primary studies reviewed and the interval of years to
which they belong, whereas the 6th column is checked if the review is conducted in systematic way. Finally, in
the last column, we also report on the context of the review, if it focuses on techniques using a speciic approach
or covers a speciic application domain. A version of this data is also included in our online repository (Section 8),
with some additional notes; the intent is to update the table as more secondary studies are written and published.

For the sake of comparison, in the following paragraphs we briely report the motivations behind the 22
reviews, grouped by the targeted technique (i.e., TCP, TCS, TSR, TSA, or multiple techniques).

TCP only. The work by Hao et al. [46] aims at reviewing the advancements in TCP and identifying open chal-
lenges. Similar goals are pursued by Lou et al. [66], who analyze the primary studies along six aspects: algorithms,
criteria, measurements, constraints, empirical studies, and scenarios. The objective of Khatibsyarbini et al. [56]
was to review the experimental evidence relative to the most recent TCP approaches along with the metrics
used for evaluating them. Mukherjee and Patnaik [78] generically aim to identify the most popular and useful
TCP approaches. The review by Samad et al. [100] classiies existing work according to the algorithms or models
adopted, the subjects of evaluation and the prioritization measures. A number of reviews focus on TCP for speciic
test approaches, namely: Bajaj and Sangwan [9] cover genetic algorithms; Abdul Manan et al. [2] address combina-
torial testing; Hasnain et al. [49] consider ontology-based test methods; Mohd-Shaie et al. [77] cover model-based
testing approaches, and Ahmed et al. [3] review TCP techniques that integrate value consideration, either in
terms of fault severity or test case cost. Finally Hasnain et al. [48] investigate TCP approaches for web services,
whereas Prado Lima and Vergilio [91] study how TCP has been adapted for Continuous Integration environments.

TCS only. The only secondary study focusing on TCS work is Kazmi et al. [55], which aims at presenting the
state-of-the-art in efective regression test case selection techniques.

ACM Comput. Surv.

State of Practical Applicability of Regression Testing Research: A Live Systematic Literature Review • 5

TSR only. The systematic review by Rehman Khan et al. [95] is motivated by the quality assessment of empirical
studies employed to evaluate the test reduction approaches.

TSA only. Danglot et al. [26] present the irst review on test ampliication, a novel term they introduce as
an umbrella for various activities that aims at improving an existing test suite, including test augmentation,
optimization, enrichment, or refactoring. The review is not speciically devoted to RT, but a subset of the primary
studies they overview deals with creating new tests for assessing the efects of changes.

Multiple techniques. Among the secondary studies that focus on multiple RT techniques, both Do [27]
and Rosero et al. [97] aimed at generically providing an overview of recent research advances. Some authors instead
weremotivated to studymore speciic type of techniques: Bajaj and Sangwan [8] aimed at reviewing RT approaches
leveraging nature-inspired algorithms, while Pan et al. [87] analyzed TCP and TCS studies that use Machine-
Learning based techniques. The review by Sadri-Moshkenani et al. [99] characterizes the approaches and the open
challenges for the generation, selection and prioritization of test cases for cyber-physical systems. Rosero et al.
[98] provide a preliminary brief mapping of primary studies that report about industrial usage of RT techniques.
Finally, the already mentioned study by bin Ali et al. [11] surveys RT research that has industrial relevance and
applicability, and also creates a taxonomy useful for the communication between academia and industry.

Nearly all of the secondary studies express some concerns over IR&A of RT techniques, although in most cases
these concerns are only mentioned in passing, and are not central to their motivations. Rosero et al. [97] report
that only 16% of the surveyed primary studies experimented in industrial context. On the positive side, Do [27]
observes that recently, more research is focusing on industrial software or open-source programs of diferent types.
The review by Lou et al. [66] contains a subsection titled łPractical Valuesž in which they suggest researchers to
consider TCP in practical scenarios and to develop usable TCP tools. The only two reviews that speciically target
IR&A as this study are: i) the aforementioned work by bin Ali et al. [11]. However it selects only papers that per-
formed evaluations with industrial subjects, and was motivated mainly by the goal of establishing a taxonomy for
communicating RT research in a way that is accessible and relevant for practitioners; and ii) the preliminary work
by Rosero et al. [98], but this is is a brief report that just classiies 40 selected primary studies found by searching
the TCP literature for the term łindustrialž without investigating in depth their characteristics and actual impact.

Considering the list of related secondary studies in Table 1, we conclude that a new secondary study speciically
addressing progresses in latest years about IR&A is needed and can provide value to the research and development
communities.

3 METHODOLOGY

This section elaborates the entire review process, from its conceptual phases to the list of selected papers and
how we organized their contents. First, we establish the research questions that drive both the selection of papers
and the data presented and discussed in subsequent sections. Then, we explain the planning and design phase
of the survey, followed by its actual execution. We also highlight the data that was extracted from each paper and
the process of sending complementary questions to authors via e-mail. We present the survey with practitioners
that we conducted in support of the study conclusions. Finally, we make available the relevant data needed to
replicate this process, to the extent of possibility.

3.1 Research uestions

With these research questions, we aim to synthesize the current state of RT research in terms of most frequently
used approaches and metrics as well as understand researchers’ motivations and eforts regarding the practical
implementation of their proposed techniques.

ACM Comput. Surv.

6 • Renan Greca, Breno Miranda, and Antonia Bertolino

RQ1: What are the main approaches used for RT techniques and what are the metrics used to evaluate

them? ÐWe want to have an overview of the approaches most used in this ield, including what information
is required from the software, what algorithms are put into use and what goal are they trying to achieve. In
addition, we want to know what metrics are widely accepted among researchers to evaluate such approaches
and whether there is evidence to suggest that these metrics correlate to the technique’s practical applicability.

RQ2: Is IR&A an explicit concern in RT research? ÐWe want to ind out if there is a meaningful number
of papers that state IR&A as their motivation and include it as part of their problem description. Additionally,
we want to understand what are the main steps that authors usually take towards addressing these concerns
with the tools, techniques and solutions they provide.

RQ3: Is there evidence that techniques developed in academiamake their way into software in practice?

Ð In an efort to measure the extent of active industry-academia collaborations, we want to highlight examples of
techniques that have been put into practice at some point during the development of the work. To provide a clearer
picture, we asked authors of the selected studies to provide details of the state of their research post publication.

3.2 Planning and Design of the Review

To answer the questions above, we designed the following literature review process. For the purposes of this review,
a łregression testing techniquež addresses test case prioritization (TCP), test case selection (TCS), test suite reduc-
tion (TSR), or test suite augmentation (TSA). Only papers concerning one or more of these four challenges should
be considered. Due to the scale of the available literature and our focused interest in recent developments, we only
look for papers published between January/2016 and July/2022. We also only consider papers written in English.

We want to focus on papers that either signify an advance of the state of the art in academia towards practicality,
or includes data and discussions that might help guide future researchers to make their research more valuable
for practitioners. Thus, to be included in the review, a paper must satisfy at least one of these inclusion criteria:

• It introduces a new regression testing technique and provides evidence that it addresses a real-world
concern, or provides substantial beneits in experiments performed with real software;

• It introduces and/or discusses a metric for evaluating regression testing techniques with evidence that it
might be valuable in practice; or

• It provides a case study of how regression testing is done in a certain team or company, and provides some
insight into the actual needs of practitioners.

We also want to avoid certain topics that are related to regression testing but would increase the scope of the
review beyond necessary. A paper should be excluded according to following criteria:

• It is regarding software testing education, as this is a completely diferent challenge;
• It proposes a technique for test suite generation, which is related albeit distinct problem from TSA4;
• It is concerning security testing, because it typically requires speciic types of techniques [35]; or
• It is concerning software product lines or highly conigurable software, as these also present quite diferent
challenges from typical regression testing [29].

After collecting the uniltered set of papers, the inclusion and exclusion criteria are applied by each author to
a random sample set based on their titles, abstracts and, if needed, supericial analysis of the text. In case of diver-
gences in the analysis, the authors should discuss their conclusions. The Cohen Kappa agreement measure [23],
a scale from -1 to 1, is used to determine if both authors are generally in agreement regarding this sample of
papers. Upon establishing a satisfying agreement value, the analysis of remaining papers are split among the

4The primary diference is that test suite augmentation presupposes the existence of a test suite to enhance, while test suite generation can

create a new test suite from scratch.

ACM Comput. Surv.

State of Practical Applicability of Regression Testing Research: A Live Systematic Literature Review • 7

authors. If it is not clear whether a paper fully satisies the criteria, it is brought for discussion among all authors
until a mutual decision is reached.

After this initial analysis, full-text assessment of the remaining literature is performed. The following quality
criteria are to be used to further narrow down the papers that are relevant to our research goals:

• The writing and presentation quality should not hinder comprehension;
• A paper should provide evidence that they address a problem found in real-world software development
and/or that the technique was evaluated on real-world software;

• The metrics used for evaluation should be clear and the authors should provide some reasoning as to why
they are relevant; and

• In case there are multiple papers by the same group of authors that reference versions of the same work,
we keep the most extensive one, avoiding, for instance, a conference paper and a journal paper that address
the same research (if they are equivalent, we keep the most recent one).

The results from our queries are complemented by both forward and backward snowballing to improve the
comprehensiveness of the review. The same date restrictions and criteria apply to papers found via snowballing.

Finally, a questionnaire with authors (Section 3.5) is used in order to clarify and update some details regarding
the selected papers. The authors have the option of suggesting additional papers for consideration in this study;
in that case, they should also be analyzed according to the established criteria.

3.3 Executing the Review

We began by assembling a list of keywords that form the basis of our queries, including potential variants of the
same terms. These are: test/testing, evaluate/evaluation, metric, indicator, investment, cost, relevant/relevance,
industry/industrial, practice/practical/practitioner, applicable/applicability, scale/scalability, regression, selection,
prioriti[s/z]ation, ampliication/augmentation, reduction/minimi[s/z]ation software. These keywords were used
to manually experiment with the ACM and IEEE digital libraries, in order to have a general understanding of
the relevance of the results. We found, for example, that the term łregressionž would often bring papers on the
broad topic of machine learning (even not related to RT), so we had to make sure the word łsoftwarež was also
mentioned in the abstract.
Once the desired keywords were established, we built a query combining them. The query went through

several iterations, in order to maximize the likelihood of inding all the papers that are relevant to our research,
while also minimizing the number of papers in excess. The inal query was structured as:

Title:(test OR testing) AND

Abstract:(evaluat* OR metric OR indicator OR investment OR cost OR relevan*) AND

Abstract:(industr* OR practic* OR applicab* OR scal*) AND

Abstract:(regression OR selection OR prioriti* OR augmentation OR

amplification OR reduction OR minimi*) AND

Abstract:(software)

Queries were executed on ive digital libraries: ACM, IEEE, Springer, Scopus and Wiley. The searches were
performed on Nov. 4, 2021 and Jul. 27, 2022. Each of the ive search engines uses a diferent syntax for queries, so
we adapted the query to each syntax while keeping its overall meaning as similar as possible. We also attempted
to include results from Science Direct into the study, but its search engine cannot handle all of the query details.
In all of the search engines, we narrowed the results to papers published since January of 2016 and under the
ields of Computer Science and Software Engineering. The numbers of results were: ACM (217), IEEE (189),
Springer (202), Scopus (285), Wiley (31). Removing exact duplicates that were found in more than one digital
library, the initial number of papers considered for the review was 780.

ACM Comput. Surv.

8 • Renan Greca, Breno Miranda, and Antonia Bertolino

The selection process is illustrated in Figure 1. From the query results, we assembled a spreadsheet with the
year, author list, title, abstract and keywords of each paper in a shuled order, to be systematically screened by
two of the authors of this study. Only when needed, we would consult the full text of the paper to ensure topic
relevance and the satisfaction of exclusion and quality criteria. A sample of 40 papers was used to calculate the
Cohen Kappa measure and establish a consensus. From these, we achieved an agreement value of 0.89, which
is considered very high, so we were satisied with the criteria and the authors’ interpretations of them. We split
the remaining papers among us for processing and, when uncertain, we would discuss the inclusion of papers
together, ultimately deciding to be overly inclusive at this step, and leaving the most rigorous iltering for later.
Papers from the same groups of authors were also lagged to then determine if they were describing the same
or similar work. Before any snowballing, we detected 86 candidate papers.
Snowballing upon the selected primary studies was performed on Nov. 15 2021 and Aug. 15 2022, using the

papers’ own references for backward snowballing and Google Scholar for forward snowballing. This resulted
in a further 540 papers published since 2016, after removing duplicates of papers already found in the previous
review step. The same set of steps described for the query results were applied to the snowballing set, resulting
in an additional 108 candidate papers. Combined with the previously-detected candidates, a pool of 194 papers
was formed for deeper analysis.

We performed comprehensive full-text analysis of these 194 papers, carefully extracting the information
pointed out in Section 3.4 and using that to form the decision of whether or not the paper satisied our inclusion
and quality criteria. Again during this step, we divided the papers among the authors and, in case there was
uncertainty regarding one paper, we made the decision together.
Later, when we received responses from the authors of the selected studies (Section 3.5), four papers were

brought to our attention. We applied all our aforementioned criteria to these suggestions and decided to incor-
porate one of them into the review. It had not been caught by either the query or the snowballing process, but we
understand that a single missed paper is evidence that our review process has been suiciently comprehensive.

Finally, our survey, as is presented in this study, contains the 79 papers listed in Table 2: 46 found by the query;
16 from backward snowballing; 16 from forward snowballing; and 1 author suggestion. As is later discussed in
Section 8, this group of papers is just the initial contents of the live repository that is made available online. Over
time, through updates to the review and submissions by authors, we expect this list to grow.
It is noteworthy that other studies, not included in this review, are also important for the advancement of

software engineering research. During the execution of this review, we came across several papers that provide
meaningful contributions to the theory or practice of regression testing research, but exist in an isolated context.
The focus of this collection of studies is to ind techniques and approaches that are applicable in real software or
are close to that - oftentimes, these papers are the result of a longer series of smaller contributions that ultimately
culminated in a usable product.

ID Year Authors Title

T
C
P

T
C
S

T
S
R

T
S
A

S1 2016b Srikanth et al. [109] Requirements Based Test Prioritization Using Risk Factors

S2 2016 Noor and Hemmati
[83]

A similarity-based approach for test case prioritization using historical failure data

S3 2016 Schwartz and Do
[102]

Cost-efective regression testing through adaptive test prioritization strategies

S4 2016 Hirzel and Klaeren
[52]

Graph-walk-based selective regression testing of web applications created with Google web
toolkit

S5 2016 Lu et al. [67] How does regression test prioritization perform in real-world software evolution?

S6 2016 Vöst and Wagner
[114]

Trace-based test selection to support continuous integration in the automotive industry

ACM Comput. Surv.

State of Practical Applicability of Regression Testing Research: A Live Systematic Literature Review • 9

S7 2016 Wang et al. [115] Enhancing test case prioritization in an industrial setting with resource awareness and
multi-objective search

S8 2016a Srikanth et al. [108] Test Case Prioritization of Build Acceptance Tests for an Enterprise Cloud Application

S9 2017 Blondeau et al. [12] Test case selection in industry: an analysis of issues related to static approaches

S10 2016 Pradhan et al. [90] Search-Based Cost-Efective Test Case Selection within a Time Budget: An Empirical Study

S11 2016 Buchgeher et al. [13] Improving testing in an enterprise SOA with an architecture-based approach

S12 2016b Tahvili et al. [112] Dynamic integration test selection based on test case dependencies

S13 2016 Öqvist et al. [93] Extraction-based regression test selection

S14 2016 Magalhães et al. [70] Automatic selection of test cases for regression testing

S15 2016 Aman et al. [4] Application of Mahalanobis-Taguchi Method and 0-1 ProgrammingMethod to Cost-Efective
Regression Testing

S16 2016 Busjaeger and Xie [14] Learning for test prioritization: An industrial case study

S17 2016 Yoshida et al. [122] FSX: A tool for ine-grained incremental unit test generation for C/C++ Programs

S18 2016a Tahvili et al. [111] Cost-beneit analysis of using dependency knowledge at integration testing

S19 2017 Ramler et al. [94] Tool support for change-based regression testing: An industry experience report

S20 2016 Strandberg et al. [110] Experience Report: Automated System Level Regression Test Prioritization Using Multiple
Factors

S21 2016 Marijan and Liaaen
[72]

Efect of time window on the performance of continuous regression testing

S22 2017 Gotlieb and Marijan
[41]

Using global constraints to automate regression testing

S23 2017 Chi et al. [22] Multi-Level Random Walk for Software Test Suite Reduction

S24 2017 Bach et al. [6] Coverage-Based Reduction of Test Execution Time: Lessons from a Very Large Industrial
Project

S25 2017 Spieker et al. [107] Reinforcement learning for automatic test case prioritization and selection in continuous
integration

S26 2017 Vasic et al. [113] File-Level vs. Module-Level Regression Test Selection for .NET

S27 2017 Celik et al. [18] Regression test selection across JVM boundaries

S28 2018 Ouriques et al. [85] Test case prioritization techniques for model-based testing: a replicated study

S29 2017 Kwon and Ko [59] Cost-efective regression testing using bloom ilters in continuous integration development
environments

S30 2018 Garousi et al. [40] Multi-objective regression test selection in practice: An empirical study in the defense
software industry

S31 2018 Shi et al. [104] Evaluating test-suite reduction in real software evolution

S32 2018 Haghighatkhah et al.
[45]

Test prioritization in continuous integration environments

S33 2018 Zhang [126] Hybrid regression test selection

S34 2018 Miranda et al. [76] FAST Approaches to Scalable Similarity-Based Test Case Prioritization

S35 2018 Yilmaz and Tarhan
[120]

A case study to compare regression test selection techniques on open-source software
projects

S36 2018 Chen et al. [19] Optimizing Test Prioritization via Test Distribution Analysis

S37 2018 Celik et al. [17] Regression Test Selection for TizenRT

S38 2018 Zhu et al. [130] Test re-prioritization in continuous testing environments

S39 2018 Azizi and Do [5] Retest: A cost efective test case selection technique for modern software development

S40 2019 Guo et al. [44] Decomposing Composite Changes for Code Review and Regression Test Selection in Evolv-
ing Software

S41 2019 Zhong et al. [127] TestSage: Regression test selection for large-scale Web service testing

S42 2019 Fu et al. [37] Resurgence of Regression Test Selection for C++

S43 2019 Eda and Do [30] An eicient regression testing approach for PHP Web applications using test selection and
reusable constraints

ACM Comput. Surv.

10 • Renan Greca, Breno Miranda, and Antonia Bertolino

S44 2019 Goyal et al. [42] Test suite minimization of evolving software systems: A case study

S45 2019 Yu et al. [123] TERMINATOR: better automated UI test case prioritization

S46 2019 Correia et al. [24] MOTSD: A multi-objective test selection tool using test suite diagnosability

S47 2019 Machalica et al. [69] Predictive Test Selection

S48 2019 Najai et al. [79] Improving Test Efectiveness Using Test Executions History: An Industrial Experience
Report

S49 2019 Leong et al. [62] Assessing Transition-Based Test Selection Algorithms at Google

S50 2019 Cruciani et al. [25] Scalable Approaches for Test Suite Reduction

S51 2019 Philip et al. [89] FastLane: Test Minimization for Rapidly Deployed Large-Scale Online Services

S52 2020 Magalhães et al. [71] HSP: A hybrid selection and prioritisation of regression test cases based on information
retrieval and code coverage applied on an industrial case study

S53 2019 Wu et al. [116] A Time Window Based Reinforcement Learning Reward for Test Case Prioritization in
Continuous Integration

S54 2019 Land et al. [61] An Industrial Evaluation of Test Prioritisation Criteria and Metrics

S55 2020 Noemmer and Haas
[82]

An Evaluation of Test Suite Minimization Techniques

S56 2020 Lübke [68] Selecting and Prioritizing Regression Test Suites by Production Usage Risk in Time-
Constrained Environments

S57 2019 Yackley et al. [118] Simultaneous refactoring and regression testing

S58 2019 Shi et al. [105] Understanding and improving regression test selection in continuous integration

S59 2022 Lima and Vergilio [65] A Multi-Armed Bandit Approach for Test Case Prioritization in Continuous Integration
Environments

S60 2020 Zhou et al. [129] Beating Random Test Case Prioritization

S61 2020 Peng et al. [88] Empirically revisiting and enhancing IR-based test-case prioritization

S62 2020 Bertolino et al. [10] Learning-to-rank vs ranking-to-learn: Strategies for regression testing in continuous inte-
gration

S63 2021 Chen and Chen [21] Multi-objective regression test selection

S64 2021 Rosenbauer et al. [96] An Artiicial Immune System for Black Box Test Case Selection

S65 2022 Bagherzadeh et al. [7] Reinforcement learning for test case prioritization

S66 2021 Elsner et al. [32] Empirically evaluating readily available information for regression test optimization in
continuous integration

S67 2020 Pan et al. [86] Dynamic Time Window based Reward for Reinforcement Learning in Continuous Integra-
tion Testing

S68 2021 Mehta et al. [73] Data-driven test selection at scale

S69 2021 Xu et al. [117] A Requirement-based Regression Test Selection Technique in Behavior-Driven Development

S70 2022 Zhou et al. [128] Parallel Test Prioritization

S71 2021 Sharif et al. [103] DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing

S72 2021 Li et al. [64] AGA: An Accelerated Greedy Additional Algorithm for Test Case Prioritization

S73 2021 Chen et al. [20] Context-Aware Regression Test Selection

S74 2022 Zhang et al. [125] Comparing and Combining Analysis-Based and Learning-Based Regression Test Selection

S75 2022 Abdelkarim and
ElAdawi [1]

TCP-Net: Test Case Prioritization using End-to-End Deep Neural Networks

S76 2022 Çıngıl and Sözer [80] Black-box Test Case Selection by Relating Code Changes with Previously Fixed Defects

S77 2022 Yaraghi et al. [119] Scalable and Accurate Test Case Prioritization in Continuous Integration Contexts

S78 2022 Omri and Sinz [84] Learning to Rank for Test Case Prioritization

S79 2022 Greca et al. [43] Comparing and combining ile-based selection and similarity-based prioritization towards
regression test orchestration

Totals 46 41 8 1

ACM Comput. Surv.

State of Practical Applicability of Regression Testing Research: A Live Systematic Literature Review • 11

Table 2. Selected papers.

3.4 Data Extraction

To collect the data, each of the selected papers was assigned to one author to lead the data extraction, and to
another author to review the data afterwards. Thus, each paper was thoroughly reviewed by at least two authors.
At the end of this phase, the three authors performed a broad review of the collected information in order to
ensure consistency of the results.
During the full-text analysis of the selected papers, we took notes of four groups of properties we wished to

extract from each paper. First, we wanted to have the core bibliographical information of the paper. Then, we
categorized the papers according to the RT challenge being addressed and contextual factors such as software
type and development environment. We also took note of eight properties we considered important regarding
IR&A of each proposed technique or case study. Finally, we synthesized the results of the papers by highlighting
the types of approaches and metrics used and, if available, the open challenges/future work discussed by the
authors. The properties we collected are listed in Table 3.

Some further explanation is needed regarding the łapplicability concernsž properties. During the data extrac-
tion, it became clear to us that there is some ambiguity regarding industrial motivation; among the non-selected
papers, we also saw a great number of them briely mentioning industry needs in the abstract and introduction, but
not forming a connection between those needs and the technique being proposed. So, for our criteria, industrial
needs must not only be mentioned, but clearly stated with motivating evidence and/or references, and serve as
the actual principle behind the idea of the study.
Regarding the industrial evaluation of results, this property is satisied when experiments are performed

directly on industrial software, usually through collaboration with a technology company. However, there are
plenty of papers that have robust experiments performed on notable open-source software, such as those from
the Apache and Mozilla foundations. Thus, we collect the following information about the subjects:

• Its openness, which can be industrial proprietary, industrial open-source, fully open-source, or an academic
dataset;

• Its testing scale (small up to 500 TCs, medium up to 2,000 TCs, large up to 10,000 TCs, or very large if more
than that)5;

• The language used for writing tests, which can be a programming language, natural language, a domain-
speciic language or a combination; and

• Its origin (the company that wrote it, or the dataset it is from).

We also checked to see if there is feedback from practitioners in the text of the paper. Relatively few authors
include feedback and, often times, it is only a brief passage. Sometimes feedback seems to be implied, but we
only considered explicit references to comments from practitioners (in either direct or indirect quotes).

The remaining properties are more straightforward: For experiment subject(s) and industry partner, we merely
point out the kind of software (or the speciic software, if possible) used for evaluation, as well as any collaboration
received from a company. For industrial author(s), we check if the authors of the paper come from an academic,
industrial or mixed background. łAvailable toolž is a URL pointing to an implementation of the technique, if
it exists (regardless if it is source code, a plug-in, or a robust replication package). Finally, łput into practicež
indicates whether the technique was actually incorporated into the development worklow of a software, to the
extent of the information contained in the paper.

5It is also important to note that the number of test cases is only one dimension of scale: on S76, for example, evaluation was performed on

Smart TV apps with only 38 test cases, but the testing time was over 7 hours.

ACM Comput. Surv.

12 • Renan Greca, Breno Miranda, and Antonia Bertolino

Query

780
non-duplicates

86
candidates

Title/abstract
analysis

212 backward
328 forward

108
candidates

79
selected studies

Full-text analysis

194
candidates

Title/abstract
analysis

4
candidates

Snowballing Author
Suggestions

Application
of criteria

Fig. 1. Diagram of the literature review process.

Bibliographical data Basic information about the publication.

Date The date the paper was made available online.
Authors The list of authors.
Title The title of the paper.
Abstract The abstract of the paper.
Venue and Publisher The conference or journal where it was published and its organization.
DOI The Digital Object Identiier of the paper.

Categorization Details regarding the problem addressed by the paper.

RT challenges Whether the paper covers TCP, TCS, TSR, TSA or a combination.
Context The type of software targeted by the approach.

Applicability concerns Properties of the paper related to its IR&A.

Industry motivation Whether the paper is clearly motivated by an industrially relevant problem.
Industry evaluation Whether the technique is evaluated in industrial software or suiciently large-scale open-source projects.
Experiment subject(s) Which software or kind of software was used for the experimental evaluation of the technique, including the testing scale, the

availability and the language in which tests are written.
Industry partner Which, if any, industrial partner collaborated with the development and/or evaluation of the technique.
Industrial author Whether one or more of the authors of the paper come from industry.
Practitioner feedback Whether practitioners were consulted to provide feedback to the results of the paper.
Available tool Whether the technique introduced in the paper is available to be used, either as a prototype or as a complete tool. If true, we also

stored the relevant URLs.
Put into practice Whether the proposed tool has been adopted into the development process of a certain software.

Findings Details of the proposed technique and remaining challenges.

Approach What sort of algorithm and information the technique is using.
Metrics What criteria are being used for evaluating the techniques.
Open challenges What the authors list as next steps and unsolved issues related to the problem they addressed.

Table 3. Data extraction form.

Most of the data extracted according to the form can be found in this document under Table 2 (bibliographical
data); Table 4 and Figures 2 and 3 (approaches); Table 5 and Figures 4 and 5 (metrics); and Table 6 and Figure 8
(IR&A relevance properties). Additional properties, such as abstracts, DOIs, details on the experiment subjects,
and links to supplementary material, can be found in the live repository.

3.5 uestionnaire with Authors

As we collected the data needed to answer the research questions, we realized the need of a perspective beyond
what is possible to extract solely from the papers, particularly regarding the ongoing usage of the described
techniques. This happens because the information contained in the papers themselves might be out-of-date or

ACM Comput. Surv.

State of Practical Applicability of Regression Testing Research: A Live Systematic Literature Review • 13

unclear. For example, the authors of S11 mention that their tool, TePSEx, was in use at the time of the publication;
however, it is impossible to tell from the paper itself whether the situation has changed since 2016. Conversely,
there are also several papers that mention a practical implementation among their future work [S7, S12, S22,
S37, S51], but we were not able to ind follow-up papers clarifying whether that actually happened.

In order to provide a satisfactory answer to RQ3, we reached out to the authors of the papers via e-mail. Our
initial objective was to discover if techniques were ever put into practice and, if so, if they continue to be used
to this day. We also realized that the authors could also provide fruitful insight into RQ1 and RQ2, so it ultimately
became an important pillar of this work.

We were able to contact authors from most of the papers; in some cases we were not able to locate the author’s
e-mail address, or the address is no longer valid. The authors were given 12 days to respond and we received
replies related to 51 out of the 79 papers Ð in some cases, one author answered for several papers, in others
several authors of the same paper provided answers. The total number of responding authors was 45, although
ive of them did not provide meaningful answers (i.e. asked us to contact another co-author or said they were
not able to answer our questions).

The e-mail sent out to the authors had the following questions:

(1) Is there a functional version of your technique (tool, prototype, source code, etc.) available online? If so, please share
with us the URL.

(2) Was there an attempt to implement your technique in industrial or large open-source software? Is the technique
currently in use with the software?

(3) If the technique was put into practice, were the metrics used in the paper relevant for the technique’s applicability? If
not, were there other metrics that proved to be useful?

In addition, we also asked if the authors authorized their answers to be used in this study, if we could link them to
their answers, and if they wish to be contacted about updates to this study. All responding authors authorized the
use of their answers, but several of them asked not to be linked directly to speciic answers due to non-disclosure
agreements with industrial partners; therefore, we use the received answers broadly, collecting quantitative and
qualitative data from them without specifying which piece of information came from which author. Whenever
a direct quote is signiicant, we transcribe it anonymously; for readability we use an arbitrary ID numbering.

3.6 Survey with Practitioners

In addition to the questions we sent to the authors of reviewed papers, we also prepared a survey destined to
practitioners. The objective of this survey was to complement and verify some of the conclusions we draw from
the literature, and help align the interests of academia and industry.

The survey was disseminated using a convenience sample, including contacts we personally know in industry
and people who participated in software testing centric events. We considered also putting the survey in public
online forums centered on software testing/engineering, but ultimately decided against that for fear of low-quality
responses and data pollution.

We received 23 responses from practitioners in six diferent countries (Brazil, Italy, Finland, Hungary, Portugal
and Sweden). Obviously this survey covers an extremely small part of software testing practice, but it is possible to
trace some common elements pointed out by the respondent that corroborate some of the indings and conclusions
we had extracted from the literature. When relevant, these responses are used in Section 9.

Due to space concerns, we cannot include the full questionnaire here, but it is available online, along with
the anonymized responses we received. The main points covered in it were:

ACM Comput. Surv.

14 • Renan Greca, Breno Miranda, and Antonia Bertolino

11

1

221

21

1

3

1

4

3

2

2

6

3

9

2

5

6

1

15

1TCP

TCS

TSR

C
ha

ng
e-

ba
se

d

C
ov

er
ag

e-
ba

se
d

H
is
to

ry
-b

as
ed

C
os

t-a
w

ar
e

Fau
lt-

ba
se

d

Tes
t c

od
e

M
an

ua
l

cl
as

si
fic

at
io

n

R
eq

ui
re

m
en

ts
-

ba
se

d

M
od

el
-b

as
ed

Tra
ce

-b
as

ed

Exe
cu

tio
n

co
nt

ex
t

Loa
d

fa
ct

or

A
ut

ho
r c

ou
nt

Fig. 2. Distribution of information approaches.

(1) What are the most common pain points when it comes to regression testing?
(2) Do you know of, or have you ever used, a regression testing tool originating in academia?

If so, how was the experience of using it?
(3) Do you stay informed on current advances in software engineering research? Are there attempts of collaboration

between your company and academia?

We also asked their company, country and role, which we used to assess the diversity of respondents. This
will not be published for privacy reasons.

3.7 Replicability

To allow replicability of our review and clearly describe the thought process behind the choice of included studies,
we make a replication package available online6. This package includes the original search queries, the list of
papers that we included or excluded via the criteria, the full contents of the data extraction form, and the data
used to generate the igures. It also includes the full version of the e-mail template sent to the authors and the
full questionnaire sent to practitioners.

4 RQ1: COMMON APPROACHES AND METRICS IN RT RESEARCH

A summary of the main approaches used to tackle RT challenges is presented in Table 4. We observe that the
approaches adopted by a technique may serve to two diferent purposes: one is regarding the source from where
the information used as input for a technique is collected7; a second purpose refers to the actual algorithm used to
address the problem to solve. Correspondingly, the main approaches used to tackle RT challenges are presented
in Figure 2 and in Figure 3, respectively. Regarding information, change-based, coverage-based, history-based
and cost-aware approaches are the most common; while machine learning-based, search-based, similarity-based
and graph-based are the popular algorithmic approaches.

The main metrics reported in the literature are shown in Table 5, Figure 4 and Figure 5, grouped according to
their main goal8. The reported metrics primarily focus on efectiveness (how good a solution is at accomplishing
its task) or eiciency (the time and cost of using the solution), but two metrics were identiied that are neither
Ð namely, applicability/generality and diagnosability.

APFD is the most widely accepted metric for assessing TCP approaches. Because TCS and TSR both have the
goal of running fewer tests than an original test suite, their metrics are mostly shared: testing time, selection

6Available at: https://doi.org/10.5281/zenodo.7514251.
7This is also referred to as criteria in the literature [66].
8In each igure, we omit TSA due to space concerns, as only one paper [S17] covers it.

ACM Comput. Surv.

https://doi.org/10.5281/zenodo.7514251

State of Practical Applicability of Regression Testing Research: A Live Systematic Literature Review • 15

2

11

3

2

3

6

1

1

8

1

6

6

1

4

10TCP

TCS

TSR

M
ac

hi
ne

 le
ar

ni
ng

Sea
rc

h-
ba

se
d

Sim
ila

rit
y-

 o
r

di
st
an

ce
-b

as
ed

G
ra

ph
-b

as
ed

G
re

ed
y

B
lo

om
 fi

lte
r o

r

w
in

do
w

-b
as

ed

C
on

st
ra

in
ts
-

ba
se

d

Fig. 3. Distribution of algorithm approaches.

1

1

11

1

1

2

2

1

2

2

1

2

2

1

3

2

4

3

4

4

3

3

8

1

6

5

3

11

5

17

23TCP

TCS

TSR

A
PFD

Tes
t c

ou
nt

Tes
tin

g
tim

e

A
cc

ur
ac

y,
 p

re
ci

si
on

an
d/

or
 re

ca
ll

Tim
e/

te
st
s t

o

fir
st
 fa

ul
t

Fau
lt

de
te

ct
io

n

ca
pa

bi
lit

y

Fau
lt

de
te

ct
io

n

in
 b

ud
ge

t

C
ov

er
ag

e

ef
fe

ct
iv

en
es

s

Fau
lt

de
te

ct
io

n
ra

te

C
os

t-b
en

ef
it

m
od

el
Fau

lt

de
te

ct
io

n
lo

ss

C
om

pa
ris

on

to
 e
xp

er
t

R
PA Fau

lts
 p

er

te
st
s/
tim

e

A
lg

or
ith

m

pe
rf
or

m
an

ce
 m

ea
su

re
s

A
cc

um
ul

at
ed

re
gr

es
si
on

 ri
sk

Fig. 4. Distribution of efectiveness metrics.

count and fault detection ability are the most common ones. The set of accuracy/precision/recall appears to be
the efectiveness metric that covers the most situations. For eiciency, the execution time of a technique is both
widely used and is useful for any kind of solution.

In our questionnaire to the authors, we included a question focused on the choice of metrics. We asked authors
who had successful or attempted attempts of implementing their technique whether the metrics described in
the paper proved to be relevant in practice, or if additional measures were needed. We received 27 meaningful
responses to that question, out of which 24 were satisied with the chosen metrics. We quote some of the answers
received: łThe metrics directly inluenced decisions of the industrial partnerž (respondent author #16); Respondent
author #8 stated that ł[the] metrics were at the heart of the approachž and that the provided metrics were łalways
perceived as necessity by developers to support them in their workž; łThe technique was put in practice for subsequent

release and the metrics were useful and efectivež (author #17); Respondent author #23 answered that łthe metrics

presented in the paper were critical for adoption and to measure ongoing improvementsž; łthey [the metrics] were

relevant - they were also collected in the same environment in which the technique ended up being usedž (author #19).
Out of the three divergent responses, one suggested that the metrics were not a problem, but the dataset they

used for the experiments was too small to provide meaningful evidence (author #42). Curiously, the remaining
two complement each other. Author #45 said that they proposed a new metric, which is believed to be relevant

ACM Comput. Surv.

16 • Renan Greca, Breno Miranda, and Antonia Bertolino

Information TCP TCS TSR TSA Description

History-based S8, S15, S16, S20,
S21, S29, S32, S45,
S48

S29, S47, S48 Uses information from previous testing cycles to decide
about test case relevance.

Change-based S20 S13, S19, S26, S27,
S33, S35, S37, S40,
S42, S43, S58, S73,
S74, S76, S79

S43 Uses changes between versions to identify the relevant
test cases.

Coverage-based S16, S24, S28, S45,
S52, S56

S19, S24, S41, S52,
S56

S31, S55 S17 Uses structural coverage information, whereby coverage
can be of statement, method, class, ile, etc.

Cost-aware S5, S7, S12, S18,
S45, S70

S12, S63 Utilizes test case cost or time information to assess test
relevance.

Requirements-based S1 S44 Relate tests with project-sensitive information, such as
requirements and risk assessments.

Manual classiication S12, S18, S45 S12 Requires at least some information that must be manu-
ally inputted by an expert.

Model-based S11, S28 S11 Informs the test technique using behavioural or archi-
tectural models.

Trace-based S6, S41 Provides inputs and keeps track of the efects of those
inputs throughout the program.

Fault-based S21, S38 S49, S63, S76 Utilizes information related to fault detection or failure
beaviour.

Test code S2, S34, S61, S79 S50 Uses the plain text source code of the test cases.
Load factor S11 S11 Indicates what parts of the SUT are most used by difer-

ent services and components.
Author count S49 Number of authors associated with a certain part of the

SUT.
Execution context S27, S73 Considers environment data such as libraries, APIs,

databases, operating system, etc.

Algorithm TCP TCS TSR TSA Description

Similarity / distance-
based

S2, S15, S16, S28,
S32, S34, S60, S79

S50 Assesses test cases based on their similarity, with the
objective of diversifying the suite.

Search-based S5, S7, S46, S52,
S61, S70

S10, S14, S30, S46,
S52, S64

S23 Utilizes search-based algorithms, such as genetic or
nature-inspired ones

Machine learning-
based

S16, S25, S53, S59,
S62, S65, S66, S75,
S77, S78

S47, S66, S68, S74 S51 Trains a ML model using historical or other data. In-
cludes supervised, unsupervised and reinforcement
learning methods.

Graph-based S28 S4, S19, S35, S37,
S39, S62

Creates a graph representation of the SUT and utilizes
graph theory algorithms to solve problems.

Greedy S5, S70, S72 S24, S55 Utilizes greedy algorithms and heuristics (usually based
on coverage or similarity information).

Constraints-based S43 S22, S43 Utilizes constraint programming paradigm.
Bloom ilter, window-
based

S3, S29, S67 S29 Utilizes Bloom ilter data structures and time windows
to ilter out tests that fail only once.

Table 4. Information- and Algorithm-based Approaches

but has not been experimented in practice yet; while author #25 claimed their own choice of metrics was not
relevant to applicability, and is considering using the same metric proposed by #45.
After analyzing all the answers to this question, two very interesting things emerged: 1) One author (#14)

relected that although the metrics used were relevant at the time, looking back in retrospect other relevant metrics
should have been used Ð łNow, 7 years later, we have realized that some metrics were not included that should have

been includedž. The author was referring to the use of a metric for test case diversity as this could have helped
them to tune the approach to avoid putting together many test cases targeting the same functionalities. This
reinforces the importance of following up the adoption of a proposed approach in its application environment:
even if we strive to anticipate all the possible uses of a proposed approach, observing its adoption in a real
industrial context may reveal details and needs that were not captured while the approach was being conceived.
2) Two respondent authors (#23 and #36) reported that their approaches were evaluated with some additional

ACM Comput. Surv.

State of Practical Applicability of Regression Testing Research: A Live Systematic Literature Review • 17

Efectiveness TCP TCS TSR TSA Description

Selection/reduction
count/percentage

S4, S6, S9, S24, S26,
S27, S33, S35, S37,
S39, S42, S43, S47,
S58, S73, S74, S76

S22,
S23,
S43,
S44, S55

Absolute or relative size of the resulting test suite com-
pared to the original.

Average Percentage of
Faults Detected (APFD)

S1, S5, S8, S16, S21,
S25, S28, S32, S34,
S36, S45, S53, S59,
S61, S65, S67, S70,
S72, S75, S77, S78,
S79

A measure of how quickly a test suite detects faults, on
average. Includes many variations, such as APFDc and
NAPFD.

Testing time S12, S19, S27, S30,
S35, S37, S41, S58,
S68, S74, S76

S44,
S51, S55

Time required to execute the prioritized/selected/re-
duced test suite as opposed to the original suite.

Accuracy/precision/recallS16, S29, S67, S75,
S78

S9, S14, S29, S40,
S47, S69

S51 Measures of correctness and completeness of the re-
sulting test suite (e.g., count of false positives and false
negatives).

Fault Detection Capa-
bility

S3, S7, S21 S29, S64, S73, S76 Number or proportion of faults detected by the resulting
suite compared to the original.

Fault Detection Rate
(FDR)

S15, S20, S45 S39 Time to detect faults compared to the optimal RT suite.

Coverage Efectiveness
(CE)

S2, S45, S52, S56 S52, S56 S17 Measure of the tradeof between cost of the test suite
and structural coverage of the SUT.

Time/tests To First Fail-
ure

S2, S36, S38, S59,
S60, S67, S70, S79

S9, S64, S79 Number of tests or amount of time needed to reach the
irst failure.

Fault detection within
a budget

S7, S24, S59, S79 S10, S24, S79 Faults still detected when restricting the testing time
budget.

Cost-beneit model S3, S18 S30, S68 Mathematical models considering costs and beneits of
applying a technique throughout development.

Fault Detection Loss S48 S48, S63 S31, S50 Number or proportion of faults undetected by the select-
ed/reduced test suite compared to the original.

Comparison to expert S11 S11, S14 Compares the output of the tool with a list of tests se-
lected by the project architect.

Faults per tests/time S29 S29 Number of faults deteted per number of tests or testing
time.

Number of tests added S17 Number of tests added to the test suite.
Algorithm perfor-
mance measures

S10 Fitness value or hypervolume metrics applied to search-
based algorithms

Accumulated regres-
sion risk

S56 S56 How much of the "regression risk" is covered by the
tests.

Rank Percentile Aver-
age (RPA)

S62, S65 S62 Comparison between the predicted ranking and the ac-
tual ranking (from the dataset).

Eiciency TCP TCS TSR TSA Description

Execution time S7, S32, S34, S48,
S53, S59, S70, S72,
S79

S4, S26, S27, S41,
S48, S69, S74, S79

S22,
S23, S50

S17 Time required to run the tool (e.g., selection time, prior-
itization time, etc).

Total/End-to-end time S7, S34, S62, S79 S13, S26, S33, S37,
S42, S62, S74, S79

End-to-end time, combining measuring time, execution
time and testing time. Due to this, it is a measure of both
eiciency and efectiveness.

Memory usage S7 S4 Measures the amount of memory used by the tool.
Scalability S34, S77 S50 Howwell the tool performs on subjects of diferent sizes.
Measuring time/cost S66 S66 Measure of how costly is the information needed by

the technique (e.g. compiling tests, collecting coverage,
training a model).

Other TCP TCS TSR TSA Description

Applicability/Generality S60 S69 The variety of SUTs upon which the tool can be applied.
Diagnosability S46 S46 Cost of diagnosing a fault upon detection.

Table 5. Efectiveness, Eficiency and Other Metrics

ACM Comput. Surv.

18 • Renan Greca, Breno Miranda, and Antonia Bertolino

1

1

1

1

1

2

8

4

3

8

9TCP

TCS

TSR

Exe
cu

tio
n

tim
e

Tot
al

 o
r

en
d-

to
-e

nd
 ti

m
e

Sca
la

bi
lit

y

M
em

or
y

us
ag

e

M
ea

su
rin

g

tim
e/

co
st

A
pp

lic
ab

ili
ty

or
 g

en
er

al
ity

D
ia

gn
os

ab
ili

ty

1

1

1

1TCP

TCS

TSR

(a) (b)

Fig. 5. Distribution of (a) eficiency and (b) other metrics.

metrics relevant to industry Ð łthe company has also developed their own metricsž (respondent author #36) Ð that
were not reported in their papers. The answers do not make it clear if the metrics were omitted because the
measurements were not available at the time the paper was published or if they were omitted on purpose (e.g.,
because they could reveal sensitive company data).

Summary of RQ1. The data reported in the igures show what are the most common approaches
and metrics according to the objective of the RT techniques. For example, we see that TCP often relies
on history-based and similarity-based approaches and uses APFD for evaluation, while TCS is usually
change-based with a focus on the number of selected tests. We can also see that some overlap occurs and
there are authors who choose unconventional but potentially promising combinations of techniques and
metrics. From the author responses we received, it appears that many authors are satisied with their
selection of metrics but a few indicate that more were discovered in the process of implementing the tool
with their industrial partner.

5 RQ2: APPLICABILITY CONCERNS IN REGRESSION TESTING RESEARCH

To answer this research question, we look carefully at the applicability concerns extracted according to Table 3.
The full mapping of the papers with the properties they satisfy is available in Table 6. It is worth observing
that our conclusions here, as well as in the next section, are only relative to the set of primary studies that we
retrieved; we cannot exclude the possibility that works that we did not select could eventually ind application
in practice. For instance, a paper with no obvious practical motivation could be the theoretical foundation for
a tool later adopted by practitioners.

Most of the selected papers satisfy the properties of having a clear industrial motivation: out of the 79 papers,
only ive [S4, S15, S25, S57, S58] did not have a clear IR&A motivation. Regarding evaluation, 50 of the papers
contained experiments on industrial (or industrial-scale) software. In other words, it is quite clear that IR&A
is frequently a concern that motivates researchers to develop novel RT techniques. While providing adequate
experimentation and evaluation to these techniques can be a tough challenge, it is one that researchers are indeed
attempting to address.

ACM Comput. Surv.

State of Practical Applicability of Regression Testing Research: A Live Systematic Literature Review • 19

ID
In
d
.
M
o
t.

In
d
.
E
v
a
l.

In
d
.
A
u
th
.

P
ra
c.
F
e
e
d
.

A
v
a
il
.
T
o
o
l

In
P
ra
ct
ic
e

ID

In
d
.
M
o
t.

In
d
.
E
v
a
l.

In
d
.
A
u
th
.

P
ra
c.
F
e
e
d
.

A
v
a
il
.
T
o
o
l

In
P
ra
ct
ic
e

ID

In
d
.
M
o
t.

In
d
.
E
v
a
l.

In
d
.
A
u
th
.

P
ra
c.
F
e
e
d
.

A
v
a
il
.
T
o
o
l

In
P
ra
ct
ic
e

ID

In
d
.
M
o
t.

In
d
.
E
v
a
l.

In
d
.
A
u
th
.

P
ra
c.
F
e
e
d
.

A
v
a
il
.
T
o
o
l

In
P
ra
ct
ic
e

ID

In
d
.
M
o
t.

In
d
.
E
v
a
l.

In
d
.
A
u
th
.

P
ra
c.
F
e
e
d
.

A
v
a
il
.
T
o
o
l

In
P
ra
ct
ic
e

S1 S17 S33 S49 S65

S2 S18 S34 S50 S66

S3 S19 S35 S51 S67

S4 S20 S36 S52 S68

S5 S21 S37 S53 S69

S6 S22 S38 S54 S70

S7 S23 S39 S55 S71

S8 S24 S40 S56 S72

S9 S25 S41 S57 S73

S10 S26 S42 S58 S74

S11 S27 S43 S59 S75

S12 S28 S44 S60 S76

S13 S29 S45 S61 S77

S14 S30 S46 S62 S78

S15 S31 S47 S63 S79

S16 S32 S48 S64

Ind. Mot.: Industrial Motivation. Ind. Eval.: Industrial Evaluation. Ind. Auth.: Industrial Author(s). Prac. Feed.: Practitioner Feedback. Avail. Tool: Available
Tool. In Practice: Put into Practice. A half-illed circle indicates a partially satisied property. For example, a paper that provides its dataset but not its source

code, or one that has some indication of having been implemented without explicitly stating so.

Table 6. Relevance properties found in the papers.

Out of the 74 papers with relevant evaluation, 44 perform experiments with the direct collaboration of an
interested partner Ð in most cases a corporation, in one case a government department [S30], indicating that
such collaborations can play an important role in improving the relevance of experiments. Curiously, there are
also four papers that have industrial collaborations, but the experiments are not performed with software from
that partner [S17, S27, S40, S55]. Finally, there is one paper with an industrial partner but the objective of the
work was not to develop a tool, so there are no experiments [S54].

In our retrieved literature, the industrial background of the authors is signiicant in a few ways. The papers
with primarily industrial authors are the most likely ones to be relevant in practice, because these are generally
designed with the application on a speciic software product in mind; these papers usually provide insight into
the testing worklow at large companies and share the lessons learned from applying a certain technique to a
speciic scenario. Examples include S47 with Facebook; S49 with Google and S51 with Microsoft. There are also
some cases of companies whose main product is not software, but software is an important part of their products
(e.g., transportation manufacturers, as S6 with BMW).

Papers with a mix of industrial and academic authors also represent good progress in enhancing industry-
academia collaborations, such as the collaborations between University of Texas at Austin and Microsoft [S26,
S37] or between the Federal University of Pernambuco and Motorola [S14, S52].

Finally, we want to highlight the papers that have tools available online. This is important for replicability and
ease of access, but is still lacking in many publications. To facilitate comparisons by other researchers and simplify
experimentation by software developers, it is fundamental that a version of the technique exists, either in binary
or source code format. Only 22 of the surveyed papers made their tool available in some form (usually source
code repository), making it improbable that any of the other tools were used by practitioners without direct
contact with their developers. Notably, there appears to be a change in this trend: between 2016 and 2020, only 14
papers had any sort of replication package or tool available. In 2021 and 2022 (up until July), we found 8 papers
satisfying this criteria. The likely explanation to this is that noteworthy Software Engineering conferences have
given more value to easily-replicable research in recent years and this has caused authors to make it a priority.

ACM Comput. Surv.

20 • Renan Greca, Breno Miranda, and Antonia Bertolino

21542123423Nº papers

Ja
va

C
/C

++

C
A

gn
os

tic
 o

r

m
ul

ti-
la

ng
ua

ge

D
om

ai
n-

sp
ec

ifi
c

N
at

ur
al

O
th

er
s

U
nc

le
ar

Fig. 6. Distribution of the targeted programming languages.

However, there are some cases where the code is made available with little to no documentation or explanation of
how it works; on the bright side, there are also examples that stood out for having clear and detailed steps on how
to use the code and replicate the experiments. Among the e-mail responses from the authors, we received the
source code repository URL for four additional papers, conirming that at least 26 papers have material available
online Ð whenever possible, the relevant URLs can be found in our live repository (Section 8).

Out of the investigated URLs, only S4 and S33 provide clear usage instructions for arbitrary software projects;
they are available as plug-ins for the Eclipse IDE and the Maven build system, respectively. S40 also mentions
the tool is available as an Eclipse plug-in, but we were unable to ind a URL pointing to it. The remaining papers
provide their source code primarily for study replication, not necessarily intended for actual usage by developers,
meaning that the tool is likely not suiciently robust for practical usage beyond experiments. It also happens
frequently that tools developed in conjunction with an industrial partner end up becoming proprietary software
and cannot be easily distributed (e.g., S14, S16). Authors of 14 papers said in their responses that the code or the
tool could not be shared, since the resulting software is completely or partially proprietary or conidential.
An issue we identiied is regarding the programming languages of the SUTs targeted by the experiments.

Figure 6 shows that there is a heavy bias towards Java, with 23 papers targeting software written in that language.
Onmost of the papers focused on a speciic language, it is not clear if the same approach would be easy to adapt and
would produce equivalent results on software developed using other widely used languages. However, 12 papers
target systems written in multiple languages, or explicitly state that the approach is language-agnostic, which
highly increases its applicability. Unfortunately, it was not possible to identify the target language of 21 papers;
this creates a substantial challenge for both the replicability of the experiments and applicability of the technique.

Summary of RQ2. Our survey shows that a large number of papers exhibit IR&A concerns in their
motivations, and a smaller albeit still signiicant amount contains experiments at relevant scale. Most
of the times, the techniques that are implemented into a software worklow are also papers that have
authors from an industrial background. Unfortunately, few authors share their tools in a well-documented,
open-source fashion, which hampers both future researchers, who wish to compare their solutions against
the state-of-the-art, and practitioners, who might want to see how existing RT tools can help their
software.

6 RQ3: EVIDENCES OF REAL-WORLD APPLICATION OF

REGRESSION TESTING TECHNIQUES

Our study is motivated by the concern that there is potentially valuable technology being proposed in academia
that does not always make its way into usage in industry. The diference between the state-of-the-art techniques
proposed in academia and the ones actually used in real-world software is what we call the academia-industry tech-

nology transfer gap. Expressing concerns over IR&A of RT techniques is an important step towards awareness of the

ACM Comput. Surv.

State of Practical Applicability of Regression Testing Research: A Live Systematic Literature Review • 21

202616365074Nº papers

In
d
.
M

o
t.

In
d
.
E
v
al

.

In
d
. A

u
th

.

P
ra

c.
 F

ee
d
.

A
v
ai

l.
 T

o
o
l

In
 P

ra
ct

ic
e

Fig. 7. uantitative analysis of the satisfied criteria.

gap, although not suicient per se to solve the problem of actually putting these techniques into practice. The focus
of this section is to discover if and how much evidence exists of techniques developed by the research community
being adopted by real-world software development. As previously stated, there might be studies that have been
put into practice, but escaped our review because they were not explicitly motivated by IR&A; we hope that, in the
future, our live repository solution will eventually ind them and potentially widen the conclusions described here.

Table 6 contains only data extracted from the papers themselves; since the author responses are anonymous, we
cannot map them directly to the table. Thus, Figure 7 displays the total number of papers that satisfy each of our
applicability criteria, including updates from the author responses. In other words, we consider the author response
if it updates the information retrieved from the paper; otherwise the data extracted from the paper remains.
Regarding the adoption of the proposed approaches, Table 6 shows that 16 out of the 79 selected papers

explicitly state that the proposal is applied with a partner, or suggest that implementation was ongoing at the
time of publication, out of which six are conirmed to still be in use by their authors, while four say it fell out
of use (the remaining six did not respond, so we assume no change). Eight other authors claim their approach
was implemented after publication, so the count in Figure 7 is 20 (16-4+8).

We can observe that having a practitioner as a co-author helps to provide a direct line from the founding
theory of the technique to its application in practice: indeed, 14 of these 20 papers have at least one author from
industry. This is not surprising, because such collaborations often originate directly from a need expressed by
the practitioners.

However, we also see that only 8 out of those 20 papers featured feedback from the practitioners who actually
used the developed tool. That is, although the tool was incorporated into the production worklow, in many cases
an assessment of long-term beneits and acceptance by its users is either not done or not reported. Ultimately,
the authors were our best chance of understanding the story behind each tool, revealing whether it is still being
used by a partner and the reasons it might have fallen out of use.
From the respondent authors, we received six conirmations that the tool continues to be in use by their

industrial partner in some form, e.g. łThe tool was implemented at a company [...] and it is still in use at the

company [with signiicant changes].ž from respondent author #14. Authors of another two papers stated that the
technique is undergoing an implementation process at the time of the response. Author #37 claims that their
work on a newer paper is seeing adoption by an industrial partner; however, at the time of writing, that paper
remains in pre-print and cannot be formally included in this review.

Interestingly, eight authors say that the tool was successfully incorporated into an industrial partner’s devel-
opment cycle after the publication of the paper: łthe technique has been adapted and embedded into a random

data selection tool by the [company]’s testing team, for purposes including but not limited to regression testing.ž
(author #36); łthe [technique] has been in use at [company since roughly the date of publication. [It] is used to run

relevant test cases for every code review in [company]’s main code repository.ž (author #23). However, the details
are not always known to them: łWe were told it was put into practice but we were not given any information, due

to conidentiality rules.ž (author #44).

ACM Comput. Surv.

22 • Renan Greca, Breno Miranda, and Antonia Bertolino

In
d.

 M
ot

.

In
d.

 E
va

l.

In
d.

 A
ut

h.

Pra
c.
 F

ee
d.

A
va

il.
 T

oo
l

In
 P

ra
ct

ic
e

232334

3728616

35271013

4515811

859810Coverage-based

Search-based

Change-based

Machine learning

Greedy

Fig. 8. Mapping of approaches and techniques that have seen practical application on at least 2 papers.

To the extent of the authors’ knowledge, 12 papers were never put in practice, although some say there was
a discussion to do so at some point. From author #35: łWe discussed the possibility of conducting a research visit

at one of the corporation branches to experiment with the technique in vivo, but in the end it did not go through.ž
Authors of ten papers (out of which four were tagged as implemented in Table 6) said that the tool saw usage but

fell out of use after a few years; an additional three claimed some sort of attempt, but the current status is unknown.
What this means is that, even if a technique is incorporated into a software, a lot of work must still be done to
ensure that the approach remains viable in a longer term. Some challenges mentioned by these authors include:

The tool became outdated and it was not updated to remain relevant. łIt was implemented in an industrial

setting, but this work is several years old and has to be evolved to stay relevant for business.ž (author #20). This can
be either due to a technical issue, e.g. the tool was designed for an older version of a programming language
or platform and would require some efort to be updated and be used on newer software, or because the tool
does not consider newer requirements of its subject software.

The authors noticed that adapting an academic prototype into an industry-strength tool required

more time and budget than the project permitted. łThere is a gap between developing a research prototype

and an industrial-strength tool. Evolving research prototypes towards industry-ready tools was beyond the project

budget.ž(author #8) It can happen that a technique seems promising in initial experiments, but an enormous
amount of work would be needed to actually incorporate it into a worklow. The technique might require data that
is not currently being collected, or use some manual process for the evaluation that would need to be automated.
The tool must also be veriied for correctness and robustness before practical usage.

Authors lost contact with their partners and no longer follow development of the tool. ł[The tool] was
supported by [our partner]. We have no input if the tool has been used.ž (author #26) There are cases where the
partnership does not continue after the publication of the paper or some other condition occurs. The industrial
partner is likely free to continue using the developed tool, but the authors from the academic side are no longer part
of its evolution and do not receive updates and feedback regarding the subsequent challenges and achievements.

The cost-beneit ratio was of. łWe tried to use it within [our partner]. It seemed to work ine but the cost

associated with the 1% bugs that were missed is too high.ž (author #43) Even if a TCS technique detects 99% of
bugs by running a very small set of tests, practitioners will be skeptical of using as a replacement for TestAll
strategy. After all, although testing is a costly procedure, it is still much cheaper to detect an error during testing
than after the software has been shipped to customers.

ACM Comput. Surv.

State of Practical Applicability of Regression Testing Research: A Live Systematic Literature Review • 23

Figure 8 shows the relationship between the applicability criteria and the approaches that have seen real-
world usage. The igure shows approaches with at least two papers put into practice9. Unsurprisingly, the most
common information-type and algorithm-type approaches are the ones that see the most real-world usage.
Coverage-based approaches dominate the implementations of techniques, despite previous concerns regarding
the cost of measuring coverage [50]; although time-consuming, coverage measurements are easy to obtain in
most programming languages. Conversely, there are 16 papers proposing machine learning approaches, but only
three were implemented, likely because machine learning models are only as good as the data they are fed; often,
obtaining data of enough volume and quality is more diicult than implementing the method itself.

From the practitioners’ point of view, one possible source of information is grey literature Ð that is, material
produced by experts and published without peer-review. However, this data is decentralized and unstructured,
making it diicult to locate useful information. We did ind one example: Netlix has a post on their blog [57]
describing a system they developed inspired by S25. This indicates that grey literature might be worthy of
investigation, but such an efort would fall beyond the scope of the current study.

To provide some insight into the state of practice, we surveyed 23 practitioners who are involved with software
development and/or testing at their workplace. 60% of respondents claim they do not know about RT tools that
originated from research, which corroborates the well-known lack of communication. 35% say they use or have
used a tool to aid RT; however most of these claim the tool was developed speciically for their needs, so it is
not clear that their origins can be traced back to Software Engineering research.

Summary of RQ3. From the papers and the responses we received, we have evidence that 20 papers
propose techniques that are still being used in practice. It is a relatively small number, but it shows that
RT research can have concrete positive impact on real-world software development. Unfortunately, many
of the techniques that are implemented fall out of use after some time, as an ongoing efort is needed to
motivate their usage and keep the tool relevant and updated. There is a hint of evidence stemming from
grey literature, although practitioners themselves, when surveyed, mostly claim to be unaware of RT
techniques originated in academia.

7 THREATS TO VALIDITY

In this section, we present the potential threats to the validity of our results.

Construct validity. Despite our eforts to comprehensively ind all primary studies that meet our selection
criteria, we might have missed some. To mitigate this threat, we performed a systematic search over ive broad
digital libraries and complemented the search with a snowballing cycle and a check with authors of all found
studies, who in fact suggested a few additional entries.
As usual for this kind of study, our selection of papers was performed through queries, followed by manual

iltering. To diminish potential bias of the latter step, the iltering process was systematically reviewed and agreed
upon among all the three authors.

Internal validity. The internal validity of this study is strongly dependent on the three research questions that
guided all our analysis as well as the data extraction form we built. We took great care in ensuring that they
properly relect our objectives, although it is unavoidable that, by formulating diferent questions or using other
data extraction forms, we could have obtained other results. We might also have overlooked or misinterpreted
some important information or arguments in the primary studies, beyond our best eforts and accuracy in the
full reading of all selected papers. To mitigate such threats we provide all extracted data in traceable format,

9Constraint-based, graph-based, similarity-based, trace-based, manual classiication, cost-aware and history-based approaches have one

paper each implemented in practice.

ACM Comput. Surv.

24 • Renan Greca, Breno Miranda, and Antonia Bertolino

highlighting the main points we extracted from each primary study. Furthermore, the responses we received
directly from authors often provide additional context that reduce the risk of misinterpretation. That said, we
cannot make the full responses available due to non-disclosure requests from some authors.

Conclusion validity. The conclusions we drew in terms of the information we summarize from the primary stud-
ies, the detected challenges we discuss in the above section and the recommendations we formulate in the conclu-
sions might have been inluenced by our background, and other authors might have reached diferent conclusions.
Such potential bias is unavoidable in this type of study, however we tried to mitigate it by aiming at full consensus
of all authors behind each conclusion. Furthermore, by documenting in detail the data extraction process, we en-
sure a fully transparent study that can be veriied and replicated. The survey sent to practitioners helps to validate
our conclusions. Although the sample of 23 responses is very small, it shows a degree of alignment among people
working in six diferent countries. A convenience sample was used to distribute the survey; thus, the practitioners
we reached are more likely to have some contact with ongoing research. To avoid excessive bias in that direction,
we did not contact members of industry who are known to regularly publish in Software Engineering events.

External validity. We do not make any claim of validity of our conclusions beyond the 79 papers analyzed. As
more primary studies are published, they should be read and analyzed on their own, and our conclusions should be
revised accordingly. In consideration of this threat, in the aim of ensuring validity even in future, we are committed
to keep the live repository up-to-date, taking into account the community inputs. Moreover, we believe that the
framework we developed consisting of the three research questions, the data extraction form and the structured
tables for summarizing the approaches and the metrics could be still applicable also by other external authors.

8 LIVE REPOSITORY

Literature reviews provide important information to researchers starting out in a ield or practitioners who are
curious to know the latest innovations, but do not have time to fully explore journals and conferences. However,
it is inevitable that a literature review such as this becomes outdated after some time, as new research comes
out that cannot be included in the published paper. This of course limits the long-term value of the work, since
the text will no longer relect the ongoing research in the ield.
In order to aggregate long-term value to this work, we have made the list of papers and the information

extracted from them available as an online live repository10. The papers in Table 2 serve as the starting point
for a list that will continue to grow year over year. We hope this website will serve as reference to anyone who
is interested in practical applications of regression testing techniques in the coming years.

Themain challenge is how to keep this repository alive in the long term. It is unfeasible for us to add a relevant pa-
per to the repository as soon as it is published, so our plan is to update the list in a yearly basis, re-running the query
and screening steps detailed in Section 3. That way, we can at least assure themost recent paper included is nomore
than one year old. We are also looking into the possibility of getting automatic notiications when a paper that
satisies certain criteria is published in an online library. For now, this work is done by the original authors of the lit-
erature review; according to future necessities, we will appoint other researchers or graduate students to help with
the process. In addition, we also encourage authors to submit their ownwork by illing a form linked on the website.
The repository also contains a separate section for relevant literature reviews. This is initially populated by

the reviews mentioned in Section 2 and, upon publication, this very document. With this we aim to provide a
starting point for new researchers and a place to gather the overarching themes of the ield.

It can also happen that, over the years, the deinitions we selected for including a paper in the repository must
be adjusted. Whenever an author submits a paper, we will use the opportunity to consider whether or not the
paper itself is a good it for the repository, but also if there are new trends that our existing selection process does
not account for. There will likely be a point in the future when the industry/academia landscape has shifted and

10Available at: https://renangreca.github.io/literature-repository/.

ACM Comput. Surv.

https://renangreca.github.io/literature-repository/

State of Practical Applicability of Regression Testing Research: A Live Systematic Literature Review • 25

Fig. 9. Screenshots from the live repository. From let to right: 1) the main page listing the included papers; and 2) a single

paper’s page (S1 used as example).

ID Title L A P ID Title L A P

CH1 Alignment of motivations CH5 Converting research into usable tool

CH2 Realistic experimentation CH6 Absence of TSR/TSA

CH3 Scalability CH7 Clarity of target

CH4 Relevance of metrics CH8 Communication

Source(s): L: Literature; A: Author questionnaire; P: Practitioner survey.

Table 7. Summary of main challenges identified by this study.

this study will no longer be needed. When that happens, we will discuss the possibility of freezing the repository
and stopping further expansions.

Aside from newer papers, it is always possible that we have missed some relevant papers for a variety of reasons,
so the live repository is another way of mitigating that risk. It is impossible to provide a complete and deinitive
overview of any ield, but we believe that a live repository is the closest approximation that can be expected.

9 CHALLENGES AND RECOMMENDATIONS

While this review indicates that IR&A is a growing concern among RT researchers, it is still only being addressed
with any depth on a minority of secondary studies. It is clear that several authors believe IR&A is a challenge
worth addressing in research, but there is not a lot of available RT literature focusing on the steps that need to
be taken in order to improve academia-industry communication and shorten the technology transfer gap.

We conclude this work by highlighting some key challenges that we have identiied, combining data found in the
literature itself, in the authors’ responses and in the practitioner survey. These are challenges that may have been
addressed in certain circumstances but remain unsolved in a broad sense, as they are still present in several recent
works. Along with each challenge, we make some suggestions that could be applied by Software Engineering re-
searchers and/or Software Testing practitioners Ð these could be actionable steps for upcoming primary studies, or
further avenues of investigation for secondary or meta studies. Table 7 provides the summary of the challenges we
identiied, indicating the primary source of our observation (i.e. the literature, the authors and/or the practitioners).

CH1: Alignment of motivations. When asked what would convince them to implement and use an RT tool,
eight practitioners gave responses that can be synthesized into łit would make my work easierž. So there exists

ACM Comput. Surv.

26 • Renan Greca, Breno Miranda, and Antonia Bertolino

a mismatch between academic motivations and industrial needs: research is concerned with discovering novel
techniques that might provide marginal efectiveness gains over the state-of-the-art, while practitioners are
mostly concerned with any solution that simpliies their worklow. In other words, even if a TCS technique has
the potential to greatly reduce the testing time of a suite, practitioners will weigh those beneits against the efort
required to implement the technique and adapt/maintain it for their needs. This is not to say that the current
research motivations are ill-informed: it is the role of academia to push the boundaries of what is possible in
theory irst, and sometimes this theory takes many years to ind relevance in practice.

If the researchers have the objective of implementing their approach, they must be certain that it is addressing
the current needs of practitioners. An obvious way to achieve this, which is also conirmed by our study, is through
partnerships between academic researchers and industrial practitioners (or even open-source communities).
These collaborative works, by their own nature, tend to produce results suitable for practical applications and
could serve as a guideline for other, purely academic, approaches.
Naturally, not all research can be done with industrial partnerships, and in these cases there is diiculty

in inding what exactly is relevant to current practitioners. One possible source of this information is grey
literature: information produced by experts in a ield, but without necessarily following academic guidelines,
in the form of blog posts, videos, magazine articles, talks etc. Practitioners who produce grey literature can help
inform researchers about the current state of practice, the main existing challenges in software development,
and successful implementations of techniques (e.g., the aforementioned Netlix blog [57]).

CH2: Realistic experimentation. It is clearly not possible for every research paper to feature practitioner
co-authors or to rely on an industrial partnership for experimentations. Selecting the right subject for experiments
is a decisive point when writing a paper about a technique. Older studies on RT would often rely on the łSiemens
programsž [53], which is believed to have caused an overitting of results to a particular kind of software [27].
More recently, the Software Infrastructure Repository (SIR) [28] (e.g., [S3]) and Defects4J [54] (e.g., [S2, S39]) have
been used to similar ends. Having common subjects can provide replicability beneits when directly comparing
techniques, although is not always clear if they approximate the diiculty of testing real software. Authors who
are able to collaborate directly with members of industry gain an enormous advantage if they are allowed to
run experiments on production code, but it is also clear that not every paper will have that opportunity.
The most obvious alternative is to use large-scale open-source software (e.g. from the Mozilla [S60] and

Apache [S13, S62, S67, S65, S73] foundations) as subjects, since the communities developing these programs
follow procedures much like the developers working for corporations. This is also far from trivial. The larger the
software, the more time a researcher will need to dedicate in order to understand it and to adapt the technique to
it, sacriicing the possibility of experimenting on a larger variety of subjects and thus again bringing the risk of
overitting. Additionally, there is no established consensus regarding which properties an open-source program
must satisfy in order to be a satisfactory subject.
Alleviating this issue would require efort from both researchers and practitioners. For example, Google has

an open dataset of testing results [31], and S25 combined it with one from ABB Robotics. As a result, this
combined dataset has already been used by other papers covering machine learning [S53, S59, S67, S71, S78]. Two
practitioners mention that łopen source code/data is not providedž due to conidentiality reasons. In those cases,
our suggestion would be to provide some opaque information regarding the system, such as its programming
language, the number of lines of code and/or tests, how many developers work on it, how frequently is the code
updated, etc. At the very least, this would help researchers choose subjects with similar characteristics.

CH3: Scalability. RT techniques provide the most savings when applied to large-scale software projects, which
can have multiple thousands of test cases. Therefore, it is important that techniques are designed to scale up
to any size of test suite, but few papers tackle this issue directly. The trouble is that scalability is very hard to
measure unless multiple subjects of diferent sizes are used. One way to demonstrate scalability, beyond relying

ACM Comput. Surv.

State of Practical Applicability of Regression Testing Research: A Live Systematic Literature Review • 27

on industrial partners or large-scale open-source projects, is to artiicially generate large datasets (e.g, [S34, S50]),
which are useful from the algorithmic perspective, but might not address other issues that arise in large-scale
software development. It is also worth mentioning that many RT techniques can become disadvantageous when
applied to small test suites, as the cost of running the technique does not outweigh the savings in testing time.
So selecting the size of the experiment subject is important both to highlight the scalability of the tool in large
software and also to consider whether the necessary overhead is a deal-breaker on small or medium projects.

CH4: Relevance of metrics. Section 4 shows that a wide variety of metrics has been used to evaluate the
efectiveness of RT techniques. Some are used almost universally for a certain kind of challenge (e.g., APFD for
TCP), while others have nearly no presence beyond the paper that introduced them.

The abundant use of APFD and its variants indicate that, at least among researchers, there is a consensus of its
utility and importance when evaluating TCP approaches, although the usage of speciic variants might hamper
that beneit. At the same time, it is not clear that a technique optimized for only APFD is suicient to satisfy
the needs of software developers in practice. Still, APFD has been in use for over 20 years and it cannot simply
be dismissed: at the very least it provides an agreed-upon method of directly comparing diferent techniques.

For the cases of TCS and TSR, there is less controversy on what are the most important metrics; reduction rate
and fault detection loss appear to be the consensus among researchers, and there are fewer novel and single-use
metrics. As an example, S68 interviewed practitioners at Microsoft before deciding on their TCS metrics, obtaining
three main targets: reduction of cost, reduction of time and the failure detection rate. We can observe in Section 4
that these concerns are reasonably addressed by TCS techniques, although researchers still appear to prioritize
reducing the selected set rather than ensuring all failures are detected.
The metrics of applicability and diagnosability [S46, S60] are interesting propositions that consider other

degrees of usefulness of a tool to developers. Their existence indicates that some researchers still believe there
is room for improved metrics that, perhaps, better map the requirements of real-world software, although these
are rarely found in the literature. Furthermore, ease-of-use is an important point to consider and, as far as we
could detect, there is no established method of measuring it.
One practitioner stated: łI don’t think that academic tools are the best in a professional environment, I prefer

commercial tools,ž implying they believe academics are not measuring the results that matter most to them.
Indeed, managers allocating development funds will usually focus on the dollar savings a technique can bring,
regardless of its theoretical efectiveness in fault-inding (as mentioned by respondent author #43).

CH5: Converting research into usable tools. When techniques are designed in an academic context, they
are normally developed as proof-of-concept works. That is, the purpose is to show that the technique works and
provides signiicant results according to some metrics. However, this leads to two issues: either primary studies
do not make their solution available for implementation, as we discussed in Section 5, or their experiments do not
thoroughly consider practical concerns such as eiciency or the data requirements of a proposed approach. Finally,
what seems to matter the most is time and budget for developing a tool. Papers are usually written targeting a hard
deadline and their prototypes often do not see further work past publication. It is inevitable that researchers will
move on to new challenges, but their contribution would be ampliied if the tool is, at the very least, open-source
and well-documented so that other interested parties can continue the work in the future if desired.
If an RT technique is implemented as a prototype that is shown to work on a certain kind of software, it is

much easier to get the attention from a practitioner and convert the solution into something used in practice.
If feasible, an available prototype with solid documentation and usage instructions can be valuable both for study
replicability and as a way to get developers interested in using it. That said, the responsibility of developing fully
functional tools should not fall solely upon researchers. One practitioner stated that ł[RT tools] need full security

screeningž, and other said łit requires an adaptationž; these steps are not actionable by researchers in isolation.

ACM Comput. Surv.

28 • Renan Greca, Breno Miranda, and Antonia Bertolino

As industry stands to beneit from scientiic advances, it should be in its best interest to promote and fund the
collaborations needed to continue development of promising prototypes.

CH6: Absence of TSR/TSA. Out of 79 papers, only 8 are about TSR and, surprisingly, only one covers TSA
[S17]. 60% of the surveyed practitioners claim that łcreating or updating testsž is a major challenge in real-world
RT, so the desire for TSA exists and there appears to be ample room for experimenting with new approaches and
metrics. 47% also mention the diiculty of refactoring and removing obsolete test cases as a pain point, which
is something TSR could remedy. This can be an opportunity for researchers to develop novel methods and to
progress in directions that are in need of exploration.

CH7: Clarity of target. Several of the papers we reviewed don’t clearly state key characteristics of their SUT,
such as its programming language or its scale (either in lines of code or test cases). For practitioners and other
researchers to consider a paper worthy of investigation, it is important to know for which kind of system a piece
of research was designed.
As mentioned in Section 5, few RT techniques are language-agnostic and many do not inform the target

language at all. Similarly, the type of software (web, mobile, embedded, distributed, etc.) or its development
paradigm are important factors to mention, seen in studies such as S41 for web services and S59 for software
developed and delivered through continuous integration. Not every tool can be used in any type of software,
and it is likely that speciic types of software might require speciic solutions, so it is important to state the
particularities of certain subject programs. This is akin to the point of łcontext factorsž brought up by bin Ali et al.
[11], which helps to alleviate the issue by introducing a base taxonomy that can be used to categorize techniques.
Critically, there is often ambiguity on the very deinition of test case. Software testing can include unit tests,

integration tests, multi-component tests, system tests, end-to-end tests and so forth. Most papers do not make it
explicit which layer of testing it is addressing. While it can sometimes be inferred with some domain knowledge,
it is diicult to be certain for most readers. This information would be valuable for interested practitioners and
also for researchers who are looking to identify gaps in the literature. On top of that, some papers use the term
łtest casež to refer to test methods, while others use it when referring to test classes/iles (which contain several
test methods), so the granularity of the technique is not always clear, and this can impact both efectiveness and
eiciency analysis. This challenge can be solved by having a paragraph dedicated to explicitly describing the
properties and context factors of the experiment subjects.

CH8: Communication. The main challenge, which connects most of the previous ones, is communication.
Researchers and practitioners both lead busy lives, focusing on their day-to-day afairs, and ultimately commu-
nication between the two realms sufers.

There are some steps that can be taken to improve this. Companies can start by having round-table discussions
on recent research publications (e.g., the Google Journal Club [81]) and, if possible, they should invite the author(s)
to participate. On the other side, universities can host lectures by practitioners in addition to other researchers.
This can start small Ð ind people in the same city, perhaps alumni of the university, who are working on
something interesting and have a conversation.
56% of responding practitioners claimed they keep contact with a friend or colleague who is a researcher in

Software Engineering. After all, most academics have interacted with people who are currently practitioners
during their education process, and vice-versa. This means that both sides have an opportunity to network and
communicate beyond their current professions, giving each other ideas of what is currently relevant in industrial
software development and what is the latest state-of-the-art in academic research.
It can be a daunting idea to catch up to latest research trends, so larger companies could consider having

employees dedicated to understanding the internal processes and challenges while searching for collaborations
with academics. Many researchers would be thrilled to receive a message inviting them for a joint efort with
palpable outcomes.

ACM Comput. Surv.

State of Practical Applicability of Regression Testing Research: A Live Systematic Literature Review • 29

REFERENCES

[1] Mohamed Abdelkarim and Reem ElAdawi. 2022. TCP-Net: Test Case Prioritization using End-to-End Deep Neural Networks. In

2022 IEEE International Conference on Software Testing, Veriication and Validation Workshops (ICSTW). IEEE, Valencia, Spain, 122ś129.

https://doi.org/10.1109/ICSTW55395.2022.00034

[2] Muhammad Syaiq Abdul Manan, Dayang Norhayati Abang Jawawi, and Johanna Ahmad. 2021. A Systematic Literature Review

on Test Case Prioritization in Combinatorial Testing. In 2021 The 5th International Conference on Algorithms, Computing and Systems.

55ś61. https://doi.org/10.1145/3490700.3490710

[3] Farrukh Shahzad Ahmed, Awais Majeed, Tamim Ahmed Khan, and Shahid Nazir Bhatti. 2022. Value-based cost-cognizant test case

prioritization for regression testing. Plos one 17, 5 (2022). https://doi.org/10.1371/journal.pone.0264972

[4] H. Aman, Y. Tanaka, T. Nakano, H. Ogasawara, and M. Kawahara. 2016. Application of Mahalanobis-Taguchi Method and 0-1

Programming Method to Cost-Efective Regression Testing. In Proceedings - 42nd Euromicro Conference on Software Engineering and

Advanced Applications, SEAA 2016. 240ś244. https://doi.org/10.1109/SEAA.2016.29

[5] Maral Azizi and Hyunsook Do. 2018. ReTEST: A Cost Efective Test Case Selection Technique for Modern Software Devel-

opment. In 2018 IEEE 29th International Symposium on Software Reliability Engineering (ISSRE). IEEE, Memphis, TN, 144ś154.

https://doi.org/10.1109/ISSRE.2018.00025

[6] T. Bach, A. Andrzejak, and R. Pannemans. 2017. Coverage-Based Reduction of Test Execution Time: Lessons from a Very Large

Industrial Project. In Proceedings - 10th IEEE International Conference on Software Testing, Veriication and Validation Workshops, ICSTW

2017. 3ś12. https://doi.org/10.1109/ICSTW.2017.6

[7] Mojtaba Bagherzadeh, Naiseh Kahani, and Lionel Briand. 2022. Reinforcement Learning for Test Case Prioritization. IEEE Transactions

on Software Engineering 48, 8 (Aug. 2022), 2836ś2856. https://doi.org/10.1109/TSE.2021.3070549

[8] Anu Bajaj and Om Prakash Sangwan. 2018. A Survey on Regression Testing Using Nature-Inspired Approaches. In

2018 4th International Conference on Computing Communication and Automation (ICCCA). IEEE, Greater Noida, India, 1ś5.

https://doi.org/10.1109/CCAA.2018.8777692

[9] Anu Bajaj and Om Prakash Sangwan. 2019. A Systematic Literature Review of Test Case Prioritization Using Genetic Algorithms.

IEEE Access 7 (2019), 126355ś126375. https://doi.org/10.1109/ACCESS.2019.2938260

[10] Antonia Bertolino, Antonio Guerriero, Breno Miranda, Roberto Pietrantuono, and Stefano Russo. 2020. Learning-to-rank vs

ranking-to-learn: strategies for regression testing in continuous integration. In Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering. ACM, Seoul South Korea, 1ś12. https://doi.org/10.1145/3377811.3380369

[11] Nauman bin Ali, Emelie Engström, Masoumeh Taromirad, Mohammad Reza Mousavi, Nasir Mehmood Minhas, Daniel Helgesson,

Sebastian Kunze, and Mahsa Varshosaz. 2019. On the search for industry-relevant regression testing research. Empirical Software

Engineering 24, 4 (Aug. 2019), 2020ś2055. https://doi.org/10.1007/s10664-018-9670-1

[12] Vincent Blondeau, Anne Etien, Nicolas Anquetil, Sylvain Cresson, Pascal Croisy, and Stéphane Ducasse. 2017. Test case se-

lection in industry: an analysis of issues related to static approaches. Software Quality Journal 25, 4 (Dec. 2017), 1203ś1237.

https://doi.org/10.1007/s11219-016-9328-4

[13] G. Buchgeher, C. Klammer, W. Heider, M. Schuetz, and H. Huber. 2016. Improving testing in an enterprise SOA with an

architecture-based approach. In Proceedings - 2016 13th Working IEEE/IFIP Conference on Software Architecture, WICSA 2016. 231ś240.

https://doi.org/10.1109/WICSA.2016.24

[14] B. Busjaeger and T. Xie. 2016. Learning for test prioritization: An industrial case study. In Proceedings of the ACM SIGSOFT Symposium

on the Foundations of Software Engineering, Vol. 13-18-November-2016. 975ś980. https://doi.org/10.1145/2950290.2983954

[15] Cagatay Catal. 2012. On the application of genetic algorithms for test case prioritization: a systematic literature review. In Proceedings

of the 2nd international workshop on evidential assessment of software technologies. 9ś14. https://doi.org/10.1145/2372233.2372238

[16] Cagatay Catal and Deepti Mishra. 2013. Test case prioritization: a systematic mapping study. Software Quality Journal 21, 3 (2013),

445ś478. https://doi.org/10.1007/s11219-012-9181-z

[17] Ahmet Celik, Young Chul Lee, and Milos Gligoric. 2018. Regression Test Selection for TizenRT. In Proceedings of the 2018 26th ACM

Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE

2018). ACM, New York, NY, USA, 845ś850. https://doi.org/10.1145/3236024.3275527

[18] A. Celik, M. Vasic, A. Milicevic, and M. Gligoric. 2017. Regression test selection across JVM boundaries. In Proceedings of the ACM

SIGSOFT Symposium on the Foundations of Software Engineering, Vol. Part F130154. 809ś820. https://doi.org/10.1145/3106237.3106297

[19] Junjie Chen, Yiling Lou, Lingming Lu Zhang, Jianyi Zhou, Xiaoleng Wang, Dan Hao, and Lingming Lu Zhang. 2018. Optimizing

Test Prioritization via Test Distribution Analysis. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018). ACM, New York, NY, USA, 656ś667.

https://doi.org/10.1145/3236024.3236053

[20] Yizhen Chen, Ninad Chaudhari, and Mei-Hwa Chen. 2021. Context-Aware Regression Test Selection. In 2021 28th Asia-Paciic Software

Engineering Conference (APSEC). IEEE, Taipei, Taiwan, 431ś440. https://doi.org/10.1109/APSEC53868.2021.00050

ACM Comput. Surv.

https://doi.org/10.1109/ICSTW55395.2022.00034
https://doi.org/10.1145/3490700.3490710
https://doi.org/10.1371/journal.pone.0264972
https://doi.org/10.1109/SEAA.2016.29
https://doi.org/10.1109/ISSRE.2018.00025
https://doi.org/10.1109/ICSTW.2017.6
https://doi.org/10.1109/TSE.2021.3070549
https://doi.org/10.1109/CCAA.2018.8777692
https://doi.org/10.1109/ACCESS.2019.2938260
https://doi.org/10.1145/3377811.3380369
https://doi.org/10.1007/s10664-018-9670-1
https://doi.org/10.1007/s11219-016-9328-4
https://doi.org/10.1109/WICSA.2016.24
https://doi.org/10.1145/2950290.2983954
https://doi.org/10.1145/2372233.2372238
https://doi.org/10.1007/s11219-012-9181-z
https://doi.org/10.1145/3236024.3275527
https://doi.org/10.1145/3106237.3106297
https://doi.org/10.1145/3236024.3236053
https://doi.org/10.1109/APSEC53868.2021.00050

30 • Renan Greca, Breno Miranda, and Antonia Bertolino

[21] Yizhen Chen and Mei-Hwa Chen. 2021. Multi-Objective Regression Test Selection. 105ś92. https://doi.org/10.29007/7z5n

[22] Zongzheng Chi, Jifeng Xuan, Zhilei Ren, Xiaoyuan Xie, and He Guo. 2017. Multi-Level RandomWalk for Software Test Suite Reduction.

IEEE Computational Intelligence Magazine 12, 2 (May 2017), 24ś33. https://doi.org/10.1109/MCI.2017.2670460

[23] Jacob Cohen. 1960. A coeicient of agreement for nominal scales. Educational and psychological measurement 20, 1 (1960), 37ś46.

https://doi.org/10.1177/001316446002000104

[24] D. Correia, R. Abreu, P. Santos, and J. Nadkarni. 2019. MOTSD: A multi-objective test selection tool using test suite diagnosability.

In ESEC/FSE 2019 - Proceedings of the 2019 27th ACM Joint Meeting European Software Engineering Conference and Symposium on the

Foundations of Software Engineering. 1070ś1074. https://doi.org/10.1145/3338906.3341187

[25] Emilio Cruciani, Breno Miranda, Roberto Verdecchia, and Antonia Bertolino. 2019. Scalable Approaches for Test Suite Reduc-

tion. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, Montreal, QC, Canada, 419ś429.

https://doi.org/10.1109/ICSE.2019.00055

[26] Benjamin Danglot, Oscar Vera-Perez, Zhongxing Yu, Andy Zaidman, Martin Monperrus, and Benoit Baudry. 2019. A snowballing

literature study on test ampliication. Journal of Systems and Software 157 (2019), 110398. https://doi.org/10.1016/j.jss.2019.110398

[27] Hyunsook Do. 2016. Recent Advances in Regression Testing Techniques. In Advances in Computers. Vol. 103. Elsevier, 53ś77.

https://doi.org/10.1016/bs.adcom.2016.04.004

[28] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. 2005. Supporting controlled experimentation with testing techniques: An

infrastructure and its potential impact. Empirical Software Engineering 10, 4 (2005), 405ś435. https://doi.org/10.1007/s10664-005-3861-2

[29] Ivan do Carmo Machado, John D McGregor, Yguaratã Cerqueira Cavalcanti, and Eduardo Santana De Almeida. 2014. On strategies

for testing software product lines: A systematic literature review. Information and Software Technology 56, 10 (2014), 1183ś1199.

https://doi.org/10.1016/j.infsof.2014.04.002

[30] Ravi Eda and Hyunsook Do. 2019. An eicient regression testing approach for PHP Web applications using test selection and reusable

constraints. Software Quality Journal 27, 4 (Dec. 2019), 1383ś1417. https://doi.org/10.1007/s11219-019-09449-2

[31] Sebastian Elbaum, AndrewMclaughlin, and John Penix. 2014. The Google Dataset of Testing Results. https://code.google.com/p/google-

shared-dataset-of-test-suite-results

[32] Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer. 2021. Empirically evaluating readily available information for

regression test optimization in continuous integration. In Proceedings of the 30th ACM SIGSOFT International Symposium on Software

Testing and Analysis. ACM, Virtual Denmark, 491ś504. https://doi.org/10.1145/3460319.3464834

[33] Emelie Engström and Per Runeson. 2010. A qualitative survey of regression testing practices. In International Conference on Product

Focused Software Process Improvement. Springer, 3ś16. https://doi.org/10.1007/978-3-642-13792-1_3

[34] Emelie Engström, Per Runeson, and Mats Skoglund. 2010. A systematic review on regression test selection techniques. Information

and Software Technology 52, 1 (2010), 14ś30. https://doi.org/10.1016/j.infsof.2009.07.001

[35] Michael Felderer, Matthias Büchler, Martin Johns, Achim D. Brucker, Ruth Breu, and Alexander Pretschner. 2016. Chapter One -

Security Testing: A Survey. Advances in Computers, Vol. 101. Elsevier, 1ś51. https://doi.org/10.1016/bs.adcom.2015.11.003

[36] Michael Felderer and Elizabeta Fourneret. 2015. A systematic classiication of security regression testing approaches. International

Journal on Software Tools for Technology Transfer 17, 3 (2015), 305ś319. https://doi.org/10.1007/s10009-015-0365-2

[37] Ben Fu, Sasa Misailovic, and Milos Gligoric. 2019. Resurgence of Regression Test Selection for C++. In 2019 12th IEEE Conference

on Software Testing, Validation and Veriication (ICST). IEEE, Xi’an, China, 323ś334. https://doi.org/10.1109/ICST.2019.00039

[38] Paul Garner, Sally Hopewell, Jackie Chandler, Harriet MacLehose, Elie A Akl, Joseph Beyene, Stephanie Chang, Rachel Churchill,

Karin Dearness, Gordon Guyatt, Carol Lefebvre, Beth Liles, Rachel Marshall, Laura Martínez García, Chris Mavergames, Mona Nasser,

Amir Qaseem, Margaret Sampson, Karla Soares-Weiser, Yemisi Takwoingi, Lehana Thabane, Marialena Trivella, Peter Tugwell, Emma

Welsh, Ed C Wilson, and Holger J Schünemann. 2016. When and how to update systematic reviews: consensus and checklist. BMJ

354 (2016). https://doi.org/10.1136/bmj.i3507

[39] Vahid Garousi and Michael Felderer. 2017. Worlds apart: industrial and academic focus areas in software testing. IEEE Software 34,

5 (2017), 38ś45. https://doi.org/10.1109/MS.2017.3641116

[40] V. Garousi, R. Özkan, and A. Betin-Can. 2018. Multi-objective regression test selection in practice: An empirical study in the defense

software industry. Information and Software Technology 103 (2018), 40ś54. https://doi.org/10.1016/j.infsof.2018.06.007

[41] A. Gotlieb and D. Marijan. 2017. Using global constraints to automate regression testing. AI Magazine 38, 1 (2017), 73ś87.

https://doi.org/10.1609/aimag.v38i1.2714

[42] A. Goyal, R.K. Shyamasundar, R. Jetley, D. Mohan, and S. Ramaswamy. 2019. Test suite minimization of evolving software

systems: A case study. In ICSOFT 2019 - Proceedings of the 14th International Conference on Software Technologies. 226ś237.

https://doi.org/10.5220/0007842502260237

[43] Renan Greca, Breno Miranda, Milos Gligoric, and Antonia Bertolino. 2022. Comparing and combining ile-based selection and

similarity-based prioritization towards regression test orchestration. In Proceedings of the 3rd ACM/IEEE International Conference

on Automation of Software Test. ACM, Pittsburgh Pennsylvania, 115ś125. https://doi.org/10.1145/3524481.3527223

ACM Comput. Surv.

https://doi.org/10.29007/7z5n
https://doi.org/10.1109/MCI.2017.2670460
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1145/3338906.3341187
https://doi.org/10.1109/ICSE.2019.00055
https://doi.org/10.1016/j.jss.2019.110398
https://doi.org/10.1016/bs.adcom.2016.04.004
https://doi.org/10.1007/s10664-005-3861-2
https://doi.org/10.1016/j.infsof.2014.04.002
https://doi.org/10.1007/s11219-019-09449-2
https://code.google.com/p/google-shared-dataset-of-test-suite-results
https://code.google.com/p/google-shared-dataset-of-test-suite-results
https://doi.org/10.1145/3460319.3464834
https://doi.org/10.1007/978-3-642-13792-1_3
https://doi.org/10.1016/j.infsof.2009.07.001
https://doi.org/10.1016/bs.adcom.2015.11.003
https://doi.org/10.1007/s10009-015-0365-2
https://doi.org/10.1109/ICST.2019.00039
https://doi.org/10.1136/bmj.i3507
https://doi.org/10.1109/MS.2017.3641116
https://doi.org/10.1016/j.infsof.2018.06.007
https://doi.org/10.1609/aimag.v38i1.2714
https://doi.org/10.5220/0007842502260237
https://doi.org/10.1145/3524481.3527223

State of Practical Applicability of Regression Testing Research: A Live Systematic Literature Review • 31

[44] B. Guo, Y.-W. Kwon, and M. Song. 2019. Decomposing Composite Changes for Code Review and Regression Test Selection in Evolving

Software. Journal of Computer Science and Technology 34, 2 (2019), 416ś436. https://doi.org/10.1007/s11390-019-1917-9

[45] Alireza Haghighatkhah, Mika Mäntylä, Markku Oivo, and Pasi Kuvaja. 2018. Test prioritization in continuous integration environments.

Journal of Systems and Software 146 (Dec. 2018), 80ś98. https://doi.org/10.1016/j.jss.2018.08.061

[46] Dan Hao, Lu Zhang, and Hong Mei. 2016. Test-case prioritization: achievements and challenges. Frontiers of Computer Science 10,

5 (Oct. 2016), 769ś777. https://doi.org/10.1007/s11704-016-6112-3

[47] Mary Jean Harrold and Alessandro Orso. 2008. Retesting software during development and maintenance. In 2008 Frontiers of Software

Maintenance. IEEE, 99ś108. https://doi.org/10.1109/FOSM.2008.4659253

[48] Muhammad Hasnain, Imran Ghani, Muhammad Fermi Pasha, and Seung Ryul Jeong. 2020. A Comprehensive Review on Regression

Test Case Prioritization Techniques for Web Services. KSII Transactions on Internet and Information Systems 14, 5 (May 2020).

https://doi.org/10.3837/tiis.2020.05.001

[49] Muhammad Hasnain, Imran Ghani, Muhammad Fermi Pasha, and Seung-Ryul Jeong. 2021. Ontology-Based Regression Testing: A

Systematic Literature Review. Applied Sciences 11, 20 (2021), 9709. https://doi.org/10.3390/app11209709

[50] Kim Herzig. 2016. Let’s assume we had to pay for testing. https://www.slideshare.net/kim.herzig/keynote-ast-2016

[51] Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy. 2015. The Art of Testing Less without Sacriicing Quality.

In Proceedings of the 37th International Conference on Software Engineering - Volume 1 (Florence, Italy) (ICSE ’15). IEEE Press, 483ś493.

https://doi.org/10.1109/ICSE.2015.66

[52] Matthias Hirzel and Herbert Klaeren. 2016. Graph-Walk-based Selective Regression Testing of Web Applications Created with Google

Web Toolkit. (2016), 15.

[53] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. 1994. Experiments on the efectiveness of datalow-and

control-low-based test adequacy criteria. In Proceedings of 16th International conference on Software engineering. IEEE, 191ś200.

https://doi.org/10.1109/ICSE.1994.296778

[54] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of existing faults to enable controlled testing

studies for Java programs. In Proceedings of the 2014 International Symposium on Software Testing and Analysis. 437ś440.

https://doi.org/10.1145/2610384.2628055

[55] Rafaqut Kazmi, Dayang N. A. Jawawi, Radziah Mohamad, and Imran Ghani. 2017. Efective Regression Test Case Selection: A

Systematic Literature Review. Comput. Surveys 50, 2 (June 2017), 1ś32. https://doi.org/10.1145/3057269

[56] Muhammad Khatibsyarbini, Mohd Adham Isa, Dayang N.A. Jawawi, and Rooster Tumeng. 2018. Test case prioritization

approaches in regression testing: A systematic literature review. Information and Software Technology 93 (Jan. 2018), 74ś93.

https://doi.org/10.1016/j.infsof.2017.08.014

[57] Stanislav Kirdey, Kevin Cureton, Scott Rick, Sankar Ramanathan, and Mrinal Shukla. 2019. Lerner Ð using RL agents for test case

scheduling. https://netlixtechblog.com/lerner-using-rl-agents-for-test-case-scheduling-3e0686211198

[58] Barbara Kitchenham. 2004. Procedures for performing systematic reviews. Keele, UK, Keele University 33, 2004 (2004), 1ś26.

[59] Jung-Hyun Kwon and In-Young Ko. 2017. Cost-Efective Regression Testing Using Bloom Filters in Continuous Integra-

tion Development Environments. In 2017 24th Asia-Paciic Software Engineering Conference (APSEC). IEEE, Nanjing, 160ś168.

https://doi.org/10.1109/APSEC.2017.22

[60] Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. 2017. Measuring the Cost of Regression Testing in Practice: A Study

of Java Projects Using Continuous Integration. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering

(Paderborn, Germany) (ESEC/FSE 2017). ACM, New York, NY, USA, 821ś830. https://doi.org/10.1145/3106237.3106288

[61] Kathrin Land, Eva-Maria Neumann, Simon Ziegltrum, Huaxia Li, and Birgit Vogel-Heuser. 2019. An Industrial Evaluation of Test

Prioritisation Criteria and Metrics. In 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE, Bari, Italy,

1887ś1892. https://doi.org/10.1109/SMC.2019.8914505

[62] Claire Leong, Abhayendra Singh, Mike Papadakis, Yves Le Traon, and John Micco. 2019. Assessing Transition-Based Test Selection

Algorithms at Google. In 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice

(ICSE-SEIP). IEEE, Montreal, QC, Canada, 101ś110. https://doi.org/10.1109/ICSE-SEIP.2019.00019

[63] Hareton KN Leung and Lee White. 1989. Insights into regression testing (software testing). In Proceedings. Conference on Software

Maintenance-1989. IEEE, 60ś69. https://doi.org/10.1109/ICSM.1989.65194

[64] Feng Li, Jianyi Zhou, Yinzhu Li, Dan Hao, and Lu Zhang. 2021. AGA: An Accelerated Greedy Additional Algorithm for Test Case

Prioritization. IEEE Transactions on Software Engineering (2021), 1ś1. https://doi.org/10.1109/TSE.2021.3137929

[65] Jackson A. Prado Lima and Silvia Regina Vergilio. 2022. A Multi-Armed Bandit Approach for Test Case Prioritization in Continuous In-

tegration Environments. IEEE Transactions on Software Engineering 48, 2 (Feb. 2022), 453ś465. https://doi.org/10.1109/TSE.2020.2992428

[66] Yiling Lou, Junjie Chen, Lingming Zhang, and Dan Hao. 2019. A Survey on Regression Test-Case Prioritization. Advances in Computers

113 (2019), 1ś46. https://doi.org/10.1016/bs.adcom.2018.10.001

[67] Yafeng Lu, Yiling Lou, Shiyang Cheng, Lingming Zhang, Dan Hao, Yangfan Zhou, and Lu Zhang. 2016. How does regression test

prioritization perform in real-world software evolution?. In Proceedings of the 38th International Conference on Software Engineering.

ACM Comput. Surv.

https://doi.org/10.1007/s11390-019-1917-9
https://doi.org/10.1016/j.jss.2018.08.061
https://doi.org/10.1007/s11704-016-6112-3
https://doi.org/10.1109/FOSM.2008.4659253
https://doi.org/10.3837/tiis.2020.05.001
https://doi.org/10.3390/app11209709
https://www.slideshare.net/kim.herzig/keynote-ast-2016
https://doi.org/10.1109/ICSE.2015.66
https://doi.org/10.1109/ICSE.1994.296778
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/3057269
https://doi.org/10.1016/j.infsof.2017.08.014
https://netflixtechblog.com/lerner-using-rl-agents-for-test-case-scheduling-3e0686211198
https://doi.org/10.1109/APSEC.2017.22
https://doi.org/10.1145/3106237.3106288
https://doi.org/10.1109/SMC.2019.8914505
https://doi.org/10.1109/ICSE-SEIP.2019.00019
https://doi.org/10.1109/ICSM.1989.65194
https://doi.org/10.1109/TSE.2021.3137929
https://doi.org/10.1109/TSE.2020.2992428
https://doi.org/10.1016/bs.adcom.2018.10.001

32 • Renan Greca, Breno Miranda, and Antonia Bertolino

ACM, Austin Texas, 535ś546. https://doi.org/10.1145/2884781.2884874

[68] Daniel Lübke. 2020. Selecting and Prioritizing Regression Test Suites by Production Usage Risk in Time-Constrained Environments.

(2020), 69ś83. https://doi.org/10.1007/978-3-030-35510-4

[69] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2019. Predictive Test Selection. In 2019

IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). 91ś100.

https://doi.org/10.1109/ICSE-SEIP.2019.00018

[70] Cláudio Magalhães, Flávia Barros, Alexandre Mota, and Eliot Maia. 2016. Automatic Selection of Test Cases for Regression Testing.

In Proceedings of the 1st Brazilian Symposium on Systematic and Automated Software Testing - SAST. ACM Press, Maringa, Parana,

Brazil, 1ś8. https://doi.org/10.1145/2993288.2993299

[71] Claudio Magalhães, João Andrade, Lucas Perrusi, Alexandre Mota, Flávia Barros, and Eliot Maia. 2020. HSP: A hybrid selection and

prioritisation of regression test cases based on information retrieval and code coverage applied on an industrial case study. Journal

of Systems and Software 159 (Jan. 2020), 110430. https://doi.org/10.1016/j.jss.2019.110430

[72] Dusica Marijan and Marius Liaaen. 2016. Efect of Time Window on the Performance of Continuous Regression Testing.

In 2016 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE, Raleigh, NC, USA, 568ś571.

https://doi.org/10.1109/ICSME.2016.77

[73] Sonu Mehta, Farima Farmahinifarahani, Ranjita Bhagwan, Suraj Guptha, Sina Jafari, Rahul Kumar, Vaibhav Saini, and Anirudh Santhiar.

2021. Data-driven test selection at scale. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering. ACM, Athens Greece, 1225ś1235. https://doi.org/10.1145/3468264.3473916

[74] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siemborski, and John Micco. 2017. Taming Google-scale

continuous testing. In 2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Practice Track

(ICSE-SEIP). IEEE, 233ś242. https://doi.org/10.1109/ICSE-SEIP.2017.16

[75] Emilia Mendes, Claes Wohlin, Katia Felizardo, and Marcos Kalinowski. 2020. When to update systematic literature reviews in software

engineering. Journal of Systems and Software 167 (2020), 110607. https://doi.org/10.1016/j.jss.2020.110607

[76] Breno Miranda, Emilio Cruciani, Roberto Verdecchia, and Antonia Bertolino. 2018. FAST approaches to scalable similarity-based

test case prioritization. In Proceedings of the 40th International Conference on Software Engineering - ICSE ’18. ACM Press, Gothenburg,

Sweden, 222ś232. https://doi.org/10.1145/3180155.3180210

[77] Muhammad Luqman Mohd-Shaie, Wan Mohd Nasir Wan Kadir, Horst Lichter, Muhammad Khatibsyarbini, and Mohd Adham Isa.

2021. Model-based test case generation and prioritization: a systematic literature review. Software and Systems Modeling (2021), 1ś37.

https://doi.org/10.1007/s10270-021-00924-8

[78] Rajendrani Mukherjee and K. Sridhar Patnaik. 2018. A survey on diferent approaches for software test case prioritization. Journal of

King Saud University - Computer and Information Sciences (Oct. 2018), S1319157818303616. https://doi.org/10.1016/j.jksuci.2018.09.005

[79] A. Najai, W. Shang, and P.C. Rigby. 2019. Improving Test Efectiveness Using Test Executions History: An Industrial Experience Report.

In Proceedings - 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice, ICSE-SEIP

2019. 213ś222. https://doi.org/10.1109/ICSE-SEIP.2019.00031

[80] Tutku Çıngıl and Hasan Sözer. 2022. Black-box Test Case Selection by Relating Code Changes with Previously Fixed Defects.

In The International Conference on Evaluation and Assessment in Software Engineering 2022. ACM, Gothenburg Sweden, 30ś39.

https://doi.org/10.1145/3530019.3530023

[81] Bao N. Nguyen, TimHenderson, JohnMicco, and Sanjeev Dhanda. 2016. Google Journal Club. https://sites.google.com/site/gjournalclub/

[82] R. Noemmer and R. Haas. 2020. An Evaluation of Test Suite Minimization Techniques. Lecture Notes in Business Information Processing

371 LNBIP (2020), 51ś66. https://doi.org/10.1007/978-3-030-35510-4_4

[83] T.B. Noor and H. Hemmati. 2016. A similarity-based approach for test case prioritization using historical failure data. In 2015 IEEE

26th International Symposium on Software Reliability Engineering, ISSRE 2015. 58ś68. https://doi.org/10.1109/ISSRE.2015.7381799

[84] Safa Omri and Carsten Sinz. 2022. Learning to Rank for Test Case Prioritization. In 2022 IEEE/ACM 15th International Workshop on

Search-Based Software Testing (SBST). 16ś24. https://doi.org/10.1145/3526072.3527525

[85] João Felipe S. Ouriques, Emanuela G. Cartaxo, and Patrícia D.L. Machado. 2018. Test case prioritization techniques for model-based

testing: a replicated study. Software Quality Journal 26, 4 (Dec. 2018), 1451ś1482. https://doi.org/10.1007/s11219-017-9398-y

[86] Chaoyue Pan, Yang Yang, Zheng Li, and Junxia Guo. 2020. Dynamic Time Window based Reward for Reinforcement Learn-

ing in Continuous Integration Testing. In 12th Asia-Paciic Symposium on Internetware. ACM, Singapore Singapore, 189ś198.

https://doi.org/10.1145/3457913.3457930

[87] Rongqi Pan, Mojtaba Bagherzadeh, Taher A Ghaleb, and Lionel Briand. 2022. Test case selection and prioritization using machine

learning: a systematic literature review. Empirical Software Engineering 27, 2 (2022), 1ś43. https://doi.org/10.1007/s10664-021-10066-6

[88] Qianyang Peng, August Shi, and Lingming Zhang. 2020. Empirically revisiting and enhancing IR-based test-case prioritization. In

Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis. ACM, Virtual Event USA, 324ś336.

https://doi.org/10.1145/3395363.3397383

ACM Comput. Surv.

https://doi.org/10.1145/2884781.2884874
https://doi.org/10.1007/978-3-030-35510-4
https://doi.org/10.1109/ICSE-SEIP.2019.00018
https://doi.org/10.1145/2993288.2993299
https://doi.org/10.1016/j.jss.2019.110430
https://doi.org/10.1109/ICSME.2016.77
https://doi.org/10.1145/3468264.3473916
https://doi.org/10.1109/ICSE-SEIP.2017.16
https://doi.org/10.1016/j.jss.2020.110607
https://doi.org/10.1145/3180155.3180210
https://doi.org/10.1007/s10270-021-00924-8
https://doi.org/10.1016/j.jksuci.2018.09.005
https://doi.org/10.1109/ICSE-SEIP.2019.00031
https://doi.org/10.1145/3530019.3530023
https://sites.google.com/site/gjournalclub/
https://doi.org/10.1007/978-3-030-35510-4_4
https://doi.org/10.1109/ISSRE.2015.7381799
https://doi.org/10.1145/3526072.3527525
https://doi.org/10.1007/s11219-017-9398-y
https://doi.org/10.1145/3457913.3457930
https://doi.org/10.1007/s10664-021-10066-6
https://doi.org/10.1145/3395363.3397383

State of Practical Applicability of Regression Testing Research: A Live Systematic Literature Review • 33

[89] Adithya Abraham Philip, Ranjita Bhagwan, Rahul Kumar, Chandra Sekhar Maddila, and Nachiappan Nagppan. 2019. FastLane:

Test Minimization for Rapidly Deployed Large-Scale Online Services. In 2019 IEEE/ACM 41st International Conference on Software

Engineering (ICSE). IEEE, Montreal, QC, Canada, 408ś418. https://doi.org/10.1109/ICSE.2019.00054

[90] Dipesh Pradhan, Shuai Wang, Shaukat Ali, and Tao Yue. 2016. Search-Based Cost-Efective Test Case Selection within a Time Budget:

An Empirical Study. In Proceedings of the Genetic and Evolutionary Computation Conference 2016 (GECCO ’16). ACM, New York, NY,

USA, 1085ś1092. https://doi.org/10.1145/2908812.2908850

[91] Jackson A. Prado Lima and Silvia R. Vergilio. 2020. Test Case Prioritization in Continuous Integration environments: A systematic

mapping study. Information and Software Technology 121 (2020). https://doi.org/10.1016/j.infsof.2020.106268

[92] Dong Qiu, Bixin Li, Shunhui Ji, and Hareton Leung. 2014. Regression testing of web service: a systematic mapping study. ACM

Computing Surveys (CSUR) 47, 2 (2014), 1ś46. https://doi.org/10.1145/2631685

[93] Jesper Öqvist, Görel Hedin, and Boris Magnusson. 2016. Extraction-Based Regression Test Selection. In Proceedings of the 13th

International Conference on Principles and Practices of Programming on the Java Platform: Virtual Machines, Languages, and Tools. ACM,

Lugano Switzerland, 1ś10. https://doi.org/10.1145/2972206.2972224

[94] R. Ramler, C. Salomon, G. Buchgeher, and M. Lusser. 2017. Tool support for change-based regression testing: An industry experience

report. Lecture Notes in Business Information Processing 269 (2017), 133ś152. https://doi.org/10.1007/978-3-319-49421-0_10

[95] Saif Ur Rehman Khan, Sai Peck Lee, Nadeem Javaid, andWadood Abdul. 2018. A Systematic Review on Test Suite Reduction: Approaches,

Experiment’s Quality Evaluation, and Guidelines. IEEE Access 6 (2018), 11816ś11841. https://doi.org/10.1109/ACCESS.2018.2809600

[96] Lukas Rosenbauer, Anthony Stein, and Jörg Hähner. 2021. An Artiicial Immune System for Black Box Test Case Selection. In

Evolutionary Computation in Combinatorial Optimization, Christine Zarges and Sébastien Verel (Eds.). Vol. 12692. Springer International

Publishing, Cham, 169ś184. https://doi.org/10.1007/978-3-030-72904-2_11

[97] Raúl H. Rosero, Omar S. Gómez, and Glen Rodríguez. 2016. 15 Years of Software Regression Testing Techniques - A Survey. International

Journal of Software Engineering and Knowledge Engineering 26, 5 (2016), 675ś689. https://doi.org/10.1142/S0218194016300013

[98] Raúl H Rosero, Omar S Gómez, Eduardo R Villa, Raúl A Aguilar, and César J Pardo. 2021. Software Regression Testing in Industrial

Settings: Preliminary Findings from a Literature Review. In The International Conference on Advances in Emerging Trends and

Technologies. Springer, 227ś237. https://doi.org/10.1007/978-3-030-96147-3_18

[99] Zahra Sadri-Moshkenani, Justin Bradley, and Gregg Rothermel. 2022. Survey on test case generation, selection and prioritization

for cyber-physical systems. Software Testing, Veriication and Reliability 32, 1 (2022), e1794. https://doi.org/10.1002/stvr.1794

[100] Ali Samad, HairulnizamMahdin, Rafaqut Kazmi, and Rosziati Ibrahim. 2021. Regression Test Case Prioritization: A Systematic Literature

Review. International Journal of Advanced Computer Science and Applications 12, 2 (2021). https://doi.org/10.14569/IJACSA.2021.0120282

[101] Raúl A. Santelices, Pavan Kumar Chittimalli, Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. 2008. Test-Suite

Augmentation for Evolving Software. In 23rd IEEE/ACM International Conference on Automated Software Engineering (ASE 2008), 15-19

September 2008, L’Aquila, Italy. IEEE Computer Society, 218ś227. https://doi.org/10.1109/ASE.2008.32

[102] Amanda Schwartz and Hyunsook Do. 2016. Cost-efective regression testing through Adaptive Test Prioritization strategies. Journal

of Systems and Software 115 (May 2016), 61ś81. https://doi.org/10.1016/j.jss.2016.01.018

[103] Aizaz Sharif, Dusica Marijan, and Marius Liaaen. 2021. DeepOrder: Deep Learning for Test Case Prioritization in Continuous

Integration Testing. In 2021 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE, Luxembourg, 525ś534.

https://doi.org/10.1109/ICSME52107.2021.00053

[104] August Shi, Alex Gyori, Suleman Mahmood, Peiyuan Zhao, and Darko Marinov. 2018. Evaluating test-suite reduction in real

software evolution. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis. 84ś94.

https://doi.org/10.1145/3213846.3213875

[105] August Shi, Peiyuan Zhao, and Darko Marinov. 2019. Understanding and Improving Regression Test Selection in Continuous

Integration. In 2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE). IEEE, Berlin, Germany, 228ś238.

https://doi.org/10.1109/ISSRE.2019.00031

[106] Yogesh Singh, Arvinder Kaur, Bharti Suri, and Shweta Singhal. 2012. Systematic literature review on regression test prioritization

techniques. Informatica 36, 4 (2012).

[107] Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten Mossige. 2017. Reinforcement learning for automatic test case prioritization

and selection in continuous integration. In Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and

Analysis. ACM, Santa Barbara CA USA, 12ś22. https://doi.org/10.1145/3092703.3092709

[108] H. Srikanth, M. Cashman, and M.B. Cohen. 2016. Test case prioritization of build acceptance tests for an enterprise cloud application:

An industrial case study. Journal of Systems and Software 119 (2016), 122ś135. https://doi.org/10.1016/j.jss.2016.06.017

[109] Hema Srikanth, Charitha Hettiarachchi, and Hyunsook Do. 2016. Requirements Based Test Prioritization Using Risk Factors. Inf.

Softw. Technol. 69, C (Jan. 2016), 71ś83. https://doi.org/10.1016/j.infsof.2015.09.002

[110] P.E. Strandberg, D. Sundmark, W. Afzal, T.J. Ostrand, and E.J. Weyuker. 2016. Experience Report: Automated System Level Regression

Test Prioritization Using Multiple Factors. In Proceedings - International Symposium on Software Reliability Engineering, ISSRE. 12ś23.

https://doi.org/10.1109/ISSRE.2016.23

ACM Comput. Surv.

https://doi.org/10.1109/ICSE.2019.00054
https://doi.org/10.1145/2908812.2908850
https://doi.org/10.1016/j.infsof.2020.106268
https://doi.org/10.1145/2631685
https://doi.org/10.1145/2972206.2972224
https://doi.org/10.1007/978-3-319-49421-0_10
https://doi.org/10.1109/ACCESS.2018.2809600
https://doi.org/10.1007/978-3-030-72904-2_11
https://doi.org/10.1142/S0218194016300013
https://doi.org/10.1007/978-3-030-96147-3_18
https://doi.org/10.1002/stvr.1794
https://doi.org/10.14569/IJACSA.2021.0120282
https://doi.org/10.1109/ASE.2008.32
https://doi.org/10.1016/j.jss.2016.01.018
https://doi.org/10.1109/ICSME52107.2021.00053
https://doi.org/10.1145/3213846.3213875
https://doi.org/10.1109/ISSRE.2019.00031
https://doi.org/10.1145/3092703.3092709
https://doi.org/10.1016/j.jss.2016.06.017
https://doi.org/10.1016/j.infsof.2015.09.002
https://doi.org/10.1109/ISSRE.2016.23

34 • Renan Greca, Breno Miranda, and Antonia Bertolino

[111] S. Tahvili, M. Bohlin, M. Saadatmand, S. Larsson, W. Afzal, and D. Sundmark. 2016. Cost-beneit analysis of using dependency

knowledge at integration testing. Lecture Notes in Computer Science (including subseries Lecture Notes in Artiicial Intelligence and

Lecture Notes in Bioinformatics) 10027 LNCS (2016), 268ś284. https://doi.org/10.1007/978-3-319-49094-6_17

[112] Sahar Tahvili, Mehrdad Saadatmand, Stig Larsson, Wasif Afzal, Markus Bohlin, and Daniel Sundmark. 2016. Dynamic Integration

Test Selection Based on Test Case Dependencies. In 2016 IEEE Ninth International Conference on Software Testing, Veriication and

Validation Workshops (ICSTW). IEEE, Chicago, IL, USA, 277ś286. https://doi.org/10.1109/ICSTW.2016.14

[113] Marko Vasic, Zuhair Parvez, Aleksandar Milicevic, and Milos Gligoric. 2017. File-level vs. module-level regression test selection

for .NET. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. ACM, Paderborn Germany, 848ś853.

https://doi.org/10.1145/3106237.3117763

[114] Sebastian Vöst and Stefan Wagner. 2016. Trace-based test selection to support continuous integration in the automotive

industry. In Proceedings - International Workshop on Continuous Software Evolution and Delivery, CSED 2016. ACM, 34ś40.

https://doi.org/10.1145/2896941.2896951

[115] Shuai Wang, Shaukat Ali, Tao Yue, Oyvind Bakkeli, and Marius Liaaen. 2016. Enhancing test case prioritization in an industrial

setting with resource awareness and multi-objective search. In Proceedings - International Conference on Software Engineering. 182ś191.

https://doi.org/10.1145/2889160.2889240

[116] Zhaolin Wu, Yang Y. Yang, Zheng Li, and Ruilian Zhao. 2019. A Time Window Based Reinforcement Learning Reward for Test Case

Prioritization in Continuous Integration. In Proceedings of the 11th Asia-Paciic Symposium on Internetware (Internetware ’19). ACM,

New York, NY, USA. https://doi.org/10.1145/3361242.3361258

[117] Jincheng Xu, Qingfeng Du, and Xiaojun Li. 2021. A Requirement-based Regression Test Selection Technique in Behavior-Driven

Development. In 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). IEEE, Madrid, Spain, 1303ś1308.

https://doi.org/10.1109/COMPSAC51774.2021.00182

[118] J.J. Yackley, M. Kessentini, G. Bavota, V. Alizadeh, and B.R. Maxim. 2019. Simultaneous refactoring and regression testing.

In Proceedings - 19th IEEE International Working Conference on Source Code Analysis and Manipulation, SCAM 2019. 216ś227.

https://doi.org/10.1109/SCAM.2019.00032

[119] Ahmadreza Saboor Yaraghi, Mojtaba Bagherzadeh, Naiseh Kahani, and Lionel Briand. 2022. Scalable and Accurate

Test Case Prioritization in Continuous Integration Contexts. IEEE Transactions on Software Engineering (2022), 1ś24.

https://doi.org/10.1109/TSE.2022.3184842

[120] U. Yilmaz and A. Tarhan. 2018. A case study to compare regression test selection techniques on open-source software projects. In

CEUR Workshop Proceedings, Vol. 2201.

[121] Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection and prioritization: a survey. Software testing, veriication

and reliability 22, 2 (2012), 67ś120. https://doi.org/10.1002/stvr.430

[122] H. Yoshida, S. Tokumoto, M.R. Prasad, I. Ghosh, and T. Uehara. 2016. FSX: A tool for ine-grained incremental unit test generation for

C/C++ Programs. In Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software Engineering, Vol. 13-18-November-2016.

1052ś1056. https://doi.org/10.1145/2950290.2983937

[123] Zhe Yu, Fahmid Fahid, Tim Menzies, Gregg Rothermel, Kyle Patrick, and Snehit Cherian. 2019. TERMINATOR: better automated UI

test case prioritization. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering. ACM, Tallinn Estonia, 883ś894. https://doi.org/10.1145/3338906.3340448

[124] Anis Zarrad. 2015. A Systematic Review on Regression Testing for Web-Based Applications. J. Softw. 10, 8 (2015), 971ś990.

[125] Jiyang Zhang, Yu Liu, Milos Gligoric, Owolabi Legunsen, and August Shi. 2022. Comparing and combining analysis-based and

learning-based regression test selection. In Proceedings of the 3rd ACM/IEEE International Conference on Automation of Software Test.

ACM, Pittsburgh Pennsylvania, 17ś28. https://doi.org/10.1145/3524481.3527230

[126] Lingming Zhang. 2018. Hybrid regression test selection. In Proceedings of the 40th International Conference on Software Engineering.

ACM, Gothenburg Sweden, 199ś209. https://doi.org/10.1145/3180155.3180198

[127] Hua Zhong, Lingming Zhang, and Sarfraz Khurshid. 2019. TestSage: Regression Test Selection for Large-Scale Web Service

Testing. In 2019 12th IEEE Conference on Software Testing, Validation and Veriication (ICST). IEEE, Xi’an, China, 430ś440.

https://doi.org/10.1109/ICST.2019.00052

[128] Jianyi Zhou, Junjie Chen, and Dan Hao. 2022. Parallel Test Prioritization. ACM Transactions on Software Engineering and Methodology

31, 1 (Jan. 2022), 1ś50. https://doi.org/10.1145/3471906

[129] Zhi Quan Zhou, Chen Liu, Tsong Yueh Chen, T. H. Tse, and Willy Susilo. 2020. Beating Random Test Case Prioritization. IEEE

Transactions on Reliability (2020), 1ś22. https://doi.org/10.1109/TR.2020.2979815

[130] Yuecai Zhu, Emad Shihab, and Peter C. Rigby. 2018. Test re-prioritization in continuous testing environments. In Proceedings - 2018 IEEE

International Conference on Software Maintenance and Evolution, ICSME 2018. IEEE, 69ś79. https://doi.org/10.1109/ICSME.2018.00016

ACM Comput. Surv.

https://doi.org/10.1007/978-3-319-49094-6_17
https://doi.org/10.1109/ICSTW.2016.14
https://doi.org/10.1145/3106237.3117763
https://doi.org/10.1145/2896941.2896951
https://doi.org/10.1145/2889160.2889240
https://doi.org/10.1145/3361242.3361258
https://doi.org/10.1109/COMPSAC51774.2021.00182
https://doi.org/10.1109/SCAM.2019.00032
https://doi.org/10.1109/TSE.2022.3184842
https://doi.org/10.1002/stvr.430
https://doi.org/10.1145/2950290.2983937
https://doi.org/10.1145/3338906.3340448
https://doi.org/10.1145/3524481.3527230
https://doi.org/10.1145/3180155.3180198
https://doi.org/10.1109/ICST.2019.00052
https://doi.org/10.1145/3471906
https://doi.org/10.1109/TR.2020.2979815
https://doi.org/10.1109/ICSME.2018.00016

	Abstract
	1 Introduction
	2 Existing secondary studies
	3 Methodology
	3.1 Research Questions
	3.2 Planning and Design of the Review
	3.3 Executing the Review
	3.4 Data Extraction
	3.5 Questionnaire with Authors
	3.6 Survey with Practitioners
	3.7 Replicability

	4 RQ1: Common Approaches and Metrics in RT research
	5 RQ2: Applicability Concerns in Regression Testing Research
	6 RQ3: Evidences of Real-world Application of Regression Testing Techniques
	7 Threats to Validity
	8 Live repository
	9 Challenges and Recommendations
	References

