
Introduction to the Special Issue on

Test Automation: Trends, Bene�ts, and Costs.

Antonia Bertolinoa,∗, Guglielmo De Angelisb,∗, Maurizio Leottac,∗, Filippo
Riccac,∗

aISTI-CNR, Pisa, Italy
bIASI-CNR, Rome, Italy

cDIBRIS, University of Genova, Genova, Italy

Abstract

Keywords: software testing, automation, trends, bene�ts, costs, special issue.

It is with a great pleasure that we, as the Guest Editors, can �nally present
the Virtual Special Issue on �Test Automation: Trends, Bene�ts, and Costs� for
the Journal of Systems and Software.

Today software is pervasive in any aspects of our society, and automation
across the whole Software Testing process has manifested its powerful contri-5

bution to the validation of the systems that software controls. Indeed, research
in automating both the synthesis of test cases and their execution has made
progress towards meeting the expected adequacy requirements while reducing
the high e�ort and costs that testing activities usually demand.

Notwithstanding the huge research e�ort that has been invested on testing10

techniques and tools, though, we �nd that software developers still lack adequate
knowledge and frameworks to quantify the resources that test automation actu-
ally demands to the existing software production eco-systems (e.g., technological
stacks, but also software companies or human organisations).

In this sense, we launched this special issue in order to explore current re-15

search in trends, bene�ts and costs of test automation that can e�ectively con-
tribute to the quality assessment of modern software systems. In addition, being
aware of the importance about the readiness levels each novel solution has to
compare with, we looked for contributions highlighting the opportunities o�ered
by the proposed techniques, while also discussing how to mitigate issues that20

potentially impact on their broader adoption. Accordingly, we distributed a
detailed call for papers, inviting the research community to propose works in
test automation regarding approaches, techniques, tools and experience reports

∗Corresponding author
Email addresses: antonia.bertolino@isti.cnr.it (Antonia Bertolino),

guglielmo.deangelis@iasi.cnr.it (Guglielmo De Angelis), maurizio.leotta@unige.it
(Maurizio Leotta), filippo.ricca@unige.it (Filippo Ricca)

Preprint submitted to Journal of Systems and Software April 26, 2023



Member A�liation(s)

Jonathan Bell Northeastern University (USA)

Lionel Briand
University of Ottawa (Canada)
University of Luxembourg (Luxembourg)

Gabriella Carrozza Accenture Italia (Italy)
Marcelo d'Amorim Federal University of Pernambuco (Brasil)
Serge Demeyer University of Antwerp (Belgium)
Sigrid Eldh Ericsson AB (Sweden)

Emelie Engström Lund University (Sweden)

Michael Felderer
University of Innsbruck (Austria)
Blekinge Institute of Technology (Sweden)

Robert Feldt
Chalmers University of Gothenburg (Sweden)
Blekinge Institute of Technology (Sweden)

Moonzoo Kim
Korea Advanced Institute of Science and Technology
(South Korea)

Mika Mäntylä University of Oulu (Finland)
Leonardo Mariani University of Milano-Bicocca (Italy)
Dusica Marijan Simula Research Laboratory (Norway)
Mike Papadakis University of Luxembourg (Luxembourg)

Patrizio Pelliccione
University of L'Aquila (Italy)
Chalmers University of Gothenburg (Sweden)

John Penix Google, Inc (USA)
Silvia R.Vergilio Federal University of Paraná (Brasil)
Rudolf Ramler Software Competence Center Hagenberg GmbH (Austria)
Federica Sarro University College London, UK

Daniel Sundmark Mälardalen University (Sweden)
Hong Zhu Oxford Brookes University (UK)

Table 1: Distinguished Reviewers Committee

about adopting test automation and improving its e�ectiveness, as well as em-
pirical studies and case studies discussing the costs and bene�ts of the proposed25

solutions.
In addition, we recruited a Committee of Distinguished Reviewers, formed

by scientists expert in software testing and its automation. The role of this
Committee was to ensure a high quality and consistent review process focused
on the main objectives of the call. In Table 1 we report the members of the30

Distinguished Reviewers Committee with their a�liation (at the moment they
accepted our invitation). Of course, along the review process we also invited
several other external referees to help review the submissions received. To all
the committee members and the external reviewers goes our sincere gratitude
for the devoted e�ort that certainly greatly contributed to improve the quality35

of this Special Issue.
Concerning the visibility and the interest of the research community to the

2



Special Issue, we received 20 scienti�c papers on the proposed topic , which were
submitted between December 2020 and May 2021. Among these, 11 submissions
were �nally accepted for publication within the Special Issue. The healthy40

number of manuscripts we received even bypassed our expectations and remarks
the interest of the research community in the proposed topic; moreover, most
of the submissions were relevant and sound, resulting in a good acceptance rate
(i.e., 55%) at the end of a rigorous review process.

In the following we provide a brief summary of the papers included in the45

Virtual Special Issue, with a cordial invitation to go and read the full original
texts. We provide a full reference of the papers in the bibliography of this guest
introduction.

In the work �Automatically generating test cases for safety-critical software
via symbolic execution� [1], Kurian and co-authors address the automated gen-50

eration of test cases for safety critical systems based on symbolic execution.
They observe that some linguistic features commonly banned from critical pro-
grams because they are believed to downgrade safety are also the main e�ciency-
blockers for test generation based on symbolic execution. Hence, they show how
by leveraging the same programming constraints adopted for the sake of safety,55

symbolic execution -if speci�cally tailored on the those restrictions- can become
a viable approach in practice for a signi�cant class of industrial safety-critical
systems. In particular, they present the TECS test generator tool for SCADE
programs and report their real-world experience in using TECS for testing the
on-board signaling unit of high-speed railway software. In this case study, their60

test suites achieved a high model coverage with good e�ciency and, after the
manual augmentation of assertion-style test oracles, could also identify some
previous unknown faults.

In the article �Diversity-driven unit test generation� [2], Kessel and Atkin-
son explore whether providing multiple implementations of the functionality of65

interest is viable and e�ective to improve results of automated unit test gener-
ation. The idea is to exploit the redundancy available in mainstream software
repositories. More speci�cally, they present and evaluate a hybrid approach
that combines a mainstream unit test generation tool with a software search
engine to generate or amplify test sets. They show that by exploiting the diver-70

sity available in software repositories, such a hybrid approach outperforms the
standalone use of test generation tools.

Within the research work �Discovering boundary values of feature-based ma-
chine learning classi�ers through exploratory datamorphic testing� [3], Zhu and
Bayley address some of the features that hinder the testing of AI applications.75

Building on some previous results, the authors propose and assess three ex-
ploratory testing strategies for machine-learning applications in the framework
of the datamorphism testing methodology. These techniques aim at explor-
ing the data space of a classi�cation or clustering application to discover the
boundaries between the de�ned classes. In addition to including an extensive80

theoretical study of the addressed problem, the work has also practical rele-
vance, as it helps testers understand precisely the behaviour and function of the
software under test. An empirical study of the techniques implemented in the

3



Morphy tool is conducted on a set of controlled experiments and case studies,
which evaluated the capability and cost of the proposed test strategies.85

In the article �Test automation maturity improves product quality � Quan-
titative study of open source projects using continuous integration� [4], Wang
and co-authors investigate the relationship between test automation maturity
and continuous integration (CI) success. They survey main contributors and
mine some repositories (GitHub repository, CI repository, and issue track sys-90

tem) of 37 java-based open source projects. From the analysis they distill three
notable aspects: (a) a potential bene�t of improving test automation matu-
rity level using standard best practices in the literature is improving product
quality and accelerating the release cycle in the CI context, (b) higher levels of
test automation maturity are highly signi�cantly associated with higher product95

quality and, (c) the e�ect of test automation maturity is more signi�cant than
product size, product complexity, product popularity, product age, and team
size on product quality.

Within the research work �A co-evolutionary genetic algorithms approach to
detect video game bugs� [5], Albaghajati and Ahmed present a solution for the100

automated testing of video games software, which can notoriously su�er from
di�erent challenging types of bugs due to its inherent complexity, concurrency
and non-determinism. The proposed approach relies on the collaborative work
of two agents based on genetic algorithms (i.e., co-evolutionary): one agent
generates buggy states, and the other performs a reachability analysisof such105

states using a colored Petri nets representation of the software work�ow. The
work includes several experiments through which the authors show the potential
of the proposed automated approach in e�ectively �nding bugs in di�erent video
games systems.

In the article �SuMo: A mutation testing approach and tool for the Ethereum110

blockchain� [6], Barboni and co-authors propose a novel mutation testing strat-
egy, and a corresponding infrastructure, for assessing the test suites developed to
evaluate smart contracts written for the Ethereum blockchain. Mutation testing
is per se a rather expensive activity that however has been demonstrated to be
one of the most e�ective ways to improve the quality of a test suite. In order115

to reduce the cost of such an activity, a set of design choices has been made so
to reduce, for instance, the generation of possible stillborn mutants (i.e., invalid
mutants that generate compilation errors). At the same time, the framework
makes it possible the selection of a set of operators so to reduce the number of
generated mutants. The authors evaluated the proposed strategy on a wide set120

of real smart contracts, demonstrating the usefulness of the approach.
In the work �Cost-e�ective load testing of WebRTC applications� [7], Gortázar

and co-authors investigate novel strategies for non-functional assessment of the
real-time video communication standard WebRTC 1, and present an open source
framework that can simplify the load testing WebRTC applications in the cloud.125

Speci�cally, for each of the proposed strategies the work studies their perfor-

1see at: https://webrtc.org/

4

https://webrtc.org/


mance and costs expressed in terms of number of users emulated, as well as
CPU and memory used. In addition, the observed outcomes are also compared
with several traditional browser-based strategies.

The contribution titled �Selenium-Jupiter: A JUnit 5 extension for Selenium130

WebDriver� [8] by García and co-authors proposes a novel open-source frame-
work for end-to-end testing of web applications. Speci�cally, Selenium-Jupiter
is a Java-based toolkit that provides seamless integration between the JUnit 5 2

programming model and the features of Selenium WebDriver 3, by expanding
the latter and reducing the code that has to be written by developers. The135

work includes an empirical study highlighting the potentials of the proposed
framework on realistic industrial settings. However, the empirical validation
also reveals few drawbacks of the current version of the framework: the au-
thors critically address these aspects by discussing their motivations and giving
precise suggestions on how to investigate them more in detail.140

Within the research work �Automated test-based learning and veri�cation of
performance models for microservices systems� [9], Camilli and co-authors mit-
igate performance and scalability issues in applications based on microservices.
Speci�cally, the work leverages load testing sessions that are driven by realistic
workload conditions. Starting from individual performance estimations for each145

microservice, the proposed approach feeds a Bayesian inference model in order
to incrementally learn the performance of the whole application under several
operational pro�les and alternative deployment scenarios sampled from produc-
tion. The performance model learned during such in vitro load testing sessions
is then veri�ed in order to assess if the microservices application under test150

meets its non-functional requirements. The work includes an empirical study
evaluating bene�ts and costs of the proposed approach against a benchmark
application.

The article titled �Scalability testing automation using multivariate charac-
terization and detection of software performance antipatterns� [10] by Avritzer155

and co-authors focuses on bene�ts and costs on the inclusion of a machine
learning-based approach for the detection of Software Performance Antipatterns
(SPAs) in traditional Continuous Integration (CI) and Continuous Delivery/De-
ployment (CDD) pipelines. The work identi�es parts of system showing the
largest impact on scalability by leveraging load testing experiments and multi-160

variate statistical analysis on their outcomes. While the study accepts that both
the performance analysis and the SPAs characterization are performed o�ine,
the detection of SPAs is considered an online procedure and the authors pro-
vide recommendations for the e�cient integration of the latter into the CI/CDD
pipelines.165

In the article �Automated Web application testing based by pre-recorded
test cases� [11], Sunman and co-authors discuss some of the drawbacks of fully
automated techniques for testing Web Applications. In this context they pro-

2see at: https://junit.org/junit5/
3see at: https://www.selenium.dev/

5

https://junit.org/junit5/
https://www.selenium.dev/


pose a pragmatic and semi-automated approach based on exploratory testing
practice. Speci�cally their solution takes as input a set of interaction sequences170

captured during exploratory testing activities; by means of such con�gurations
the proposed framework automatically generates further test cases by guiding
the exploration of the target Web Application. Despite a small reduction of au-
tomation, the study highlights that the experience of human testers can be easily
exploited in order to improve the e�ectiveness of the whole testing process.175

Before concluding, we would like to thank �rst the Editors-in-chief of the
Journal of Systems and Software, Paris Avgeriou and David C. Shepherd, for
accepting our proposal, and then Ra�aela Mirandola, the assigned �Special Is-
sue Editor�, for being always responsive and comprehensive all along the long
editorial process. Once again we thank all the many reviewers for their quali-180

�ed service. And, �nally, of course we are grateful to all the authors (of both
accepted and rejected papers) who trusted this initiative and consigned their
work in our hands.

In our role of Guest Editors we are very happy with the obtained result. In
fact, this long journey of collecting scienti�c papers, coordinating their review185

process and summarizing them here has led us to discover many interesting
research directions and to ascertain, once again, how the automation of Software
Testing, in all its facets, is important within the �eld of software engineering.

We sincerely hope you enjoy the papers in this special issue!

References190

[1] E. Kurian, D. Briola, P. Braione, G. Denaro, Automatically generating test
cases for safety-critical software via symbolic execution, Journal of Systems
and Software 199 (C) (mar). doi:10.1016/j.jss.2023.111629.
URL https://doi.org/10.1016/j.jss.2023.111629

[2] M. Kessel, C. Atkinson, Diversity-driven unit test generation, Journal of195

Systems and Software 193 (C) (nov 2022). doi:10.1016/j.jss.2022.

111442.
URL https://doi.org/10.1016/j.jss.2022.111442

[3] H. Zhu, I. Bayley, Discovering boundary values of feature-based machine
learning classi�ers through exploratory datamorphic testing, Journal of200

Systems and Software 187 (2022) 111231. doi:10.1016/j.jss.2022.

111231.
URL https://doi.org/10.1016/j.jss.2022.111231

[4] Y. Wang, M. V. Mäntylä, Z. Liu, J. Markkula, Test automation maturity
improves product quality - quantitative study of open source projects205

using continuous integration, Journal of Systems and Software 188 (2022)
111259. doi:https://doi.org/10.1016/j.jss.2022.111259.
URL https://www.sciencedirect.com/science/article/pii/

S0164121222000280

6

https://doi.org/10.1016/j.jss.2023.111629
https://doi.org/10.1016/j.jss.2023.111629
https://doi.org/10.1016/j.jss.2023.111629
https://doi.org/10.1016/j.jss.2023.111629
https://doi.org/10.1016/j.jss.2023.111629
https://doi.org/10.1016/j.jss.2022.111442
https://doi.org/10.1016/j.jss.2022.111442
https://doi.org/10.1016/j.jss.2022.111442
https://doi.org/10.1016/j.jss.2022.111442
https://doi.org/10.1016/j.jss.2022.111442
https://doi.org/10.1016/j.jss.2022.111231
https://doi.org/10.1016/j.jss.2022.111231
https://doi.org/10.1016/j.jss.2022.111231
https://doi.org/10.1016/j.jss.2022.111231
https://doi.org/10.1016/j.jss.2022.111231
https://doi.org/10.1016/j.jss.2022.111231
https://doi.org/10.1016/j.jss.2022.111231
https://www.sciencedirect.com/science/article/pii/S0164121222000280
https://www.sciencedirect.com/science/article/pii/S0164121222000280
https://www.sciencedirect.com/science/article/pii/S0164121222000280
https://www.sciencedirect.com/science/article/pii/S0164121222000280
https://www.sciencedirect.com/science/article/pii/S0164121222000280
https://doi.org/https://doi.org/10.1016/j.jss.2022.111259
https://www.sciencedirect.com/science/article/pii/S0164121222000280
https://www.sciencedirect.com/science/article/pii/S0164121222000280
https://www.sciencedirect.com/science/article/pii/S0164121222000280


[5] A. Albaghajati, M. Ahmed, A co-evolutionary genetic algorithms approach210

to detect video game bugs, Journal of Systems and Software 188 (2022)
111261. doi:10.1016/j.jss.2022.111261.
URL https://doi.org/10.1016/j.jss.2022.111261

[6] M. Barboni, A. Morichetta, A. Polini, SuMo: A mutation testing approach
and tool for the Ethereum blockchain, Journal of Systems and Software215

193 (2022) 111445. doi:10.1016/j.jss.2022.111445.
URL https://doi.org/10.1016/j.jss.2022.111445

[7] F. Gortázar, M. Gallego, M. Maes-Bermejo, I. Chicano-Capelo, C. Santos,
Cost-e�ective load testing of WebRTC applications, Journal of Systems and
Software 193 (2022) 111439. doi:10.1016/j.jss.2022.111439.220

URL https://doi.org/10.1016/j.jss.2022.111439

[8] B. García, C. D. Kloos, C. Alario-Hoyos, M. M. Organero, Selenium-
Jupiter: A JUnit 5 extension for Selenium WebDriver, Journal of Systems
and Software 189 (2022) 111298. doi:10.1016/j.jss.2022.111298.
URL https://doi.org/10.1016/j.jss.2022.111298225

[9] M. Camilli, A. Janes, B. Russo, Automated test-based learning and veri�-
cation of performance models for microservices systems, Journal of Systems
and Software 187 (2022) 111225. doi:10.1016/j.jss.2022.111225.
URL https://doi.org/10.1016/j.jss.2022.111225

[10] A. Avritzer, R. Britto, C. Trubiani, M. Camilli, A. Janes, B. Russo, A. van230

Hoorn, R. Heinrich, M. Rapp, J. Henÿ, R. K. Chalawadi, Scalability test-
ing automation using multivariate characterization and detection of soft-
ware performance antipatterns, Journal of Systems and Software 193 (2022)
111446. doi:10.1016/j.jss.2022.111446.
URL https://doi.org/10.1016/j.jss.2022.111446235

[11] N. Sunman, Y. Soydan, H. Sözer, Automated web application testing driven
by pre-recorded test cases, Journal of Systems and Software 193 (2022)
111441. doi:10.1016/j.jss.2022.111441.
URL https://doi.org/10.1016/j.jss.2022.111441

7

https://doi.org/10.1016/j.jss.2022.111261
https://doi.org/10.1016/j.jss.2022.111261
https://doi.org/10.1016/j.jss.2022.111261
https://doi.org/10.1016/j.jss.2022.111261
https://doi.org/10.1016/j.jss.2022.111261
https://doi.org/10.1016/j.jss.2022.111445
https://doi.org/10.1016/j.jss.2022.111445
https://doi.org/10.1016/j.jss.2022.111445
https://doi.org/10.1016/j.jss.2022.111445
https://doi.org/10.1016/j.jss.2022.111445
https://doi.org/10.1016/j.jss.2022.111439
https://doi.org/10.1016/j.jss.2022.111439
https://doi.org/10.1016/j.jss.2022.111439
https://doi.org/10.1016/j.jss.2022.111298
https://doi.org/10.1016/j.jss.2022.111298
https://doi.org/10.1016/j.jss.2022.111298
https://doi.org/10.1016/j.jss.2022.111298
https://doi.org/10.1016/j.jss.2022.111298
https://doi.org/10.1016/j.jss.2022.111225
https://doi.org/10.1016/j.jss.2022.111225
https://doi.org/10.1016/j.jss.2022.111225
https://doi.org/10.1016/j.jss.2022.111225
https://doi.org/10.1016/j.jss.2022.111225
https://doi.org/10.1016/j.jss.2022.111446
https://doi.org/10.1016/j.jss.2022.111446
https://doi.org/10.1016/j.jss.2022.111446
https://doi.org/10.1016/j.jss.2022.111446
https://doi.org/10.1016/j.jss.2022.111446
https://doi.org/10.1016/j.jss.2022.111446
https://doi.org/10.1016/j.jss.2022.111446
https://doi.org/10.1016/j.jss.2022.111441
https://doi.org/10.1016/j.jss.2022.111441
https://doi.org/10.1016/j.jss.2022.111441
https://doi.org/10.1016/j.jss.2022.111441
https://doi.org/10.1016/j.jss.2022.111441

