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Contract automata allow to formally define the behaviour of service contracts in terms of service
offers and requests, some of which are moreover optional and some of which are necessary. A
composition of contracts is said to be in agreement if all service requests are matched by correspond-
ing offers. Whenever a composition of contracts is not in agreement, it can be refined to reach an
agreement using the orchestration synthesis algorithm. This algorithm is a variant of the synthesis
algorithm used in supervisory control theory and it is based on the fact that optional transitions are
controllable, whereas necessary transitions are at most semi-controllable and cannot always be con-
trolled. In fact, the resulting orchestration is such that as much of the behaviour in agreement is
maintained. In this paper, we discuss recent developments of the orchestration synthesis algorithm
for contract automata. Notably, we present a refined notion of semi-controllability and compare it
with the original notion by means of examples. We then discuss the current limits of the orchestration
synthesis algorithm and identify a number of research challenges together with a research roadmap.

1 Introduction

Orchestrations of services describe how control and data exchanges are coordinated in distributed service-
based applications and systems. Their principled design is identified in [16] as one of the primary re-
search challenges for the next 10 years, and the Service Computing Manifesto [16] points out that “Ser-
vice systems have so far been built without an adequate rigorous foundation that would enable reasoning
about them” and, moreover, that “The design of service systems should build upon a formal model of
services”.

The problem of synthesising well-behaving orchestrations of services can be viewed as a specific
instance of the more general problem of synthesising strategies in games [9, 7]. This can be solved
using refined algorithms from supervisory control for discrete event systems [24, 1], which have well-
established relationships with reactive systems synthesis [20], parity games [23], automated behaviour
composition [21] and automated planning [17].

Contract automata are a specific type of finite state automata that are used to formally define the be-
haviour of service contracts. These automata express contracts in terms of both offers and requests [10].
When multiple contracts are composed, they are said to be in agreement if all service requests from one
contract are matched by another contract’s corresponding offers. A composition of contracts that is not
in agreement, can automatically be refined to reach an agreement by means of the orchestration synthe-
sis algorithm, which is a variation of the synthesis algorithm used in supervisory control theory. This
orchestration synthesis algorithm for contract automata is described in [8, 9].

The classic algorithm for synthesising a most permissive controller distinguishes transitions whose
controllability is invariant [24, 1]. In service contracts, instead, the controllability of certain transitions
may vary depending on specific conditions on the orchestration of contracts [9]. The contract automata
library CATLib [5] implements contract automata and their operations (e.g., composition and synthesis).
Orchestrations of contract automata abstract from their underlying realisation; an orchestrator is assumed
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to interact with the services to realise the overall behaviour as prescribed by the orchestration contract.
The contract automata runtime environment CARE [6] implements an orchestrator that interprets the syn-
thesised orchestration to coordinate the services, where each service is implementing a contract. Thus,
CARE is explicating the low-level interactions that are abstracted in contract automata orchestrations. No-
tably, one aspect that is abstracted in contract automata and concretised at the implementation level is
that of selecting the next transition to execute in the presence of choice. In [6], different implementations
are proposed based on whether services may participate externally or internally in a choice.

This paper delves into challenges and research issues for orchestration synthesis of contract automata,
given the latest developments in this field. In particular, we start by refining the current definition of semi-
controllability to consider the aforementioned possible realisations of choices defined in [6]. We provide
several examples to illustrate the differences between the refined definition and the original definition.
The various definitions of semi-controllability lead to different sets of contract automata orchestrations,
which we present in Figure 3 together with an example for each level of the orchestration hierarchy
depicted. This allows us to highlight the unique characteristics of each level and to identify current
issues in synthesising orchestrations of contract automata using these examples. Based on the issues
presented, we then outline future research challenges in the orchestration synthesis of contract automata
and a research roadmap to address them.

Related Work At last year’s ICE 2022 workshop, the compositionality of communicating finite state
machines (CFSM) with asynchronous semantics was discussed in [3]. Also contract automata are com-
posable, enabling the modelling of systems of systems. Moreover, under certain specific conditions
that were presented at the 2014 edition of ICE [11, 12], an orchestration of contract automata can be
translated into a choreography of synchronous or asynchronous CFSM. The relation between multiparty
session types and CFSM is discussed in [27]. Therefore, contract automata can be related to multiparty
session types by exploiting their common relation with CFSM [11, 12, 27].

The contract automata approach is closer to [22], in which behavioural types are expressed as finite
state automata of Mungo, called typestates [25]. Similarly to CARE, the runtime environment for contract
automata [6], in Mungo finite state automata are used as behaviour assigned to Java classes (one automa-
ton per class), with transition labels corresponding to methods of the classes. A tool to translate typestates
into automata was presented at ICE 2020 [26]. CATApp, a graphical front-end tool for designing contract
automata, is available in [19]. A tool similar to Mungo is JaTyC (Java Typestate Checker) [2].

The refined definition of semi-controllability presented in this paper closely aligns with the notion
of weak receptiveness in team automata [14, 15]. However, the challenges addressed in this paper are
primarily related to the problem of synthesising an orchestration of services and as such are not directly
relevant to team automata.

Differently from the semi-controllability for orchestrations, a distinct notion of semi-controllability
has been studied in [9, 4] for choreographies of services. Finally, while a runtime environment for the or-
chestration of services has been proposed in [6], this has yet to be realised for the case of choreographies,
which could result in improvements in the notion of semi-controllability for choreographies.

Outline We start by providing some background on contract automata and orchestration synthesis in
Section 2. We introduce a refined notion of semi-controllability in Section 3. In Section 4, we present
several research challenges for orchestration synthesis of contract automata. We conclude in Section 5.
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2 Background

We will begin by formally introducing contract automata and their synthesis operation. Contract au-
tomata are a type of finite state automata that use a partitioned alphabet of actions. A Contract Automa-
ton (CA) can model either a single service or a composition of multiple services that perform actions.
The number of services in a CA is known as its rank. If the rank of a CA is 1, then the contract is referred
to as a principal (i.e., a single service).

The labels of a CA are vectors of atomic elements known as actions. Actions are categorised as either
requests (prefixed by ?), offers (prefixed by !), or idle actions (represented by a distinguished symbol −).
Requests and offers belong to the sets R and O, respectively, and they are pairwise disjoint. The states
of a CA are vectors of atomic elements known as basic states. Labels are restricted to requests, offers
or matches. In a request (resp. offer) label there is a single request (resp. offer) action and all other
actions are idle. In a match label there is a single pair of request and offer actions that match, and all
other actions are idle. The length of the vectors of states and labels is equal to the rank of the CA. For
example, the label [!a,?a,−,−] is a match where the request action ?a is matched by the offer action !a,
and all other actions are idle. Note the difference between a request label (e.g., [?a,−]) and a request
action (e.g., ?a). A transition may also be called a request, offer or match according to its label. Figure 4
depicts three principal contracts, whilst Figure 5 depicts a contract of rank 3.

The goal of each service is to reach an accepting (final) state such that all its request (and possibly
offer) actions are matched. Transitions are equipped with modalities, i.e., necessary (◻) and optional (○)
transitions, respectively 1. Optional transitions are controllable, whereas necessary transitions can be un-
controllable (called urgent necessary transitions) or semi-controllable (called lazy necessary transitions).
The resulting formalism is called Modal Service Contract Automata (MSCA). In the following definition,
given a vector a⃗, its ith element is denoted by a⃗(i).

Definition 1 (MSCA). Given a finite set of states Q = {q1,q2, . . .}, an MSCA A of rank n is a tuple
⟨Q, q⃗0,Ar,Ao,T,F⟩, with set of states Q = Q1 × . . .×Qn ⊆Q

n, initial state q⃗0 ∈ Q, set of requests Ar ⊆ R,
set of offers Ao ⊆O, set of final states F ⊆Q, set of transitions T ⊆Q×A×Q, where A ⊆ (Ar ∪Ao∪{●})n,
partitioned into optional transitions T○ and necessary transitions T◻, with T◻ further partitioned into
urgent necessary transitions T◻u and lazy necessary transitions T◻l , and such that given t = (q⃗, a⃗, q⃗ ′) ∈T :
i) a⃗ is either a request, an offer or a match; ii) if a⃗ is an offer, then t ∈ T○; and iii) ∀i ∈ 1 . . .n, a⃗(i) = ●
implies q⃗(i) = q⃗′(i).

Composition of services is rendered through the composition of their MSCA models by means of the
composition operator ⊗, which is a variant of a synchronous product. This operator basically interleaves
or matches the transitions of the component MSCA, but, whenever two component MSCA are enabled
to execute their respective request/offer action, then the match is forced to happen. Moreover, a match
involving a necessary transition of an operand is itself necessary. The rank of the composed MSCA is
the sum of the ranks of its operands. The vectors of states and actions of the composed MSCA are built
from the vectors of states and actions of the component MSCA, respectively. In this paper, we will only
consider principal contracts and compositions of principals, which will be automatically refined into
orchestrations (as shown in Figure 2). However, it is important to note that contracts can be created by
composing contracts with a rank of one or higher.

In a composition of MSCA, typically various properties are analysed. We are especially interested in
agreement. The property of agreement requires to match all requests, whereas offers can go unmatched.

1Originally, in [8], the optional modality was called permitted and denoted with ◇. Since in contract automata the two
modalities are a partition, the terminology has been updated to avoid confusion with modal transition systems, where ◻ ⊆◇.
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CA support the synthesis of the most permissive controller (mpc) known from the theory of super-
visory control of discrete event systems [24, 18], where a finite state automaton model of a supervisory
controller is synthesised from given (component) finite state automata that are composed. The synthe-
sised automaton, if successfully generated (i.e., non-empty), is such that it is non-blocking, controllable,
and maximally permissive. An automaton is said to be non-blocking if, from each state, at least one of
the final states (distinguished stable states that represent completed ‘tasks’ [24]) can be reached with-
out passing through so-called forbidden states, meaning that there is always a possibility to return to an
accepted stable state (e.g., a final state).

The synthesised automaton is said to be controllable when only controllable transitions are disabled.
Indeed, the supervisory controller is not permitted to directly block uncontrollable transitions from oc-
curring; the controller is only allowed to disable them by preventing controllable actions from occurring.
Finally, the fact that the resulting supervisory controller is said to be maximally permissive (or least re-
strictive) means that as much behaviour of the uncontrolled system as possible is present in the controlled
system without violating neither the requirements, nor controllability nor the non-blocking condition.

Orchestration Synthesis As stated previously, optional transitions are controllable, whereas neces-
sary transitions can be either uncontrollable (called urgent) or semi-controllable (called lazy). In the
mpc synthesis (implemented in CATLib [9, 5]), all necessary transitions are urgent, i.e., they are al-
ways uncontrollable. This stems from the fact that traditionally uncontrollable transitions relate to an
unpredictable environment.

When synthesising an orchestration of services, all necessary transitions are instead lazy, i.e., they
are semi-controllable [8, 9]. A semi-controllable transition t is a transition that is either uncontrollable
or controllable according to given conditions. In [9], different conditions are given according to whether
the synthesis of an orchestration or a choreography is computed. In this paper, we only consider orches-
trations. Below, we denote with Dangling(A) the set of states that are not reachable from the initial
state or cannot reach any final state. More in detail, a semi-controllable transition t is controllable if in
a given portion A′ of A there exists a semi-controllable match transition t′, with source and target states
not dangling, such that in both t and t′ the same service, in the same local state, does the same request.
Otherwise, t is uncontrollable.

Definition 2 (Controllability). Let A be an MSCA and let t = (q⃗1, a⃗1, q⃗1
′) ∈ TA. Then:

• if t ∈ T○A , then t is controllable (in A);

• if t ∈ T◻u
A , then t is uncontrollable (in A);

• if t ∈ T◻l
A , then t is semi-controllable (in A).

Moreover, givenA′ ⊆A, if t is semi-controllable and ∃t′ = (q⃗2, a⃗2, q⃗2
′) ∈ T◻A′ inA′ such that a⃗2 is a match,

q⃗2, q⃗2
′ /∈Dangling(A′), q⃗1(i) = q⃗2(i), and a⃗1(i) = a⃗2(i) =?a for some i ∈ 0 . . .rank(A), then t is controllable

in A′ (via t′). Otherwise, t is uncontrollable in A′.

The interpretation of optional/controllable and urgent/uncontrollable transitions is standard [24, 18].
In the upcoming section, we will delve into different understandings and interpretations of the concept of
semi-controllability. We remark that the orchestration synthesis defined below does not support urgent
transitions. The orchestration synthesis, as defined below, involves an iterative refinement of the initial
automatonA (i.e., the composition of contracts). In each iteration, transitions are selectively pruned, and
a set R of forbidden states is updated accordingly. A transition t is pruned under one of two conditions:
if it is a request (thus violating the agreement property enforced by the orchestration), or if the target
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[0] [1]

Client1

[!b]

[?a]
[0] [1]

Client2

[!b]

[?a]◻ [0] [1]

[2][3]

Server

[!a]

[!τ]

[!a]

[0,0]

O(Client1⊗Client1)

[−, !b]

[!b,−]

Figure 1: Contracts of Client1, Client2 and Server, and orchestration O(Client1⊗Client1)

[0,0,0]

[1,0,1] [2,0,1]

[3,1,1]

[1,1,0] [2,1,0]

O(Server⊗Client2⊗Client2)

[!a,−,?a]◻

[−, !b,−]

[−,−, !b]

[!τ,−,−]

[−, !b,−]

[!a,?a,−]◻

[−, !b,−]

[!a,?a,−]◻
[!τ,−,−]

[−,−, !b]

[!a,−,?a]◻

[−,−, !b]

Figure 2: Orchestration O(Server⊗Client2⊗Client2)

state of t belongs to the set R computed up to that point. During the first iteration, all request transitions,
including both lazy and optional ones, are pruned.

In Definition 2, the automaton A′ represents an intermediate refinement of A (the starting com-
position) which occurs during an iteration of the synthesis process. Intuitively, the semi-controllable
transition t of A is controllable in A′ because there is another transition t′ in A′ matching the same
request from the same service in the same state. Otherwise, if there is no such transition t′ in A′, then
t is uncontrollable. Put differently, the controllability of t in A′ relies on the presence of a correspond-
ing transition t′ within A′ itself. If such a matching transition t′ does not exist in A′, then t is deemed
uncontrollable.

Note that in Definition 2, it is not required for t and t′ to be distinct. This implies that during the
synthesis process, a semi-controllable match transition t can switch from being controllable to uncontrol-
lable only after it has been pruned in a previous iteration. To clarify further, a semi-controllable match
transition t can switch its controllability status from controllable to uncontrollable only when t is absent
in the sub-automatonA′ during the current iteration. If t is present inA′ (i.e., it has not been pruned thus
far), then, according to Definition 2, t is considered semi-controllable and controllable within A′ via t
itself. It is important to note that these considerations are applicable only if t is a match. Additionally, it
is never the case that a semi-controllable transition t switches from uncontrollable to controllable since
transitions are only removed during the synthesis process and are never added back.

The set R of forbidden states is updated at each iteration by adding source states of uncontrollable
transitions and dangling states of the refined automaton in the current iteration. Specifically, when
the synthesis process eliminates all transitions t′ that satisfy the conditions for rendering the semi-
controllable transition t controllable via t′, then t becomes uncontrollable within the sub-automaton in the
current iteration. It is worth noting that even if t was previously pruned in an earlier iteration, its source
state q⃗1 might still be reachable in the sub-automaton of the current iteration. Consequently, q⃗1 is added
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to the set R. In the subsequent iteration, all transitions with target state q⃗1 will be pruned. This prun-
ing of transitions whose target is q⃗1 can potentially render another previously pruned semi-controllable
transition as uncontrollable, thereby adding its source state to the updated set R. This refinement process
continues until no further transitions are pruned, and no additional states are added to R. The resulting
refined automaton obtained at the end of the synthesis process represents the orchestration automaton.

The algorithm for synthesising an orchestration enforcing agreement of MSCA is defined below.
Definition 3 (MSCA orchestration synthesis). LetA be an MSCA and letK0 =A and R0 =Dangling(K0).
We let the orchestration synthesis function fo ∶MSCA×2Q→MSCA×2Q be defined as follows:

fo(Ki−1,Ri−1) = (Ki,Ri), with
TKi = TKi−1 ∖{(q⃗Ð→ q⃗ ′) = t ∈ TKi−1 ∣ (q⃗

′ ∈ Ri−1 ∨ t is a request)}
Ri = Ri−1∪{ q⃗ ∣ (q⃗Ð→) ∈ T◻l

A is uncontrollable in Ki}∪Dangling(Ki)

The orchestration automaton is obtained from the fixpoint of the function fo. In the rest of the paper,
if not stated otherwise, all necessary transitions in the examples are lazy (cf. Definition 1); for brevity
and less cluttering in the figures, we denote them by ◻ rather than ◻l .
Example 1. We provide an illustrative example to underline the differences between optional transi-
tions, urgent necessary transitions and lazy necessary transitions. Figure 1 shows two client contracts
and a server contract. Firstly, we discuss the difference between optional and necessary transitions.
When all actions of the client contract are optional (Client1), there exists an orchestration of the compo-
sition of two Client1 contracts, also depicted in Figure 1 (O(Client1⊗Client1)). Indeed the (transition
labelled with the) request ?a is optional and can be removed to obtain the orchestration. If instead the
request ?a was necessary (Client2), then there would be no orchestration for the composition of two
Client2 contracts, because the necessary request is never matched by a corresponding offer.

To illustrate the distinction between urgent and lazy necessary transitions, we consider also the server
contract shown in Figure 1. If we were to employ the traditional mpc synthesis, the clients’ necessary
requests (?a) would be treated as urgent. In such a scenario, the orchestration of the composition between
two clients and the server (generated using the mpc synthesis algorithm) would be empty, indicating that
no feasible orchestration exists.

However, if the clients’ necessary requests (?a) are considered lazy instead, an orchestration of the
composition between the server and the two clients can be achieved (computed using the orchestration
synthesis). This orchestration is depicted in Figure 2. In this case, the clients take turns fulfilling their
lazy necessary requests. This alternating behaviour is not possible when the necessary requests are
urgent.

The orchestration in Figure 2 is obtained after three iterations of the algorithm specified in Defini-
tion 3. Initially, K0 =A = Server⊗Client2⊗Client2 and R0 =Dangling(A) =∅.

With respect to the orchestration in Figure 2, the automaton A contains four additional transitions
that are t1 = [1,0,1] [−,?a,−]◻ÐÐÐÐÐ→[1,1,1], t2 = [1,1,0] [−,−,?a]◻ÐÐÐÐÐ→[1,1,1], t3 = [1,1,1] [!τ,−,−]ÐÐÐÐ→[2,1,1] and t4 =
[2,1,1] [!a,−,−]ÐÐÐÐ→[3,1,1]. In the first iteration, t1 and t2 are removed from K1 because they are request
transitions. We have TK1 = TK0 ∖ {t1,t2}. Since there are no forbidden states, these are the only two
transitions that are removed during the first iteration.

Concerning the set of forbidden states R1, we have that t1 ∈ T◻l
A is controllable in K1 via transition

[0,0,0] [a!,a?,−]◻ÐÐÐÐÐ→[1,1,0]. Similarly, t2 ∈ T◻l
A is controllable in K1 via [0,0,0] [a!,−,a?]◻ÐÐÐÐÐ→[1,0,1]. Hence,

the source states of t1 and t2 will not be added to R1. Concerning the set Dangling(K1), state [1,1,1]
was the target of only t1 and t2. Moreover, state [2,1,1] was the target of only t3. Therefore, states
[1,1,1] and [2,1,1] are unreachable in K1. We have that R1 = Dangling(K1) = {[1,1,1],[2,1,1]}. In
the subsequent iteration i = 2, since transition t3 has target in R1, we have TK2 = TK1 ∖{t3}, whilst R2 =R1.
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Finally, we reach the fixpoint at iteration i = 3, where TK3 = TK2 and R3 =R2. The finalising operations
for obtaining the orchestration O in Figure 2 from the fixpoint K3 consist in removing the states in R3,
i.e., QO = QK3 ∖R3, and removing the remaining unreachable transitions in K3. In this case, transition
t4 ∈ TK3 is removed from the orchestration, i.e., TO = TK3 ∖{t4}.

In the subsequent section, we will delve deeper into additional details and interpretations regarding
the semi-controllable transitions of contract automata.

3 Refined Semi-Controllability

We start by introducing a refined notion of semi-controllability to be used in the orchestration synthesis,
formalised below. After that, we discuss how this refined notion may assist to discard some counter-
intuitive orchestrations.

Definition 4 (Refined Semi-Controllability). Let A be an MSCA and let t = (q⃗t , a⃗t , q⃗t
′) ∈ T◻l

A . Moreover,
given A′ ⊆A, if ∃t′ = (q⃗t′ , a⃗t′ , q⃗t′

′) ∈ T◻l
A′ in A′ such that the following hold:

1. a⃗t′ is a match, q⃗t′ , q⃗t′
′ /∈Dangling(A′), q⃗t( j) = q⃗t′( j), a⃗t( j) = a⃗t′( j) =?a, for some j ∈ 0 . . .rank(A);

and

2. there exists a sequence of transitions t0, . . . ,tn of A′ such that ∀i ∈ 0 . . .n, ti = (q⃗i, a⃗i, q⃗i
′) and the

following hold:

• q⃗0 = q⃗t;

• tn = t′;

• q⃗i, q⃗i
′ /∈Dangling(A′); and

• if i < n, then a⃗i( j) = − and q⃗i
′ = q⃗i+1;

then t is controllable in A′ (via t′). Otherwise, t is uncontrollable in A′.

By comparing Definition 2 and Definition 4, we note that only the semi-controllable transitions have
been refined, whilst the others are unaltered. Conditions 1 and 2 contain the constraints that are used
to decide when a semi-controllable transition is controllable or uncontrollable. The constraints of Con-
dition 1 are also present in Definition 2. The intuition is that a (refined) semi-controllable transition t
becomes controllable if (similarly to Definition 2) in a given portion ofA, there exists a semi-controllable
match transition t′, with source and target states not dangling, such that in both t and t′ the same service,
in the same local state, does the same request. Condition 2 of Definition 4 imposes new further con-
straints. It requires that t′ is reachable from the source state of t through a sequence of transitions where
the service performing the request is idle.

Consider the Venn diagram in Figure 3. The outermost set Orchestrations contains all orchestra-
tions of contract automata that are computed using the notion of semi-controllability of Definition 2.
The innermost set Refined contains only those orchestrations that are computed using the refined notion
of semi-controllability in Definition 4. Intuitively, the refined notion imposes a further constraint on
when a semi-controllable transition is controllable. As a result, more semi-controllable transitions are
uncontrollable than in the previous definition. This explains why Refined is contained in Orchestrations.

All the examples of semi-controllability available in the literature [13, 8, 9, 6] (e.g., Hotel service)
and Figure 2 are orchestrations belonging to the set Refined in Figure 3. This means that by updating the
notion of semi-controllability, all orchestrations of these examples remain unaltered.
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Hotel [8]
Railway [7]
Composition Service [6]
Example 1 [Fig. 2]
. . . has interpretation

Refined

???

Example 3
[Fig. 9]

no interpretation?

Orchestrations

Example 2
[Fig. 5]

Figure 3: A Venn diagram showing the set of orchestrations of contract automata

Example 2. We now provide an example of an orchestration belonging to Orchestrations∖Refined (cf.
Figure 3). We have three principal contracts, namely Alice, Bob and Carl, depicted in Figure 4. The
contracts of Bob and Carl perform two alternative necessary requests. The contract of Alice has two
branches. In each branch, a request of Bob and a request of Carl are fulfilled by corresponding offers.

Using the notion of semi-controllability from Definition 2, the synthesis algorithm of Definition 3
takes as input the composed automaton and returns the orchestration of the composition, depicted in
Figure 5, which is a contract of rank 3. Indeed, for each necessary request of each service, there exists
a match transition in the composition where the necessary request is fulfilled by a corresponding offer.
In other words, for each necessary request of Bob and Carl, there exists an execution where the request
is matched by a corresponding offer. For example, the composition Alice⊗Bob⊗Carl contains the
transition t = [a1,b0,c0]

[−,?d,−]◻ÐÐÐÐÐ→[a1,b2,c0], which is semi-controllable. According to Definition 2, t is
controllable (in Alice⊗Bob⊗Carl) via t′ = [a2,b0,c0]

[!d,?d,−]◻ÐÐÐÐÐ→[a4,b2,c0]. Since t is controllable and it
is not in agreement (i.e., the label of t is a request), this transition is pruned during the synthesis of the
orchestration. We note that t is controllable in t′ also in all sub-automaton of the composition computed
in the various iterations of the synthesis algorithm, and in the final orchestration depicted in Figure 5.

Using the refined notion of semi-controllability of Definition 4, the orchestration of Alice⊗Bob⊗
Carl is empty (i.e., there is no orchestration). Consider again transition t. From state [a1,b0,c0], it is not
possible to reach any transition labelled by [!d,?d,−]◻. It follows that t is uncontrollable. Hence, at some
iteration i of the orchestration synthesis algorithm in Definition 3, state [a1,b0,c0] becomes forbidden
and it is added to the set Ri. At iteration i+1, the controllable transition [a0,b0,c0]

[!a,−,−]◻ÐÐÐÐÐ→[a1,b0,c0]

is pruned because its target state is forbidden. At the next iteration (i+ 2), the initial state [a0,b0,c0]

becomes forbidden, because there are semi-controllable transitions not in agreement exiting the initial
state (e.g., [a0,b0,c0]

[−,?c,−]◻ÐÐÐÐÐ→[a0,b1,c0]) that are uncontrollable in the sub-automaton whose transitions
are Ti+2. Since the initial state is forbidden, it follows that there is no orchestration for Alice⊗Bob⊗Carl.

Indeed, whenever the state [a1,b0,c0] is reached, although Bob and Carl are still in their initial state,
Bob can no longer perform the necessary request ?d and Carl can no longer perform the request ? f . In
fact, neither Bob nor Carl can decide internally which necessary request to execute from their current
state. For example, there is no trace where the request ?c of Bob and the request ? f of Carl are matched.

The orchestrations belonging to Refined (i.e., orchestrations computed using the refined notion of
semi-controllability given in Definition 4) have an intuitive interpretation when compared to the classic
notion of uncontrollability. We recall that uncontrollable transitions are called urgent necessary transi-
tions in MSCA, while semi-controllable transitions are called lazy necessary transitions.
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[a0]

[a1] [a3] [a5]

[a2] [a4] [a6]

A
[!a]

[!c] [!e]

[!b]
[!d] [! f ]

[b0]

[b1]

[b2]

B
[?c]◻

[?d]◻

[c0]

[c1]

[c2]

C
[?e]◻

[? f ]◻

Figure 4: Contracts of Alice, Bob and Carl

[a0,b0,c0]

[a1,b0,c0] [a3,b1,c0] [a5,b1,c1]

[a2,b0,c0] [a4,b2,c0] [a6,b2,c2]

O(A⊗B⊗C)
[!a,−,−]

[!c,?c,−]◻ [!e,−,?e]◻

[!b,−,−]
[!d,?d,−]◻ [! f ,−,? f ]◻

Figure 5: Orchestration O(A⊗B⊗C) of Alice⊗Bob⊗Carl

Intuitively, an urgent transition cannot be delayed, whereas this is the case for a lazy one. In a concur-
rent composition of agents, the scheduling of concurrent urgent necessary transitions is uncontrollable.
Instead, concerning concurrent lazy necessary transitions, each agent internally decides its next lazy
necessary transition to execute, but the orchestrator schedules when this transition will be executed, i.e.,
the scheduling is controllable. In Example 2, there is no orchestration because, for example, from state
[a1,b0,c0] there is no possible scheduling that allows the services to match all their necessary requests.
Continuing Example 1, the orchestration in Figure 2 is non-empty because the scheduling of the actions
in the orchestration is controlled by the orchestrator: one of the two necessary requests is scheduled
to be matched only when the server has reached its internal state [2]. If instead the clients’ necessary
request ?a is urgent, then there exists no orchestration of the composition of two clients and the server.
This is because in this case the scheduling is uncontrollable: it is not possible to schedule one of the
two clients to have its necessary urgent request to be matched only when the server reaches the state [2].
In this case, the server should be ready to match the requests whenever they can be executed, without
delaying them.

4 Research Challenges

In this section, we describe the currently known limits of the synthesis of orchestrations adopting either
Definition 2 or Definition 4, we identify a number of research challenges to overcome these limits, and
we propose a research roadmap aimed to tackle these challenges effectively.

First, the notion of semi-controllability introduced in [8, 5] and recalled in Definition 2 allows to syn-
thesise orchestrations that may sometimes limit the capability of each service to perform internal choices.
The contract automata formalism abstracts from the way that choices are made. Different implementa-
tions are possible in which each service may or may not decide the next step in an orchestration [6].

Consider again Example 2. Both Bob and Carl are able to perform two alternative necessary requests
from their initial state. However, as shown in Figure 5, they are forbidden from internally deciding which
necessary request is to be executed at runtime. If, for example, Bob selects the request ?d and Carl selects
the request ?e, then it is not possible for Alice to match both requests.
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[Dealing]

[P1]

[P2]

[Collecting] [Card2] [Cards21]

[Card3]

[Card4]

[Cards32] [Cards31]

[Cards43] [Cards42] [Cards41]

Dealer

[?pair1]

[?pair2]

[?pair2]

[?pair3]

[?pair3]

[!2]
[!3]

[!4]

[!1]

[!2] [!1]

[!3] [!2] [!1]

Figure 6: Contract of the Dealer

[Waiting]

[Pair1] [Pair2] [Pair3]

[Pair1Card1] [Pair1Card3] [Pair2Card2] [Pair2Card4] [Pair3Card2] [Pair3Card3]

Player

[!pair1] [!pair2] [!pair3]

[?1]◻ [?3]◻ [?2]◻ [?4]◻ [?2]◻ [?3]◻

Figure 7: Contract of the Player

If we adopt the interpretation given previously (i.e., agents internally choose their necessary transi-
tions and their scheduling is controllable) then we argue that the orchestration computed using Defini-
tion 2 is too abstract and should in fact be empty. This is indeed the case if Definition 4 were used instead
of Definition 2.

The first research challenge is to identify a concrete application of services that perform necessary
requests and whose orchestration belongs to the set Orchestrations∖Refined.

Solving this challenge could help provide an intuitive interpretation of these types of orchestrations.
An application should be identified in which each service statically requires that for each necessary
request there must exist an execution where this is eventually matched (cf. Definition 2). However,
during execution, the choice of which necessary request is to be matched could be external to the service
performing the necessary request. Even if the execution of different branches is determined externally,
a service contract may still require all branches to be available in the composition. This could be due to
the contract’s need to enforce certain hyperproperties, such as non-interference or opacity.

Next, we illustrate the second research challenge. All examples of orchestrations currently available
in the literature [7, 6, 5, 9, 8] reside inside the set Refined (cf. Figure 3). We showed in Example 2 an
orchestration O not belonging to the set Refined and we argued that O is too abstract and should in fact be
empty. We now provide another example of an orchestration not belonging to the set Refined. However,
differently from Example 2, in this case the orchestration should not be empty.
Example 3. This example involves a simple card game with two players and a dealer. At the beginning
of each round, the dealer chooses a pair of cards to deal to each player (i.e., each player receives a pair
of cards). The dealer can select two out of three different pairs of cards:
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⎡⎢⎢⎢⎢⎣
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⎡⎢⎢⎢⎢⎣
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Dealer⊗Player⊗Player [?pair2,−, !pair2]

[!2,−,?2]◻ [!3,?3,−]◻ [!4,−,?4]◻

[−,?1,−]◻

[−,?3,−]◻ [!1,?1,−]◻ [!2,−,?2]◻ [−,−,?4]◻ [!1,?1,−]◻ [!3,?3,−]◻

Figure 8: A fragment of the composition of Dealer⊗Player⊗Player

• Pair 1: card 1 and card 3;

• Pair 2: card 2 and card 4;

• Pair 3: card 2 and card 3.

After the dealer has dealt the pairs of cards, each player selects one of the two cards that was received.
Once the players have selected their cards, the dealer collects the selected cards from each player. The
goal of the game is for the dealer to avoid picking up two cards in ascending or equal order, which would
result in the dealer losing. In other words, if the dealer picks up a card that is higher than the other card
that was picked up or if two cards of the same value are picked up, the dealer loses. To ensure that the
dealer never loses, the dealer has to choose the correct pairs of cards to deal. There are six possible ways
to choose the pairs of cards, but only two of them guarantee a strategy for the dealer to collect the cards
selected by the players in descending order. The strategy for the dealer consists of dealing to the players
(in no particular order) Pair 1 and Pair 2. Indeed, in the remaining cases there exists the possibility that
the players internally select the same card. In this case, there is no way of rearranging the transitions to
avoid the same cards being picked by the dealer.

We modelled this above-mentioned problem as an orchestration of contracts, using the refined notion
of semi-controllability. We only model one round of the game. The CA in Figure 6 models the dealer.
Note that each request can be matched by either of the two players. Once the dealer has dealt the pairs
of cards, the cards selected by the players are collected. Note that the two cards can only be collected
in descending order. The CA in Figure 7 models a player. Once the player has received a card, the
player decides internally which card to select. This internal decision is modelled as a choice among lazy
necessary transitions.

The synthesis algorithm adopting the refined notion of semi-controllability from Definition 4 takes
as input the composition of the dealer CA and two players CA and returns an empty orchestration. To
explain why the resulting orchestration is empty, consider Figure 8 depicting a portion of the composition
of the dealer with two players.

The state [Collecting,Pair1,Pair2] is reached when the first player receives pair1 and the second
player receives pair2. A symmetric argument holds for state [Collecting,Pair2,Pair1], not depicted here.
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The transition

[Card2,Pair1,Pair2Card2]
[−,?3,−]◻ÐÐÐÐÐ→[Card2,Pair1Card3,Pair2Card2]

is uncontrollable according to Definition 4. Indeed, from state [Card2,Pair1,Pair2Card2] it is not possible
to reach state [Collecting,Pair1,Pair2]. This makes the state [Card2,Pair1,Pair2Card2] forbidden. Hence,
to avoid reaching a forbidden state, the algorithm prunes the transition

[Collecting,Pair1,Pair2]
[!2,−,?2]◻ÐÐÐÐÐ→[Card2,Pair1,Pair2Card2]

which is in fact controllable according to Definition 4. Indeed, from state [Collecting,Pair1,Pair2] it is
possible to reach the transition

[Card3,Pair1Card3,Pair2]
[!2,−,?2]◻ÐÐÐÐÐ→[Cards32,Pair1Card3,Pair2Card2]

via a transition in which the second player is idle. However, during the synthesis algorithm also the
state [Card3,Pair1Card3,Pair2] becomes forbidden due to its outgoing necessary transition, which is
uncontrollable according to Definition 2. This in turn causes the pruning of transition

[Collecting,Pair1,Pair2]
[!3,?3,−]◻ÐÐÐÐÐ→[Card3,Pair1Card3,Pair2]

which is controllable. Once the transition has been pruned, the transition

[Collecting,Pair1,Pair2]
[!2,−,?2]◻ÐÐÐÐÐ→[Card2,Pair1,Pair2Card2]

which was previously controllable becomes uncontrollable. This makes the state [Collecting,Pair1,Pair2]

forbidden. Note, however, that [Collecting,Pair1,Pair2] should not be forbidden. Indeed, from that state,
for each pair of cards selected by the players, the dealer has a strategy to pick them in the correct order:

• if player 1 selects card 1 and player 2 selects card 2, then execute [!2,−,?2],[!1,?1,−];

• if player 1 selects card 1 and player 2 selects card 4, then execute [!4,−,?4],[!1,?1,−];

• if player 1 selects card 3 and player 2 selects card 2, then execute [!3,?3,−],[!2,−,?2];

• if player 1 selects card 3 and player 2 selects card 4, then execute [!4,−,?4],[!3,?3,−].

This example shows that there are cases for which Definition 4 is too restrictive. In this case, the
orchestration can be computed using Definition 2, and it is displayed in Figure 9.

To better understand the underlying assumption of Definition 4, we need to decouple the moment in
which a service selects which transition it will execute from the moment in which a service executes that
transition. The underlying assumption of Definition 4 is that these two moments are not decoupled.

For example, the first player whose internal state is Pair1 could select and execute ?3 also from
state [Card2,Pair1,Pair2Card2], while the strategy described above assumes that the player selects a card
in state [Collecting,Pair1,Pair2]. In fact, the current implementation of the contract automata runtime
environment CARE [6] allows the decoupling of these two moments. Once state [Collecting,Pair1,Pair2]

is reached, the orchestrator interacts with both players and, based on their choices, correctly schedules
the transitions of the dealer and the players. This means that the players select their next action in state
[Collecting,Pair1,Pair2] and afterwards their execution is bounded to the transition they have selected.
Summarising, Example 2 has showed that in some cases Definition 2 is too abstract, whereas Example 3
has showed that in some cases Definition 4 is too restrictive.
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Figure 9: Orchestration O(Dealer⊗Player⊗Player)

The second research challenge is to identify a notion of semi-controllability capable of discarding
orchestrations such as the one in Example 2 and providing non-empty orchestrations in scenarios such
as the one described in Example 3.

The resulting, currently unknown set of orchestrations that would be identified by the notion of semi-
controllability that solves this challenge is depicted in Figure 3 with dashed lines.

We continue by discussing further research challenges for the orchestration synthesis of contract
automata. An important aspect is the ability to scale to large orchestrations when many service contracts
are composed. We note that computing Definition 4 is harder than computing Definition 2, due to the
additional constraint of reachability which requires a visit of the automaton. Decoupling the moment in
which a service selects a choice from the moment in which the selected choice is executed, could further
increase the hardness of deciding when a lazy necessary transition is controllable.

Consider again the CA in Figure 1. From their initial state, both Bob and Carl have two choices. If,
instead of two principals, we had ten principals whose behaviour is similar to that of Bob and Carl, then
there would be 210 possible combinations of (internal) choices the services could make.

The third research challenge is to provide scalable solutions for synthesising orchestrations.

Generally speaking, the behaviour of an orchestration that belongs to the unknown dotted set of
Figure 3 must be a sub-automaton of an orchestration computed using Definition 2 and a super-automaton
of an orchestration computed using Definition 4. Indeed, Definition 2 can be used as an upper bound and
Definition 4 as a lower bound to approximate the behaviour of such an orchestration.
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Finally, we discuss the last research challenge identified in this paper. We previously formalised the
notion of lazy necessary request that is semi-controllable according to either Definition 2 or Definition 4.
We noted that Definition 2 may exclude the case in which, in the presence of a choice, a service may
internally select its necessary transition. Instead, Definition 4 may exclude the case in which, in the pres-
ence of a choice, the moment in which the service internally selects its necessary transition is decoupled
from the moment in which the selected necessary transition is executed. In other words, we identified two
requirements that an orchestration of services should satisfy: independence and decoupling of choices.

The fourth research challenge is to consolidate a set of requirements that a desirable orchestration of
service contracts must satisfy.

The requirements that would solve this challenge should be established incrementally, as discussed
in this paper. Formal definitions of necessary service transitions and practical examples are useful to
identify the ideal set of requirements that an orchestration of services should satisfy. Of course, these
requirements are entangled with the underlying execution support of an orchestration of services, which
was recently proposed in [6].

4.1 Research Roadmap

We have presented a series of research challenges associated with the orchestration of contract automata.
We now propose a potential research roadmap aimed at tackling these challenges effectively. However,
it is necessary to further examine the concepts described below to determine their validity.

Specifying Choices We propose to concretise the selection of the next transition to execute at contract
automata level, distinguishing between internal and external selections. Presently, this distinction is ab-
stracted away within contracts and handled by the underlying execution support. Our rationale is that
abstracting from the selection process may lead to scalability challenges. Specifically, if a transition is
selected internally, it must always be available, whereas an externally selected transition can be removed
from the orchestration. In essence, internal selection imposes stricter requirements than external selec-
tion. Consequently, treating all selections as internal to ensure independence of choice leads to larger
state spaces. For instance, the issue highlighted in Example 2 arises due to the presence of externally se-
lected transitions. By allowing contracts to specify which transitions are internally or externally selected,
we can potentially reduce the state space, as compared to considering all choices as internal.

Pursuing the above has important implications. Firstly, it necessitates updating accordingly the un-
derlying execution support, CARE, to align it with the contract automata specifications. This entails
reducing the implementation freedom for each choice to adhere to the contract’s explicit selection of
the next transition. By explicating choices within contracts, we establish the interpretation of necessary
requests discussed in this paper. In this interpretation, a service internally decides to perform a necessary
request, but the scheduling of the execution of the request is controlled by the orchestrator. In other
words, optional actions are externally selected, whereas necessary actions are internally selected. Con-
sequently, by explicitly stating choices in contracts, we can address the first research challenge. Indeed,
all necessary requests would be internally selected. Scenarios like the one outlined in the context of the
first research challenge (i.e., external necessary requests) would be practically ruled out.

Another implication relates to the fourth research challenge, which entails consolidating a set of
requirements for effective orchestrations. Notably, if choices are explicitly specified in contracts, the
requirement of independence of choice can be removed.
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[0] [1]

Adrian

[!b]

[?a]◻ [0] [1] [2]

Bruce

[?b]◻ [!a]

Figure 10: Two contracts whose orchestration requires further investigation

Implementing the Decoupling of Choices The second research challenge, as mentioned previously,
revolves around the absence of the decoupling of choice requirement in both Definitions 2 and 4. This
requirement suggests a potential implementation of semi-controllable transitions and may help identify
the currently unknown set of orchestrations in Figure 3. Currently, a semi-controllable transition is
defined as a transition that can be either controllable or uncontrollable based on a global condition of
the automaton. However, decoupling the moment when a service internally selects a transition from the
moment when the transition is executed might require splitting a semi-controllable transition into two
distinct transitions.

Reasoning in this way suggests that a semi-controllable transition could potentially be represented as
two consecutive transitions. The first transition would be uncontrollable, capturing the internal selection,
while the subsequent transition would be controllable and responsible for executing the action. For ex-
ample, consider a semi-controllable transition [q] [?a]◻lÐÐÐ→[q

′], which would be split into two transitions:
t1 = [q] [τ]◻uÐÐÐ→[i] and t2 = [i] [?a]

ÐÐ→[q
′]. Here, t1 represents an uncontrollable silent transition to an inter-

mediate, non-final state, while t2 is controllable and executes the action. This approach suggests that the
orchestrator cannot control the internal selection made with t1, but it can control and schedule the execu-
tion of the action indicated by t2. Moreover, an important consequence of the fact that the intermediate
state is non-final, is that t2 must eventually be executed.

Further exploration is required to determine whether this interpretation of semi-controllability solves
the third research challenge. In particular, there are still corner cases that require further investigation.
For instance, consider the contracts in Figure 10. Although an orchestration could be obtained by match-
ing the necessary request ?b of Bruce first and only afterwards the necessary request ?a of Adrian, this
orchestration is not supported by the notion of semi-controllability outlined above. In this orchestra-
tion, Adrian internally selects the request ?a and the orchestrator schedules the request of Adrian to be
matched later after Adrian matches the request of Bruce.

Furthermore, we envision the establishment of a clear separation between optional and necessary
transitions on the one hand and controllable and uncontrollable transitions on the other. All necessary
requests should be categorised as lazy/semi-controllable, thus effectively excluding urgent necessary re-
quests from contracts. This implies that contract automata with optional and necessary transitions should
be transformed into automata with solely controllable and uncontrollable transitions, which are known
as plant automata in supervisory control theory. It is worth noting that all uncontrollable transitions will
serve as silent moves to represent the internal selection of a necessary transition.

Experimental Validation of Performance The third research challenge highlights the issue of scala-
bility and proposes the adoption of Definition 2 as an upper bound for the set of orchestrations. However,
it remains unclear whether the synthesis process using Definition 2 is faster compared to synthesising us-
ing the mapped plant automaton as suggested earlier. Definition 2 necessitates a visit of the automaton at
each iteration of the synthesis process to determine whether a semi-controllable transition is controllable
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or uncontrollable. This requirement is not present in a plant automaton consisting solely of controllable
and uncontrollable transitions. On the other hand, the suggested mapping approach increases the state
space of the automata by introducing an additional state for each necessary transition. As a result, it is
essential to conduct further experimental research to assess the effectiveness of utilising Definition 2 as
an upper bound for the set of orchestrations. This research should involve measuring the performance
and efficiency of the synthesis process when employing Definition 2 and comparing it with the approach
based on the mapped plant automaton.

5 Conclusion

We have presented a number of research challenges related to the orchestration synthesis of contract
automata. Initially, we proposed a novel refined definition of semi-controllability and compared it to the
current definition through illustrative examples. We identified various sets of orchestrations, as showed
in Figure 3. Additionally, we informally discussed two prerequisites that the orchestration of contracts
should satisfy: independence and decoupling of choices. Furthermore, we evaluated the current formal
definitions of semi-controllability based on these requirements, which generated a series of research
questions regarding the orchestration synthesis of contract automata, to be addressed in future work,
possibly by following the proposed research roadmap.
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