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ABSTRACT 

Regular cameras and cell phones are able to capture limited 

luminosity. In terms of quality, most of the produced images 

by such devices are not similar to the real world. Various 

methods, which fall under the name of High Dynamic Range 

(HDR) Imaging, can be utilised to cope with this problem and 

produce an image with more details. However, most methods 

for generating an HDR image from Multi-Exposure images 

only focus on how to combine different exposures and do not 

consider the choice the best details of each image. By 

convers, in this research it is strived to detect the most visible 

areas of each image with the help of image segmentation. 

Two methods of producing the Ground Truth are considered, 

as manual and Otsu thresholding, and two similar neural 

networks are used to train segment these areas. Finally, it is 

shown that the neural network is able to segment the visible 

parts of pictures acceptably. 

 

Index Terms— Image Segmentation, Otsu Threshold, 

Multi-Exposure, High Dynamic Range, Deep Learning. 

 

1. INTRODUCTION 

Natural scenes have a vast luminosity; however, regular 

cameras are capable of capturing a limited dynamic range of 

that luminance. Therefore, the generated image has regions 

with High- (overly bright) and Low-Exposure (too dark), and 

the detail is not well visible. These types of pictures are called 

Low Dynamic Range (LDR) images. 

The first solution to this problem is to utilise 

cameras with special sensors, which can obtain more 

luminance than regular cameras and produce images with 

more details and more similar to the real-world [1-7]. 

However, due to the high cost of such equipment, it is not 

affordable and usable for regular users. 

Another solution for this issue is using software 

development methods known as High Dynamic Range 

(HDR) imaging. Various algorithms have been proposed 

recently, and the existing techniques can be divided into HDR 

imaging with Single-Exposure and Multi-Exposure methods. 

In the Single-Exposure, various techniques can produce an 

HDR image starting from a single LDR image. However, 

these methods are not satisfying since the detail cannot be 

restored goodly. In [8], the authors proposed an algorithm to 

generate an HDR image from an LDR image. Still, their 

method was affected by two problems: the inability to 

reconstruct details of dark and overly saturated areas. More 

precisely, this algorithm was not able to retrieve the details in 

the excessively saturated regions. Therefore, [9] proposed to 

first merge input images with different exposures and 

afterwards feed the wavelet coefficient of the merged image 

to the network to produce more details in a shorter time. 

Fortunately, unlike the Single-Exposure methods, Multi-

Exposure ones are more effective and can reconstruct more 

detail. Several LDR images are combined in such techniques 

and produce an HDR image. Although Multi-Exposure 

methods perform almost perfectly on static scenes, they can 

encounter problems such as ghosting in dynamic scenes due 

to moving objects. However, several algorithms have been 

proposed to solve this issue [10-15]. 

Additionally, deep learning has been a great help in 

computer vision in recent years. For instance, [8] used a deep 

neural network to produce an HDR image in the logarithmic 

domain. Also, [16] used deep learning to reconstruct the 

detail of an image with different row-wise exposure in the 

irradiance domain. The works [17,18], unlike other methods, 

used neural networks to produce several LDR images with 

different exposures from a single LDR image. Additionally, 

[11] first aligned images with the optical flow and eventually 

used deep learning to fuse the aligned images to produce an 

image with more details. In [10], two deep learning methods 

were used to align images and generate an HDR image. 

Neural networks with different scales of images were used in 

[19] to learn the relative relation between input images and 

their Ground Truth. 

Image Segmentation is one of the tasks in computer 

vision whose objective is to simplify image analysis. This 

task is typically used to detect objects or better understand 

images, such as medical ones. Image segmentation can be 

utilised to extract the regions of images with more details. In  

[20], the authors analysed images in HSV colour space to 

segment pixels based on the value of Intensity or Hue. 

Additionally, other works proposed two methods for image 

segmentation based on luminance: histogram division [21] 

and clustering based on the Gaussian Mixture Models 

(GMM) of the histogram [22]. Furthermore,[23] proposed a 

method to find the optimal valley point based on the slope 

between the histogram value of each pixel and other 

neighbouring points and used that valley point to segment 

regions. 



The main contributions of this paper are as follows: (i) we 

propose two methods to extract the best areas of images with 

more details; (ii) we compare the proposed methods to 

specify the best one. 

 

2. PROPOSED METHOD 

2.1 Producing ground truth 

Most proposed algorithms in HDR imaging are concentrated 

on how to produce them, while less attention has been paid to 

extracting suitable features. In this research, the proposed 

method focuses on extracting the most suitable regions for 

HDR imaging. Indeed by finding the areas with more details, 

the HDR algorithm can produce an image free of overly 

saturated or dark parts. More specifically, an Image 

segmentation method is proposed to segment areas with the 

most detail. A neural network can then be utilised to extract 

the desired regions of input images, which will be discussed 

in future work. Additionally, two different methods, i.e. 

manual thresholding and Otsu segmentation, were used to 

produce the Ground Truth, which will be compared with each 

other. 

In the manual technique, several experts 

investigated the best possible range of intensity in YCbCr 

colour space for extracting the areas with the most detail 

empirically. Eventually, an average of the scopes was 

calculated for each image. The selected ranges for image 

intensity with Low and High-Exposure are [120,255] and 

[0,200], respectively. Generally, the objective is to acquire 

areas with less darkness and saturation. Therefore, because 

most of the regions in Low-Exposure images are dark, we 

would like to extract the areas with the highest pixel values, 

which indicate the most visible ones. Conversely, because 

most pixels in High-Exposure images are saturated, the 

objective is to extract pixels with the lowest values. Certainly, 

by choosing pixel values in the luminance channel, some of 

the visible pixels with the lowest values cannot be selected. 

For example, although the grey area of the mountain in Fig. 

1 is visible, it was not selected in the segmentation process. 

 

 

Figure 1. The image on the left is the input image, and on the 

right is its Ground Truth produced by the manual method. The 

picture is taken from [24]. 

The second method is called the Otsu technique, 

which calculates a threshold based on the intensities of 

images and segment pixels. More precisely, the pixels greater 

than the threshold are considered foreground (white), and 

those with lower values as background (black). The 

difference between these two methods is that the Otsu 

technique threshold is computed based on the histogram of 

each image. Whereas in the manual, all the pictures of each 

exposure have the same range. Moreover, in Otsu, all the 

pixels of Low-Exposure images greater than the threshold are 

considered the desired pixels, while the pixels lower than the 

threshold in High-Exposure pictures are desirable. 

 

2.2 Neural network structure 

Unfortunately, each image has various intensities, and it 

would be challenging to use non-machine learning methods 

to predict them. Moreover, it is a time-consuming task to 

extract a range for each image separately. Therefore, a neural 

network has been proposed in this research to learn how to 

extract the best area of each image based on the proposed 

ranges in the training stage. 

Two similar U-Net-shaped networks were used for 

segmentation in this research, and each network is trying to 

learn how to map from each exposure to its Ground Truth. As 

can be seen in Fig. 2, the U-Net consists of 2 parts. In the first 

part, the subnetwork strives to extract features, and the 

second subnetwork tries to produce an output similar to the 

Ground Truth. The encoder section includes five blocks, and 

each block has two convolutional layers with ReLU function, 

DropOut, and MaxPool layers, respectively. Additionally, 

kernels of convolutional layers in each block are 

16,32,64,128,256, respectively. Moreover, the decoder has 

four blocks, and each block consists of one transpose 

convolutional, concatenate, convolutional layer with ReLU 

activation, Drop Out, and another convolutional layer with 

ReLU, respectively. Furthermore, all convolutional and 

transpose convolutional layers used a kernel size of 3x3, and 

the last layer used a kernel size of 1x1. 

 

Figure 2. Total scheme U-net Architecture, which was used in 

this experiment. The blue boxes denote feature maps; their 

number is on the top of each box, and their size is indicated on 

the lower left side of each box. 

2.3 Loss functions 

The loss function is one of the essential components in deep 

learning. Thus, three loss functions will be used and 

compared to select the best loss function for segmenting the 

regions with the most detail. The used loss functions are as 

follows: 

1. Binary Cross Entropy (BCE): One of the most 

common functions, which is used in most image segmentation 

research is the BCE loss function, and it can be represented as 

follows: 

𝐿𝐵𝐶𝐸 = − ∑(𝑦𝑙𝑜𝑔�̂� + (1 − 𝑦)𝑙𝑜𝑔(1 − �̂�)) (1) 
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Where y and �̂� represent Ground Truth and the network's 

output, respectively, and the sum is over all the pixels. 

2. Focal Loss: This loss function is used for imbalance 

data and focuses on hard data: 
𝐿𝑓𝑜𝑐𝑎𝑙 =  − ∑(𝛼. 𝑦. (1 − �̂�)𝛾𝑙𝑜𝑔(�̂�) + (1 − 𝛼)(1 − 𝑦)(�̂�)𝛾 log(1 − �̂�))

  (2) 

Where α and γ are hyper-parameters and, as a default, they 

are equal to 0.25 and 2.0, respectively. 

3. Combo Loss (Dice Cross-Entropy): This loss 

function is also used for imbalanced data and is produced by a 

combination of Cross-Entropy and Dice loss functions. Eq (3) 

represents Dice loss, and Eq (4) is for Combo loss: 

𝐷𝐿(𝑦, �̂�) = 1 −
2𝑦�̂� + 1

𝑦 + �̂� + 1
 (3) 

The number one added to the numerator and the denominator 

avoids undefined errors, such as y=�̂�=0. 

𝐿𝐷𝑖𝑐𝑒𝐶𝐸 = 𝐿𝐷𝑖𝑐𝑒 + 𝐿𝐵𝐶𝐸 (4) 

 

3. EXPERIMENT RESULTS 

3.1 Dataset 

Recently, a new dataset was collected for High Dynamic 

Range (HDR) Imaging Challenge called NTIRE 2021 [25]. 

In this dataset, two types of pictures (Single-Exposure and 

Multi-Exposure images) were provided; however, Multi-

Exposure images only were used in this research. More 

specifically, this dataset includes images from [26] that were 

generated as follows. First, HDR images were produced 

natively by two Alexa Arri cameras with a mirror rig; then, 

their corresponding LDR images were generated 

synthetically with noise sources. There are approximately 

1500 pairs of HDR/LDR images in this dataset for the 

training set, 40 for the validation set, and 200 pictures for the 

test set with a resolution of 1900x1060. Moreover, all the 

images were already aligned and gamma corrected. 

 

3.2 Evaluation metrics 

Several evaluation parameters have been used in this research 

to evaluate the results and are discussed as follows: 

1. Dice Index: This metric is region based and 

evaluates the similarity and the overlaps of two samples. 

𝐷𝑖𝑐𝑒 (𝐴, 𝐵) = 2
|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 (5) 

2. Jaccard Index: This metric works similarly to Dice 

and calculates the similarity of two samples. 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 (𝐴, 𝐵) =  
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 (6) 

3. Two other metrics are Sensitivity and Specificity, 

which calculate True Positive and True Negative pixels. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (8) 

4. Area under Curve (AUC): this metric is commonly 

used in image segmentation algorithms. 

𝐴𝑈𝐶 = 1 −
1

2
 (

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
+

𝐹𝑁

𝐹𝑁 + 𝑇𝑃
) (9) 

 

3.3 Ground truth generation 

As the used dataset is not consisting of Ground Truths for 

segmentation, the first objective of this research is to produce 

Ground Truths that cover the most area of scenes. Thus, after 

frequent and visual studying of produced Ground Truths by 

both manual and Otsu techniques, it became evident that the 

manual method has more coverage than the latter one. For 

instance, as can be seen in Fig. 3, both approaches worked 

almost the same on images with Low-Exposure. However, 

the manual method succeeded in covering more areas in 

images with High-Exposure. Additionally, as can be seen in 

the last row, the total covered area by the manual method is 

larger than in the Otsu technique. Therefore, the produced 

Ground Truth from the manual method will be used for the 

rest of the research. 

 

Figure 3. Produced Ground Truth of both Manual and Otsu 

Methods. The first row is generated from the Low-Exposure 

image, the second one is obtained from the High-Exposure 

image, and the third row is a merged output of both rows. 

3.4 Other details 

Additionally, the training process for each loss function was 

50 epochs, which took around 200 minutes on NVIDIA DGX 

A100 and less than 2 minutes for testing, and the model was 

trained as parallel on 4 GPUs. Moreover, the number of 

images for the training set and the validation set was about 

1300 and 200 images with a resolution of 512x512 and a 

batch size of 32, respectively. Furthermore, Adam optimiser 

with a learning rate of 0.001 was used. Finally, the neural 

network was implemented in Tensorflow (Keras) framework. 

During experiments, 3 input images with different exposures 

were used for image segmentation, in which, after obtaining 

the suitable areas of Low- and High-Exposure images, the 

remaining regions were extracted from the Medium-

Exposure images. However, the acquired areas of the 

Medium-Exposure were not sensible because most of them 

were only a few pixels with no shapes. Thus, it was difficult 

for the network to segment them. Fig. 4 demonstrates an 

example of the extracted regions in the Medium-Exposure 

image. 

 

3.5 Results 

Input Images Manual Method Otsu Method 

   

   
 

  
 



The predicted segmentation outputs by 3 different loss 

functions were compared quantitatively with their produced 

Ground Truth by manual technique. As can be seen in Table 

1, which demonstrates the evaluation results of Low-

Exposure Image Segmentation, different loss functions 

outperformed the others in different evaluation metrics. For 

instance, the Focal Loss function performed better than the 

others in Jaccard and Sensitivity evaluation metrics. 

Although they have equal values in the AUC evaluation 

metric, the Focal loss was better than Dice-BCE and BCE 

averagely. Additionally, Table 2 indicates that the Dice-BCE 

loss function worked better than the other two losses in 

Jaccard and Sensitivity evaluation metrics, but as a result, 

BCE was better on average. Therefore, it can be concluded 

that Focal loss function can segment better illumination in 

Low-Exposures and BCE in High-Exposures. Figs. 5 and 6 

demonstrate produced outcomes by different loss functions 

for both images with Low- and High- Exposure. As can be 

seen, although all the outputs are almost identical visually and 

are difficult to distinguish differences between them, the 

quantitative results demonstrated that the output of Dice-BCE 

is not as well as the output of the other two. Moreover, Fig. 7 

indicates more examples of losses. 

 

 

Figure 4. An example of extracted areas from a Medium-

Exposure image. The picture is taken from [24]. 

Table 1. Quantitative evaluation results of Low-Exposure Image 

Segmentation. M row determines metrics, which are specified as 

M1: Dice, M2: Jaccard, M3: Sensitivity, M4: Specificity, M5: 

AUC, and AVG is the average of the metrics. 

Loss functions M1 M2 M3 M4 M5 AVG 

BCE 0.951 0.905 0.912 0.999 0.498 0.853 

Focal 0.916 0.936 0.997 0.997 0.498 0.869 

Dice - BCE 0.965 0.933 0.912 0.999 0.498 0.861 

 
Table 2. Quantitative evaluation results of High-Exposure 

Image Segmentation. M row is specified in Table 1. 

Loss functions M1 M2 M3 M4 M5 AVG 

BCE 0.994 0.909 0.765 0.754 0.68 0.82 

Focal 0.989 0.89 0.753 0.763 0.675 0.814 

Dice - BCE 0.991 0.912 0.77 0.73 0.67 0.815 

 

4. CONCLUSION AND FUTURE WORKS 

As discussed in the proposed method section, Otsu and 

manual methods were used in this research, and in the manual 

technique, a range was computed empirically. Although 

experiments demonstrated that the empirical approach had 

better outcomes than Otsu, it has two cons. Firstly, failure to 

recognise dark visible areas, such as the mountain peak 

illustrated in Fig. 1. Secondly, if the segmentation process is 

performed with the manual technique, the calculated range 

needs to be applied to all images, and it is possible that the 

computed span is not suitable for some photos, and 

calculating a specific span for each picture is also a time-

consuming task. Therefore, it is better to work on a new 

automatic technique to estimate these ranges for each image. 

In addition to working on a novel method for calculating an 

automatic range for each image in future work, it is feasible 

to use extracted regions from segmentation techniques in 

HDR imaging to produce an HDR image with more details. 

Additionally, this work can help reduce the complexity of 

networks for generating an HDR image.  

In summary, two methods for segmenting visible regions 

were used in this research, and a manual technique that is an 

empirical approach was chosen after comparing them to 

produce the Ground Truth. Moreover, deep neural networks 

were used to learn to extract the regions with the help of 

produced Ground Truths in each exposure. Additionally, 

three different loss functions were utilised in this article, and 

the quantitative metrics demonstrated that the focal and BCE 

loss functions outperformed in Low-Exposure and High-

Exposure images, respectively. 

 

Figure 5. Output results of other losses. (a) Low-Exposure input 

image, (b) Dice-BCE Output, (c) BCE Output, (d) Focal Output, 

(e) Ground Truth. 

 

Figure 6. Output results of different losses. (a) High-Exposure 

input image, (b) Dice-BCE Output, (c) BCE Output, (d) Focal 

Output, (e) Ground Truth. 
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