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Abstract
Motivation: Minimal perfect hashing is the problem of mapping a static set of n distinct keys into the address space f1; . . . ;ng bijectively. It is
well-known that n log 2ðeÞ bits are necessary to specify a minimal perfect hash function (MPHF) f, when no additional knowledge of the input
keys is to be used. However, it is often the case in practice that the input keys have intrinsic relationships that we can exploit to lower the bit
complexity of f. For example, consider a string and the set of all its distinct k-mers as input keys: since two consecutive k-mers share an overlap
of k � 1 symbols, it seems possible to beat the classic log 2ðeÞ bits/key barrier in this case. Moreover, we would like f to map consecutive
k-mers to consecutive addresses, as to also preserve as much as possible their relationship in the codomain. This is a useful feature in practice
as it guarantees a certain degree of locality of reference for f, resulting in a better evaluation time when querying consecutive k-mers.

Results: Motivated by these premises, we initiate the study of a new type of locality-preserving MPHF designed for k-mers extracted consecu-
tively from a collection of strings. We design a construction whose space usage decreases for growing k and discuss experiments with a practi-
cal implementation of the method: in practice, the functions built with our method can be several times smaller and even faster to query than the
most efficient MPHFs in the literature.

1 Introduction

Given a universe set U, a function f : U ! ½n� ¼ f1; . . . ; ng is
a minimal perfect hash function (MPHF, henceforth) for a set
S � U with n ¼ jSj if f ðxÞ 6¼ f ðyÞ for all x; y 2 S, x 6¼ y. In
simpler words, f maps each key of S into a distinct integer in
[n]. The function is allowed to return any value in [n] for a
key x 2 U n S. A classic result established that n log 2ðeÞ ¼
1:442n bits are essentially necessary to represent such func-
tions for jUj � n (Mehlhorn 1982). Minimal perfect hashing
is a central problem in data structure design and has received
considerable attention, both in theory and practice. In fact,
many practical constructions have been proposed (see e.g.
Pibiri and Trani 2021a and references therein). These algo-
rithms find MPHFs that take space close to the theoretic-
minimum, e.g. 2–3 bits/key, retain very fast lookup time, and
scale well to very large sets. Applications of minimal perfect
hashing range from computer networks (Lu et al. 2006) to
databases (Chang and Lin 2005), as well as language models
(Pibiri and Venturini 2019; Strimel et al. 2020), compilers,
and operating systems. MPHFs have been also used recently
in Bioinformatics to implement fast and compact dictionaries
for fixed-length DNA strings (Almodaresi et al. 2018;
Marchet et al. 2021; Pibiri 2022a,b).

In its simplicity and versatility, the minimal perfect hashing
problem does not take into account specific types of inputs,
nor the intrinsic relationships between the input keys. Each
key x 2 S is considered independently from any other key
in the set and, as such, P½f ðxÞ ¼ i� � 1

n for any fixed i 2 ½n�.
In practice, however, the input keys often present some
regularities that we could exploit to let f act less randomly
on S. This, in turn, would permit to achieve a lower space
complexity for f.

We therefore consider in this article the following special
setting of the minimal perfect hashing problem: the elements
of S are all the distinct sub-strings of length k, for some k > 0,
from a given collection X of strings. The elements of S are
called k-mers. The crucial point is that any two consecutive
k-mers in a string of X have indeed a strong intrinsic relation-
ship in that they share an overlap of k� 1 symbols. It seems
profitable to exploit the overlap information to preserve (as
much as possible) the local relationship between consecutive
k-mers as to reduce the randomness of f, thus lowering its bit
complexity and evaluation time.

In particular, we are interested in the design of a locality-
preserving MPHF in the following sense. Given a query se-
quence Q, if f ðxÞ ¼ j for some k-mer x 2 Q, we would like f
to hash NextðxÞ to jþ 1, NextðNextðxÞÞ to jþ 2, and so on,
where NextðxÞ is the k-mer following x in Q (assuming
NextðxÞ and NextðNextðxÞÞ are in X as well). This behavior
of f is very desirable in practice, at least for two important
reasons. First, it implies compression for satellite values asso-
ciated to k-mers. Typical satellite values are abundance
counts, reference identifiers (sometimes called “colors”), or
contig identifiers (e.g. unitigs) in a de Bruijn graph.
Consecutive k-mers tend to have very similar—if not identi-
cal—satellite values, hence hashing consecutive k-mers to con-
secutive identifiers induce a natural clustering of the
associated satellite values which is amenable to effective com-
pression. The second important reason is, clearly, faster evalu-
ation time when querying for consecutive k-mers in a
sequence. This streaming query modality is the query modal-
ity employed by k-mer-based applications (Almodaresi et al.
2018; Bingmann et al. 2019; Marchet et al. 2021; Robidou
and Peterlongo 2021; Pibiri 2022b).
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We formalize the notion of locality-preserving MPHF along
with other preliminary definitions in Section 2. We show how
to obtain a locality-preserving MPHF in very compact space in
Section 3. To achieve this result, we make use of two algo-
rithmic tools: random minimizers (Schleimer et al. 2003;
Roberts et al. 2004) and a novel partitioning scheme for
sub-sequences of consecutive k-mers sharing the same mini-
mizers (super-k-mers) which allows a more parsimonious
memory layout. The space of the proposed solution
decreases for growing k and the data structure is built in lin-
ear time in the size of the input (number of distinct k-mers).
In Section 4 we present experiments across a breadth of
datasets to show that the construction is practical too: the
functions can be several times smaller and even faster to
query than the most efficient, albeit “general-purpose”,
MPHFs. We conclude in Section 5 where we also sketch
some promising future directions. Our Cþþ implementa-
tion of the method is publicly available at https://github.
com/jermp/lphash.

2 Notation and definitions

Let X be a set of strings over an alphabet R. Throughout the
article, we focus on the DNA alphabet R ¼ fA;C;G;Tg to
better highlight the connection with our concrete application
but our algorithms can be generalized to work for arbitrary
alphabets. A sub-string of length k of a string S 2 X is called a
k-mer of S.

Definition 1 (Spectrum). The k-mer spectrum of X is the
set of all distinct k-mers of the strings in X . Formally:
spectrumkðXÞ :¼ fx 2 Rkj9S 2 X suchthat x is a
k-mer of Sg:

Definition 2 (Spectrum-Preserving String Set). A spectrum-
preserving string set (or SPSS) S of X is a set of strings
such that (i) each string of S has length at least k, and
(ii) spectrumkðSÞ ¼ spectrumkðXÞ.

Since our goal is to build a MPHF for the k-mers in a SPSS,
we are interested in a SPSS S where each k-mer is seen only
once, i.e. for each k-mer x 2 spectrumkðSÞ there is only one
string of S where x appears once. We assume that no k-mer
appearing at the end of a string shares an overlap of k� 1
symbols with the first k-mer of another string, otherwise we
could reduce the number of strings in S and obtain a smaller
SPSS. In the following, we make use of this form of SPSS
which is suitable for the minimal perfect hashing problem.
We remark that efficient algorithms exist to compute such
SPSSs (see e.g. Rahman and Medvedev 2020; B�rinda et al.
2021; Khan and Patro 2021; Khan et al. 2022).

The input for our problem is therefore a SPSS S for X with
jSj strings and n > 1 distinct k-mers. Without loss of general-
ity, we index k-mers based on their positions in S, assuming
an order S1; S2; S3; . . . of the strings of S is fixed, and we indi-
cate with xi the i-th k-mer in S, for i ¼ 1; . . . ; n.

We want to build a MPHF f : Rk ! ½n� for S; more pre-
cisely, for the n distinct k-mers in spectrumkðSÞ. We remark
again that our objective is to exploit the overlap of k� 1 sym-
bols between consecutive k-mers from a string of S to pre-
serve their locality, and hence reduce the bit complexity of f
as well as its evaluation time when querying k-mers in
sequence.

We define a locality-preserving MPHF, or LP-MPHF, for S
as follows.

Definition 3 (LP-MPHF). Let f : Rk ! ½n� be a MPHF
for S and A be the set f1 � i < nj9S 2 S; xi;xiþ1

2 S ^ f ðxiþ1Þ ¼ f ðxiÞ þ 1g. The function f is ð1� eÞ-
locality-preserving for S if e � 1� jAj=n.

Intuitively, the “best” LP-MPHF for S is the one having the
smallest e, so we look for practical constructions with small e.
On the other hand, note that a “classic” MPHF corresponds
to the case where the locality-preserving property is almost al-
ways not satisfied and, as a consequence, e will be 	1.

Two more considerations are in order. First, it should be
clear that the way we define locality-preservation in
Definition 3 is only pertinent to SPSSs where having consecu-
tive hash codes for consecutive k-mers is a very desirable
property as motivated in Section 1. A different definition of
locality-preservation could instead be given if we were consid-
ering generic input keys. Second, we did not use the term
“order-preserving” to stress the distinction from classic order-
preserving functions in the literature (Fox et al. 1991) that
make it possible to preserve any wanted order and, as such,
incur in an avoidable Xðlog nÞ-bit overhead per key. Here, we
are interested in preserving only the input order of the k-mers
which is the one that matters in practice.

Definition 4 (Fragmentation Factor). Given a SPSS S with
jSj strings and n ¼ jspectrumkðSÞj distinct k-mers, we
define the fragmentation factor of S as a :¼ ðjSj � 1Þ=n.

The fragmentation factor of S is a measure of how contigu-
ous the k-mers in S are. The minimum fragmentation a ¼ 0 is
achieved for jSj ¼ 1 and, in this case, xi shares an overlap of
k� 1 symbols with xiþ1 for “all” i ¼ 1; . . . ;n� 1. This ideal
scenario is, however, unlikely to happen in practice. On the
other hand, the worst-case scenario of maximum fragmenta-
tion a ¼ 1� 1=n is achieved when jSj ¼ n and k-mers do not
share any overlap (of length k� 1). This is also unlikely to
happen given that k-mers are extracted consecutively from
the strings of X and, as a result, many overlaps are expected.
A more realistic scenario happens, instead, when jSj 
 n,
resulting in e� a. For the rest of the paper, we focus on this
latter scenario to make our analysis meaningful.

From Definitions 3 and 4, it is easy to see that e � 1=n
when a ¼ 0, and e ¼ 1 when a ¼ 1� 1=n. In general, we have
e � aþ 1=n since there are at least jSj � 1 indexes i for which
f ðxiþ1Þ 6¼ f ðxiÞ þ 1. How small e can actually be therefore
depends on the input SPSS (and on the strategy used to imple-
ment f in practice, as we are going to illustrate in Section 3).

Lastly in this section, we define minimizers and super-k-
mers that will be one of the main ingredients used in Section 3.

Definition 5 (Random Minimizer of a k-mer). Given a k-
mer x and a random hash function h, the minimizer of
x is any m-mer l such that hðlÞ � hðyÞ for any other
m-mer y of x, for some m � k.

In case the minimizer of x is not unique, we break ties by
taking the leftmost m-mer in x. For convenience, we indicate
with w ¼ k�mþ 1 the number of m-mers in a k-mer. (Note
that Definition 5 defines a minimizer as a specific m-mer in-
side a k-mer rather than a specific k-mer in a window of w
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consecutive k-mers, which is the more standard definition
found in the literature.) Since h is a random hash function
(with a wide range, e.g. ½1::264�), each m-mer in a k-mer has
probability � 1

w of being the minimizer of the k-mer. We say
that the triple ðk;m; hÞ defines a random minimizer scheme.
The density of a minimizer scheme is the expected number of
selected minimizers from the input.

Definition 6 (Super-k-mer). Given a string S, a super-k-mer
g is a maximal sub-string of S where each k-mer has
the same minimizer l and l appears only once in g.

3 Locality-preserving minimal perfect hashing
of k-mers

In this section, we describe an algorithm to obtain locality-
preserving MPHFs for a spectrum-preserving string set S. The
algorithm builds upon the following main insight.

Implicitly ranking k-mers through minimizers. Let g be a
super-k-mer of some string S 2 S and assume g is the only
super-k-mer whose minimizer is l. By definition of super-k-
mer, all the k-mers xg;1; . . . ;xg;jgj�kþ1 in g contain the mini-
mizer l as a sub-string—xg;i being the i-th k-mer of g. If pg;1 is
the start position of l in the first k-mer xg;1 of g, then

pg;i ¼ pg;1 � iþ 1; (1)

is the start position of l in xg;i for 1 � i � jgj � kþ 1.
Figure 1 gives a practical example for a super-k-mer g of
length 16 and k ¼ 13.

The next property illustrates the relation between the size
jgj � kþ 1 of the super-k-mer g and the position pg;1 (we will
come later on the implications of this property).

Property 1. jgj � kþ 1 � pg;1 � w for any super-k-mer g.

Proof. Since pg;1 is the start position of the minimizer in the
first k-mer of g, there are at most pg;1 k-mers that contain the
minimizer as a sub-string, hence jgj � kþ 1 � pg;1. However,
g cannot contain more than w k-mers. h

Now, suppose we are given a query k-mer x 2 S whose mini-
mizer is l. The k-mer must appear as a sub-string of g, i.e. it must
be one among xg;1; . . . ; xg;jgj�kþ1. We want to compute the rank
of x among the k-mers xg;1; . . . ;xg;jgj�kþ1 of g, which we indicate
by RankðxÞ (assuming that it is clear from the context that Rank
is relative to g). Let p be the start position of l in x. We can use
this positional information p to compute RankðxÞ as follows:

• if pg;1 � p and 1 � pg;1 � pþ 1 � jgj � kþ 1, then

RankðxÞ ¼ pg;1 � pþ 1 (2)

• otherwise (pg;1 < p or pg;1 � pþ 1 > jgj � kþ 1), x can-
not possibly be in g and, hence, indexed by f.

Our strategy is to compute f ðxg;iÞ as

f ðxg;iÞ ¼ f ðxg;1Þ þ Rankðxg;iÞ � 1 ¼ f ðxg;1Þ þ pg;1 � pg;i; (3)

for any k-mer xg;1; . . . ;xg;jgj�kþ1 of g. Next, we show in
Lemma 1 that this strategy maps the k-mers xg;1; . . . ; xg;jgj�kþ1

bijectively in fðf ðxg;1Þ � 1Þ þ 1; . . . ; ðf ðxg;1Þ � 1Þ þ jgj � kþ
1g and preserves their locality (i.e. their relative order in g).

Lemma 1. The strategy in Equation (3) guarantees
f ðxg;iþ1Þ ¼ f ðxg;iÞ þ 1 for any i ¼ 1; . . . ; jgj � k.

Proof. For Equation (3), f ðxg;iÞ ¼ f ðxg;1Þ þ pg;1 � pg;i.
Therefore, f ðxg;iþ1Þ ¼ f ðxg;1Þ þ pg;1 � pg;iþ1. Since pg;iþ1 ¼
pg;i � 1 for Equation (1), then f ðxg;iþ1Þ ¼ f ðxg;1Þ þ pg;1�
pg;iþ1 ¼ f ðxg;1Þ þ pg;1 � pg;i þ 1 ¼ f ðxg;iÞ þ 1. h

To sum up, the position of the minimizer in the first k-mer
of g, pg;1, defines an implicit ranking (i.e. achieved without ex-
plicit string comparison) of the k-mers inside a super-k-mer.

3.1 Basic data structure

From Equation (3) is evident that f ðxg;1Þ acts as a “global”
component in the calculation of f ðxg;iÞ, which must be added
to a “local” component represented by Rankðxg;iÞ. We have
already shown how to compute Rankðxg;iÞ in Equation (2):
Lemma 1 guarantees that this local rank computation bijec-
tively maps the k-mers of g into ½1::jgj � kþ 1�. We are there-
fore left to show how to compute f ðxg;1Þ for each super-k-mer
g. We proceed as follows.

Layout. LetM be the set of all the distinct minimizers of S.
We build a MPHF forM, fm : Rm ! ½jMj�. Assume, for ease
of exposition, that each super-k-mer g is the only super-k-mer
having minimizer l. (We explain how to handle the case
where more super-k-mers have the same minimizer in Section
3.3.) We allocate an array L0½1::jMj þ 1� where L0½1� ¼ 0 and
L0½fmðlÞ þ 1� ¼ jgj � kþ 1 for every minimizer l. We then
take the prefix-sums of L0 into another array L, that is, L½i� ¼Pi

j¼1 L0½j� for all i ¼ 2; . . . ; jMj þ 1. We therefore have that
L½fmðlÞ� indicates the number of k-mers before those in g
(whose minimizer is l) in the order given by fm. The size of g
can be recovered as L½fmðlÞ þ 1� � L½fmðlÞ� ¼ jgj � kþ 1. In
conclusion, we compute f ðxg;1Þ as L½fmðlÞ�. The positions p1

of each super-k-mer g are instead written in another array
P½1::jMj� where P½fmðlÞ� ¼ p1.

It follows that the data structure is built in OðnÞ time, since
a scan over the input suffices to compute all super-k-mers and
fm can be built in OðjMjÞ expected time.

Lookup. With these three components—fm, and the two
arrays L and P—it is easy to evaluate f ðxÞ as shown in
Algorithm 1. The complexity of the lookup algorithm is OðwÞ
since this is the complexity of computing the minimizer (as-
suming each hash calculation to take constant time) and the
overall evaluation of fm as well, since accessing the arrays L
and P takes Oð1Þ.

Compression. The data structure for f itself is a com-
pressed representation for fm, L, and P. To compute the
space taken by the data structure we first need to know
jMj—the expected number of distinct minimizers seen in

Figure 1. A super-k-mer g of length 16 with jgj � k þ 1 ¼ 16� 13þ 1 ¼ 4

k-mers xg;1; xg;2; xg;3; xg;4 for k ¼ 13 and minimizer length m ¼ 7. The

shaded boxes highlight the minimizer whose start position is pg;i in k-mer

xg;i . It is easy to see that i ¼ pg;1 � pg;i þ 1 for any 1 � i � jgj � k þ 1.
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the input. Assuming again that there are no duplicate mini-
mizers, if d indicates the density of a random minimizer
scheme, then

• jMj ¼ dn, and
• e ¼ d as a direct consequence of Lemma 1.

In particular, a result due to Zheng et al. (2020, Theorem
3) allows us to compute d for a random minimizer scheme as
d ¼ 2

wþ1þ oð1=wÞ if m > ð3þ �Þ log 4ðwþ 1Þ for any � > 0.
We will always operate under the condition that m is suffi-
ciently large compared to k otherwise minimizers are
meaningless.

Therefore, any random minimizer scheme gives us a
ð1� eÞ-LP MPHF with e ¼ 2

wþ1 (we omit lower order terms
for simplicity) as illustrated in the following theorem (see the
Supplementary Material for the proof).

Theorem 1. Given a random minimizer scheme ðk;m; hÞ
with m > ð3þ �Þ log 4ðwþ 1Þ for any � > 0 and
w ¼ k�mþ 1, there exists a ð1� eÞ-LP MPHF for a
SPSS S with n ¼ jspectrumkðSÞj which takes

n � 2

wþ 1
log 2ð4ðwþ 1Þ2Þ þ bþ oð1Þ
� �

bits

where e ¼ 2
wþ1 and b is a constant larger than log 2ðeÞ.

Note that the space bound in Theorem 1 decreases as w
grows; for example, when m is fixed and k grows. Next we
show how to improve this result using some structural prop-
erties of super-k-mers.

3.2 Partitioned data structure

Property 1 states that jgj � kþ 1 � pg;1 � w for any super-
k-mer g. As an immediate implication we have that if jgj �
kþ 1 ¼ w then also pg;1 ¼ w (and, symmetrically, if pg;1 ¼ 1
then jgj ¼ k). This suggests that, whenever a super-k-mer
contains a maximal number of k-mers, then we can always
implicitly derive that jgj � kþ 1 ¼ pg;1 ¼ w. We can thus
save the space for the entries dedicated to such super-k-mers
in the arrays L and P. Note that the converse is not true in
general, i.e. if pg;1 ¼ w it could be that jgj � kþ 1 < w.
Nonetheless, we can still save space for some entries of P in
this case.

Depending on the starting position of the minimizer in the
first and last k-mer of a super-k-mer, we distinguish between
four “types” of super-k-mers (Definition 7).

Definition 7 (FL rule). Let g be a super-k-mer. The first/last
(FL) rule is as follows:

• if pg;1 ¼ w and pg;jgj�kþ1 ¼ 1, then g is left-right-max; else
• if pg;1 < w and pg;jgj�kþ1 ¼ 1, then g is left-max; else
• if pg;1 ¼ w and pg;jgj�kþ1 > 1, then g is right-max; else
• if pg;1 < w and pg;jgj�kþ1 > 1, then g is non-max.

See Fig. 2 for a schematic illustration.

Layout. Based on the FL-rule above, we derive a partitioned
layout as follows. We store the type of each super-k-mer in an
array R½1::jMj�, in the order given by fm. We can now exploit
this labeling of super-k-mers to improve the space bound of
Theorem 1 because:

• for all left-right-max super-k-mers, we do not store L nor P;
• for all left/right-max super-k-mers, we only store L—pre-

cisely, two arrays Ll and Lr for left- and right-max super-
k-mers, respectively;

• for all the other super-k-mers, i.e. non-max, we store both
L and P as explained before—let us indicate them with Ln

and Pn in the following.

Addressing the arrays Ll, Lr, Ln and Pn, can be achieved by
answering RanktðiÞ queries on R: the result of this query is the
number of super-k-mers that have type t in the prefix R[1.i]. If
i ¼ fmðlÞ, then we read the type of the super-k-mer associated to
l as t ¼ R½i�. Then we compute j ¼ RanktðiÞ. Depending on the
type t, we either do not perform any array access or access the j-
th position of either Ll, or Lr, or Ln and Pn (see Algorithm 2).

A succinct representation of R that also supports RanktðiÞ
and AccessðiÞ queries is the wavelet tree (Grossi et al. 2003). In
our case, we only have four possible types, hence a 2-bit inte-
ger is sufficient to encode a type. The wavelet tree therefore
represents R in 2jMj þ oðjMjÞ bits [The oðjMjÞ term is the re-
dundancy needed to accelerate the binary rank queries. In
practice, the term oðjMjÞ can be non-negligible, e.g. can be as
high as 2 � ðjMj=4Þ bits using the Rank9 index (Vigna 2008,
Section 3), but it is necessary for fast queries in practice
(namely, Oð1Þ time). Looking at Table 1a from Pibiri and
Kanda (2021), we see that the redundancy is in between 3%
and 25% of 2jMj.] and supports both queries in Oð1Þ time.
The wavelet tree is also built in linear time, so the building
time of the overall data structure remains OðnÞ. Refer to Fig. 3
for a pictorial representation of this partitioned layout.

Lookup. Algorithm 2 gives the lookup algorithm for the
partitioned representation of f. The complexity of the algo-
rithm is still OðwÞ like that of the un-partitioned counterpart,

Figure 2. The four different types of super-k-mers. The example is for

k ¼ 13 and minimizer length m ¼ 7, so w ¼ k �m þ 1 ¼ 13� 7þ 1 ¼ 7.

The shaded boxes highlight the minimizer sub-string inside a k-mer. The

start position of the minimizer is marked with a solid border when it is

either max (7), or min (1).

Algorithm 1. Evaluation algorithm for f, given the k-mer x.
The helper function minimizerðxÞ computes the minimizer l
of x and the starting position p of l in x.

1: function f(x):

2: ðl; pÞ ¼ minimizerðxÞ
3: i ¼ fmðlÞ
4: return L½i� þ P ½i � � p
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Algorithm 1. The evaluation algorithm must now distinguish be-
tween the four different types of minimizer. On the one hand,
this distinction involves an extra array access (to R) and a rank
query as explained above but, on the other hand, it permits to
save 2 array accesses in the left-right-max case or 1 in the left/
right-max case compared to Algorithm 1 that always performs 2
array accesses (one access to L and one to P). Hence, the overall
number of array accesses performed by Algorithm 2 is on average
the same as that of Algorithm 1 assuming the four cases are
equally likely (see next paragraph). For this reason we do not ex-
pect Algorithm 2 to incur in a penalty at query time compared
to Algorithm 1 despite of its more complex evaluation.
Compression. Intuitively, if the fraction of left-right-max super-
k-mers and that of left/right-max super-k-mers is sufficiently
high, we can save significant space compared to the data struc-
ture in Section 3.1 that stores both L and P for all minimizers.
We therefore need to compute the proportions of the different
types of super-k-mers as given by the FL rule. For ease of nota-
tion, let Plr ¼ P½g is left-right-max�, Pl ¼ P½g is left-max�, Pr ¼
P½g is right-max�, Pn ¼ P½g is non-max�, for any super-k-mer g.

Remark 1. The FL rule is a partitioning rule, i.e.
Plr þ Pl þ Pr þ Pn ¼ 1 for any super-k-mer.

Our objective is to derive the expression for the probabili-
ties Plr, Pl, Pr, and Pn, parametric in k (k-mer length) and m
(minimizer length). To achieve this goal we propose a simple
model based on a (discrete-time) Markov chain.

Let X : Rk ! f1; . . . ;wg be a discrete random variable,
modeling the starting position of the minimizer in a k-mer. The
corresponding Markov chain is illustrated in Fig. 4. Each state of
the chain is labeled with the corresponding value assumed by X,
i.e. with each value in f1; . . . ;wg. Clearly, we have a left-right-
max super-k-mer if, from state w we transition to state w� 1,
then to w� 2, . . ., down to state 1. Each state has a fallback
probability to go to state w which corresponds to the event that
the right-most m-mer (that coming next to the right) is the new
minimizer. If the chain reaches state 1, instead, we know that we
are always going to see a new minimizer next. If c 2 ½1::u� is the
code assigned to the current minimizer by the coding function h
used by l, for some universe size u (e.g. if c is a 64-bit hash code,
then u ¼ 264), the probability for any m-mer to become the new
minimizer is equal to d ¼ c�1

u . Vice versa, the probability of keep-
ing the same minimizer when sliding one position to the right, is
1� d. Whenever we change minimizer, we generate a new code
c and, hence, the probability d changes with every formed super-
k-mer. Nonetheless, the following Theorem shows that the prob-
abilities Plr, Pl, Pr, and Pn, do not depend on d.

Theorem 2. For any random minimizer scheme ðk;m; hÞ
we have

Plr ¼ P½g is left-right�max� ¼W2 þ 1=w
Pl ¼ P½g is left-max� ¼Wð1�WÞ
Pr ¼ P½g is right-max� ¼Wð1�WÞ
Pn ¼ P½g is non-max� ¼W2

where W ¼ 1
2 � ð1� 1

w Þ and w ¼ k�mþ 1.

We give the following lemma to prove Theorem 2. (When
we write “first”/“last” k-mer we are going to silently assume
“of a super-k-mer”.)

Lemma 2. P½X ¼ 1� ¼ 1
2 and P½X ¼ w� ¼ 1

2 � ð1þ 1
w Þ.

Proof. First note that

P½X ¼ p in the first k-mer� ¼ P½X ¼ 1� � 1

w
; (4)

for any 1 � p � w� 1. Then we have the following
equivalences.

Xw

p¼1

P½X ¼ p in the first k-mer� ¼ 1()

P½X ¼ w� þ
Xw�1

p¼1

P½X ¼ p in the first k-mer� ¼ 1()

P½X ¼ w� þ P½X ¼ 1� � 1� 1

w

� �
¼ 1 ½ for Equation 4�:

(5)

Now note that

P½X ¼ w� ¼ Plr þ Pr (6)

because the starting position of the minimizer of the first k-
mer of any left-right-max and of any right-max super-k-mer is
w. In a similar way, we have that

Table 1. Computed (compt.) probabilities with Theorem 2 versus measured

(measr.) using the whole human genome for three representative ðk;mÞ
configurations.

k ¼ 31;m ¼ 21 k ¼ 47;m ¼ 26 k ¼ 63;m ¼ 28

compt. measr. compt. measr. compt. measr.

Plr 0.297 0.281 0.273 0.264 0.264 0.257
Pl 0.248 0.261 0.249 0.256 0.250 0.254
Pr 0.248 0.261 0.249 0.256 0.250 0.254
Pn 0.207 0.197 0.228 0.224 0.236 0.235

Algorithm 2. Evaluation algorithm for a partitioned repre-
sentation of f. The quantities nlr , nl , nr , and nn are, respec-
tively, the number of left-right-max, left-max, right-max, and
non-max super-k-mers of S.

1: function f(x):

2: ðl; pÞ ¼ minimizerðxÞ
3: i ¼ fmðlÞ
4: t ¼ R½i�
5: j ¼ Rankt ðiÞ
6: prefix ¼ 0, offset ¼ 0, p1 ¼ 0

7: switch(t):

8: case left-right-max:

9: prefix ¼ 0, offset ¼ ðj � 1Þw , p1 ¼ w

10: break

11: case left-max:

12: prefix ¼ nlr , offset ¼ Ll ½j �, p1 ¼ Ll ½j þ 1� � Ll ½j�
13: break

14: case right-max:

15: prefix ¼ nlr þ nl , offset ¼ Lr ½j�, p1 ¼ w

16: break

17: case non-max:

18: prefix ¼ nlr þ nl þ nr , offset ¼ Ln½j�, p1 ¼ Pn ½j�
19: break

20: return prefixþ offset þ p1 � p
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P½X ¼ 1 in the last k-mer� ¼
P½X ¼ 1� þ P½X ¼ 1 in the first k-mer� ¼

P½X ¼ 1� � 1þ 1

w

� �
½for Equation 4 with p ¼ 1�

¼ Plr þ Pl

(7)

because the starting position of the minimizer of the last k-
mer of any left-right-max and of any left-max super-k-mer is
1. Now note that Pl ¼ Pr because:

Pl ¼ P X ¼ w in first k-mer½ � � P X 6¼ 1 in last k-mer½ � ¼
¼ 1� P X 6¼ w in first k-mer½ �ð Þ � 1� P X ¼ 1 in last k-mer½ �ð Þ ¼

¼ 1� P X ¼ 1½ � � 1� 1

w

� �� �
� 1� P X ¼ 1½ � � 1þ 1

w

� �� �
¼

¼ P X ¼ 1½ �ð Þ2 � 1� 1

w2

� �
; and similarly

Pr ¼ P X 6¼ w in first k-mer½ � � P X ¼ 1 in last k-mer½ � ¼

¼ P X ¼ 1½ � � 1� 1

w

� �
� P X ¼ 1½ � � 1þ 1

w

� �
¼

¼ P X ¼ 1½ �ð Þ2 � 1� 1

w2

� �
:

From equation Pl ¼ Pr, we have Plr þ Pl ¼ Plr þ Pr which,
using Equations (6) and (7), yields P½X ¼ w� ¼ P½X ¼ 1��
ð1þ 1

w Þ. The Lemma follows by using the latter equation into
Equation (5). h

Now we prove Theorem 2.
Proof. Since the FL rule induces a partition:

Plr þ Pr þ Pl þ Pn ¼ 1()
Plr þ Plr þ Pr þ Pl þ Pn ¼ 1þ Plr

½adding Plr to both sides� ()
2P½X ¼ w� þ Pn ¼ 1þ Plr

½knowing that Plr þ Pr ¼ Plr þ Pl ¼ P½X ¼ w�� ()

Plr ¼ Pn þ
1

w
½for Lemma 2�:

(8)

Again exploiting the fact that Plr þ Pr ¼ Plr þ Pl ¼
P½X ¼ w�, we also have

Pl ¼ Pr ¼ P½X ¼ w� � Plr ¼
1

2
� ð1þ 1

w
Þ�Pn �

1

w
: (9)

We have therefore to compute Pn to also determine Plr, Pl,
and Pr.

Pn ¼ P X 6¼ w in first k-mer½ � � P X 6¼ 1 in last k-mer½ � ¼

P X ¼ 1½ � � 1� 1

w

� �
� 1� P X ¼ 1 in last k-mer½ �ð Þ ¼

P X ¼ 1½ � � 1� 1

w

� �
� 1� P X ¼ 1½ � � 1þ 1

w

� �� �
¼

1
2 � 1� 1

w

� �� �2
for Lemma 2½ �:

(10)

Now letting W ¼ 1
2 � ð1� 1

w Þ and substituting Pn ¼W2

[Equation (10)] into Equations (8) and (9), the Theorem fol-
lows. h

In Table 1, we report the probabilities Plr, Pl, Pr, and Pn

computed using Theorem 2 for some representative combina-
tions of k and m (these combinations are some of those used
in the experiments of Section 4; see also Table 2). For compar-
ison, we also report the probabilities measured over the whole
human genome. We see that the probabilities computed with
the formulas in Theorem 2 accurately model the empirical
probabilities.

The net result is that, for sufficiently large w, the probabili-
ties in Theorem 2 are all approximately equal to 1/4, so that
we have � n

2ðwþ1Þ super-k-mers of each type. This also implies
that the choice of 2-bit codes for the symbols of R is essen-
tially optimal. Under this condition, we give the following the-
orem (see the Supplementary Material for the proof).

Theorem 3. Given a random minimizer scheme ðk;m;hÞ
with m > ð3þ �Þ log 4ðwþ 1Þ for any � > 0 and
w ¼ k�mþ 1, there exists a ð1� eÞ-LP MPHF for a
SPSS S with n ¼ jspectrumkðSÞj which takes

n � 2

wþ 1
log 2

16 � 21=4

3
wþ 1ð Þ

� �
þ bþ o 1ð Þ

� �
bits

where e ¼ 2
wþ1 and b is a constant larger than log 2ðeÞ.

3.3 Ambiguous minimizers

Let Gl be the set of super-k-mers whose minimizer is l. The
rank computation in Equation (2) can be used as long as
jGlj ¼ 1, i.e. whenever one single super-k-mer g has mini-
mizer l and, thus, the single pg;1 unequivocally displace all
the k-mers xg;1; . . . ;xg;jgj�kþ1. When jGlj > 1 we say that the
minimizer l is ambiguous. It is a known fact that the number
of such minimizers is very small for a sufficiently long mini-
mizer length m (Chikhi et al. 2014; Jain et al. 2020; Pibiri
2022b), and the number decreases for growing m. For exam-
ple, on the datasets used in Section 4, the fraction of ambigu-
ous minimizers is in between 1% and 4%. However, they
must be dealt with in some way.

Let n be the fraction of k-mers whose minimizers are am-
biguous. Our strategy is to build a fallback MPHF for these
k-mers. This function adds n � b bits/k-mer on top of the space
of Theorem 1 and Theorem 3, where b > log 2ðeÞ is the num-
ber of bits per key spent by a MPHF of choice. The fallback
MPHF makes our functions ð1� eþ nÞ-locality-preserving.

Figure 3. Partitioned data structure layout and the flow of Algorithm 2 for

a query k-mer x, whose minimizer is l, and with i ¼ fmðlÞ. Different colors
in R are used to distinguish between the different super-k-mer types.

Figure 4. The chain is in state 1 � p � w if the minimizer starts at

position p in the k-mer. Different edge colors represent different

probabilities.
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To detect ambiguous minimizers, one obvious option would
be to explicitly use an extra 1-bit code per minimizer. This
would however result in a waste of 1 bit per minimizer for most
of them since we expect to have a small percentage of ambigu-
ous minimizers. To avoid these problems, we use the following
trick. Suppose l is an ambiguous minimizer. We initially pre-
tend that l is not ambiguous. For the unpartitioned data struc-
ture from Section 3.1, we set L½fmðlÞ� ¼ 0. A super-k-mer of
size 0 is clearly not possible, thus we use the value 0 to indicate
that l is actually ambiguous. We do the same for the partitioned
data structure from Section 3.2: in this case, we set Lr½fmðlÞ� ¼
0 pretending the type of l is right-max (but we could have also
used the type left-max or non-max). To sum up, with just an ex-
tra check on the super-k-mer size we know if the query k-mer
must be looked-up in the fallback MPHF or not.

We leave the exploration of alternative strategies to handle
ambiguous minimizers to future work. For example, one can
imagine a recursive data structure where, similarly to Shibuya
et al. (2022), each level is an instance of the construction with
different minimizer lengths: if level i has minimizer length mi,
then level iþ 1 is built with length miþ1 > mi over the k-mers
whose minimizers are ambiguous at level i.

4 Experiments

In this section, we report on the experiments conducted to as-
sess the practical performance of the method presented in
Section 3, which we refer to as LPHash in the following. Our
implementation of the method is written in Cþþ and avail-
able at https://github.com/jermp/lphash.

Implementation details. We report here the major implemen-
tation details for LPHash. The arrays L and P are compressed
with Elias-Fano (Fano 1971; Elias 1974) to exploit its constant-
time random access (see also Pibiri and Venturini 2021, Section
3.4) for an explanation of such compressed encoding). Both the
function fm and the fallback MPHF are implemented with
PTHash using parameters ðD-D; a ¼ 0:94; c ¼ 3:0Þ, unless oth-
erwise specified. Under this configuration, the space taken by a
PTHash MPHF is 2.3–2.5 bits/key.

We do not compress the bit-vectors in the wavelet tree and
we add constant-time support for rank queries using the
Rank9 index (Jacobson 1989; Vigna 2008). The Rank9 index
adds 25% more space at each level of the wavelet tree, making
the wavelet tree to take 2.5 bits per element in practice.
Therefore, we estimate the little-Oh factor in Theorem 1 and
Theorem 3 to be 0.5.

Competitors. We compare the space usage, query time, and
building time of LPHash against PTHash (Pibiri and Trani
a,b), the fastest MPHF in the literature, and the popular
BBHash (Limasset et al. 2017). Both competitors are also
written in Cþþ. Following the recommendations of the re-
spective authors, we tested two example configurations each:

• PTHash-v1, with parameters ðD-D; a ¼ 0:94; c ¼ 5:0Þ;

• PTHash-v2, with parameters ðEF; a ¼ 0:99; c ¼ 5:0Þ;
• BBHash-v1, with parameter c ¼ 2;
• BBHash-v2, with parameter c ¼ 1;

We point the reader to the respective papers for an explana-
tion of such parameters; we just report that they offer a trade-
off between space, query efficiency, and building time as also
apparent in the following experiments.

Testing machine. The experiments were executed on a ma-
chine equipped with a Intel i9-9900K CPU (clocked at
3.60 GHz), 64 GB of RAM, and running the Linux 5.13.0 op-
erating system. The whole code (LPHash and competitors)
was compiled with gcc 11.2.0, using the flags -O3 and
-march¼native.

Datasets. We use datasets of increasing size in terms of
number of distinct k-mers; namely, the whole-genomes of:
Saccharomyces cerevisiae (Yeast, 11.6 � 106 k-mers),
Caenorhabditis elegans (Elegans, 96.5 � 106 k-mers), Gadus
morhua (Cod, 0.56 � 109 k-mers), Falco tinnunculus
(Kestrel, 1.16 � 109 k-mers), and Homo sapiens (Human,
2.77 � 109 k-mers). For each dataset, we obtain the corre-
sponding SPSS by first building the compacted de Bruijn
graph using BCALM2 (Chikhi et al. 2016), then running the
UST algorithm (Rahman and Medvedev 2020). At our code
repository we provide detailed instructions on how to prepare
the datasets for indexing. Also, all processed datasets are
available at https://zenodo.org/record/7239205 already in
processed form so that it is easy to reproduce our results.

4.1 Space effectiveness

To build an instance of LPHash for a given k, we have to
choose a suitable value of minimizer length (m). A suitable
value of m should clearly be not too small (otherwise, most
minimizers will appear many times), nor too large (otherwise,
the space of fm will be too large as well). In general, a good
value for m can be chosen around log 4ðNÞ where N is the cu-
mulative length of the strings in the input SPSS. Remember
from our discussion in Section 3.3 that the fraction of ambig-
uous minimizers decreases for growing m. Therefore, testing
LPHash for growing values of k allows us to progressively in-
crease m, starting from m ¼ log 4ðNÞ, while keeping w ¼
k�mþ 1 sufficiently large and reducing the fraction of am-
biguous minimizers as well. Following this principle, for each
combination of k and dataset, we choose m as reported in
Table 2.

Figure 5 shows the space of LPHash in average bits/k-mer, by
varying k from 31 to 63 with a step of 4, for both un-
partitioned and partitioned data structures. We report the actual
space usage achieved by the implementation against the space
bounds computed using Theorem 1 (un-partitioned) and
Theorem 3 (partitioned) for b ¼ 2:5. The b parameter models
the number of bits per key spent by a MPHF of choice for the
representation of the minimizer MPHF and the fallback MPHF.
(For all datasets, we use c ¼ 3:0 for the PTHash fm and fall-
back, except on the largest Human where we use c ¼ 5:0 to
lower construction time at the expense of a larger space usage.)

We make the following observations.

• The space bounds computed with Theorem 1 and
Theorem 3 are very similar to the actual space usage of
LPHash, thus confirming the correctness and accuracy of
our analysis in Section 3.

Table 2. Minimizer length m by varying k on the different datasets.

k! 31 35 39 43 47 51 55 59 63

Yeast 15 15 16 16 16 16 18 18 18
Elegans 16 18 18 20 20 20 20 20 20
Cod 20 20 22 22 22 24 24 24 24
Kestrel 20 20 22 22 22 24 24 24 24
Human 21 21 23 23 26 26 28 28 28
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• As expected, the space of LPHash lowers for increasing k
and the partitioned data structure is always considerably
smaller than the un-partitioned counterpart.

• We report the space taken by the tested competitive con-
figurations in Table 3. Comparing the space values in
Table 3 with those in Fig. 5, the net result is that the space
of LPHash is much lower than that of the classic MPHFs
traditionally used in the prior literature and in practice.

To make a concrete example, partitioned LPHash for k ¼
63 achieves 0.53, 0.64, 0.83, 0.58, and 0.87 bits/k-mer on
Yeast, Elegans, Cod, Kestrel, and Human respectively. These
values are 5:1�, 4:1�, 3:2�, 4:4�, and 3� smaller than the
those achieved by PTHash-v1 (and even smaller when com-
pared to BBHash). Even compared to the most succinct con-
figuration, PTHash-v2 (around 2 bits/k-mer), LPHash still
retains 2.3–3.7� better space.

We remark that, however, PTHash and BBHash are
“general-purpose” MPHFs that can work with arbitrary keys,
whereas the applicability of LPHash is restricted to spectrum-
preserving string sets.

4.2 Query time

Table 4 reports the query time for LPHash in comparison to
PTHash and BBHash. Timings were collected using a single
core of the processor. We query all k-mers read from the
Human chromosome 13, for a total of �100� 106 queries.
First of all, we report that query timings for un-partitioned
and partitioned LPHash are the same, so we do not distin-
guish between the two data structures in Table 4. This meets
our expectation regarding the average number of array
accesses that the two query algorithms perform as explained
in Section 3.2.

We distinguish between streaming and random queries
(lookups) for LPHash. Given a query string Q, we query for
each k-mer read “consecutively” from Q, that is, for Q[1.k],
Q½2::kþ 1�, Q½3::kþ 2�, etc. We refer to the this query mo-
dality as streaming; anything else different from streaming is a
random lookup (i.e. “random” here means “without local-
ity”). LPHash is optimized for streaming lookup queries,
whereas PTHash and BBHash do not benefit from any spe-
cific query order. In fact, the locality-preserving nature of
LPHash makes the calculation of hashes for consecutive
k-mers very cheap, as consecutive k-mers are likely to be part
of the same super-k-mer.

Considering the result in Table 4, we see that LPHash’s
streaming query time is in fact much smaller than random
query time. Both timings are sensitive to the growth of k:
while the streaming one slightly decreases for the better local-
ity, the random one increases instead, for the more expensive
hash calculations.

LPHash is as fast as PTHash-v1 (fastest configuration) for
streaming queries on the smaller Yeast dataset, but actually
up to 1.4–2� faster on the larger datasets Elegans, Cod,
Kestrel, and Human. Instead, it is up to 4� faster than
PTHash-v2. We stress that this is a remarkable result given
that PTHash is the fastest MPHF in the literature, being 2–6�
faster than other methods. Compared to BBHash, LPHash is
2� faster on Yeast and up to 4–5� faster on the larger
datasets.

Random lookup time is, instead, slower for LPHash com-
pared to PTHash: this is expected because the evaluation of
LPHash is more complex (it involves computing the mini-
mizer, accessing several arrays, and computing a rank using a
wavelet tree). However, we do not regard this as a serious lim-
itation since, as we already motivated, the streaming query
modality is the one used in Bioinformatics tasks involving k-
mers (Almodaresi et al. 2018; Bingmann et al. 2019; Marchet
et al. 2021; Robidou and Peterlongo 2021; Pibiri 2022b). We
also observe that the slowdown is more evident on the smaller
datasets while it tends to diminish on the larger ones. Except
for the smaller Yeast dataset, the random lookup time of
LPHash is competitive with that of BBHash or better.

4.3 Building time

We now consider building time which is reported in Table 5.
Both LPHash and PTHash were built limiting to 8GB the
maximum amount of RAM to use before resorting to external
memory. (There is no such capability in the BBHash imple-
mentation so BBHash took more RAM at building time than
the other two constructions.)

The building time for un-partitioned and partitioned LPHash
is the same. LPHash is competitive with the fastest BBHash and
significantly faster than PTHash on the larger datasets.
Specifically, it is faster than PTHash over the entire set of k-
mers since it builds two smaller PTHash functions (fm and fall-
back). The slowdown seen for Cod is due to the larger fallback
MPHF, which is built with PTHash under a strict configuration
(c ¼ 3:0) that privileges space effectiveness (and query effi-
ciency) rather than building time. One could in principle use

Figure 5. Space in average bits/k-mer for LPHash by varying k, for both unpartitioned and partitioned data structures. The flat solid line at log 2ðeÞ ¼ 1:442
bits/k-mer indicates the classic MPHF lower-bound. Lastly, the dashed lines corresponds to the space bounds computed using Theorem 1 and Theorem 3

with b ¼ 2:5 and including the space for the fallback MPHF.
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BBHash instead of PTHash for the fallback function, hence
trading space for better building time. For example, recall that
we use c ¼ 5:0 on Human for this reason.

5 Conclusion and future work

In this article, we initiate the study of locality-preserving
MPHFs for k-mers. We propose a construction, named
LPHash, that achieves very compact space by exploiting the
fact that consecutive k-mers share overlaps of k� 1 symbols.
This allows LPHash to actually break the theoretical log 2ðeÞ
bit/key barrier for MPHFs.

We show that a concrete implementation of the method is
practical as well. Before this paper, one used to build a
BBHash function over the k-mers and spend (approximately)
3 bits/k-mer and 100–200 nanoseconds per lookup. This
work shows that it is possible to do significantly better than
this when the k-mers come from a spectrum-preserving string
set: for example, less than 0.6–0.9 bits/k-mer and 30–60
nanoseconds per lookup. Our code is open-source.

As future work, we plan to further engineer the current
implementation to accelerate construction and streaming
queries. Other strategies for sampling the strings could be
used other than random minimizers (Frith et al. 2022); for
example, the Miniception (Zheng et al. 2020) achieving
e ¼ 1:67

w þ oð1=wÞ. Evaluating the impact of such different
sampling schemes is a promising avenue for future research.
Lastly, we also plan to investigate other strategies for han-
dling the ambiguous minimizers. A better strategy is likely
to lead to improved space effectiveness and faster
construction.
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Table 3. Space in average bits/k-mer for PTHash and BBHash.a As reference points, we also report the bits/k-mer for partitioned LPHash for three

representative values of k (see also Fig. 5).

Method k Yeast Elegans Cod Kestrel Human

LPHash 31 1.18 1.47 1.55 1.43 1.74
47 0.72 0.85 1.01 0.82 1.14
63 0.53 0.64 0.83 0.58 0.87

PTHash-v1 2.76 2.68 2.65 2.58 2.65
PTHash-v2 2.20 2.13 2.09 2.06 2.04
BBHash-v1 3.71 3.71 3.71 3.71 3.71
BBHash-v2 3.06 3.06 3.06 3.06 3.06

The numbers reported in Table 3 were taken for k ¼ 63 although the avg. bits/k-mer for PTHash and BBHash does not depend on k.

Table 4. Query time in average nanoseconds per k-mer.

Method k Yeast Elegans Cod Kestrel Human

stream random stream random stream random stream random stream random

LPHash 31 29 110 40 118 79 144 84 145 107 162
35 28 125 35 124 65 147 69 149 90 166
39 27 130 32 131 60 149 63 153 82 166
43 25 137 30 135 52 152 54 155 73 169
47 24 145 28 143 47 155 49 159 69 172
51 24 152 28 150 45 159 46 162 63 174
55 23 157 26 157 41 165 42 167 59 176
59 23 165 25 165 39 171 39 173 57 182
63 22 174 24 172 37 180 37 179 53 188

PTHash-v1 24 46 67 72 72
PTHash-v2 38 64 130 155 175
BBHash-v1 42 118 170 175 175
BBHash-v2 42 125 180 190 190

Table 5. Total building time, including the time to read the input and serialize

the data structure on disk. All constructions were run with four processing

threads.

Method Yeast Elegans Cod Kestrel Human

mm:ss mm:ss mm:ss mm:ss mm:ss

LPHash 00:01 00:15 05:30 03:50 07:25
PTHash-v1 00:03 00:29 07:37 20:34 63:30
PTHash-v2 00:03 00:46 14:15 40:00 124:00
BBHash-v1 00:01 00:07 00:48 01:40 04:13
BBHash-v2 00:01 00:08 01:05 02:22 07:50
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Code availability

https://github.com/jermp/lphash.

Data availability

https://zenodo.org/record/7239205.
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Zheng H, Kingsford C, Marçais G. Improved design and analysis of
practical minimizers. Bioinformatics 2020;36:i119–27.

Locality-preserving minimal perfect hashing of k-mers i543

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/Supplem
ent_1/i534/7210438 by guest on 18 July 2023

https://github.com/jermp/lphash
https://zenodo.org/record/7239205

	tblfn1

