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1 Abstract

Thanks to High Dynamic Range (HDR) imaging methods, the scope of photog-
raphy has seen profound changes recently. To be more specific, such methods
try to reconstruct the lost luminosity of the real world caused by the limitation
of regular cameras from the Low Dynamic Range (LDR) images. Addition-
ally, although the State-Of-The-Art methods in this topic perform well, they
mainly concentrate on combining different exposures and have less attention to
extracting the informative parts of the images. Thus, this paper aims to intro-
duce a new model capable of incorporating information from the most visible
areas of each image extracted by a visual attention module which is a result
of a segmentation strategy. In particular, the model, based on a deep learning
architecture, utilizes the extracted areas to produce the final HDR image. The
results demonstrate that our method outperformed most of the State-Of-The-
Art algorithms.

Keywords: Deep Neural Network, High Dynamic Range imaging, Image
Segmentation, Multi-exposure Image, Visual Attention Module

2 Introduction

In the scope of photography, the real world consists of an unlimited range of
luminance. However, most devices are capable of capturing merely limited of
that light. Therefore, the taken images are not desirable and consist of saturated
regions, in which some parts of the images are too dark (underexposed) or overly
bright (overexposed). These types of pictures are called LDR images.



Thus, in order to cope with this problem, highly advanced cameras [1H7]
can be used, which have special sensors to capture more light. However, such
devices are mainly too expensive and overly heavy, which are not suitable for
daily life, and instead, are mostly used in industries.

A possible resolution for this drawback is developing software algorithms
called HDR imaging techniques. Moreover, HDR images can be implemented by
a single image [8H11] or fusing a stack of images with different exposures, which
are called single- and multi-exposure methods, respectively. In algorithms with
a single LDR image, an HDR image can be produced from one image. However,
the generated picture might not be as informative as the HDR image produced
by several LDR images because the amount of detail in one single picture is
limited compared to several images with different exposures. More precisely, [8]
implemented an algorithm that only reconstructs the detail of bright saturated
areas. However, the model is not only not capable of restoring the detail of
dark regions but also does not perform well if the amount of bright saturation
is too much. Thus, [12] first combined several LDR images and then fed the
low-frequency response of the wavelet transform to the network to produce more
detail in a shorter time.

Luckily, multi-exposure methods are more effective and informative com-
pared to single-exposure techniques. Moreover, these methods perform well
when the images are static |13|[14], while when there are movements in the
sequence of pictures, the ghosting problem emerges, which is almost solved
in [1520].

Deep learning has been a significant means of producing an HDR image for
the past decade. For instance, [8] produced an HDR picture in the logarithmic
domain with the help of a deep neural network. Additionally, [21], used a
neural network to reconstruct the detail of an image with different exposure
in each row in the irradiance domain. Moreover, unlike other multi-exposure
methods, [13}|14] used a neural network to produce synthetic LDR images with
different exposures from a single image. Furthermore, [16] proposed to first align
images with the help of the optical flow method, and then use a deep neural
network to combine them. Therewith, [15] instead of using optical flow for
alignment, proposed to use two different neural networks first to align them and
then combine the aligned images with the second neural network. Finally, [22]
used a neural network to learn the relative relation between the inputs and the
Ground Truth using input images in different scales.

In this article, we would like to exploit image segmentation with the help of
the Otsu method [23] in HDR imaging to extract the most visible areas of the
images and help the model produce pictures with more detail. Thus, to reach
this point, Visual Attention Modules (VAMs) will be proposed to obtain such
regions. Moreover, in this research, Spatial and Attention modules have been
used from a State-Of-The-Art method, and a new architecture for the Recon-
struction stage was designed and implemented, in which the visual attention
and the reference image were used in the decoder part. Finally, although VAMs
helped in producing pictures with more details and outperformed most of the
State-Of-The-Art methods, the results still illustrated a slight amount of noise



that was extracted from the input images.

In section (3] the State-Of-The-Art in HDR imaging and related image seg-
mentation is presented. In section[d] the proposed method is discussed in detail.
Section [5] demonstrates the experimental results and comparison with the State-
Of-The-Art methods. Moreover, section [6] concludes this article with ideas for
further works. Finally, the code will be available at the |github page.

3 Related work

In this section, we will discuss the State-Of-The-Art methods in the scope of
HDR imaging in the Multi-Exposure category (Section and survey unsu-
pervised Image Segmentation methods for extracting regions (Section [3.2]).

3.1 Multi-Exposure Methods

[24] proposed a two-stage algorithm, in which the first phase they extracted
features from the input images, and merged them to produce the HDR image in
the latter one. Additionally, to cope with the appeared noise from the gamma
correction operation on input images, i.e. the gamma-corrected Short-Exposure
image becoming similar to Medium-Exposure, they used a U-net to extract
noiseless features from it. Moreover, [25] implemented a model in which images
with lower scales were used to reduce the consuming sources. Additionally, a
novel loss function was defined to focus more on the motion. Furthermore,
[26] forwarded features with different scales to deformable and spatial attention
blocks to align images in the feature space and also extract the features of the
specific areas of the input images. Moreover, [27] proposed a model that at first
estimated the optical flow from the two input images in different scales and then
fused them to produce the final output. In 28], the features are extracted from
different scales and then are processed by sampling and aggregation modules to
align the pixels of the non-reference features.

The work [29] implemented a baseline that had lower computational re-
sources and acceptable results compared to the other State-Of-The-Art models.
They used a dual attention module, which includes both spatial and channel
attention modules, to cope with misalignment and to better learn the details of
the produced areas. In [30], the authors proposed a model that first extracts
features from input images by multi-scale encoding modules and then produces
an HDR image by progressively dilated U-shape blocks.

[31] demonstrated that the ghosting problem is mainly in short-frequency
signals, and therefore, they proposed a wavelet-based model to merge images
in the frequency domain and avoid any ghosting problems. [32] implemented an
algorithm that extracted dynamic areas of the images with the help of image
segmentation and applied two neural networks separately on the static and dy-
namic scenes. Finally, they merged the information to produce an HDR image
without ghosting. In [33] a model based on bidirectional motion estimation was
proposed, in which, the amount of optical flow between LDR images was esti-
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mated by motion estimation with cyclic cost volume and spatial attention maps,
and eventually, an HDR image was produced with the help of the extracted lo-
cal and global features. [34] implemented the first multi-bracket HDR pipeline
using event cameras, in which they merged the extracted features of images and
the events to produce an HDR image. [35] proposed a transformer-based base-
line, in which they used a context-aware vision transformer to extract local and
global features to model the movement of objects and the diversity of intensity.

3.2 Image Segmentation

Image segmentation is a crucial task in computer vision, which tries to partition
images into segments to analyze the pictures more easily. Additionally, image
segmentation not only can be used for object recognition, detection, and medical
purposes but also can be applied for extracting regions of pictures with more
details. In [36] images were analyzed in HSV color space to segment pixels based
on Intensity or Hue value. Moreover, two image segmentation methods were
proposed based on luminance: histogram division [37] and clustering based on
Gaussian Mixture Model (GMM) of histogram [38]. Furthermore, [39] calculated
an optimal valley point based on the slope between the histogram value of each
pixel and the neighboring points, and used the computed valley point to segment
regions. The literature on the topic is endless, depending on applications and
methodologies, from level set methods [40] to graph cut [41] to recent deep
learning-based frameworks [42].

4 Proposed Method

4.1 Overview

As cited in [43], it might be beneficial to first segment images based on exposure
information to extract the best and more detailed regions from the Over- and
Under-Exposure regions and exploit this knowledge in reconstructing an HDR
image. Following this idea, in this paper, a model is proposed in which, with
the help of image segmentation, regions with more detail are segmented first in
the preprocessing stage. Finally, they are fed to the model along with the input
images to produce an HDR image with the help of VAMs.

Generally, the model can be divided into several sections. Firstly, the input
images are fed into the feature extraction module, and afterward, the extracted
features enter the attention and spatial alignment modules to cope with any
possible misalignment. Moreover, the input images with their corresponding
masks go to the VAM simultaneously to extract the visible areas of the LDR
images. Next, the outputs of the three modules are fed to the Reconstruction
stage to produce the initial HDR image. Finally, the generated outcomes with
the features of the reference image enter the refinement section to construct the
final HDR image.



4.2 Preprocess

In this article, the inputs are three LDR images with different exposures, and
the image with Medium-Exposure is considered the reference image. Moreover,
before feeding the input images to the model, they are first mapped to the
HDR domain with the help of gamma correction. Finally, they are concatenated
channel-wise with their corresponding LDR images.

fori=1,2,3 (1)

Where ¢; is the exposure time of /;. 7 is the gamma correction parameter, which
was 2.24, and I; is the gamma-corrected image.

4.2.1 Segmentation

Most of the present algorithms in HDR imaging focus more on the approach
of image production, but not many pay attention to how to extract the most
helpful features. Thus, in this research, the regions of the pictures with more
details are segmented and extracted as a preprocess and finally are fed to the
proposed model along with the LDR images as the inputs.

Different methods, such as the neural network and Otsu method were used
for the image segmentation stage; however, the neural network resulted in over-
fitting. Thus, the Otsu method has been selected to segment the visible areas
of the pictures. Therefore, the images are converted into the YUV color space
to calculate a threshold based on the histograms of Short- and Long-Exposure
images.

thresh; = G(Y;) fori=1,3 (2)

In which Y; is the luminance channel of the LDR image, G() is the Otsu function,
and thresh; is the threshold value of image i.

In the Short-Exposure image, because most of the pixels are dark, and the
objective is to extract the regions with visible pixels, the values equal to or
more than the threshold are considered one, and the rest are zero for the Short-
Exposure mask.

1 p > thresh; 3
0 p < thresh; 3)

Where thresh; is the threshold value of the Short-Exposure image, and p is
the pixel.

On the other hand, because most of the pixels in the Long-Exposure image
are saturated, and the visible pixels have the lowest values, the values that
are less than the threshold were considered one, and the rest as zero in the
Long-Exposure mask.

0 p > threshs (@)
1 p < threshs



By doing so, the masks of the areas with more detail are extracted and can
help to produce an HDR image.

Generally, most of the pixels in Short- and Long-Exposure images are too
dark or bright, respectively. Therefore, the location of the areas with surplus
information is extracted and fed to the model. Doing so reduces the amount
of calculation and helps in producing an HDR image with more detail. Fig.
demonstrates the segmented and visible regions of both Short- and Long-
Exposure pictures.

Figure 1: Produced masks of Short- and Long-Exposure images.

Moreover, during experiments, three input images with different exposures
were used for image segmentation, in which, after obtaining the suitable areas of
Short- and Long-Exposure images, the remaining regions were extracted from
the Medium-Exposure image. However, the acquired areas of the Medium-
Exposure were not sensible, as most of them were only a few pixels. Thus,
two reasons exist for not using Medium-Exposure in the segmentation stage.
First, it would be challenging to calculate a range for the visibility of the pixels.
Second, Medium-Exposure is the reference image, and the picture will be used
in the neural network. Therefore, it is not necessary to use segmentation for it.

4.3 Proposed Method Structure

As shown in Fig. [2] the proposed algorithm consists of six stages, which will be
discussed separately and in detail.

4.3.1 Feature Extraction

Fig. [3|illustrates the Feature Extraction block, in which a SepConv is applied to
the image to extract 32 feature maps. Afterward, a Max Pool and an Average
Pool are used to not only smooth the features and focus on the details but also
pay more attention to the edges. Next, the outputs of Poolings are concatenated,
and another SepConv + ReLU is used to reduce the number of channels to 32.
Finally, the extracted features are Upsampled to make them the same size as
the input image. The feature extraction can be written as follows:
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Figure 3: The structure of the Feature Extraction Block.

C; = concat (M (SepConv(1;)), A(SepConv(;))) (5)
F; = Upsample(ReLU(SepConv(C;))) (6)

for i = 1,2, 3, where A() and M () functions are Max Pooling and Average
Pooling, respectively, and C; is the output of Concatenation. Finally, F; is the
output of the Feature Extraction Block.

4.3.2 Visual Attention Module

As it was mentioned, in this article, Image Segmentation is used to help the
model to produce a better image. Therefore, as shown in Fig. [ the input
images are multiplied element-wise by their corresponding masks first. By doing
so, the regions with more details are kept, and those that are overly dark or too
bright will be removed. Next, they are fed to the Feature Extractor to extract
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Figure 4: The structure of the Visual Attention Module (VAM).

Features. Finally, they are added together element-wisely. The VAM can be
formally defined as follows:

featuresy, = F(multiply (masky, I1)) (7)
featuresy = F(multiply(masky, Ifr)) (8)
V = add(featuresy,, featuresy) 9)

Where F' is a feature extractor function, and V is the output feature of the
VAM.

4.3.3 Spatial Alignment Module

Because the input LDR images are not aligned, the extracted features from the
LDR images without the gamma correction images are fed to an ad hoc module
for aligning them. To this end, we used the same Feaure-alignment Module used
in [30]. As can be seen in Fig. [5| first a Conv + ReLU is applied to the Reference
Features, which can be called as Ref;. Next, a Conv 4+ ReLU is applied to Ref;
and is multiplied element-wisely by the input LDR features, which can be called
M; (for ¢ = 1,3). Finally, another Conv + ReLU is applied to the Ref; and is
added element-wisely with M;. Formally, the operation in the module can be
written as follows:

Ref; = ReLU(Conv(ref features)) (10)
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Figure 5: The structure of the Spatial Alignment Module.

M; = multiply(ReLU(Conv(Ref})), inp features;) (11)
out; = add(ReLU(Conv(Ref})), M;) (12)

4.3.4 Attention Module

Gamma
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Figure 6: The structure of the Attention Module.

The Attention Module is almost similar to |30], in which, as shown in Fig
[6] feature maps are produced for Short- and Long-Exposure images to merge
them with the reference image as guidance. After feeding the features of gamma-
corrected images with the reference image, they are concatenated. Afterward,
SepConv + ReLLU and SepConv + Simgoid operations are applied to them. The
module can be considered as follows:

R; = ReLU(SepConv(concat(f;, f-)) fori=1,3 (13)

S; = Sigmoid(SepConv(R;)) (14)

Where f; and f,. are the features of gamma-corrected and reference images,
respectively.
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4.3.5 Reconstruction

All the extracted features from the modules are concatenated and fed to the
reconstruction stage. As shown in Fig. [7] with the help of four encoder blocks,
the input is merged, and new features are produced. Next, each decoder block
receives features from the encoder along with features of the reference image
and VAM. Finally, a SepConv + ReLU is used to produce the output of the
stage.
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Figure 8: The structure of the blocks in the encoder (left) and the decoder
(right).

II

Each encoder block (Fig. |8 left) initially applies SepConv, Batch Normalization,
and ReLU layers to the inputs. Afterward, similar to Feature Extraction Mod-
ule, Max and AVG Poolings are used. Finally, they are concatenated and sent
to the next block.
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Moreover, each decoder block (Fig. [8] right) consists of three inputs, which
are features of the VAM, features of the reference image, and the output of
the previous block. First, AVG pooling is applied to the first two inputs to
make them the same size as the output of the previous block, and then they are
concatenated with each other. Finally, SepConv + ReLLU and Upsampling are
used, respectively.

4.3.6 Refinement
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Figure 9: The structure of the Refinement Stage.

Unfortunately, the output of the reconstruction stage may have blurry, sat-
urated, or dark areas; therefore, to cope with such possible issues with the help
of features of the reference image, a refinement section also has been added.

As Fig. [9 illustrates, SepConv + ReLU is applied to the features of the
reference image to reduce the number of feature maps. Furthermore, after
concatenating the inputs, SepConv and SepConv + ReLLU are used, respectively.
The process is repeated two more times, and eventually, Conv + Sigmoid is
applied to produce the final image in Sigmoid space. The process in Refinement
can be represented in pseudo-code as shown in Algorithm

Notice that, in this research, the Ground Truth images are mapped from
HDR Space into sigmoid space. Indeed, based on our experiments, transforming
the values into sigmoid helps the network converge more conveniently. The
reason for changing the space is that the values in HDR space are too large,
and a model with a low number of parameters is not able to learn to produce
an HDR image correctly; therefore, by mapping them to sigmoid space, the
proposed model outperforms the model in the HDR space.
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Algorithm 1 Pseudo-code of Refinement Stage.
fr = ReLU(SepConv(f,))

140
while 7 < 3 do
if i == 0 then

¢ + concat(Reconstruction,, fr)
x < ReLU(ConvSep(ConvSep(c)))
else
¢+ concat(z, fr)
x + ReLU(ConvSep(ConvSep(c)))
end if
14+ 1+1
end while
out < Sigmoid(Conv(z))

5 Experiments and Results

5.1 Dataset

A new dataset was collected for HDR Imaging Challenge [441/45]. In this dataset,
two types of pictures (Single-Exposure and Multi-Exposure images) were pro-
vided; however, Multi-Exposure images only were used in this research. More
specifically, this dataset includes images from [46] that were generated as follows.
First, HDR images were produced natively by two Alexa Arri cameras with a
mirror rig; then, their corresponding LDR images were generated synthetically
with noise sources. There are approximately 1500 pairs of HDR/LDR images
in this dataset for the training set, 40 for the validation set, and 200 pictures
for the test set with a resolution of 1900x1060. However, in this research, we
randomly selected 200 images of the training set as a test set and trained the
model with around 1300 pairs.

5.2 Implementation Details

The highlights of the model are demonstrated in Table [1| briefly. Additionally,
the weights of the model were initialized randomly and no pre-trained weights
were used. Finally, the information regarding the proposed method will be
discussed in the following subsections.

5.2.1 Loss function

The Mean Absolute Error (MAE) loss function is used to train the model. The
difference is that the Ground Truth is first mapped to Sigmoid Domain, and
eventually, MAE is calculated in Sigmoid space between the Ground Truth and
the output of the model.
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Dataset NTIRE Challenge
Optimizer Adam Optimizer
Initial LR 0.001 with LR decay

Train Validation
Batch Size 16 2
Input Size 256x256 | 1920x1088
Augmentation True False
Epoch 100
Loss MAE

Table 1: Brief highlights regarding the training and validation settings for the
proposed method.

GT,, = sigmoid(GT) (15)

Where GT,, is the Ground Truth image in the new domain, and L is the loss
between Ground Truth and the output.

Furthermore, after training the model in sigmoid space, inverse sigmoid is
used to re-map the output to HDR space. The inverse sigmoid can be written
as follows:

HDR = log( 1(y) ) (17)

Where HDR is the output in HDR space and ¢ is the image in the sigmoid
domain.

5.2.2 Training

Flipping the images vertically or horizontally is also used as an augmentation
method during training. Moreover, before feeding the images to the model,
they are resized into 256x256. The reason for doing so instead of producing
patches is that some generated patches from the masks may be totally black or
completely white, which causes the model to pay less attention to the images
with Short-Exposure.

Moreover, batch size and the number of epochs are set to 16 and 100, re-
spectively. In this article, Adam Optimizer with an initial learning of 0.001 is
used, and it will be reduced by a factor of 0.1 if the validation accuracy does
not improve. Finally, the whole model is implemented in Tensorflow (Keras)
framework and is trained on a DGX-A100 GPU.

5.2.3 Validation

The images are first padded from 1900x1060 to 1920x1080 and then fed to the
model without any augmentation methods during validation.
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Methods | PSNR | u-PSNR | GMACs | Param. x 103
GSANet 36.88 35.57 199.38 80
DRHDR 38.5 36.91 | 1701.932 1190
Vien et al. | 39.44 35.39 198.819 1301
ours 43.25 35.86 234.107 570

Table 2: Comparison with the State-Of-The-Art methods. The bold numbers
are the best values, and the underline ones are the second best.

5.3 Evaluation Metrics and Comparison
5.3.1 Quantitative Comparison

The results in this paper are compared with the State-Of-The-Art methods by
PSNR in HDR and Tone-mapped domains. The PSN R— p is the tone-mapped
version, where the images were tone-mapped in p — law. Moreover, the results
are compared with the State-Of-The-Art methods in GM AC's and the number
of parameters.

As mentioned in [45], the challenge focused on two tracks, which were Fi-
delity and low complexity. In the first one, the methods were required to obtain
the highest 4 — PSNR while the GM AC's value is less than 200. In the lat-
ter track, it was asked to reduce the GM AC's value to less than the baseline
method while the PSNR and u — PSNR values are almost the same as the
baseline method. The proposed method has been compared with GSANet [24],
DRHDR [26], and Vein et al. [33] methods. As can be seen, Table |2| shows the
proposed method has the highest value in terms of PSNR, while having the
second highest value in p — PSNR. On the other hand, Vien et al. [33] had
the lowest GMACs value, and GSANet is ranked second lowest. Moreover, it is
visible that in terms of the number of parameters, GSANet has the lowest and
the proposed method is in the second place among the algorithms.

Methods PSNR | Mu-PSNR
Ours (HDR Space) 42.4 35.28
Ours (Sigmoid Space) | 43.25 35.86

Table 3: Comparison between the proposed method in HDR and Sigmoid
Spaces.

Furthermore, for more study, the proposed method was trained and tested
in HDR and Sigmoid Spaces to check which space is superior for training the
model. Thus, as Table [3| demonstrates, the proposed method in Sigmoid Space
outperformed the algorithm in the HDR domain. Moreover, during training, the
model in Sigmoid space converged quicker than the model in the HDR domain.
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Figure 10: Qualitative Comparison with the State-Of-The-Art. The first row
of each scene contains short, medium, and long exposure images, respectively.
The second row includes ours, DRHDR, An et al., and GSANet outcomes,

respectively.
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5.3.2 Qualitative Comparison

As can be seen in Fig. the produced images by ours, worked better in
terms of image reconstruction compared to DRHDR and An et al. methods.
More specifically, Fig. demonstrates the results of ours, DRHDR [26], An
et al. [33], and GSANet [24]. As can be seen, the output of An et al. in the
first scene has distortion in the bright areas, and it is visible that the algorithm
cannot restore the details from these areas correctly. Furthermore, there is some
degradation in the dark regions too. Moreover, although DRHDR worked great
and reconstructed both areas, this method was not able to acquire the details
in over-saturated areas. For instance, looking at the two red and green boxes,
the model did not reconstruct the details of the hands and the shirt, while
the proposed method produced more detail in these two regions. Moreover,
produced image from the GSANet method shows significant details and is almost
similar to ours. More precisely, although both methods could reconstruct the
shirt nicely, the details of the hand in the GSANet are more than ours.

Additionally, in the second scene, the DRHDR and An et al. methods were
not able to reconstruct the branches that were only visible in the short exposure
image and restored only a part of them. In contrast, the proposed method and
the GSANet worked almost well in this regard. Finally, looking at the last scene,
it is visible that the proposed method outperformed the first two algorithms and
reconstructed more details in both dark and bright areas, and the details of the
sky show this point.

Furthermore, although the segmentation helped the model to produce better
results, the method might encounter two possible issues. Firstly, due to plausi-
ble noise in input images, using segmentation for extracting visible areas may
also acquire the noise, and the produced image might become noisy. Lastly, al-
though spatial alignment and attention modules are used to avoid any possible
ghosting problems, if the input images have a severe amount of movement, the
output might also encounter a ghosting issue. Because the segmentation is ap-
plied to the Short- and Long-Exposure images and extracts their visible areas.
Therefore, some parts of the images might not be aligned. Moreover, for future
research, we would like to investigate possible methods to use segmentation and
avoid any likely noise or misalignment.

6 Conclusion

In this article, we proposed a new method for HDR imaging with the help
of image segmentation. More specifically, we first applied the Otsu method
on Short- and Long-Exposure images to acquire the areas with more details.
Afterward, the input images along with the segmentation outputs were fed to the
model to produce the HDR image. The results show that the proposed method
outperformed the State-Of-The-Art and generated more details. However, the
proposed model is not free of issues, and in case of possible noise or misalignment
in input images, the output might have a slight amount of noise or misalignment

16



due to extracting areas of input images. Therefore, for future research, we would
like to focus on investigating these two problems.
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