

Large Scale Automatic Web Accessibility Validation

Large Scale Automatic …

Nicola Iannuzi, Marco Manca, Fabio Paternò, Carmen Santoro

CNR-ISTI, HIIS Laboratory, {nicola.iannuzzi, marco.manca, fabio.paterno, carmen.santoro}@isti.cnr.it

Digital accessibility is considered an important aspect to allow all people, including those with permanent or temporary disabilities, to

access the continuously increasing number of digital services. This raises the need for tools able to provide support for monitoring the

level of accessibility of a large number of websites in order to understand their actual level of accessibility, and identify the areas that

need more interventions for their improvement. We present how we have extended a tool for accessibility validation for this purpose, and

the results that we obtained in the validation of about 2.7 million Web pages of Italian public administration Web sites.

CCS CONCEPTS • Human-centered computing → Accessibility systems and tools;

Additional Keywords and Phrases: Accessibility, Automatic Validation Tools, Large-scale validations

ACM Reference Format:

First Author’s Name, Initials, and Last Name, Second Author’s Name, Initials, and Last Name, and Third Author’s Name, Initials, and

Last Name. 2018. The Title of the Paper: ACM Conference Proceedings Manuscript Submission Template: This is the subtitle of the

paper, this document both explains and embodies the submission format for authors using Word. In Woodstock ’18: ACM Symposium

on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY. ACM, New York, NY, USA, 10 pages. NOTE: This block will be

automatically generated when manuscripts are processed after acceptance.

1 INTRODUCTION

Digital accessibility for all people, including those with permanent or transient disabilities, is becoming more and more

important for the continuous need to access digital services in our daily lives. In order to guarantee this possibility many

countries have national legislations, and specific directives have been promoted in Europe. In particular, the WAD directive

[EU 2016] has indicated that all European countries should also monitor the state of the accessibility of web and mobile

applications. However, despite the increasing attention at a legislative, academic, and social level, many public websites

are still not able to meet the minimum level of accessibility requirements [Gaggi et al., 2022].

In the meantime, the W3C Web Content Accessibility Guideline (WCAG) have evolved in order to address the

evolution of the technologies for implementing interactive applications and better address the needs of the various possible

disabilities. The WCAG 2.1 indicates 78 success criteria, and many more techniques. In addition, the way how developers

implement their Web sites is evolving as well, with the increasing use of newer versions of frameworks for developing

dynamic sites such as React and Angular.

2

All such factors have increased the complexity of the validation of Web applications, which consequently requires

considerable effort and can be rather tedious if performed manually. For such reasons, interest in automatic support of

accessibility validation has increased, even if it is well-known that not all the guidelines for accessibility can be

automatically performed [Power et al., 2012], and direct user feedback is still necessary. Indeed, several tools for automatic

validation have been put forward. As of May 2023, the W3C Web Accessibility Evaluation Tools list1 contains 167 tools

for accessibility validation. However, accessibility evaluation is an area continuously evolving and several tools have not

been able to cope with such evolutions, thus they have become obsolete because they address old versions of the

accessibility guidelines, or they are not able to address modern dynamic websites, or they are limited in terms of scalability

of the number of pages that they are able to validate.

In particular, the continuously increasing digitalization of contents and services and the request from public authorities

to monitor the accessibility state of large numbers of websites have stimulated the need for tools able to address large-scale

validations. Unfortunately, this is a challenge that has received limited attention so far and requires more reflection on how

accessibility validators have to evolve in order to address them.

In this paper, we aim to contribute to filling this gap by discussing how a tool for automatic Web accessibility validation

(MAUVE++) (Iannuzzi et al., 2022) has been extended in several aspects to address large-scale validations and the results

that it has provided when applied to the Web sites of the Italian public administrations, which resulted in an analysis of 2.7

million of web pages. Thus, we discuss the type of validation and results required by a large-scale validation for monitoring

purposes, and the technical aspects that need to be addressed to support the scalability and generality of the approach.

2 RELATED WORK

Evaluating Web accessibility requires checking and monitoring many details across the pages of a website. Even though

accessibility validation is a process that cannot be fully automated (Vigo et al., 2013), to simplify the monitoring, analysis,

detection, and correction of website accessibility problems, many automatic and semi-automatic tools have been proposed

over the years (e.g. Beirekdar et al., 2005; Schiavone and Paternò 2015) to help in this regard.

However, one well-known issue when using automatic validators for checking web accessibility is that such tools can

radically differ according to various aspects (Abascal et al., 2019), from the coverage of accessibility guidelines, to how

tools interpret and to what extent they are able to support the considered guidelines, to the way such tools present the

results including errors and warnings (which require manual intervention to be evaluated). Moreover, validators can even

provide different results when evaluating the same Web content (Abduganiev, 2017) also due to the ambiguity of guidelines

themselves (Pelzetter 2021).

One main issue associated with the above-mentioned differences among accessibility tools is that they can be perceived

in different ways by users, are sometimes misinterpreted, and can generate misunderstandings, also because they sometimes

are not clear about what they actually validate: thus, there is a need to make such tools more transparent for their users, as

also highlighted in (Manca et al., 2022). Analysis of requirements that should characterise accessibility evaluations

(Yesilada et al., 2019) and a new generation of tools for supporting accessibility validation obtained by involving several

stakeholders (Paternò et al., 2020) have been reported. Several studies on accessibility tools have been carried out as well.

For example, a detailed study on the results of automatic Web accessibility evaluation provided by several tools is reported

in (Abduganiev, 2017), which considered support for just WCAG 2.0 guidelines and analysed eight popular and free online

automated Web accessibility evaluation tools, finding significant differences among them in terms of various aspects

1 https://www.w3.org/WAI/ER/tools/

3

(coverage, completeness, correctness, validity, efficiency and capacity). Padure and Pribeanu (2019) compared five

automatic tools for assessing accessibility, showing that the combined use of two of the considered tools would increase

the completeness and reliability of the assessment. More recently, Burkard et al. (2021) compared four commercial

monitoring accessibility tools (SiteImprove, PopeTech, aXe Monitoring and ARC Monitoring), by evaluating them on only

five Web pages according to criteria such as coverage of the Web pages, success criteria, completeness, correctness, support

for localisation of errors, and manual checks. However, their analysis did not focus on aspects such as monitoring and

support for dynamic sites.

In spite of the limitations associated with automated accessibility evaluation tools, their use is really essential when it

comes to evaluating (quite regularly) a high number of web pages, as it should be done in accordance with the European

WAD Directive for accessibility of websites and mobile applications of public sector bodies. In reply to the issue of that

directive, some Member States across Europe started to implement large-scale monitoring of the adoption of accessibility

guidelines, whose outcomes are aimed at stimulating further in-depth evaluation2.

In this regard, Martins and Duarte (2022) recently considered web accessibility metrics, i.e. quantitative indicators

obtained through specific formulas, which are applied using data provided by accessibility evaluations, and are aimed at

synthesising the accessibility level of a web resource into a specific value. In particular, for their analysis, they considered

and compared eleven web accessibility metrics, computed using the QualWeb tool3, and a sample of around three million

web pages, taken from an open corpus of web data. They applied not the WCAG guidelines but the ACT Rules (https://

act- rules. github. io/ rules/) for the evaluation. By computing all the metrics over this sample of web pages, the authors

aimed to understand if these metrics could correlate with each other, in particular, if there are groups of metrics that offer

similar results. However, such metrics are often too technical for the accessibility stakeholders that have difficulties

understanding their meaning. Thus, in our study, which analysed a number of web pages of similar size, we also expressed

the results of the evaluation using two easy-to-understand metrics (Broccia et al., 2020) to facilitate comparison across

sites. Thus, differently from those authors, the goal of our study is not to analyse the suitability of accessibility metrics,

but we only used them to provide useful synthetic information on the results obtained by the accessibility monitoring

process on the considered web pages.

Even before the advent of the WAD, researchers started to analyse the state of accessibility of websites at a medium-

large scale. Indeed, a first exploration of how to support monitoring of Web sites accessibility at a geopolitical level was

already discussed in (Mirri et al., 2011). However, the tool presented in that paper provided only some limited

representations (in a tabular form) of the accessibility levels, and it considered older WCAG (e.g. 2.0) versions. More

recent examples of early investigations of accessibility evaluations done at geo-political levels have been reported for

countries such as Romania (Pribeanu, 2019) and Norway (Inal et al., 2022). In particular, Inal et al. (2022), beyond

analysing Norway's situation, conducted an analysis (also discussing similar medium/large-sized scale studies done in

countries such as Poland, Slovenia, and Bulgaria), showing a weak negative correlation between the population of

municipalities and the number of success criteria violated. In Italy, some early preliminary studies about the situation of

web accessibility of public administrations have been carried out as well. Beyond the already mentioned study of Mirri et

al. (2011) which reported results of evaluating about 4000 pages of Emilia-Romagna region, Gambino et al. (2014)

analysed the official web pages of Italian provinces’ and regions’ chief towns to check their compliance to the 22 technical

requirements defined by the Stanca Act (the Italian main reference point for accessibility in Italy). A sample of 976 web

2 https://digital-strategy.ec.europa.eu/en/library/web-accessibility-directive-monitoring-reports
3 http://qualweb.di.fc.ul.pt/evaluator/

4

pages belonging to the websites of the Italian chief towns was submitted to the Achecker tool4, and several accessibility

and syntax errors were found which involved at least 10 of the 22 technical requirements stated in the Stanca Act, thus

showing that the Italian institutional websites considered in that work were not accessible. Some years later, Barricelli et

al. (2018) presented a survey regarding the accessibility of Italian municipal websites, with the goal of checking their

compliance with the Stanca Act (aligned with WCAG 2.0). In particular, they analysed the home pages of 8057 Italian

municipalities with Achecker, showing that most of them were not accessible. In the same study, the authors also tried to

figure out the efforts needed to fix the accessibility problems that affected these websites, by classifying the problems

according to the kind of intervention needed to solve them.

Overall, it emerges that a large-scale validation of Italian Web sites is still missing since the first attempts that

considered a limited number of pages, applying older versions of the WCAG guidelines, and using tools that were not able

to support validation of dynamic content, such as Achecker.

3 HOW THE LARGE-SCALE VALIDATION PROCESS HAS BEEN ADDRESSED

To support large-scale validation, we have extended the MAUVE++ tool5. When we started this study, it was a tool aiming

at identifying accessibility errors on websites in order to facilitate their correction. For this reason, it focused on presenting

results in terms of violated techniques (which is the most detailed level), and it was able to validate only small groups of

pages associated with a Web site. Thus, we had to face three different challenges to perform a large-scale validation: to

report the validation results in a more abstract manner and higher level granularity to facilitate their interpretation from a

monitoring perspective, to update the crawling and the validation process in order to be able to scale-up to large numbers

of pages and sites, and to support validation of Web sites implemented with modern technologies.

3.1 Provide More Abstract and Coarse-Level Granularity in Validation Results

The international accessibility guidelines (W3C WCAG) are structured into four levels: principles, guidelines, success

criteria, and techniques. Originally MAUVE++ was designed to provide results at the most detailed level (the techniques)

to facilitate the identification and corrections of errors. From the discussion with various stakeholders (accessibility

evaluators, monitoring authorities) it emerged that this type of analysis is too detailed and fragmented for the purposes of

monitoring activities, and therefore there was a need to present the results also in terms of a higher abstraction level

indicated by the WCAG (the success criteria level). However, the relations between success criteria and techniques are not

trivial, thus it was necessary to further deepen their associations in the validation process, and how to address them to

provide meaningful results.

Generally speaking, there is a many-to-many relationship between success criteria and techniques since usually one

success criterion is associated with several techniques, and one technique can be relevant for several success criteria. In

addition, the techniques suggested by the W3C for each success criterion are of three types: Failure; Sufficient; Advisory.

Techniques marked as Advisory are suggested methods for improving accessibility, but these do not determine compliance

or non-compliance with the success criterion for which they are suggested. Sufficient techniques are methods known to

reliably address particular accessibility barriers: thus, when they are applied, they ensure that the associated success

criterion is satisfied as well. However, the opposite is not true: if an element does not correctly implement a sufficient

technique, this does not mean that its content does not satisfy the success criterion under analysis. An element that does

4 https://achecker.achecks.ca/checker/index.php
5 https://mauve.isti.cnr.it/

5

not correctly implement Failure techniques results in failure to meet the associated success criterion. The opposite is not

true: if an element passes one of the failure technique checks, this does not mean that its content satisfies the success

criterion under analysis.

One further aspect to be aware of is that in general, the technique validations can have three results: Success, when the

test is passed; Failure, when the test has a negative outcome; Cannot Tell when the system declares that it cannot offer a

certain answer and suggests further human manual investigation. MAUVE++ validates a web page considering the

techniques regardless of their type (Failure, Sufficient, Advisory). For each element of the web page, the tool calculates

the result of the success criterion based on the results of the evaluated associated techniques.

Applying strictly the definitions of the techniques types, it was noticed that many of the occurrences of the success

criteria results ended up in the "Cannot Tell" category, a result with which the system declares that it cannot provide a

certain answer. This occurred for example when a failure technique passes, since this case cannot imply that the

corresponding success criterion passes; or when a sufficient technique fails, as this cannot generate the failure of the success

criterion to which it refers. Thus, in both situations, the resulting outcome is a “Cannot Tell”. To overcome this problem

and considering that the W3C indicates "although techniques are useful for evaluating the content, evaluations must go

beyond simply verifying sufficient technique tests to evaluate content compliance with WCAG success criteria."

(https://www.w3.org/WAI/WCAG21/Understanding/understanding-techniques#testing-techniques), it was decided to

provide more meaningful results by including in the "Cannot Tell" category only those occurrences generated by techniques

with a "Cannot Tell" result, and not those corresponding to the passing of a failure technique or the failure of a sufficient

technique.

The newly developed evaluation algorithm is able to manage cases in which a logical relationship applies to both groups

of techniques and techniques within each group. In fact, for some success criteria, the documentation suggests groups of

techniques that must be validated together to provide a result on the criterion. For example, for success criterion 4.1.1, the

documentation specifies the following sufficient techniques (as a group), expressed with these relationships: G134 OR

G192 OR H88 OR [(H74 AND H93 AND H94) OR H75].

To describe the relationships between techniques and success criteria, the XML-based language used by MAUVE++

(LWGD: Language for Web Guideline Definition) to drive the validation process has been modified to better address the

relationships between success criteria and techniques. In particular, we added the possibility to specify the techniques that

MAUVE++ uses to analyse the success criterion. This description includes the type of techniques (Failure, Sufficient,

Advisory), the relationships between groups of techniques and the relationships between techniques within groups.

Furthermore, now it is also specified whether the technique is implemented or not in MAUVE++ to ensure the accuracy

of the output. This allows reporting the need for manual intervention when the tool is not able to verify one technique in a

group of techniques that must be validated together.

These definitions are interpreted and applied by the software at the end of the validation of each success criterion, thus

generating the result based on the assessments of the various techniques associated with it: the Java object generated for

each success criterion reports the results of all techniques associated with it, and the relative XPaths of the elements on

which the techniques checks were applied. For each technique, two lists of XPaths are generated, an Error List containing

the XPaths of all the elements that did not pass the check, and a Pass List containing the XPaths of those that passed the

check. Thanks to such data and to the information associated with the relationships between the techniques associated with

each Success Criterion (as identifiable in the guideline definition file), it is possible to enumerate the occurrences of

Success, Failures and Cannot Tell for each criterion analysed, based on the number of HTML elements that passed or failed

the checks.

https://www.w3.org/WAI/WCAG21/Understanding/understanding-techniques%23testing-techniques

6

The algorithm analyses the techniques associated with each criterion taking into account their relations, since in some

cases they are grouped through logical operators. The analysis starts from the basic elements and then considers the groups

of techniques and their logical relations to identify the final results.

After having analysed the web page, the output produced by the algorithm for each SC consists of three lists: error, pass

and cannot cell, in which the XPaths of the HTML elements are inserted based on the results obtained. These lists have no

common elements, as an element can exclusively generate only one result per success criterion. The size of these lists

represents the number of occurrences of the three results for a success criterion.

With the tool used in our study, two metrics are available. The Accessibility Percentage provides info about the number

of distinct elements successfully evaluated out of the total number of techniques for which the tool was able to make a

successful or unsuccessful evaluation, and the Evaluation Completeness, namely the number of distinct validation elements

for which the tool was able to carry out a successful or unsuccessful evaluation compared to the total number of validation

techniques applications. These metrics are aimed at making it clearer to the users that the tool is not able to decide on the

accessibility of all the web elements analysed: thus, even if the Accessibility Percentage is 100%, users still have to check

the Evaluation Completeness to understand to what extent the automatic validation has been able to decide on the correct

application of all the validation checks. We have extended the tool to show the application of the metrics at both techniques

and success criteria levels (see Fig.1). Each validation result is assigned a weight based on the corresponding WCAG

conformance level of the applied validation technique: Level A: 1 (minimum level of accessibility), Level AA: 0.6, Level

AAA: 0.2.

Figure 1: Page evaluation summary with the indication of metrics application at both techniques and success criteria levels.

3.2 Crawling Process and Dynamic Content Management

The first step in the validation process is to collect the web pages to validate. The goal of the crawling process is to

discover the pages that should be validated starting from the home page (also known as the ‘seed’ page) of the considered

website. For the crawling process, MAUVE++ exploited the Crwl4j library (https://github.com/yasserg/crawler4j), an

open-source and multi-thread Java library which provides a simple interface for crawling the web. During the analysis of

https://github.com/yasserg/crawler4j

7

the results of the crawling process, we realised that for several websites the crawler found only one page, namely the one

provided as the seed URL. After analysing the target website by accessing it through the browser, we discovered that

multiple links were available: thus we realized that the Crwl4j library does not implement Server Side Rendering (SSR)

(i.e. rendering a client-side application directly on the web server), and consequently, it is not able to identify links that

appear in the DOM of the page when it is loaded, but which are not included in the static HTML code. Indeed, such

websites are developed through modern frameworks such as React.js, Vue.js, Angular or similar technologies and, as such,

they exploit the Client Side Rendering (CSR) paradigm. With this paradigm, a web page has an almost empty HTML

skeleton with some CSS and JavaScript: when the browser loads the page, the JavaScript code is executed to dynamically

render the rest of the page by populating it client-side through REST services providing the information needed which are

rendered within the initial HTML skeleton.

Thus, also for the crawling phase we had to find a library implementing the Server Side Rendering (SSR) paradigm, so

as to find all the links within the considered pages. Actually, only for the validation process, MAUVE++ already considered

a server-side rendering library in the form of an external Puppeteer service which receives the URL and some device target

parameters (i.e. screen width and height) and returns back the HTML source code of the considered page. However, the

first test for the large-scale validation highlighted a high latency due to the overhead in calling the external service. For

this reason, we decided to integrate the Selenium Library (https://www.selenium.dev/) in the new version of MAUVE++,

to support the server-side rendering both for crawling and validation processes.

Even though the Selenium library has been primarily developed for automating web applications for testing purposes,

it is not limited to that. Indeed, to obtain a DOM wholly rendered on the server side, we exploited the Selenium WebDriver,

a collection of language-specific bindings to drive a browser natively. The Selenium WebDriver supports several browsers

(i.e. Chrome, Edge, Firefox, Safari) and supports programmatically accessing the server-side rendered DOM.

Consequently, we moved from Crawl4j to the Selenium library, and we re-engineered the crawling process by

implementing it as described in the following.

First of all, the seed page is loaded in a headless version of Chrome through the Selenium WebDriver. Then, it collects

all the links belonging to the web page by adding the elements with tag ‘a’ and excluding all the links that do not belong

to the same domain of the seed page and matching the extension to the list of extensions that do not represent an HTML

page (e.g. jpg, svg, pdf, etc). If it does not find a sufficient number of links (a requirement of the large scale validation

process was to evaluate at least 200 pages for each considered website), it adds the URLs discovered in the seed page to a

First In First Out (FIFO) queue. This queue collects the list of the pages that should be visited until the crawler discovers

a sufficient number of URLs. It is worth noting that not all the pages are loaded by the crawler since it usually finds the

target number of URLs before visiting all of them. By loading all the discovered URLs we can assure that the page actually

exists, however in this case the crawling process may require a significant amount of resources in terms of memory and

time. For this reason, we decided to optimize the process by adding each link to the discovered page list without actually

loading the associated page; this optimisation may introduce some "Page not found" errors during the validation process

because among the collected links there could be some “broken links”; however, we calculated that their number is very

low and the cost (in terms of time and memory resources) to visit each page is much higher, so we preferred running the

risk of having some "Page not found" errors.

Even though the large-scale validation goal was to evaluate at least 200 pages for each considered website, we decided

to collect 50 additional pages (thus, the crawler was configured to collect up to 250 pages) for two main reasons. The first

one is that the crawling and validation phases are not immediately sequential, indeed the validation process may be

performed even weeks after the web site has been crawled, thus among the discovered pages there can be some of them

https://www.selenium.dev/

8

that no longer exist. Secondly, during the validation process there can be issues related to the network, unreachable

websites, target servers may be down or the HTML/CSS parser may throw an exception. Because of these reasons, we

considered that 50 additional pages might be a sufficient number to manage run time issues.

The other crawler parameters set in the configuration are: Politeness Delay = 300ms; this parameter sets the interval

between the requests, and we wanted to avoid frequent accesses to the considered websites, since they could raise some

security exception; Depth: there is no limit in terms of the depth in the web site directory during the crawling; Crawling

Policy: we decided to exclude links pointing to domains different from the seed URL; Content-Type = text/html: we have

to evaluate webpages, thus all the URLs having a content-type different from text/html are ignored.

The result of the crawling phase is a list of URLs, which are passed to the validation part of the tool. Our server has

two CPUs composed of 24 cores each, which support high parallelism for both the crawling and the validation activities.

By taking into account the architectural settings of the CPUs installed in our server for the large-scale validation, we tuned

the crawler parameters in order to maximise the parallelism and then obtain a high-performance crawling process. With 48

cores we are able to crawl in parallel 48 websites (48 thread controllers) and for each controller, the system executes the

algorithm described above.

3.3 Validation Process

At the beginning of its execution, the validator retrieves from the database all the websites for which the crawler found at

least 50 pages. The validator process is composed of different steps; 1) download the source code of the webpage; 2)

provide the downloaded HTML to a parser which builds the webpage DOM; 3) analyse the DOM element to check whether

they meet the WCAG success criteria.

The MAUVE++ validation is applied to one page at a time, thus, it has to call the validation engine multiple times in

order to perform the validation of the 200 pages considered for each website. Similarly to what we did for the crawler, we

set a politeness delay, by adding a time interval between the validation of different pages to avoid sending too many

requests to the target server and making it unavailable. For several websites, we noticed that there were several connection

timeout exceptions which actually blocked the validation execution since it was not possible to download the source code

of the webpage to validate. We discovered that from the validator host it was not possible to access the whole website,

while from different IPs address, there were no problems. Thus, we realized that some providers managing the hosting of

several public administration websites inserted the IP of our server in a blacklist since they interpreted the

crawler/validation activity as a "malicious request" or as a bot performing an attack from our host. In this case, we found

a temporary solution by directing the network traffic toward a proxy so that we access the websites with an IP address

different from the one blocked.

The most time and memory-consuming steps in large-scale validation involved:

1. the creation of Selenium WebDriver (which implies opening a headless version of Chrome browser),

2. loading the web page and getting the DOM, and finally,

3. closing the WebDriver.

Considering a multi-thread architecture of the server performing the whole process, steps 1 and 3 can be optimised

by creating a pool of WebDrivers large as the number of threads that can be executed in parallel; so that when the validator

finishes validating a website, the pool can be reused for the next web sites. The website validations were performed by

running 8 controller threads (called Evaluation Controller) where each of them is in charge of managing the validation of

a single website (Fig.2). Each Evaluation Controller receives the list of URLs discovered by the crawler and creates six

Evaluation Page Threads in charge of evaluating one page each. This results in a balanced allocation of them to the 48

9

cores available. Since the validation of websites is independent, we do not need a synchronization mechanism between

Evaluation Controller threads. On the contrary, each Evaluation Controller thread receives the validation report from the

corresponding Evaluation Page Threads and saves it in the database; finally, it has to wait for the completion of all the

validation threads to save the website validation summary on the database.

Figure 2: The crawling and validation process.

4 LARGE-SCALE VALIDATION RESULTS FOR ITALIAN PUBLIC ADMINISTRATION WEB SITES

The source for the reported Large Scale Validation is the public database called IPA (Index of Digital Domains of Public

Administration - https://indicepa.gov.it/ipa-dati/dataset/enti) containing 22898 entries on January 30th, when we dumped

it by downloading the associated CSV file. The IPA database contains 16 different fields ranging from a unique code (IPA

code), website URL, mail address, ZIP code and so on. We extracted only 3 of such fields: the IPA code to uniquely

identify the website, the URL and the ZIP code used to infer the corresponding region to perform georeferenced statistics

later on. Among the 22898 entries available in the IPA database, we imported into our database 21932 websites, since 966

of such entries did not contain any URL or had a wrong format. The validation was performed in March 2023.

Table 1 presents the results obtained from the accessibility analysis. For each success criterion addressed by the tool

(31 out of 50, only considering conformance levels A and AA), it shows the occurrences of Failure, Success, and cases

where the tool was unable to provide a definite response (Cannot Tell).

By analysing the obtained results, it is possible to see some quantitative differences, even significant ones, between

the occurrences of the various success criteria. These differences are also due to the different subsets of HTML tags for

which the analyses of a success criterion are conducted. For example, success criterion 2.4.7 (“Focus Visible”), for which

MAUVE++ implements the checks of techniques G195 and F78, has many occurrences both as successes and as failures

https://indicepa.gov.it/ipa-dati/dataset/enti

10

because the set of tags analysed includes <a>, <input>, <button>, which are generally more present compared to other

HTML tags on a web page.

Table 1: The 20 success criteria with higher number of violations detected by MAUVE++

Success Criterion Failures Success Cannot Tell

2.4.7 Focus Visible 163.031.627 179.224.514 0

1.4.1 Use of Color 96.191.514 109.400.350 0

1.4.3 Contrast (Minimum) 56.792.230 468.413.001 0

1.1.1 Non-text Content 46.675.335 29.420.357 18.223

1.3.1 Info and Relationships 28.215.948 29.969.030 19.705.932

2.4.4 Link Purpose (In Context) 24.296.529 311.470.139 814.261

4.1.1 Parsing 22.207.640 197.085.899 0

4.1.2 Name, Role, Value 21.264.521 70.131.938 58.692.006

1.4.11 Non-text Contrast 8.792.448 25.257.703 0

1.3.5 Identify Input Purpose 4.727.433 1.595.534 0

1.4.5 Images of Text 3.394.246 1.787.789 0

3.3.2 Labels or Instructions 1.972.564 10.521.129 9.637

1.4.10 Reflow 1.624.428 5.394.862 4.849

3.2.2 On Input 1.497.010 2.556.529 0

3.1.1 Language of Page 291.191 2.486.276 0

1.2.3 Audio Description or Media Alternative 52.974 6.242 0

1.4.12 Text Spacing 12.427 332 0

2.4.2 Page Titled 8.988 2.702.032 36

3.1.2 Language of Parts 4.957 2.511.775 0

2.2.1 Timing Adjustable 996 3.779 0

To highlight another opposite case, we can explain the low number of occurrences for criterion 2.2.1 by stating that the

analysis of technique F41, implemented by MAUVE++ for this success criterion, only considers <meta> tags with the

attribute "http-equiv" and the value "refresh" as reference tags. It is understandable that this tag may appear once per page

or be completely absent.

The success criterion with the highest number of failure occurrences is criterion 2.4.7 Focus Visible, which belongs

to the WCAG Operable principle . Keyboard navigation is a mode of navigating web pages where it is important to indicate

which HTML element is selected. Indeed, unlike mouse navigation, it is not a pointer that defines the portion affected by

a potential event, such as a click, but a clearly visible border around the concerned element. If this border is not present or

barely visible, the use of the web resource for users who rely on an alternative navigation mode, such as keyboard

navigation, becomes difficult, if not entirely compromised.

The next two success criteria with the highest number of error occurrences belong to the Perceivable principle.

Specifically, criteria 1.4.1 and 1.4.3 aim to provide accessibility solutions to address certain issues related to visual

perception. Regarding criterion 1.4.1 Use of Color (Level A), MAUVE++ implements the failure technique F73, associated

11

with creating links that are not visually evident without colour vision. The check is performed on all <a> HTML tags, for

which certain CSS properties are analysed to verify if the interactive textual element is distinct from plain text. Criterion

1.4.3 Contrast (Minimum) (Level AA), although belonging to the Perceivable principle as criterion 1.4.1, suggests

ensuring sufficient contrast between non-interactive text and the background on which this text is presented.

Table 2 shows the percentage values of the metrics calculated by MAUVE++, percentage of accessibility and

percentage of completeness. For each region, it reports the average of the metrics applied to the Web sites considered.

These results are aggregated for the region of Italy to which the analyzed websites belong.

Table 2: The metrics results calculated by MAUVE++ grouped by region

Region Accessibility Completness Number of sites Population

Abruzzo 76,75 80,24 457 1.269.860

Basilicata 75,32 80,51 228 536.659

Calabria 76,78 80,86 612 1.841.300

Campania 76,13 81,58 1031 5.592.175

Emilia-Romagna 77,35 80,35 852 4.426.929

Friuli-Venezia Giulia 74,17 77,61 405 1.192.191

Lazio 76,42 80,28 926 5.707.112

Liguria 75,26 80,91 390 1.502.624

Lombardia 76,28 80,79 2403 9.950.742

Marche 75,80 80,80 422 1.480.839

Molise 74,18 80,63 172 289.840

Piemonte 74,98 80,82 1461 4.240.736

Puglia 76,01 80,97 695 3.900.852

Sardegna 79,22 80,55 617 1.575.028

Sicilia 76,82 79,80 1042 4.802.016

Toscana 76,91 81,30 706 3.651.152

Trentino-Alto Adige 80,88 82,65 640 1.075.317

Umbria 75,87 80,27 196 854.137

Valle d'Aosta 71,92 81,71 129 122.955

Veneto 76,82 79,24 1103 4.838.253

5 CONCLUSIONS AND FUTURE WORK

In this study, we discuss how a tool for automatic Web accessibility validation (MAUVE++) has been extended to

address large-scale accessibility validations, and the results that it provided when applied to the Web sites of Italian public

administrations, thus analysing 2.7 million web pages to check their compliance to WCAG 2.1., thus providing the largest

and most updated view of the accessibility situation of public websites in Italy, even if the tool was not able to validate all

the sites for several reasons (connection problems, security issues, problems in the parsing of the content, …).

12

Such results have been used by the National Authority for accessibility (AGID) to provide information on the state of

accessibility at the national level (https://accessibilita.agid.gov.it/). We indicate the most violated success criteria and how

they have been assessed. Such data are important to understand the actual accessibility levels of the Web applications made

available to the public, and identify areas that need to be better addressed by Web developers and designers.

Future work will be dedicated to including in the analysis also the PDF files linked to the Web pages, providing support

also for the WCAG 2.2 version and the ACT Rules, developing a plugin for the WordPress CMS to support validation in

the Web development phase, and integrating results of manual evaluations for the cases in which the tool is not able to

provide definitive results.

ACKNOWLEDGMENTS

This work has been partially supported by the Italian PNRR 1.4.2. We thank AGID for the useful discussions.

REFERENCES

Julio Abascal, Myriam Arrue & Xabier Valencia (2019). Tools for Web accessibility evaluation. Web Accessibility (pp. 479-503). London: Springer.

Siddikjon G. Abduganiev. 2017. Towards automated Web accessibility evaluation: a comparative study. Int. J. Inf. Technol. Comput. Sci.(IJITCS) 9, 9 (2017),

18–44.

Abdo Beirekdar, Marc Keita, Monique Noirhomme, Frédéric Randolet, Jean Vanderdonckt & Céline Mariage. 2005. Flexible reporting for automated

usability and accessibility evaluation of web sites. In Human-Computer Interaction - INTERACT 2005. Lecture Notes in Computer Science, Costabile

M. F. and Paternò F.(Eds.). Springer, Berlin, 3585.

Giovanna Broccia, Marco Manca, Fabio Paternò, Francesca Pulina. Flexible Automatic Support for Web Accessibility Validation. Proc. ACM Hum. Comput.

Interact. 4(EICS): 83:1-83:24 (2020)

Andreas Burkard, Gottfried Zimmermann and Bettina Schwarzer. 2021. Monitoring Systems for Checking Websites on Accessibility. Frontiers in Computer

Science 3 (2021), 2.

EU Commission. (2016, October 26). Directive (EU) 2016/2102 of the European Parliament and of the Council. Retrieved from https://eur-lex.europa.eu:

https://eur-lex.europa.eu/eli/dir/2016/2102/oj

Nicola Iannuzzi, Marco Manca, Fabio Paternò, Carmen Santoro, Usability and transparency in the design of a tool for automatic support for web accessibility

validation, Universal Access in the Information Society, 2022, 1-20, Springer Verlag.

Yavuz Inal, Deepti Mishra, and Anne Britt Torkildsby. 2022. An Analysis of Web Content Accessibility of Municipality Websites for People with Disabilities

in Norway: Web Accessibility of Norwegian Municipality Websites. In Nordic Human-Computer Interaction Conference (NordiCHI '22). Association

for Computing Machinery, New York, NY, USA, Article 65, 1–12. https://doi.org/10.1145/3546155.3547272

Marco Manca, Vanessa Palumbo, Fabio Paternò, Carmen Santoro, The Transparency of Automatic Web Accessibility Evaluation Tools: Design Criteria,

State of the Art, and User Perception, ACM Transaction on Accessible Computing, ACM Press, 2022

Beatriz Martins, Carlos Duarte. Large-scale study of web accessibility metrics. Univ Access Inf Soc (2022). https://doi.org/10.1007/s10209-022-00956-x

Ombretta Gaggi and Lorenzo Perinello. 2022. Improving accessibility of web accessibility rules. In Proceedings of the 2022 ACM Conference on Information

Technology for Social Good (GoodIT '22). Association for Computing Machinery, New York, NY, USA, 167–174.

https://doi.org/10.1145/3524458.3547267

Silvia Mirri, Ludovico A. Muratori, & Paola Salomoni. (2011). Monitoring accessibility: large scale evaluations at a geo political level. The proceedings of

the 13th international ACM SIGACCESS conference on Computers and accessibility (pp. 163-170). New York: ACM.

Marian Pădure, and Costin Pribeanu. 2019. Exploring the differences between five accessibility evaluation tools. (2019).

Fabio Paternò, Francesca Pulina, Carmen Santoro, Henrike Gappa, Yehya Mohamad. (2020) Requirements for Large Scale Web Accessibility Evaluation.

In: Miesenberger K., Manduchi R., Covarrubias Rodriguez M., Peňáz P. (eds) Computers Helping People with Special Needs. ICCHP 2020. Lecture

Notes in Computer Science, vol 12376. Springer, Cham. https://doi.org/10.1007/978-3-030-58796-3_33

Jens Pelzetter, A Declarative Model for Web Accessibility Requirements and its Implementation. Frontiers Comput. Sci. 3: 605772 (2021)

Christopher Power, André Freire, Helen Petrie, David Swallow. (2012). Guidelines are only half of the story: accessibility problems encountered by blind

users on the Web. Proceedings of the SIGCHI conference on human factors in computing systems (pp. 433-442). ACM.

Costin Pribeanu. (2019). Large-scale accessibility evaluation of Romanian municipal websites. Int. Journal of User-System Interaction, 12(2), pp. 83-98.

Antonio G. Schiavone, Fabio Paternò, An extensible environment for guideline-based accessibility evaluation of dynamic Web applications, Universal Access

in the Information Society, Springer Verlag, 14(1): 111-132, 2015.

Markel Vigo, Justin Brown, Vivienne Conway. (2013). “Benchmarking web accessibility evaluation tools: measuring the harm of sole reliance on automated

tests”, in Proceedings of the 10th International Cross-Disciplinary Conference on Web Accessibility, 1–10.

Yeliz Yesilada, Giorgio Brajnik, Markel Vigo, Simon Harper: Exploring perceptions of Web accessibility: a survey approach. Behav. Inf. Technol. 34(2),

119–134 (2015)

https://accessibilita.agid.gov.it/

