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Abstract. The use of formal methods can reduce the time and costs as-
sociated with railway signalling systems development and maintenance,
and improve correct behaviour and safety. The integration of formal
methods into industrial model-based development tools has been the sub-
ject of recent research, indicating the potential transfer of academic tech-
niques to enhance industrial tools. This paper explores the integration of
an academic formal verification tool, UML Model Checker (UMC), with
an industrial model-based development tool, Sparx Enterprise Architect
(Sparx EA). The case study being analyzed is a railway standard inter-
face. The paper demonstrates how formal verification techniques from
academic tools can be integrated into industrial development practices
using industrial tools, and how simulation in Sparx EA can be derived
from traces generated by the UMC formal verification activity. From this
experience, we derive a set of lessons learned and research challenges.
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1 Introduction

The adoption of formal methods and railway standard interfaces has been iden-
tified as crucial in reducing the time for developing and delivering railway sig-
nalling systems, as well as decreasing the high costs associated with procurement,
development, and maintenance [15, 12, 47]. Formal methods tools are essential
to ensure correct behaviour, interoperability of railway interfaces, and safety.
Formal methods are mainly used and developed by academia, and their uptake
in the railway industry has been the subject of recent studies [31, 33, 55, 36, 38,
41, 17, 10].

Model-based development is an industrially adopted software engineering
technique that supports the creation of models to represent a system’s behaviour
and structure. These models are used to generate code, documentation, test
cases, system simulations, and perform other tasks. Examples of commercial
tools are PTC Windchill Modeler SySim [5], Sparx Systems Enterprise Archi-
tect [6], Dassault Cameo Systems Modeller [2]. These tools are often based on the
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Unified Modeling Language (UML) OMG standard [49, 50], which is considered
a semi-formal method. Semi-formal methods owe their name to their lack of a
formal semantics. The semantics of semi-formal methods is informally described
in natural language documents (e.g., [51]). This informal semantics suffers either
from semantic aspects intentionally left open by the standards or unintentional
ambiguities [9, 27, 21, 26]. As a result, the same semi-formal model executed on
different simulators may behave differently.

There is a growing body of literature on the integration of formal meth-
ods techniques into model-based development tools (e.g., [40, 52, 54, 13, 56,
20, 59, 23, 19, 34]), and the formalization of UML state diagrams has been
recently surveyed in [9]. This integration shows how techniques developed in
academia—typically formal—can be transferred to enhance current industrial
tools—generally semi-formal.

This paper explores the combination of an academic formal verification tool
with an industrial model-based development tool to develop a railway inter-
face. The formal verification tool used is the UML Model Checker (UMC),
while the selected model-based development tool is Sparx Enterprise Architect
(Sparx EA). The models developed using the two tools are related, with the
Sparx EA model used for model-based development activities and the UMC
model used for formal verification, in particular model checking.

This paper builds upon previous activities carried out during the Shift2Rail
project 4SECURail [7]. The case study being analyzed is a fragment of the
UNISIG Subset 039 [61] and Subset 098 [60] standard interface called the Com-
munication Supervision Layer (CSL). It is borrowed from the first release of the
“Formal development Demonstrator prototype” of the 4SECURail project [43,
53] and is specifically dedicated to the control of the communication status be-
tween two neighboring Radio Block Centre (RBC). The paper aims to demon-
strate how formal verification techniques from academic tools can be integrated
into industrial development practices using industrial tools. In particular, [9] re-
ports that “counterexamples are rarely mapped back to the original models” and
more specifically that “UMC could be used to verify UML models”. We use UMC
to formally verify the UML state diagrams of Sparx EA and the traces generated
by the UMC verification phase are reproduced as simulations in Sparx EA.

The contributions of this paper are: i) a set of UML notation constraints
oriented towards maintaining the correspondence between Sparx EA and UMC
models; ii) a set of actionable rules to map the two notations; iii) the mapping of
traces generated by the UMC formal verification into simulations in Sparx EA;
iv) a set of lessons learned and challenges derived by applying the proposed
methodology to a case study from the railway industry.

Structure of the paper We start with the related work in Section 2. Back-
ground on the used tools is in Section 3. Section 4 discusses the methodology for
connecting the semi-formal and formal models. A concrete example showing how
the methodology is applied to a case study is in Section 5. The lessons learned,
limitations and challenges are discussed in Section 6. Section 7 concludes the
paper and discusses future work.
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2 Related work

Several works have been carried out in the railway domain concerning the usage
of formal and semi-formal notations to represent a wide diversity of systems [31],
according to the formal model-based development paradigm [28].

Among them, Chiappini et al. [25] consider a portion of the ERTMS/ETCS
system as case study and propose an approach to manually translate natural lan-
guage requirements into an enhanced UML language. The UML representation
is then translated and verified by means of the NuSMV model checker.

Ferrari et al. [29, 32] start from requirements expressed by means of UML
component diagrams, and use Simulink/Stateflow, with the aid of Simulink De-
sign Verifier, to verify the model behaviour of an automatic train control system.
Similar to us, the authors also define a set of modelling guidelines and notation
restrictions to remove ambiguities from the models, with the goal of achieving
clearer models and generated code.

In [48] Miller et al. report their infrastructure to translate Simulink models
into different formal languages, including SPIN and NuSMV, to perform formal
verification. Model translation is also the target of Mazzanti et al. [46], who also
report a method to increase confidence in the correctness of the transformation.
The method starts from UML state machines, which are translated into multiple
formal notations.

Still on the translation from UML-like models to other formal notations,
recent works have focused on transforming these models into mCRL2 [59, 20].
Many studies also focus on the translation from UML into the B/Event-B no-
tation [57, 58], with formal verification performed by means of Atelier B and
ProB [22].

A recent set of works by Mazzanti and Belli [18, 47] focuses on the incre-
mental modelling of natural language requirements as UMC state machines, and
associated formal validation. Initially, a UML state machine modelling the set
of requirements under analysis is created. This initial model is not targeting
any specific tool and it contains pseudo-code. Once consolidated, the state ma-
chine model will eventually be written using the UMC syntax. In [18, 47] it is
showed how, under certain notation restrictions, it is possible to automatically
translate the state machines from UMC to other verification tools such as ProB
and CADP [35], where the models are formally verified to be equivalent. In [18]
it is discussed how the formal verification of UMC state machines can be used
independently to transform natural language requirements into formally verified
structured natural language requirements.

Similarly to [18, 47], in this paper we use a preliminary version of the same
case study and a relaxed version of the restrictions imposed on the UML state
machines. Moreover, our work complements [18, 47] by showing how the de-
veloped UMC models can be imported into Sparx EA to enable various tasks
other than formal verification, including generating diagrams, documentation,
code, and interactive simulations. More details on the rationale for the choice
of the case study of 4SECURail, the tools, and the prototype architecture are
in [44, 43, 53, 45].
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3 MBSD, Sparx Enterprise Architect and UMC

Model-Based Software/System Development (MBSD) is a methodology for cre-
ating software and hardware artifacts using models expressed as graphical di-
agrams. Models are used throughout the development cycle. The development
process is guided by a model of the software architecture, which represents a
semi-formalization of the system’s abstract level without implementation de-
tails. Semi-formal models can be complemented by their formal specifications,
enabling formal techniques like model checking or theorem proving. Early de-
tection of errors is possible by verifying the model against requirements using
techniques such as model checking.

UML, an OMG standardised notation [49, 50], is the standard for many
MBSD environments. Models support modular design by representing different
views of the system at distinct levels, such as requirements definition, implemen-
tation, and deployment. Code and test generation ensures that the implementa-
tion is derived directly from the models with traceability. In this paper, we will
focus on a specific subset of UML, detailed in Section 4.

In UML, a model consists of multiple classes, each with its own set of at-
tributes. Objects are created by instantiating these classes and assigning val-
ues to the attributes using the object-oriented paradigm. A classifier behaviour
can be assigned to a class in the form of a UML state machine. A state ma-
chine can be triggered by events, e.g., signals. The state machine includes vari-
ous states and transitions connecting them. Transitions have labels of the form
trigger[conditions]/effects, where the conditions are on the variables of
the class and the trigger arguments, and the effects can modify these variables
and generate outgoing signals. Two examples of state machines, accepted by the
tools UMC and Sparx EA, are in Figure 1 and Figure 2.

3.1 Sparx Enterprise Architect

Sparx Enterprise Architect is an MBSD tool based on OMG UML [49]. It was
selected after an initial task was conducted during the 4SECURail project to test
and gather information about factors such as licensing costs, customer support,
and training [43]. The most desirable feature was the modelling and simulation
of state machine diagrams.

MBSD tools differ in the way in which UML state machines can be composed.
Different MBSD tools provide different solutions. Sparx EA [6] is an MBSD tool
that offers an Executable State Machine (ESM) artifact specifically designed
for simulating the composition of different state machines. These machines can
interact through a straightforward instruction for sending an event, and do not
require excessive notation. An example of ESM for composing the state machine
in Figure 2 with other state machines is depicted in Figure 3. ESM provide
all the necessary elements for easy translation to/from a formal specification
amenable to verification and graphical display of an informal specification, as
well as simulation.
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In addition to simulating a composition of state machines, the standard sim-
ulation engines of Sparx EA can be used to interact with each machine indi-
vidually. Source code is automatically generated from such ESM models, which
is then executed/debugged. It is possible to generate source code in JavaScript,
Java, C, C++ and C#. The source code also contains the implementation of
the behavioural engine of state diagrams, for example the pool of events for
each state machine, the dispatching method and so on. Once designed, a system
composed of several interacting state machines can be simulated interactively,
by sending triggers, to observe its behaviour. The ESM is used for generating
code, and the simulation gives an interactive graphical animation of the system
being debugged. In this paper, we used Sparx EA unified edition version 15.2
build 1559.

3.2 UML Model Checker

The UML Model Checker (UMC) [39, 8, 16] is an open-access tool explicitly
oriented to the fast prototyping of systems constituted by interacting state ma-
chines. UMC allows the user to design a UML state diagram using a simple
textual notation, visualise the corresponding graphical representation, interac-
tively animate the system evolutions, formally verify (using on-the-fly model
checking) UCTL [16] properties of the system behaviour. Detailed explanations
are given when a property is found not to hold, also in terms of simple UML
sequence diagrams. With UMC it is possible to check if/how a given transition
is eventually fired, if/when a certain signal is sent, if/when a certain variable is
modified, or a certain state reached.

The formal semantics of UMC models is provided by an incremental con-
struction of a doubly labelled transition system [16]. In addition, for a restricted
set of UMC notation this can be given through the automatic translation into the
LOTOS NT language [24, 37, 42] described in [18, 47, 45]. The strong bisimilarity
of source and target models can be proved with, e.g., mCRL2 ltscompare [3] or
CADP bcg cmp [1]. Note that UMC is an academic tool that is primarily utilized
for research and teaching. We used UMC version 4.8f (2022).

4 Methodology

In this section, we present the methodology used to connect the UMC and
Sparx EA models. It is worth noting that the proposed methodology works in
both directions. It is possible to use a forward engineering method by analyzing
the model in UMC first and then translating it into Sparx EA for development.
Alternatively, it is possible to use a reverse engineering approach, and if the
Sparx EA models meet the specified condition described below, they can be
translated into UMC for formal verification. The rationale is that the two tools
are complementary and their features shall be used jointly. While Sparx EA
supports typical MBSD activities, such as interactive simulation and code gen-
eration, UMC supports formal verification.
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UMC supports a subset of UML State Machine Diagrams, polished from
some syntactic sugar notations, and each construct can be mapped one-to-one
to a construct in Sparx EA, if the Sparx EA model follows the same restrictions.
Relating the UMC model and the Sparx EA model is almost straightforward
when notation constraints are enforced. The following adopted restrictions on
the model are exploited to keep the notation light and as much independent
as possible from UML technicalities. Indeed, many of the constructs that are
discarded are syntactic sugar that can be expressed using a lighter notation.

Syntactic Restrictions on UML State Machines

– no entry, exit, or do behaviour is present in the states of the model
(these behaviors can be equivalently expressed in state transitions),

– interaction happens using only signals, and no operation calls are used,
– only one-to-one interactions are used, i.e., no signals broadcast,
– conflicts in enabled transitions are only allowed in the environment,
– no timing behaviour is present (time elapsing is explicated using a TICK

event), no internal and local transitions are used, no hierarchical states
are used, no history, fork, join and choice nodes are used.

Environment In Sparx EA interactive simulations the human user acts as the
environment. Consider, for example, a system composed of two components C1
and C2. When only one of the two components (e.g., C1) is fully modelled, then
events from C2 can be considered part of the environment of C1 and manually
triggered. In model checking tools like UMC a (possibly non-deterministic) envi-
ronment needs to be explicitly modelled to obtain a fully closed system on which
the verification is automatic.
Semantics of Sparx ESM and UML models In the context of UML State
Machine models, certain aspects of the model’s behaviour are left unspecified by
the ISO standard [49]. For example, the order in which events occur is left open
to interpretation. As a result, it is difficult to formally verify the accuracy of a
translation from a formal to a semi-formal model and vice-versa, from the semi-
formal to the formal one. Indeed, the Sparx EA models do not have a formal
semantics and Sparx EA does not have the ability to exhaustively generate the
state space of the model. In our case, the correctness of the translation (i.e., the
correspondence between the formal and semi-formal model) has been validated
informally, and by translating traces derived from UMC proofs into simulations
in Sparx EA (cf. Section 5).

The UML state diagrams in both UMC and Sparx EA are avoiding the pres-
ence of aspects with ambiguous semantics. Sparx EA provides a way to inspect
and review the code generated by an ESM to disambiguate the semantics choices
left open by the UML standard. Thus, a code review has been performed to check
that the semantics of Sparx EA and UMC state machines are aligned. Regarding
how events are ordered in each pool of events, both UMC and Sparx EA use a
first-in-first-out policy. In Sparx EA, the scheduling of state machines and the
dispatching of messages are fixed, with each state machine completing its run-
to-completion cycle before another one starts. Conflicts in enabled transitions
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are not present in the Sparx model (i.e., the model is deterministic), so there
is no need to specify a choice strategy. However, UMC allows for all orders of
scheduling, it interleaves all run-to-completions steps of different state machines,
and permits all possible behaviours obtained by fixing a specific strategy for se-
lecting one among many enabled transitions (UMC models only allow conflicts
in the environment, which is not translated in Sparx EA). Thus, the semantics
of UMC includes the semantics of Sparx ESM, as well as all semantics obtained
by changing the scheduling order. If a safety property holds in the UMC model,
it will also hold in the Sparx model.

The effects of each transition contain Java code, limited to performing arith-
metic operations on variables, sending signals, and reading values. These restric-
tions on Sparx models are necessary to disambiguate the semi-formal semantics
and proceed in external formal verification using model checking.
Rules for relating the UMC model with the Sparx EA model We now
describe the rules to relate a UMC model with a Sparx EA model. An example
of application of the rules is in the next section, where Figure 1 and Figure 2
show how the state machines of Sparx EA and UMC are related.

1) Each class in UMC corresponds to a class in Sparx EA.
2) Attributes of a class in UMC correspond to attributes of the corresponding
class in Sparx EA.
3) Each Object in UMC, with its variables’ instantiation, is mapped into a
Property of an ESM (i.e., an instantiation of class), to where the values of the
attributes can be instantiated.
4) Both UMC and Sparx EA classes have a relation “has-a” with other classes,
in such a way that every object has a reference to other objects to whom it is
interacting with.
5) Each class in UMC is specified as a state machine. Similarly, in Sparx EA a
classifier behaviour will be assigned to each class in the form of a state machine.
6) States and transitions of a machine in UMC are in one-to-one correspondence
with those of a machine in Sparx EA.
7) Signals that are attributes of each class in UMC are in correspondence with
global trigger events in the Sparx model, accessible by each state machine. These
events are of type Signal and have the same parameters as in UMC.
8) In UMC the sending of a signal with, for example, two parameters, is per-
formed using the instruction Object.Signal(value1, value2) where Object

is the receiver object argument, Signal is the signal invoked in that object,
and value1 and value2 are the values to be passed as arguments. In an ESM,
the objects are connected by connectors typed with the relation “has-a” coming
from the class diagram. Each end of a connector identifies the partner of a com-
munication. The above send operation is performed in Sparx EA with the macro
%SEND EVENT("TRIGGER.sig(value1,value2)",CONTEXT REF(RECIPIENT))%;

where sig denotes the specification of the signal assigned to the trigger (i.e.,
names and types of the parameters), TRIGGER corresponds to Signal in UMC,
and RECIPIENT corresponds to Object in UMC. RECIPIENT is the identifier pro-
vided in the corresponding connector end of the ESM. In case values of signals
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must be accessed inside the guard or effect of a transition, in UMC this can be
done by simply accessing the parameter with its declared name. In Sparx EA
values of signals are accessed as follows. In the effect of a transition, the instruc-
tion signal.parameterValues.get("arg") is used, where arg is the name of
the parameter of the signal. If the value is accessed in a condition, the above
command becomes event.signal.parameterValues.get("arg"). We also note
that this syntax is specific to Java code generation.

5 Case Study

The chosen case study is a subset of the RBC/RBC handover protocol bor-
rowed from the 4SECURail project [43, 53]. This protocol is a crucial aspect of
the ERTMS/ETCS train control system, in which a Radio Block Centre (RBC)
manages trains under its area of supervision. An RBC is a wireless component
of the wayside train control system that manages the trains that can be reached
from its assigned geographical area (i.e., the area of supervision). When a train
approaches the end of an RBC’s area of supervision, a handover procedure with
the neighbouring RBC must take place to manage the transfer of control respon-
sibilities. Since neighbouring RBCs may be manufactured by different providers,
the RBC/RBC interface must ensure interoperability between RBCs provided
by different suppliers. The selected subset of the RBC/RBC protocol is the Com-
munication Supervision Layer (CSL), responsible for opening/closing a commu-
nication line between RBCs and maintaining connection through life signs. The
CSL’s functional requirements are specified in UNISIG SUBSET-039 [61] and
UNISIG SUBSET-098 [60]. In particular, two sides are identified: the Initiator
CSL (ICSL), and the Called CSL (CCSL). The initiator is the RBC responsible
for opening the connection. The layers above and below the CSL are called, re-
spectively, RBC User Layer and Safe intermediate Application sub-Layer (SAI).
In this paper, these other layers are treated as external environment and thus
are not specified. All models and other artifacts are available in [11].

Formal and Semi-formal Models We now describe some aspects of the
CSL model, focusing on the ICSL. The state machine modeling the ICSL is
provided both as a formal model in UMC (see Figure 1) and as a semi-formal
model in Sparx EA (see Figure 2). Each transition is labeled with a name (e.g.,
R1) to keep track of the correspondence between the two models.

The ICSL state machine is composed of two states NOCOMMS (the two RBC
are disconnected) and COMMS (the two RBC are connected). The initial state is
NOCOMMS. From state NOCOMMS, a counter connect timer is incremented at each
reception of a TICK signal from the clock (R6). If the threshold max connect timer

is reached, a request for connection SAI CONNECT REQUEST is signaled to the SAI
(which will be forwarded to the CCSL), and the counter is reset (R5).

The signal of connection SAI CONNECT CONFIRM (signaling the connection of
the CCSL) coming from the SAI triggers the transition to state COMMS (R7). In
state COMMS two counters are used. A counter receive timer is used to keep
track of the last message received. A counter send timer is used to keep track
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R1
receive_timer := 0;
send_timer := 0;
connect_timer := 
       max_connect_timer;

icsl_tick  [connectTimer = 
                max_connectTimer ] /
 Timer.ok_icsl;
 connect_timer := 0;
 SAI.SAI_CONNECT_request;

icsl_tick [connectTimer <    
                 max_connect_timer ] /
  connect_timer := connect_timer +1;
  Timer.ok_icsl;

COMMS

NOCOMMS

RBC_User_Data_request(udata), 
SAI_DISCONNECT_indication.
SAI_Error_report,
SAI_DATA_indication(mtype,udata)

SAI_CONNECT_confirm / 
  connect_timer := max_connect_timer;
  RBC.RBC_User_Connect_indication;

SAI_DISCONNECT.indication /
  RBC.
     RBC_User_disconnect_indication;
  receive_timer := 0;
  send_timer := 0;

icsl_tick [receiveTimer = 
max_receiveTimer] / 
  receive_timer := 0;
  send_timer := 0;
  Timer.ok_icsl;
  RBC.RBC_User_Disconnect_indication;
  SAI.SAI_DISCONNECT_request;

RBC_User_Data_request(udata) /
  send_timer := 0;
  SAI.SAI_DATA_request(Data,udata) ;

icsl_tick [(receive_timer < max_receive_timer)
   and (send_timer < max_send_timer)] /

  Timer.ok_icsl;
  send_timer := send_timer +1;
  receive_timer := receive_timer+1 icsl_tick [(receive_timer < max_receive_timer)

   and (send_timer = max_send_timer)] /
  Timer.ok_icsl;
  send_timer := 0;
  receive_timer := receive_timer+1
  SAI.SAI_DATA_request(Lifesign,nodata) 

SAI_DATA_indication(mtype,udata)
                 [mtype != Lifesign] /
  receive_timer := 0;
  RBC.RBC_User_Data_indication(udata) ;

SAI_DATA_indication(mtype,udata) 
          [mtype = Lifesign] /
  receive_timer := 0;

SAI_Error_report

R3
R2 R4 R5R6

R7

R8R9 R10 R11
R12

R13

R14 R15

Fig. 1. The Initiator Communication Supervision Layer State Machine of UMC

of the last time a message was sent. These counters are incremented at the
reception of a signal from the clock (R9). Each time a message is received from
the SAI, the receive timer is reset (R11,R12). Moreover, if the message is not
of type LifeSign, it is forwarded to the user (R11). Similarly, if a message is
received from the user, it is forwarded to the SAI (R8), and the send timer

is reset. Whenever the threshold max send timer is reached (R10), a LifeSign

message is sent to the SAI (which be forwarded to the CCSL) and send timer

is reset. This message is used to check if the connection is still up. Whenever
the threshold max receive timer is reached, the connection is closed because
no message has been received within the maximum allowed time. In this case, a
signal of disconnection is sent to both the user and the SAI (R15). If the message
of disconnection is received from the SAI (R14), then it is only forwarded to the
user and the connection is closed.

Mapping We now discuss how the rules from Section 4 have been applied to
provide a correspondence between the two models in Figure 1 and Figure 2. The
class diagram (not displayed here) contains the classes I CSL, C CSL, SAI and
RBC User. An additional class TIMER is used to model the elapse of time, and it
is part of the environment. These classes and their attributes are the same for
both Sparx EA and UMC, according to rule 1 and rule 2. Following rule 4, the
classes I CSL, C CSL both have relations “has-a” with TIMER, RBC USER and SAI.
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stm I_CSL

COMMS

NOCOMMS

Initial R1-R4

R6

R5

R15R7

R14

R13 R9
R10

R8 R11

R12

TICK [this.receive_timer < this.max_receive_timer &&
this.send_timer<this.max_send_timer]
/this.send_timer = this.send_timer+ 1;

this.receive_timer = this.receive_timer+1;
%SEND_EVENT("OK_TICK",CONTEXT_REF(TIMER))%;

SAI_ERROR_REPORT

SAI_CONNECT_CONFIRM
/this.connect_timer=this.max_connect_timer;
%SEND_EVENT
("RBC_USER_CONNECT_INDICATION",CONTEXT_REF
(RBC_USER))%;

RBC_USER_DATA_REQUEST,SAI_DISCONNECT_INDICATION,SAI_ERROR_REPORT,SAI_DATA_INDICATION

TICK [this.connect_timer==this.max_connect_timer]
/this.connect_timer = 0;
%SEND_EVENT("OK_TICK",CONTEXT_REF(TIMER))%;
%SEND_EVENT("SAI_CONNECT_REQUEST",CONTEXT_REF
(SAI))%;

SAI_DATA_INDICATION [!
event.signal.parameterValues.get
("mtype").equals("LifeSign")]
/this.receive_timer=0;
%SEND_EVENT
("RBC_USER_DATA_INDICATION.sig_user
("+signal.parameterValues.get
("udata")+")",CONTEXT_REF(RBC_USER))%;

TICK [this.receive_timer<this.max_receive_timer &&
this.send_timer==this.max_send_timer]
/this.send_timer = 0;
this.receive_timer = this.receive_timer+1;
%SEND_EVENT("OK_TICK",CONTEXT_REF(TIMER))%;
%SEND_EVENT("SAI_DATA_REQUEST.sig_sai
(LifeSign,nodata)",CONTEXT_REF(SAI))%;

TICK [this.connect_timer<this.max_connect_timer]
/this.connect_timer = this.connect_timer+1;
%SEND_EVENT("OK_TICK",CONTEXT_REF
(TIMER))%;

RBC_USER_DATA_REQUEST
/this.send_timer=0;
%SEND_EVENT
("SAI_DATA_REQUEST.sig_sai
(Data,"+signal.parameterValues.get
("udata")+")",CONTEXT_REF(SAI))%;

SAI_DISCONNECT_INDICATION
/%SEND_EVENT("RBC_USER_DISCONNECT_INDICATION",CONTEXT_REF
(RBC_USER))%;
this.receive_timer=0;
this.send_timer=0;

/this.connect_timer=this.max_connect_timer;
this.receive_timer=0;
this.send_timer=0;

SAI_DATA_INDICATION
[event.signal.parameterValues.get
("mtype").equals("LifeSign")]
/this.receive_timer = 0;

TICK [this.receive_timer==this.max_receive_timer]
/
this.receive_timer=0; this.send_timer=0;
%SEND_EVENT("OK_TICK",CONTEXT_REF(TIMER))%;
%SEND_EVENT
("RBC_USER_DISCONNECT_INDICATION",CONTEXT_REF
(RBC_USER))%;
%SEND_EVENT
("SAI_DISCONNECT_REQUEST",CONTEXT_REF(SAI))%;

Fig. 2. The Initiator Communication Supervision Layer State Machine of Sparx EA
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We recall that in Sparx EA the environment classes TIMER, SAI and RBC USER

are just stubs with a dummy behaviour assigned to them.
The ESM artifact is displayed in Figure 3. The ESM illustrates the composi-

tion of different class instances. There are two instantiations of the environment
classes RBC USER and SAI, one for each CSL. There is one instantiation of the
environment class TIMER for both CSL. The objects C CSL and I CSL are instan-
tiating their respective classes, and they are initialising their attributes. These
objects are the same in Sparx EA and UMC according to rule 3.

Moreover, following rule 4, each CSL will refer to its RBC USER, SAI and
TIMER using the context references RBC USER, SAI and TIMER, respectively, as
depicted in the ends of the corresponding connectors in Figure 3.

According to rule 5, the behaviour of the classes I CSL and C CSL is specified
by state machines in both UMC and Sparx EA. The states and transitions of
these state machines are in correspondence according to rule 6. Following rule 7,
the signals with their parameters are also in correspondence.

Finally, we use the transition R11 as an example for showing how rule 8 is
applied. In UMC, SAI DATA indication(mtype,udata) is the trigger of R11.
In Sparx EA, the trigger SAI DATA INDICATION does not report its parameters,
which are declared separately in the type of the signal associated with the trig-
ger. The parameters have the same name in both Sparx EA and UMC. In UMC,
the condition of R11 is mtype != LifeSign. Indeed, it checks whether the type
of the received message is not a life sign. In Sparx EA, the condition of R11 is
!event.signal.parameterValues.get("mtype").equals("LifeSign"). We re-
mark that Sparx EA uses Java as code for the conditions and the effects (other
languages are also supported, e.g., C++). The code present in the effects and
conditions (with the exception of the macros) will be injected into the gen-
erated source code as is. Finally, RBC.RBC User Data indication(udata) and
receive timer:=0 are the instructions of the effect of R11 in UMC. Basically,
the message received by the SAI is forwarded to the user and the timer is reset.
In Sparx EA, the effect of R11 also contains two instructions. The timer is reset
with the instruction this.receive timer=0;. The signal is forwarded with:

%SEND EVENT("RBC USER DATA INDICATION.sig user("+signal.

parameterValues.get("udata")+")",CONTEXT REF(RBC USER))%;

we note that the macro is mixed with Java code. Indeed, it uses the code
signal.parameterValues.get("udata") to read the field udata of the signal
received by the SAI. The signal sig user only contains one parameter (udata)
and is assigned to the trigger RBC USER DATA INDICATION.

5.1 Model Checking Sparx EA Models

We now show one of the benefits of our approach, i.e., the formal verification
of semi-formal models. We remark that, generally, MBSD tools such as Sparx
EA are not equipped with facilities for performing formal analyses. Through the
mapping described in Section 4, it becomes possible to perform model checking of
Sparx EA models by exploiting the connection with UMC. The model checking
of a formal property produces a trace showing that the property holds or is
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«executable statemachine»
RBC2RBC SI: RBC2RBC SI

C_CSL: C_CSL

max_receive_timer = 1
max_send_timer = 1

C_RBC_USER:
RBC_USER

C_SAI: SAI

I_CSL: I_CSL

max_receive_timer = 1
max_connect_timer = 3
max_send_timer = 1

I_RBC_USER:
RBC_USER

I_SAI: SAI

TIMER: TIMER

:ICSL2SAI

+SAI

:CCSL2RBCUSER

+RBC_USER

:CCSL2SAI

+SAI

:ICSL2TIMER
+TIMER

:CCSL2TIMER
+TIMER

:ICSL2RBCUSER

+RBC_USER

Fig. 3. The Executable State Machine of Sparx EA, showing the composition of the
various instantiations of the state machines

violated. We show below how the produced trace is simulated in the Sparx EA
semi-formal model.

Reproducing UMC traces in Sparx EA has two main benefits. Firstly, it
allows the reproduction of the detected issues in Sparx EA. This is generally
desirable for interacting with stakeholders that are only knowledgeable of the
used industrial tool but are not aware of the underlying formal verification that
has been carried out. The second goal is to validate the correspondence between
the semi-formal and formal models presented in this paper. Indeed, if the trace is
not reproducible in Sparx EA then we have detected a misalignment between the
semantics of the formal and semi-formal models. Even if the correspondence is
sound, this is still possible since UMC overapproximates all possible behaviours
of Sparx EA. Therefore, an issue signalled by UMC might not be detectable by
only relying on the interactive simulation capabilities provided by Sparx EA.
Indeed, the simulation engine shows only a subset of all behaviours that the real
system may have because, e.g., it fixes the order in which state machines are
executed.

We now provide an example of a temporal property formally verified with
UMC, using the models in Figure 1 and Figure 2. We need to mutate the mod-
els to cause the violation of an invariant, in such a way that a trace show-
ing the violation is generated by UMC. This is typical of model-based muta-
tion testing [14], where mutations are applied to the model to measure the ef-
fectiveness of the validation. We apply a mutation changing the condition of
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Timer

Timer

I_CSL

I_CSL

I_SAI

I_SAI

R2 icsl_tick;

R5 ok_icsl;

R5 SAI_CONNECT_request;

R15 SAI_CONNECT_confirm;

R2 icsl_tick;

R9 ok_icsl;

R21 SAI_DATA_indication(LifeSign,0);

R2 icsl_tick;

R9 ok_icsl;

Firefox http://www.plantuml.com/plantuml/svg/fP51IyD048Nl-HK37ghK...

1 di 1 20/04/23, 16:06

send TICK to I_CSL
send SAI_CONNECT_CONFIRM to I_CSL
send TICK to I_CSL
send SAI_DATA_INDICATION.sig_sai

(LifeSign,nodata) to I_CSL
send TICK to I_CSL

Fig. 4. On the left, a fragment of the sequence diagram generated by UMC showing
that the property EF sendTimer Error holds. On the right, the instructions needed to
reproduce the trace in Sparx EA interactive simulation

transition R9 from a conjunction to a disjunction. The mutated condition be-
comes (in UMC) (receive timer < max receive timer) or (send timer <

max send timer). The introduced mutation enables a scenario where send timer

exceeds its maximum threshold max send timer. This violation can be detected,
for example, by verifying the property EF sendTimer Error where EF is a tem-
poral operator stating that something will eventually happen in the future, and
sendTimer Error is defined by the instruction Abstractions {State:
I CSL.send timer > I CSL.max send timer -> sendTimer Error} as a state
property holding when the send timer has a value greater than max send timer.

Figure 4 (left) shows a fragment of the sequence diagram automatically gen-
erated by UMC after model-checking the property (the full sequence diagram
is in [11]). The sequence diagram graphically depicts a trace proving that the
property holds in the model with the current set-up of variables (displayed in
Figure 3). This means that the counter exceeds its maximum allowed value.
Figure 4 (left) only highlights the necessary environment interactions that are
needed in Sparx EA to reproduce the trace. The first TICK event received causes
I CSL to request a connection (R5), which is confirmed by I SAI (R7), causing
the switch to state COMMS. At the reception of the second TICK, the transition
R9 is executed, which increments both send timer and receive timer to their
maximum allowed value (i.e., 1). A life sign is subsequently received, which
causes the reset of receive timer (R12). After that, another tick is received,
triggering again the mutated transition R9, causing send timer to exceed its
maximum allowed value.

To reproduce the trace in Sparx EA, the interactive user assumes the role
of the environment. In particular, all signals sent from the environment to one



14 D. Basile, F.Mazzanti, A. Ferrari

Fig. 5. A portion of the Sparx EA simulation where sendTimer Error is true

of the machines will be replicated by the interactive user. Indeed, Sparx EA
simulations permits sending these signals from the simulation console. As showed
in Figure 4 (left), all signals sent to the I CSL are coming from the environment
components, and thus will be replicated by the interactive user. In particular, the
instructions inserted at console during the simulation are displayed in Figure 4
(right). Each instruction causes all machines in the model to execute their run-
to-completion cycle. After all instructions are executed, the simulation reaches
a state where I CSL.send timer = 2 (see Figure 5), proving the error. A short
video reproducing this experiment and the logs of the simulation are in [11].

6 Lessons Learned and Limitations

The experience of connecting the UMC formal model and the Sparx EA semi-
formal model led to a set of lessons learned, which are reported below.

Modelling Restrictions. The introduction of modelling restrictions was funda-
mental to avoid ambiguities that are present in the informal semantics of UML
state machines. The adoption of the proposed restrictions enabled the connection
of Sparx EA semi-formal models with UMC formal models. Moreover, thanks to
a limited and simple set of notation constraints, not only the translation process
was straightforward, but the models appeared cleaner and easier to inspect. Our
notation constraints are stricter than those used in [29, 32], therefore, we con-
jecture that our restricted UMC state machines could also be easily modelled as
Simulink/Stateflow state charts.
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Complementary Tools. UMC and Sparx EA played complementary roles in
this experience, and have been developed in academia and industry, respectively.
Their combined usage allows the cross-fertilization of academic techniques and
industrial practices. This allowed us to check fine-grained temporal properties
that were hard to verify by only using the simulation capabilities offered by
Sparx EA. On the other hand, the Sparx EA model represents the starting point
of the model-based development activity (including visual simulation) that will
eventually lead to the final product.

Bidirectional approach. Whilst generally the literature proposes unidirec-
tional approaches (cf. Section 2), our methodology supports both forward and
reverse engineering. This is also helpful in maintaining aligned the formal and
semi-formal artifacts during the evolution of the system to newer versions.

Tool Competence. The researchers involved in this experience have comple-
mentary expertise in the two tools considered. This was fundamental to achieve
a sufficient degree of confidence in the correctness of the developed models, as
full control of the used notations is needed to prevent misrepresentations. To-
gether with other works [30, 33], we argue that similar case studies shall involve a
diversity of experts to successfully carry out the process described in this paper.

Integrated environment. We express as particularly desirable the possibility
to rely on a single MBSD framework for typical MBSD activities (e.g., design,
code generation, documentation) and formal verification. This is currently out
of reach, especially if a semi-formal language such as UML is kept as a reference
underlying notation. This remains an important direction to be further explored.

Limitations and challenges We now discuss some limitations of the pro-
posed approach and the challenges ahead.

Manual Translation. In regards to manual translation, this was addressed by
having two researchers (first and second author) work collaboratively to translate
and verify the consistency of the models through model inspection. Additionally,
the simulation of the Sparx EA model and formal verification of the correspond-
ing UMC model increased the confidence in the accuracy of the correspondence.
This was achieved by demonstrating how traces from the formal verification
process can be replicated by simulating the semi-formal model. Moving forward,
we intend to fully automate both the translation process and the verification of
model conformance to the restrictions outlined in Section 4.

Correspondence of Models. Concerning the lack of formal verification of corre-
spondence between formal and semi-formal models, it is worth noting that this is
an inherent limitation of semi-formal approaches. These methods, by definition,
lack formal semantics, and as a result, formal verification of behavioral corre-
spondence is not feasible. In fact, while inspecting the semantics of Sparx EA
models, in particular the code generated from the ESM, we ran into corner cases
that needed interactions with the support at Sparx Systems. The next released
version (15.2) fixed the issues detected in our experiments [4].

Generalisability. Concerning representativeness and generalisability of the
results, it should be noticed that the restrictions on the notation and the trans-
lation process have been evaluated in reference to our specific case study from
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the railway domain. In other domains, and for other systems, different needs may
emerge that require additional restrictions, or the relaxation of existing ones. In
particular, in the current case study the two modelled state machines are not
directly interacting. Each machine (ICSL and CCSL) is only interacting with the
surrounding environment components. Further case studies are needed to extend
the scope of validity of the proposed constraints and implemented process.

Partial Representation and Scalability. The verified Sparx EA model only
provides a partial representation of the final product, as the code generated
from the ESM is utilized for simulation purposes. Thus, further development
is required to refine the generated code and produce the final implementation.
This raises the challenge of ensuring that the verified properties are maintained
during the refinement process. A possible solution is to minimize the difference
between the verified Sparx EA model and the final implementation. Formal ver-
ification may become challenging if the size of the models increases significantly.
It should also be noted that the complete implementation of an industrial system
requires significant resources, which may not be readily available for a research
activity like the one described in this paper. Therefore, substantial involvement
of practitioners from both academia and industry is required. In this case, the
issue of non-disclosure and confidentiality must also be considered, particularly
when the intention is to make the models publicly available, as in this paper [11].

7 Conclusion

This paper has presented an investigation into the combination of an academic
formal verification tool, UMC, with an industrial semi-formal model-based devel-
opment tool, Sparx EA. The integration has been achieved through the definition
of a set of notation restriction rules and rules for relating semi-formal and formal
models. We have demonstrated how the output of the UMC formal verification
can be connected to Sparx EA interactive simulations. The presented approach
has been experimented on a case study from the railway domain. From this ex-
perience, we have derived a set of lessons learned and limitations driving future
research challenges.

In the future, we plan to investigate how much the UML notation constraints
presented in this paper can be relaxed to allow more freedom in the design of
the models whilst preserving formality. We would also like to fully implement
an application that is formally verified using the proposed methodology.
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27. Derezińska, A., Szczykulski, M.: Interpretation Problems in Code Generation from
UML State Machines: A Comparative Study. In: Kwater, T., Zuberek, W.M., Cia-
rkowski, A., Kruk, M., Pekala, R., Twaróg, B. (eds.) Proceedings of the 2nd Sci-
entific Conference on Computing in Science and Technology (STI). pp. 36–50.
Monographs in Applied Informatics, Warsaw University of Life Sciences (2012)

28. Ferrari, A., Fantechi, A., Gnesi, S., Magnani, G.: Model-Based Development and
Formal Methods in the Railway Industry. IEEE Softw. 30(3), 28–34 (2013).
https://doi.org/10.1109/MS.2013.44

29. Ferrari, A., Fantechi, A., Magnani, G., Grasso, D., Tempestini, M.: The
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Methods. In: ter Beek, M., Ničković, D. (eds.) FMICS. LNCS, vol. 12327, pp. 3–69.
Springer (2020). https://doi.org/10.1007/978-3-030-58298-2 1

37. Garavel, H., Lang, F., Serwe, W.: From LOTOS to LNT. In: Katoen, J.P.,
Langerak, R., Rensink, A. (eds.) ModelEd, TestEd, TrustEd, LNCS, vol. 10500,
pp. 3–26. Springer (2017). https://doi.org/10.1007/978-3-319-68270-9 1

38. Gleirscher, M., Marmsoler, D.: Formal methods in dependable systems engineering:
a survey of professionals from Europe and North America. Empir. Softw. Eng.
25(6), 4473–4546 (2020). https://doi.org/10.1007/s10664-020-09836-5

39. Gnesi, S., Mazzanti, F.: An Abstract, on the Fly Framework for the Verification of
Service-Oriented Systems. In: Wirsing, M., Hölzl, M.M. (eds.) Rigorous Software
Engineering for Service-Oriented Systems, LNCS, vol. 6582, pp. 390–407. Springer
(2011). https://doi.org/10.1007/978-3-642-20401-2 18
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