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ABSTRACT The widespread adoption of personal location devices, the Internet of Mobile Things, and
Location Based Social Networks, enables the collection of vast amounts of movement data. This data
often needs to be enriched with a variety of semantic dimensions, or aspects, that provide contextual and
heterogeneous information about the surrounding environment, resulting in the creation of multiple aspect
trajectories (MATs). Common examples of aspects can be points of interest, user photos, transportation
means, weather conditions, social media posts, and many more. However, the literature does not currently
provide a consensus on how to semantically enrich mobility data with aspects, particularly in dynamic
scenarios where semantic information is extracted from numerous and heterogeneous external data sources.
In this work, we aim to address this issue by presenting a comprehensive methodology to facilitate end
users in instantiating their semantic enrichment processes of movement data. The methodology is agnostic
to semantic aspects and external semantic data sources. The vision behind our methodology rests on
three pillars: (1) three design principles which we argue are necessary for designing systems capable
of instantiating arbitrary semantic enrichment processes; (2) the MAT-Builder system, which embodies
these principles; (3) the use of an RDF knowledge graph-based representation to store MATs datasets,
thereby enabling uniform querying and analysis of enriched movement data. We qualitatively evaluate the
methodology in two complementary example scenarios, where we show both the potential in generating
interesting and useful semantically enriched mobility datasets, and the expressive power in querying the
resulting RDF trajectories with SPARQL.

INDEX TERMS Multiple aspect trajectory, semantic enrichment, trajectory enrichment, semantic enrich-
ment processing, knowledge graph, resource description framework, python.

I. INTRODUCTION AND MOTIVATIONS
Tracking sensors have experienced consistent development
in recent years. These devices generate high-frequency and
high-volume data streams daily, capturing the movement of
various objects, such as humans, animals, and different types
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of tracked vehicles like vessels, airplanes, and cars/trucks.
Similarly, Internet of Things devices, including drones,
smartwatches, airtags, smartbands, and cameras, produce
large quantities of tracking data. Despite the massive vol-
ume of big spatio-temporal data these devices generate,
their tracks often lack essential semantic contextual infor-
mation. This information is currently sourced and stored
through various means, including satellite images, weather
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stations, points of interest, social media, web pages, web
APIs, and data spaces, among others. The process of com-
bining spatio-temporal tracks with semantic information is
relatively unexplored. Consequently, semantically enriched
traces, which can offer valuable insights across numerous
domains, are underutilized. When movement data and con-
textual semantic information are synergistically combined,
they lead to the generation of the so-calledmultiple aspect tra-
jectories (MATs) [1]. MATs are location tracks semantically
enriched with multiple heterogeneous semantic dimensions,
or aspects.

The ability to construct MATs from different aspects and
data sources enables the development of innovative applica-
tions aimed at extracting and analyzing mobility behaviours.
Telco companies, for instance, utilize semantically enriched
movement data. They collect vast amounts of data from their
customers, aiming to combine this data with aspects related to
their behaviours. For example, a company’s marketing busi-
ness unit may wish to design marketing campaigns based on
the apps customers are using in specific locations. Theymight
then enrich customers’ movements with aspects dependent on
the applications used. In this context, a semantic enrichment
process might enrich customers’ traces with semantic infor-
mation such as the applications used at a specific location,
customer profiles, or characteristics of the areas involved
(e.g., by examining the categories of their points of interest
(POIs)). The enriched data can provide valuable insights to
the marketing business unit about where, when, and how to
run specific marketing campaigns.

Other interesting application scenarios may focus on
transportation. For example, telco companies may wish to
better understand the usage patterns of public transporta-
tion to propose new routes or schedules. Similarly, in the
tourism domain, enriching customer traces with aspects
related to the POIs they visited, the transportation means
used, or the weather conditions encountered could result
in improved recommendations and more effective manage-
ment of overtourism. The enriched data could then be lever-
aged to infer which kinds of tourists are visiting a city,
how they visited its various areas, and their spending pro-
files (e.g., by analysing the expense level of the POIs they
visited).

Overall, the capacity to generate different MAT dataset
variants for each unique application scenario, ideally in a
consistent format, would facilitate the pursuit of diverse
objectives and improve the quality of subsequent analyses.
While there is an increasing interest in the modelling and
analysis of multiple aspect trajectories [1], [2], we observe
that in the literature, there is no comprehensive established
methodology that can guide users in building MAT datasets.
Indeed, existing approaches are tied to specific datasets,
aspects, sources, or application scenarios, rendering them
unsuitable for different or more dynamic scenarios. As such,
we argue that users should have a methodology that facil-
itates them in instantiating their own semantic enrichment

processes, incorporating dynamic and heterogeneous aspects,
with information sourced from multiple external semantic
data sources.

In this paper, we address this problem and propose a
methodology that focuses specifically on the notion of
semantic enrichment process, enabling the creation of MAT
datasets. Such a process should be highly configurable, allow-
ing for easy setup of different enrichment processes leading to
several variations of MAT datasets, depending on the specific
aspects and sources considered for the application questions
at hand. In more concrete terms, users should be able to
dynamically define (1) the trajectory parts to be enriched,
(2) the semantic aspects to use for enrichment, (3) the external
data sources to build information for these aspects, and (4) the
best approaches to enrich movement data. Additionally, users
should be able to (5) rely on a uniform representation for
MAT datasets, consistently enabling effective querying and
analysis. To the best of our knowledge, such a methodology
does not exist in the literature. Our proposed methodology
rests on three pillars:

• The design principles of modularity, configurability, and
extensibility, which are necessary for designing systems
capable of instantiating arbitrary semantic enrichment
processes.

• The MAT-Builder system, which embodies the above-
mentioned principles.

• The use of a knowledge graph-based representation [3]
based on the Resource Description Framework (RDF)
formalism to store MAT datasets, allowing for uni-
form querying and analysis of enriched movement
data.

In line with the previously mentioned related approaches,
we assess the effectiveness of our methodology through an
extensive qualitative empirical evaluation, highlighting its
usefulness in constructing and analyzing enriched datasets.
To this end, we provide two illustrative example scenarios to
showcase the utility, versatility, and expressive power of our
proposal, one in the tourism domain and the other in the urban
mobility domain. These examples demonstrate how MAT-
Builder can be used to effectively address various typical
queries.

The rest of the paper is organized as follows. Section II
presents some fundamental notions that are used throughout
the paper, and introduces the problem statement. Section III
gives an overview of the related literature and highlights the
novelty of our contributions. Section IV presents the three
pillars underpinning our methodology. Section V presents a
concrete instance of a semantic enrichment process that can
be implemented with our methodology. Such a process is then
used in the qualitative experimental evaluation (Section VI)
to generate knowledge graphs containing datasets of MATs,
which are then employed to conduct analyses on the move-
ment behaviours of selected individuals. Lastly, Section VII
draws the final conclusions.
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II. PRELIMINARIES AND PROBLEM STATEMENT
In this section, we first review some fundamental notions that
will be used throughout the rest of the paper. These notions
then set the stage for the final part of the section, which
presents the problem statement that this study aims to address.
Definition 1 (Trajectory): We define a trajectory gener-

ated by a moving object mo to be T = (mo,P), where
P = ⟨p1, p2, . . . , pn⟩ represents the time-stamped sequence
ofmo’s geographical locations (or samples). The sample pi =

(xi, yi, ti) ∈ P represents the i-th position of mo in space and
time, with xi and yi providing the object’s geographical loca-
tion, and ti the timestamp at which the sample was recorded.

Before we can semantically enrich a trajectory, we often
need to identify relevant parts within the trajectory. This is
achieved through a process known as trajectory segmentation.
Definition 2 (Segmented trajectory): Given a trajectory T ,

the process of identifying its relevant segments, i.e., sub-
trajectories in T uniquely characterized by one or more
properties, is called trajectory segmentation. Such a process
yields a segmented trajectory Tseg = (T , S), where S denotes
the set of such segments.

Numerous segmentation criteria exist in the literature.
It is also worth noting that a segmented trajectory could
simply be the original trajectory, in which case the seg-
ments correspond to the individual trajectory samples. For
the purposes of this paper, we will assume that trajectories
are segmented into sequences of stop (where the object is
stationary) and move (where the object is moving from one
stop to another) segments, following the criterion introduced
by Spaccapietra et al. [4]. Having defined the notions of raw
trajectory and segmented trajectory, we can now move to the
concept of multiple aspect trajectory, where the segments of
segmented trajectories are semantically enrichedwith aspects
(semantic dimensions). We start by defining the notion of
aspect.
Definition 3 (Aspect): An aspect, or semantic dimension,

represents the categorization of a real-world fact, and it can be
defined in terms of the space of values that instances belong-
ing to the aspect can assume. We thus define an aspect as a
pair A = (desc, SAT ), where desc provides the description
of the aspect and SAT = {a1, . . . , ak} specifies the set of
attributes that represent the various properties characterizing
the aspect. Accordingly, we define the instance of an aspect
A to be a specific instantiation of its attributes in SAT .
The above definition implies that aspects can capture the

complexity of real-world entities and phenomena due to
their potential structural complexity and heterogeneity. For
instance, consider the aspect Points Of Interest. The attributes
of this aspect might include the POI name, description, pho-
tos, user reviews, geographical location, and opening and
closing times. Another example is the weather conditions
aspect, whose instances represent the meteorological condi-
tions at a specific location and time and can have attributes
such as temperature, weather conditions, humidity, dew point,
and more.

We are now ready to introduce the concept of a multiple
aspect trajectory, a segmented trajectory enriched with (pos-
sibly many) aspects.
Definition 4 (Multiple aspect trajectory): We define a

multiple aspect trajectory to be a pairMAT = (mo,E), where
mo is the moving object that generated a segmented trajectory
Tseg, while E = ⟨e1, . . . , en⟩ represents the sequence of Tseg
segments enrichedwith zero or more aspects. More precisely,
we define a part ei ∈ E ∈ MAT as a pair ei = (si,AIi), where
si ∈ Tseg represents a segment from Tseg while AIi represents
the set of instances of the various aspects that enrich si. Note
that AIi can be the empty set – in other words, a part might
not be semantically enriched.

Moving forward, we will use the terms semantic trajec-
tory, used in older literature, and multiple aspect trajectory
interchangeably. Observe that Definition 4 is general and thus
applicable to a broad range of entities, e.g., vehicles, sea
vessels, and animals. In urban contexts, particularly focusing
on individual movement patterns within cities, a person’s
MAT might have a move segment enriched with an instance
of the move aspect indicating the means of transportation
(e.g., car, train, bike, or subway, each possibly having its own
attributes). Stop and move segments might also be enriched
with instances of the weather conditions aspect. A stop seg-
ment could be enriched with an instance of the regularity
aspect to indicate whether the person regularly stays at the
associated location, which can be useful to determine if the
location is their home or workplace.

Information about the aspects often needs to be gathered
from sources outside the trajectory or segmented trajectory
datasets. To address this, we introduce the notion of external
semantic data source.
Definition 5 (External semantic data source): Given an

aspect A, we define the set of external semantic data sources
associated with A as the set of sources that are external
to the trajectory and segmented trajectory datasets and that
are used to gather information on A. We denote such set as
ESSA = {soA1 , . . . , soAj }.
Examples of external semantic data sources can be social

media, the semantic web, web APIs, local files, websites,
data spaces, and more – for instance, collecting information
about POIs typically involves accessing data sources like
OpenStreetMap,1 WikiData,2 and possibly others. Let us now
introduce the key concept of the semantic enrichment pro-
cess, which pieces together the definitions introduced so far.
Definition 6 (Semantic enrichment process): A semantic

enrichment process SEP takes three key inputs: a dataset of
raw trajectories D, a set of aspects ASP = {A1, . . . ,Aq} for
enriching the trajectories, and a set of external semantic data
sources ESS = {ESSA1 , . . . ,ESSAq} to be accessed to gather
information on the aspects. By means of the application of
a sequence of operations OP = ⟨op1, . . . , opr ⟩, the process

1https://www.openstreetmap.org/
2https://www.wikidata.org/
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first converts the raw trajectory dataset into a dataset of
segmented trajectories, Dseg, and subsequently enriches each
segment of a segmented trajectory Tseg ∈ Dseg with the appro-
priate instances of the aspects in ASP. Aspect instances are
created by taking into account the trajectories’ characteristics
as well as the information gathered from external semantic
data sources. This ultimately leads to a dataset of multiple
aspect trajectories DMAT .
The definition of semantic enrichment process sets the

stage for this work’s problem: how can a user be supported
in concretely implementing their semantic enrichment pro-
cesses, given the different sets of aspects, external semantic
data sources, sequences of operations, and parameter combi-
nations they might choose to use? More precisely, suppose a
user has a raw trajectory datasetD and intends to semantically
enrich its trajectories in various ways. With this assumption,
we can frame the problem as follows.
Definition 7 (Problem Statement): Let us represent the

enrichment processes that the user intends to apply as
SEP1, . . . , SEPz. Each SEPi incorporates a unique sequence
of operations OPi that enriches the trajectories in D with
instances of the aspect set ASPi, using information obtained
from external semantic data sources in ESSi. Here, we want
to define a methodology and a system, MAT-Builder, that
should be designed to assist users in implementing and exe-
cuting any of their semantic enrichment processes SEPi,
which means:

MAT-Builder(SEPi(D,ASPi,ESSi)) = DMATi ,

where DMATi represents the final dataset of multiple aspect
trajectories.

It is evident that the system should support the user in
implementing, reusing existing components, combining, and
executing functionalities needed to perform the sequences of
operations comprising their semantic enrichment processes.
Accordingly, this paper addresses the problem by introducing
a methodology that prominently features the MAT-Builder
system as one of its core components. Details of this method-
ology are provided in Section IV.

III. RELATED WORK
Semantic enrichment can be described as a process in which
some type of data is augmented with contextual, relevant,
and meaningful information. The purpose of this process is
to improve the utility of the data, making it more easily
understandable and more effectively processed and ana-
lyzed. Semantic enrichment finds application across numer-
ous types of data and contexts, for example social media [5],
[6], images [7], [8], databases [9], simulations [10], data
preparation in data science processes [11], mobility (which
we will delve into more deeply later), and more. Despite
the significant differences in the types of data and objectives
across this vast body of literature, there are a few notable
recurring themes pertinent to our work. These are: (1) the
use of a system to enrich some type of data, where the com-
ponents and algorithms used in the system depend on the

type of data and the specificities of the problem considered.
In some cases, the system is also designed to be open and
extensible/customizable by end users; (2) the use of ontolo-
gies for semantic modelling of the entities and relationships
of interest; (3) accessing external sources to enrich data with
pertinent semantic information; (4) the use of some formal-
ism to uniformly represent and query semantically enriched
data.

When it comes to the semantic enrichment ofmobility data,
which is the focus of this work, one has to start from the
concept of semantic trajectory introduced in the seminal work
by Spaccapietra et al. [4]. In this work, trajectories are con-
ceptually segmented into stop segments, i.e., sub-trajectories
where moving objects remain stationary, and move segments,
i.e., sub-trajectories where the objects change position. The
fundamental intuition is that semantic trajectories can be
characterized by key places visited by a moving object during
stops, separated by segments where the object’s position
changes. Starting from this earlier definition, the notion of
semantic trajectory has evolved into more complex defi-
nitions, with the semantic part gaining progressively more
complexity.

The first attempt to propose a methodology and a system
for constructing semantic trajectories is SeMiTri [12], which
builds upon the foundation established in [4]. In this work,
the identification of stop and move segments is leveraged as
a means to enrich trajectories.

The first conceptual model of a generic semantic trajectory
that goes beyond the basic stop and move segmentation was
CONSTANT [13]. Here, a trajectory can be enriched with a
limited set of predefined semantic aspects such as activities
performed by an object, means of transportation, points of
interest, trip purposes, and specific behavior patterns. These
aspects are statically associated with trajectory segments and
presented as textual labels. Although this approach first intro-
duces the idea of a semantic trajectory characterized by more
than its stop and move segments, it does not address how
a semantic enrichment process should be conducted as it
assumes that semantic trajectories already exist. Finally, both
the set of aspects and the semantic sources are fixed.

A later approach called BAQUARA [14], instantiates the
CONSTANT model into an ontological framework based
on a predefined ontological model of a semantic trajectory.
BAQUARA’s principal innovation lies in annotating semantic
trajectories with information retrieved via SPARQL queries
from Linked Open Data sources, hence presenting a first
example of a semantic enrichment process leveraging exter-
nal data sources. However, BAQUARA does not consider the
concept of a semantic enrichment process or how to con-
duct it. Additionally, the aspects considered by BAQUARA
are pulled in by linking its ontology with a specific set of
compatible concepts from the ontologies used by the three
Linked Open Data sources it accesses: DBPedia, Linked-
GeoData, and GeoCodes. This feature makes BAQUARA a
monolithic framework, offering no support for the addition
of new aspects or customization of existing ones.
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TABLE 1. Comparison table of the main related works on semantic enrichment of mobility data.

STEP [17] is an ontology-based model that can repre-
sent an arbitrary number of aspects to enrich movement
data. In a later paper, the same authors propose the STEPv2
ontology [16], where they introduce the ability to choose
the granularity of single occurrences of aspects and asso-
ciate occurrences to a single point in space and time.
In the same paper, they introduce FrameSTEP, a frame-
work that enriches trajectories with a fixed set of aspects.
FrameSTEP shares limitations seen with previous solutions
in terms of being monolithic, offering no flexibility in
the aspects and external semantic data sources used for
enrichment.

In [15], the authors propose an approach to enrich
movement data with information collected from various
Linked Open Data sources, combined via dynamic ontology
mashups. Unlike BAQUARA, where the ontology is prede-
fined, this approach allows dynamic selection of the Linked
Open Data sources and the aspects available from their
ontologies to enrich mobility data. However, this approach
is limited to external semantic data sources that are Linked
Open Data and to the aspects available in their ontologies,
therefore not allowing the instantiation of arbitrary semantic
enrichment processes as per Definition 6.

In [1], the authors propose MASTER, a conceptual model
for multiple aspect trajectories that is general enough to
support an arbitrary number of aspects. In this model, var-
ious parts of a trajectory, such as points, segments, stops,
and the moving objects themselves, can be enriched with
aspects that are not predefined. Each aspect can also be
represented via a complex object, thus going beyond label-
based representations. Finally, MASTER can explicitly rep-
resent relationships between moving objects. The authors
translated their conceptual model into an ontology and a log-
ical schema based on the Resource Description Framework
(RDF) standard. They also used a triplestore based onNoSQL
databases to store multiple aspect trajectories. Overall, while
the authors propose an ontology to model multiple aspect
trajectories and demonstrate the advantage of storing them
in RDF graphs, they do not address the notion of a semantic
enrichment process nor propose a methodology and a system
that support the instantiation of arbitrary semantic enrichment
processes.

Table 1 provides a summary and comparison of the related
works presented so far according to five key criteria:

1) Type of contribution: this criterion indicates the main
contribution characterizing a work. This can be a con-
ceptual model, an ontology, a system, a framework, or a
comprehensive methodology.

2) Semantic aspects: this criterion assesses how a work
addresses semantic aspects, i.e., if they are predefined
or can be dynamically defined.

3) Semantic enrichment process: this criterion assesses
whether a work supports the users in defining their own
semantic enrichment process.

4) External semantic data sources: this criterion
assesses whether a work uses external semantic data
sources to enrich mobility data.

5) Uniform formalism: this criterion assesses whether
a work uses a uniform formalism to store and query
datasets of semantically enriched trajectories.

Overall, the reviewed approaches provide varying levels of
semantic enrichment representation, ranging from the sim-
plest, such as the stop andmove segmentation proposed in [4],
to the most complex ones such as MASTER [1]. The most
recent approaches inspired the present work, which aims
to build upon their strengths while addressing their limita-
tions. These limitations predominantly stem from the absence
of a common methodology to instantiate arbitrary semantic
enrichment processes or the inability to go beyond a fixed set
of aspects or external semantic data sources.

In this work, we propose a methodology for the semantic
enrichment processing of movement data that is agnostic to
the aspects and external semantic data sources that might be
considered. Preliminary and limited parts of our system have
already been introduced in a demo paper [18] and a poster
paper [19]. In the demo paper, we first introduced an inter-
active tool designed to showcase the potential of a system,
MAT-Builder, that facilitates the generation of datasets of
MATs. However, compared to the present work, the version
of MAT-Builder presented in the demo paper was neither
extensible nor configurable, and it offered a specific instance
of a semantic enrichment process. Moreover, it did not use a
uniform formalism to store and analyze multiple aspect tra-
jectories in knowledge graphs. The subsequent poster paper,
instead, demonstrates an example of MAT-Builder’s use in
the tourism domain and uses RDF knowledge graphs for
storing and querying multiple aspect trajectories in a uniform
manner.
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Compared to these two previous works, the present paper
introduces the overarching methodology that encompasses
MAT-Builder, and that allow users to instantiate arbitrary
semantic enrichment processes leading to the generation
of datasets of MATs. Said methodology is presented in
Section IV. To the best of our knowledge, this is the first work
that empowers practitioners to fully customize the semantic
enrichment processing of movement data in a comprehensive,
flexible, modular, and interactive manner.

IV. THE METHODOLOGY
In this section, we introduce the methodology to build
datasets of MATs geared towards addressing the problem
stated in Section II, Definition 7. To address the need to
support and facilitate the user in instantiating different seman-
tic enrichment processes, our methodology is founded on
three pillars. The first pillar (Section IV-A) targets the need
to implement different semantic enrichment processes, each
corresponding (as per Definition 6) to a distinct sequence of
operations. This is enabled by three design principles: mod-
ularity, extensibility, and configurability. We consider them
essential for creating systems capable of effectively address-
ing the problem statement. The second pillar (Section IV-B)
is MAT-Builder, a system that embodies these principles
and provides a tangible answer to the problem statement.
Lastly, the third pillar (Section IV-C) targets the need for a
uniform representation of the final enriched trajectories. This
pillar promotes the use of an RDF knowledge graph-based
representation to store datasets of MATs. This not only offers
uniformity but also facilitates querying and analysis of the
enriched movement data.

A. THE DESIGN PRINCIPLES
Designing a system capable of supporting arbitrary semantic
enrichment processes of movement data poses several chal-
lenges. First, a system might have to deal with a potentially
vast amount of aspects; therefore, it must be flexible enough
to include different sets of aspects for different semantic
enrichment processes. Secondly, there is the need to possibly
access multiple external data sources to dynamically gather
the most appropriate information to associate with aspects
during an enrichment process. Furthermore, users may also
want to enrich the very same movement data in different
ways, i.e., by choosing different aspects or external data
sources. Thus, a system needs to offer users the flexibil-
ity to choose the specific operations they wish to employ
for enriching movement data, while also allowing for easy
incorporation of new operations. To face these challenges,
we argue that a system must be designed according to three
interconnected principles: modularity, extensibility, and con-
figurability.

A system that generates datasets of MATs must arrange its
operations in distinct modules, whereby each module is seen
as a component dealing with a specific task. This represents
the principle ofmodularity. For instance, one module might
deal with trajectory pre-processing, another with trajectory

segmentation, and another with semantic enrichment with a
selected set of aspects whose information is gathered from
appropriate external semantic data sources.

Considering the potential heterogeneity and dynamicity of
aspects and external data sources, we also highlight how a
system must allow developers to add new modules easily,
as well as build on existing ones. For instance, a user might
create a new module that includes operations present in exist-
ing modules. These requirements express the principle of
extensibility.

Moreover, not all the modules might be suitable for a
particular semantic enrichment process, and a module may
depend on the output of other modules to compute its task.
Thus, the system must ensure that any dependency between
modules is satisfied. Consequently, starting from a set of
modules available to the system, a user must be able to
(1) pick the modules they need and (2) specify the order in
which the modules should be executed (compatibly with any
dependency between them). These requirements express the
principle of configurability.
Finally, the intrinsic synergy between modularity and con-

figurability is at the basis of the important concept of MAT-
building pipeline. A MAT-building pipeline represents a
specific semantic enrichment process, and can be practically
seen as a sequence of chosen modules that implement the
sequence of operations characterizing said process. Conse-
quently, when integrated within a system the concept of a
MAT-building pipeline empowers the user to implement their
semantic enrichment processes, as required by the problem
statement (Section II, Definition 7). For example, a MAT-
building pipeline might first identify the trajectory parts to
enrich (e.g., via segmentation), then integrate the external
semantic data sources and enrich the segments, and finally
output the resulting MAT dataset in an RDF knowledge
graph.

The MAT-Builder system, introduced in Section IV-B,
combines the three design principles with the concept of
MAT-building pipeline to support users in the task of imple-
menting highly customizable (and thus generic) semantic
enrichment processing of movement data.

B. THE MAT-BUILDER SYSTEM
In this section we presentMAT-Builder,3 a system to generate
datasets of MATs implemented following the design princi-
ples introduced in Section IV-A. The system is implemented
in Python and consists of two components, the user interface
(UI) and the backend. Figure 1 provides a sketch of the
architecture.

The user interface is the system component in charge of
graphically exposing to the user the operations of themodules
making up some MAT-building pipeline. More specifically,
it allows the modules to receive user inputs and provide corre-
sponding feedback. An additional important aspect of the user
interface is its capability to dynamically adjust the content

3Source code is available at: https://github.com/chiarap2/MAT_Builder
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FIGURE 1. Overview of the MAT-Builder system architecture.

displayed on the screen according to the requirements of
any MAT-building pipeline. For instance, different pipelines
correspond to different sequences of modules – as such, the
UI must appropriately represent such differences. Also, dif-
ferent modules typically require different inputs from users.
Consequently, the UI must show a set of input fields that
depend on the parameters required by the modules. Likewise,
different modules usually require to output various kinds of
feedback, e.g., plots and summaries.

The backend constitutes the core component of our system.
It implements the MAT-Builder’s processing engine accord-
ing to the design principles introduced in Section IV-A. The
backend is modular: the operations are distributed across sep-
arate modules, each addressing a specific task. Furthermore,
the backend is extensible: combined with the open-source
nature ofMAT-Builder and the extensive library ecosystem of
Python, this facilitates the seamless contribution of new oper-
ations by researchers and practitioners. Finally, the backend
is configurable: users can instantiate their ownMAT-building
pipelines by picking up the modules they want among those
available to the system.

In the rest of this section, we first focus on the UI
(Section IV-B1), illustrating its layout and some implementa-
tion details. We then provide a detailed overview of the back-
end (Section IV-B2), showing how it embodies the design
principles and how it enables the content displayed by the UI
to be dynamically adaptable to any MAT-building pipeline.

1) THE USER INTERFACE
The user interface is built using the Dash library,4 which
provides graphical components with built-in callback mech-
anisms. These mechanisms enable developers to write func-
tions that are executed whenever these components undergo
a state change. This allows users to input information into
the system and receive feedback interactively. Additionally,

4https://dash.plotly.com/

Dash’s plotting capabilities are well-suited for representing
graphical and geographical data related to MATs.

The layout of the user interface is structured in three areas
(see the UI green block in Figure 1): tab selector area,
input area and output area. The tab selector area presents
a sequence of selectable tabs, each representing a single step
(i.e., module) of the configured MAT-building pipeline. The
input area provides the graphical components a module needs
to get input from the user, e.g., input fields and execution
button. Finally, the output area provides the feedback of a
module once it terminates executing its task, e.g., summary
data or plots.

2) THE BACKEND
As mentioned earlier, the MAT-Builder backend embodies
the design principles outlined in Section IV-A. In the fol-
lowing, we discuss the technical implementation of these
principles and how the backend enables the user interface to
adapt to anyMAT-building pipeline dynamically. Hereinafter,
we will use object-oriented programming terminology. The
main components of the backend are sketched in the orange
block in Figure 1.

a: MODULARITY
The principle of modularity is applied by organizing differ-
ent operations into separate modules (or classes), with each
module targeting a specific task. The backend requires each
module to provide a common set of management function-
alities. These functionalities are used to connect modules
in a MAT-building pipeline. This allows for effective con-
trol of module states at a higher level, and enables the
user interface to dynamically adapt its input and output
areas to accommodate any task and, thus, any enrichment
process. In the backend’s codebase, there is an interface
called InteractiveModuleInterface which serves
as a blueprint for modules: any module implemented in
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the backend must be a class that extends this interface and
includes six specific methods.

The first method, populate_input_area, uses
Dash’s callback mechanisms to populate the user interface’s
input area with the graphical components required by the
module to solicit user input. For instance, a module may
necessitate the UI to show text labels representing input
parameter names, accompanied by fields where users can
supply the corresponding values.

The second one, get_input_and_execute_task,
utilizes Dash’s callback mechanisms to trigger the task’s
execution logic (i.e., the operations implemented within the
module) once the user has provided all the required inputs.
Once the task has been executed, the same method populates
the UI output area with the necessary feedback for the user.
For instance, the module may display a drop-down menu
in the output area, allowing the user to select an enriched
trajectory and subsequently plot it.

The third method, get_dependencies, provides the
list of modules (in the form of type references) on
whose output the module depends. The fourth method,
register_modules, enables the module to register the
instances of the modules on whose output it depends. The
fifth method, i.e., get_results, makes the module’s
output accessible to other modules. Finally, the method
reset_state resets the module’s internal state.

b: CONFIGURABILITY
The principle of configurability ensures that users can eas-
ily define their semantic enrichment process by creating
and customizing their MAT-building pipeline. The MAT-
Builder backend implements this principle by exposing the
InteractivePipeline component, which is a class part
of the backend codebase. We explain the general characteris-
tics of such component next.

The constructor of InteractivePipeline takes as
input a list of type references, each representing a module that
the user wants to employ within their MAT-building pipeline.
The list implicitly specifies the execution order of the mod-
ules, and the logic within InteractivePipeline guar-
antees that any dependency between modules is satisfied.
This is achieved at instantiation time by connecting each
module’s input to the output of the module(s) it depends on.

Moreover, an instance of InteractivePipeline
directly manages and accesses the content of the UI
areas by leveraging some of the six methods every
module is required to implement. More specifically, the
InteractivePipeline component must set up the
initial state of the UI layout and then visualize the
tabs in the tab selector area corresponding to the mod-
ules it must execute. Moreover, InteractivePipeline
must ensure that the method within each module in
charge of populating the input area of the UI, i.e.,
populate_input_area, is invoked when appropriate.
Furthermore, the InteractivePipeline component
must ensure that the task logic (i.e., get_input_and_

execute_task) within a module is invoked when the user
wants to execute it. Finally, this component supervises the
execution of the MAT-building pipeline it represents – for
instance, if some error occurs, InteractivePipeline
must react with appropriate actions.

c: EXTENSIBILITY
The MAT-Builder backend incorporates the principle of
extensibility by leveraging the object-oriented nature of
Python and the modularity principle. Indeed, a user can add a
new module (and thus operations) to the system by creating a
class that extendsInteractiveModuleInterface and
contains the logic required to compute the task it addresses.
Furthermore, users can alternatively provide new operations
and functionalities by subclassing existing modules or by
extending the capabilities provided by the backend codebase.

3) HOW TO CONFIGURE AND EXECUTE A MAT-BUILDING
PIPELINE
Now that the components and inner workings of the MAT-
Builder system have been introduced, we show how users
can easily configure and execute their own interactive
MAT-building pipeline with a few lines of code. Let us con-
sider the slightly simplified Python code fragment shown
below, which is the template of the main that a user can
specialize to configure and execute their semantic enrichment
process.

1 from dash import Dash
2 from backend import InteractivePipeline
3 from modules import m1, · · · ,mn
4

5 def main() :
6 UI_server = Dash()
7 pipeline = InteractivePipeline(UI_server,

[m1, · · · ,mn])
8 UI_server.run()

The three initial lines (lines 1-3) import the classes
needed to instantiate (1) a Dash UI server, (2) the
InteractivePipeline class, and (3) the set of mod-
ules the user needs to instantiate their semantic enrichment
process. Then, line 6 instantiates the user interface server,
and line 7 instantiates an InteractivePipeline object.
Here note that we pass to the InteractivePipeline’s
constructor the reference to the UI server (required to manage
the UI state) and a list of type references, i.e., the modules that
will be used in the pipeline. The last line of code executes the
UI server. As a result, the user can subsequently interact with
the pipeline via a web browser. For all practical purposes,
we emphasize that the only code the user needs to customize
within the given fragment involves importing the necessary
modules (line 3) and passing their type references to the
InteractivePipeline instance (line 7).

90864 VOLUME 11, 2023



F. Lettich et al.: Semantic Enrichment of Mobility Data

FIGURE 2. Our MAT-building pipeline instance.

We direct the reader to Section V for a concrete example
of aMAT-building pipeline – the section includes screenshots
showcasing the user interface, and provides a glimpse into the
user’s interaction with the pipeline.

a: CONSIDERATIONS ON COMPUTATIONAL COMPLEXITY
The computational complexity resulting from using MAT-
Builder is dominated by the complexity of the algorithms
used by the modules within the executed pipeline, as the
system adds only a negligible overhead. As such, different
pipelines are likely to exhibit varying performance profiles,
reflecting the characteristics of their respective modules.

C. REPRESENTING DATASETS OF MULTIPLE ASPECT
TRAJECTORIES
Knowledge graphs [3] represent a natural choice for MATs
since they can support the representation of multitudes of
aspects regardless of their heterogeneity and complexity.
Moreover, knowledge graphs can be leveraged to conduct
powerful analyses once they are imported in some triplestore
of choice. Adopting a schema that gives proper structure to
the information is one of themain problemswhen considering
knowledge graphs for storage and querying. In the context
of our work, we chose the STEPv2 ontology [16], which
we lightly customized to suit this work’s needs.5 We refer
to the original paper for the full details of the ontology.
In the following, we provide a brief overview of the main
customizations we made.

The first customization allows each instance of the Agent
class (which represents a moving object in the ontology) to be
related to instances of Feature Of Interest. This customization
enables us to enrich with aspects not only the trajectories,
but also the moving objects generating them. The second
customization concerns the STEPv2 Qualitative Description
class, which is a key class that allows trajectory segments
to be enriched with aspect instances. In this work, we sub-
classed Qualitative Description with several sub-classes to

5The customized version of the STEPv2 ontology is provided in the MAT-
Builder’s GitHub repository.

support the four aspects considered by the MAT-building
pipeline described in Section V. Such aspects are: regularity,
move, social media posts, and weather conditions. Exten-
sive details on the second customization are provided in
Section V.

V. A PRACTICAL MAT-BUILDING PIPELINE
In this section, we present a concrete MAT-building pipeline
that implements the semantic enrichment process proposed
in [20]. This serves as an example of how MAT-Builder
effectively addresses the problem outlined in Section II, Def-
inition 7.

The process consists of three steps, i.e., trajectory pre-
processing, trajectory segmentation and trajectory enrich-
ment. The steps are executed sequentially, therefore, the
underlying operations are encapsulated into three distinct
modules. In the following, we provide the main details of
the modules’ implementation and describe how they are
connected to each other. We also report that the modules
make extensive use of several functionalities available from
Python’s vast ecosystem of libraries. Among those used (via
import statements), we report Pandas6 and Geopandas,7 plus
a few others which will be mentioned later. Figure 2 shows an
overview of the MAT-building pipeline, with the underlying
information flowing across its modules.

The trajectory pre-processing module (blue block in
Figure 2) takes as input a set of raw trajectories and filters out
noisy or unusable data to facilitate the activities of the other
modules. Specifically, it can discard trajectories with insuffi-
cient sampling rate, filter out anomalous samples (i.e., those
with unreasonable speeds), and compress trajectories. All the
above operations correspond to functionalities imported from
the scikit-mobility library [21]. A screenshot of the module
being used via the system’s UI is shown in Figure 3.

We highlight that the use of the pre-processing module
is optional, as a dataset of pre-processed trajectories might

6https://pandas.pydata.org/
7https://geopandas.org/
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FIGURE 3. The preprocessing module, as shown in the MAT-Builder UI.

FIGURE 4. The segmentation module, as shown in the MAT-Builder UI.

already available. In such a case, the user can take advantage
of the modularity and configurability of MAT-Builder, and
simply omit the pre-processingmodule when instantiating the
InteractivePipeline object (see also Section IV-B3).
The trajectory segmentation module (orange block in

Figure 2) takes as input a dataset of trajectories, and parti-
tions every trajectory into sub-trajectories (or segments). The
segmentation algorithm used by the module employs the stop
and move criterion [4], and it is imported from the scikit-
mobility library. A screenshot of this module being used via
the system’s UI is shown in Figure 4.

The enrichmentmodule (green block in Figure 2) takes the
output of the segmentationmodule and identifies the different
segments to enrich, the aspects to consider, the datasets to
be used to enrich the segments, and the enrichment criteria.
The module is composed of five steps, each corresponding
to a set of internal methods that implement the necessary
operations: one dealing with the enrichment of stop segments,
another with the enrichment of move segments, then two
that enrich segments and trajectory users respectively with
weather and social media information. The final step gener-
ates RDF knowledge graphs containing the final dataset of

MATs. A screenshot of the enrichment module being used in
the system’s UI is shown in Figure 5.
The stop enrichment step first enriches the stop segments

with the regularity aspect. More precisely, each stop segment
is either considered a systematic stop, i.e., part of a cluster of
stop segments that are located within a limited geographical
area (and that very likely present some kind of temporal
regularity), or an occasional stop, which is a stop segment
that does not belong to any cluster. The regularity aspect is
important, because it can provide valuable information on
the long term behaviors of an individual. Systematic stops
typically occur when an individual consistently stays at their
home, workplace, or any other place that is part of their
routines, while occasional stops describe a more irregular
behavior. (e.g., the individual is on a leisure trip and is visiting
some attractions).

The stop enrichment step differentiates between systematic
and occasional stops via the scikit-learn’s implementation
of DBSCAN [22], a well-known density-based clustering
algorithm: stop segments that belong to a cluster are con-
sidered systematic, while those that do not are considered
occasional.
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FIGURE 5. The enrichment module, as shown in the MAT-Builder UI.

Each systematic stop is then augmented with the activity
that has been likely performed. The stop enrichment step cur-
rently contemplates three activities: home, work, and other.
Estimating this information requires looking at the cluster
containing the systematic stop – more precisely, it requires
analysing how the cluster’s systematic stops are temporally
distributed. First, the stop enrichment step determines how
many hours an individual has spent in each of the clusters
of systematic stops that have been found: stop segments
belonging to the two clusters in which the individual has
spent the majority of their time are associated with the activi-
ties home or work, while the remaining ones are associated
with the other activity. The underlying reasoning is that
an individual spends most of their time either at home or
work. Next, the step proceeds by associating the systematic
stops belonging to the two temporally largest clusters either

to the home or work activity. The home activity label is
associated with the systematic stops belonging to clusters
whose stops tend to occur outside working hours, i.e., late
evenings, nights, early mornings, or weekends. On the con-
trary, thework activity label enriches the systematic stops that
belong to clusters whose stops tend to occur during working
hours, i.e., mornings and afternoons occurring during the
weekdays.

Finally, both systematic and occasional stops are aug-
mented with POIs: this is done by ranking the POIs by
distance from the stops’ centroids and then associating to
each stop the top-k ones. We report that the stop enrich-
ment step can retrieve POIs having any kind of geometric
shape, either from OpenStreetMap (by importing and using
the appropriate functionalities from the OSMnx library [23])
or from a dataset provided via a local file.
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FIGURE 6. Classes, predicates, and properties that have been added to
the STEPv2 ontology to model the four considered aspects.

Themove enrichment step focuses on the move segments
and the move aspect. In its present version, this step augments
the move segments with two information, i.e., quantitative
numerical measures and transportation means estimation.
Numerical measures include maximum and average speed,
acceleration, bearing rate, and total length, which are com-
puted by importing some of the functionalities provided by
the PTrail library [24]. Transportation means are estimated
as the ones that have been likely used during each move
segment. The module does the estimation via a random-forest
classifier (created with the scikit-learn library [25]) that has
been trained on the GeoLife dataset [26] with the classes
walk, car, bike, bus, subway, and train.

The weather and social media enrichment steps enrich,
respectively, segments and moving objects with the weather
and social media aspects. The weather step takes as input a
dataset containing historical weather data and enriches each
trajectory segment with the weather information related to the
time period and geographical area spanned by the segment.
The social media step takes as input a dataset containing
social media posts, whereby each post is associated with a
user identifier (here we assume the identifiers of the trajectory
users), a date of publication, and the text of the post, and
enriches the moving objects directly.

The knowledge graph generation step finally stores
datasets of MATs in RDF graphs according to the schema
defined by the customized STEPv2 ontology (see also
Section IV-C). Section IV-C summarily described how the
STEPv2 ontology has been customized to suit the pipeline’s
needs. In the following, we focus on the subclasses of Quali-
tative Description that have been introduced tomodel the four
considered aspects. Figure 6 provides an overview.

The first subclass is Stop, which provides a generic model
for stop segments. An instance of Stop can be in relation-
ship with one or more instances of Point of Interest via the
hasPOI predicate – this allows to augment stop segments
with POIs. Each instance of Point of Interest has, in turn,
several data properties, i.e., the POIOpenStreetMap identifier

hasOSMID, the POI category hasOSMCategory, the POI
name hasOSMName, the POI WikiData identifier (if any)
hasWDValue, and the distance hasDistance between the POI
and the Stop instance it is associated with.

The Stop class is then further subclassed by the classes
Occasional Stop and Systematic Stop: these model the reg-
ularity aspect. Occasional Stop does not have additional
properties than the Stop class, while the Systematic Stop
class has a few data properties and is further subclassed by
three other classes, i.e., Home, Work, and Other. The three
subclasses enable the augmentation of instances of systematic
stops with the activity. The data properties of Systematic
Stop are: hasSysID, which represents a cluster’s identifier,
hasImportance, which indicates the percentage of time the
individual has spent in the cluster, and hasProbability, which
measures the certainty that the estimated activity is correct.

The class Move models move segments and, more in gen-
eral, the move aspect and has the subclasses: Bike,Car, Train,
Subway, Bus, Taxi, andWalk.
The class Weather models the weather aspect. Each

instance of this class has two data properties, i.e., hasTem-
perature, which reports the measured temperature, and
hasWeatherConditions, which indicates the weather condi-
tions.

Finally, the class Social Media models the social media
aspect. It has a single data property, i.e., hasText, which
provides the text associated with an instance of the class.

VI. EXAMPLE SCENARIOS
In this section, we present a qualitative empirical evalua-
tion of our methodology, providing two example scenarios
in which we apply the MAT-building pipeline described in
Section V. Initially, the pipeline is employed to generate
an RDF knowledge graph containing a MAT dataset. This
dataset is subsequently imported into a triplestore, enabling
in-depth analyses of selected individuals’ mobility behaviors.
Overall, the evaluation aims to highlight the utility of the
MAT datasets generated by MAT-Builder and demonstrate
our methodology’s potential and versatility.

A. FIRST EXAMPLE SCENARIO: THE TOURIST
In the first scenario, we consider a dataset of publicly avail-
able trajectories retrieved from OpenStreetMap (OSM) and a
few external semantic data sources used to gather information
concerning the aspects.

1) BACKGROUND AND PREPARATORY STEPS
The trajectories cover the area of the province of Rome, Italy.
The dataset has been downloaded from OSM and contains
26395 trajectories from 3181 distinct individuals, spanning
a time interval between March 2007 and July 2021. Table 2
reports the main characteristics of the dataset. Out of the
3181 individuals, only 6 of them had data spanning more
than 4 weeks. Additionally, data covering more than 1 week
was available for only 13 individuals. These results indi-
cate that the majority of individuals did not provide enough
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TABLE 2. Metadata for the OpenStreetMap Rome dataset. The symbol D
stands for day, h for hour, m for minutes, and s for seconds.

information to enable the analysis of their movement behav-
iors over extended periods of time. This also explains the
very large standard deviation observed with the trajectory
duration. We also observe large variations for what concerns
the trajectory sampling rate and the gaps between trajectories
at the user level.

We employed two external data sources for semantic
enrichment: OpenStreetMap and Meteostat.8 We accessed
OSM to construct a dataset consisting of 28787 POIs, which
we used to augment the stop segments. We accessed Meteo-
stat to generate a dataset of historical weather information.
Finally, the social media post dataset is synthetic and contains
simulated Twitter posts.

To produce a dataset of MATs, we use the pipeline intro-
duced in Section V via the MAT-Builder user interface.
We execute the pipeline’s modules sequentially, in their
intended order of use. In the pre-processing module, we set
the minimum number of samples to 1500, the maximum
speed threshold to 300 km/h, and enable trajectory compres-
sion. This yields a set of 620 pre-processed trajectories from
575 users. In the segmentation module, we set the minimum
duration of a stop to 10 minutes, while the maximum spatial
radius a stop can have is set to 0.2 km. This yields a set
of 629 stops and 435 moves. Finally, the enrichment mod-
ule enriches the segmented trajectories with all the aspects
supported by the module, i.e., regularity, move (with trans-
portation means estimation), weather, and social media.

The systematic and occasional stop detection is done via
the DBSCAN clustering algorithm and is guided by two
parameters. The first parameter, DBSCAN epsilon, sets the
maximum distance within which two stops are deemed neigh-
bors. We empirically fix this value at 50 meters. The second
parameter, DBSCAN minPts, sets the minimum count of
neighboring stops needed for a stop to being tagged as a core
point, thereby forming an initial cluster. When identifying
systematic stops, this parameter specifies the minimum quan-
tity of stops required to form a cluster, and we empirically
set this value to 5. Both occasional and systematic stops
are augmented with POIs located within 50 meters of their
centroids.

8https://meteostat.net/

FIGURE 7. Plot of the MAT from MAT-Builder’s user interface. The red dots
represent occasional stops, while the blue curve represents the moves.

The MAT-building pipeline ultimately generates a dataset
of enriched MATs, which is then stored in a RDF knowl-
edge graph and finally imported in the GraphDB9 triplestore.
We utilize the triplestore to conduct various analyses using
the SPARQL 1.1 query language.10 The details and results of
these analyses are presented next.

2) MOVEMENT BEHAVIOR ANALYSIS
From the dataset of MATs, we selected an individual (ID
2115) who produced a trajectory (ID 2652) that originates
close to the Fiumicino Rome Airport in the early morning,
then spends half of the day within the centre of Rome, and
then goes back to the same airport in the early afternoon
(Figure 7). The overall duration of the trajectory is around
6 hours. All such evidence could hint that the individual is
some kind of tourist passing by the city. Further analyses of
the individual’s mobility behaviours are, however, required
to reach any conclusion. Accordingly, we want to find out
(1) which transportation means the individual has likely used
during their trip, (2) the POIs the individual may have visited
while staying in Rome, and (3) the weather conditions and
social media posts related to their trip.

Before delving into the analyses, we briefly introduce
the RDF namespaces repeatedly used in the queries. The
namespaces refer to vocabularies provided by well-known
ontologies, i.e., the RDF concepts vocabulary (rdf), the RDF
schema vocabulary (rdfs), the Friend of a Friend (foaf) vocab-
ulary, the Time (time) vocabulary, and the XML Schema
representation vocabulary (xsd). The remaining two names-
paces refer to the vocabulary provided by the customized
STEPv2 ontology (step) and the vocabulary provided by the
GraphDB’s standard math functions extension (ofn), which
enables the use of additional mathematical functions (some
usefully dealing with data in the temporal domain).

We begin our analysis by first identifying the possible
transportation means used by the individual through the

9https://graphdb.ontotext.com/
10https://www.w3.org/TR/rdf-sparql-query/
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1 SELECT ?type_move ?t_start ?t_end
(ofn:asMinutes(?t_end - ?t_start) AS
?duration_mins)

2 WHILE
3 {
4 ?traj ˆstep:hasTrajectory / foaf:name ‘‘2115’’ ;
5 step:hasID ‘‘2652’’ ;
6 step:hasFeature ?feat.
7

8 ?feat step:hasEpisode ?ep.
9 ?ep step:hasSemanticDescription ?move ;
10 step:hasExtent ?ex.
11

12 ?move rdfs:subClassOf step:Move ;
13 rdf:type ?type_move.
14

15 ?ex step:hasStartingPoint / step:atTime /
time:inXSDDateTime ?t_start ;

16 step:hasEndingPoint / step:atTime /
time:inXSDDateTime ?t_end.

17 }
18 ORDER BY ASC(?t_start)

execution of the SPARQL query shown above. The query first
finds out the trajectory of interest (lines 4-5), then retrieves all
its aspect instances (lines 6-10), and finally filters out those
that are not of the move aspect (line 12). The query then
retrieves for each instance of the move aspect the estimated
transportationmeans (line 13), and determines its starting and
ending instants (lines 15-16). The SELECT finally returns a
list of tuples, each representing a move instance with the esti-
mated transportation means, its starting and ending instants,
and its duration. From the results, we report that the query
finds 9 move instances. By looking at them, we report that
the individual appears to go from the airport to Rome’s city
centre by train, then mostly walked and used buses while
moving in the city, and finally went back to the airport
by bus.

Next, we want to find out the POIs the individual has possi-
bly visited during their trip. Accordingly, the query presented
next focuses on the regularity aspect – more specifically,
on the individual’s occasional stops. The query first finds
out the trajectory of interest and keeps only the instances of
occasional stops (lines 4-10). Successively, the query gathers
information concerning the instances that have at least one
POI and finally retrieves the names and categories of the POIs
involved (lines 15-18). From the results, we report that the
query finds 11 occasional stop instances.

By looking at the associated POIs, we report that the
individual appears to have spent a good part of the morning
visiting various monuments: the individual briefly stayed
in the area surrounding the Palatino and then went to the
Tempio della Pace. The individual then spent more than an
hour in the area surrounding the Altare della Patria and then

1 SELECT ?t_start ?t_end (ofn:asMinutes(?t_end -
?t_start) AS ?duration) ?poi_name ?poi_category

2 WHERE
3 {
4 ?traj ˆstep:hasTrajectory / foaf:name ‘‘2115’’ ;
5 step:hasID ‘‘2652’’ ;
6 step:hasFeature ?feat.
7 ?feat step:hasEpisode ?ep.
8

9 ?ep step:hasSemanticDescription ?stop.
10 ?stop rdf:type step:OccasionalStop.
11

12 ?ep step:hasExtent / step:hasStartingPoint /
step:atTime / time:inXSDDateTime ?t_start ;

13 step:hasExtent / step:hasEndingPoint /
step:atTime / time:inXSDDateTime ?t_end .

14

15 ?stop step:hasPOI ?poi.
16 ?poi step:hasOSMCategory ?poi_category ;
17 step:hasOSMName ?poi_name ;
18 step:hasOSMName ?poi_distance.
19 } ORDER BY ?t_start ?poi_distance

stayed nearby the Pantheon for around half an hour until
lunchtime. After that, the individual appears to have dined
at a restaurant for almost one hour. Finally, the individual
appears to have stayed again in the vicinity of the Palatino
and then went back to the airport. Overall, the individual
has been repeatedly observed nearby famous monuments and
appears to have walked and used public transportation means,
thus reinforcing the initial impression that they were indeed
a tourist.

Once the POIs the individual has most likely visited have
been found, we might want to gather further information
on their characteristics, especially if we consider that such
POIs are known to be attractions of historical relevance. For
instance, we might be interested to find out a photo of them,
when they were built, what is their architectural style, if there
is an entrance fee, and if they have a website or telephone
number. Some of this informationmight not be available from
the OSM POI dataset, thus requiring to access some other
external semantic data source. We highlight that the POIs
gathered from OSM come with a WikiData11 identifier if a
corresponding entity is present in its knowledge graph. Wiki-
Data is a Linked Open Data source whose knowledge graph
provides large amounts of open information on real-world
entities, each associated with an identifier and a set of prop-
erties. WikiData also conveniently exposes a SPARQL end-
point which can be used within federated SPARQL queries to
access its knowledge graph content.

Let us, therefore, consider the previous query and turn it
into a federated query to augmentwith further information the

11https://www.wikidata.org/
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1 OPTIONAL
2 {
3 ?poi step:hasWDValue ?WD.
4 SERVICE <https://query.wikidata.org/sparql>
5 {
6 OPTIONAL ?WD wdt:P18 ?img_WD.
7 OPTIONAL ?WD wdt:P2555 ?fee_WD.
8 OPTIONAL ?WD wdt:P571 ?year_built_WD.
9 OPTIONAL ?WD wdt:P856 ?url_WD.
10 OPTIONAL ?WD wdt:P1329 ?phone_WD.
11 OPTIONAL
12 {
13 ?WD wdt:P149 / rdfs:label ?style_WD.
14 FILTER(lang(?style_WD) = ‘‘en’’)
15 }
16 }
17 }

POIs that have been found. To this end, we insert the SPARQL
fragment above, right before the end of the query’s WHERE
clause. The fragment is enclosed within the OPTIONAL
graph pattern, which accounts for the possibility that certain
POIs might not have a corresponding WikiData identifier.
Subsequently, after establishing a connection with the Wiki-
Data SPARQL service (line 4), the fragment attempts to
retrieve several pieces of information by using the appropriate
WikiData property identifiers (note again the repeated use of
OPTIONAL, lines 6–15). These include theURLof an image,
entrance fee, year of construction, website URL, phone num-
ber, and architectural style (in English). Such information
are finally stored in variables that can be used in the final
SELECT statement.

In the final part of the running analysis, we aim to find
out the weather conditions and the social media posts that the
individual has respectively experienced and published during
the trip. Let us focus on the weather conditions, as the strategy
for the other aspect is similar. To this end, we can insert
in either of the two queries shown before, right before the
end of the WHILE loop, the SPARQL fragment presented
next. The OPTIONAL keyword serves the purpose of not
filtering out from the final results the segments for which
no weather information is available. The FILTER keyword
ensures that each segment gets associated with an instance of
the weather aspect only if they have a non-empty temporal
overlap. Finally, the weather_conditions variable can be inte-
grated into the SELECT to report the weather conditions. All
in all, we report that the individual experienced a sunny day
during their trip.

B. SECOND EXAMPLE SCENARIO: THE UNIVERSITY
STUDENT
In the second example scenario, our shift focuses on exam-
ining an individual’s long-term mobility behaviors within
an urban setting. Specifically, we aim to analyse their daily

1 OPTIONAL
2 {
3 ?traj step:hasFeature / step:hasEpisode ?ep_w.
4 ?ep_w step:hasSemanticDescription / rdf:type

step:Weather ;
5 step:hasWeatherCondition

?weather_conditions ;
6

7 step:hasExtent / step:hasStartingPoint /
step:atTime / time:inXSDDateTime ?tw_start ;

8 step:hasExtent / step:hasEndingPoint /
step:atTime / time:inXSDDateTime ?tw_end.

9

10 FILTER((?t_start <= ?tw_end) && (?tw_start
<= ?t_end))

11 }

routines over extended time periods, seeking to understand
where and when they consistently spent their free time and
working hours. To this end, we consider a different dataset,
GeoLife [26].

1) BACKGROUND AND PREPARATORY STEPS
The Geolife dataset contains 17621 trajectories from 178 dis-
tinct individuals and spans a time interval between April
2007 and August 2012, thus providing a far larger volume of
movement data per individual than the OSM dataset. Table 3
shows the main characteristics of the dataset. The Geolife
dataset complements the OpenStreetMap dataset used in the
first scenario by providing substantially longer trajectories
from a smaller group of individuals, making it ideal for
studying individuals’ long-term movement habits. Moreover,
the Geolife dataset mainly consists of students’ trajectories
living in Beijing, while the OSM dataset includes trajectories
from a very diverse group of individuals. In this scenario,
we continue to use the same external semantic data sources
considered in the first example scenario: OSM for POIs,
Meteostat for weather conditions, and a synthetic dataset for
social media posts.

TABLE 3. Metadata for the GeoLife dataset. The symbol D stands for day,
h for hour, m for minutes, and s for seconds.
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To produce a dataset of MATs, we use the MAT-building
pipeline via the MAT-Builder user interface and execute its
modules in the same order used in the first example sce-
nario. In the pre-processing module, we set the minimum
number of samples to 1500, the maximum speed threshold to
300 km/h, and enable trajectory compression. This yields a
set of 4331 pre-processed trajectories from 132 individuals.
In the segmentation module, we set the minimum duration
of a stop to 120 minutes, while the maximum spatial radius
a stop can have is empirically set to 0.2 km. Observe that
the minimum stop duration used in this scenario is larger
than that used in the first one, since the goal is to focus
on the systematic stops. This yields a set of 3355 stops and
3314 moves.

Finally, the enrichment module enriches the trajectories
with all four aspects supported by the module, and the move
occurrences have been augmented with the estimated trans-
portation means. The distinction between systematic and
occasional stop segments, which we recall concerns the reg-
ularity aspect, has been conducted by setting the DBSCAN
epsilon parameter to 50 meters and the DBSCAN minPts
parameter to 5. Systematic stops have been further augmented
with the activity information, according to the criteria out-
lined in Section V. Both occasional and systematic stops are
augmented with POIs found to be less than 50meters far from
their centroids. Finally, trajectories have been enriched with
the weather aspect, while moving objects have been enriched
with the social media aspect.

The MAT-building pipeline ultimately yields a dataset of
enriched MATs, which is then stored in a RDF knowledge
graph and finally imported and analysed in the GraphDB
triplestore.

2) MOVEMENT BEHAVIOR ANALYSIS
The analysis aims to extract the long-term mobility
behaviours of a selected individual. Accordingly, the analysis
will focus on the individual’s systematic stops. From the
dataset, we selected an individual (ID 3) with 110 MATs.
Such MATs span a time period between October 2008 and
July 2009 for a total of 253 days and a half, therefore pro-
viding several months’ worth of enriched mobility data. The
average duration of the MATs is 12 hours and 11 minutes,
their average sampling rate is below 372 seconds (although
we report considerable variations among the MATs), and
the average gap between the MATs is 43 hours: we argue
that all these characteristics enable to properly reason on the
individual’s systematic stops (and thus on their long-term
habits).

From the heatmap shown in Figure 8, observe that the vast
majority of the individual’s positions appear to be within the
city of Beijing (red spot in the Figure), with a few others
observed within the cities of Shanghai and Nantong (green
shades in the Figure), both located in China. This suggests
that the individual consistently lives in Beijing. For what
concerns the individual’s 182 stop segments, the enrichment
module determines that 105 of them are occasional and

FIGURE 8. Heatmap of the individual’s MATs locations.

FIGURE 9. Distribution of the individual’s systematic stops (blue circles).
The systematic stops are located at the Tsinghua University’s premises.

77 systematic. The systematic ones are all located in Beijing,
and appear to be concentrated in two clusters, both located
within Tsinghua University’s premises. The two clusters of
systematic stops are shown in Figure 9. In particular, the
cluster on the upper part of the Figure consists of systematic
stops located within a complex of dormitories, while those
belonging to the cluster on the bottom-right part are located
very close to the university’s Department of Computer Sci-
ence and Technology.

The locations of the two clusters suggest that the individual
might be a student who spends their free time in the dormitory
complex and spends their working hours attending classes
or engaging in academic activities. To corroborate such con-
jecture, in the following we aim to (1) look at the activity
information augmenting the systematic stops, therefore ver-
ifying when the individual happens to be located in the two
clusters, and (2) analyze the POIs that have been associated
with the systematic stops.

The SPARQL query presented next focuses on the first
problem. The query is designed to retrieve information
regarding the activities that enrich the systematic stops
detected within all trajectories of the individual (lines 4–10).
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1 SELECT ?sys_cluster_ID
(SAMPLE(?sys_cluster_activity) AS
?cluster_activity) (COUNT(?sys_cluster_ID) AS
?num_stops_cluster) (SAMPLE(?sys_importance)
* 100 AS ?cluster_importance)
(SAMPLE(?sys_probability) * 100 AS
?correctness_activity) (AVG(ofn:asHours(?t_end -
?t_start)) AS ?average_duration_hrs)
(SUM(ofn:asHours(?t_end - ?t_start)) AS
?sum_duration_hrs)

2 WHERE
3 {
4 ?traj ˆstep:hasTrajectory / foaf:name ‘‘3’’ ;
5 step:hasID ?traj_id.
6 ?traj step:hasFeature / step:hasEpisode ?ep.
7 ?ep step:hasSemanticDescription ?sys_stop.
8

9 ?sys_stop rdf:type ?sys_cluster_activity.
10 ?sys_cluster_activity rdfs:subClassOf

step:SystematicStop.
11

12 ?sys_stop step:hasImportance ?sys_importance ;
13 step:hasSysID ?sys_cluster_ID ;
14 step:hasProbability ?sys_probability.
15

16 ?ep step:hasExtent / step:hasStartingPoint /
step:atTime / time:inXSDDateTime ?t_start ;

17 step:hasExtent / step:hasEndingPoint /
step:atTime / time:inXSDDateTime ?t_end.

18 }
19 GROUP BY sys_cluster_ID

It provides access to several key pieces of information,
including the percentage of time spent by the individ-
ual within a particular cluster of systematic stops rela-
tive to all clusters (referred to as sys_importance) and the
probability that the estimated activity is accurate (referred
to as sys_probability, lines 12–14). Finally, the query
computes the average (average_duration_hrs) and total
(sum_duration_hrs) duration in hours that the individual has
spent within the stops of each cluster.

We report that the query reveals the presence of two clus-
ters, as expected from what has been shown in Figure 9. One
cluster is associated with the activityHome, primarily located
in the upper part of the figure, while the other cluster is asso-
ciated with the activity Work. Within the Home cluster, the
individual has spent approximately 31% of their total time,
which is equivalent to 79 hours. This cluster contains a total
of 21 systematic stops, with an average duration of 3.76 hours
per stop. Conversely, the individual has spent around 69%
of their time in the Work cluster, amounting to 164 hours.
This cluster includes 56 systematic stops, with an average
duration of 2.92 hours per stop. Overall, our analysis indicates
that the individual has primarily spent their time, especially

1 SELECT ?sys_type ?poi_id (COUNT(?poi_id) AS
?poi_count) (SAMPLE(?poi_name) AS
?poi_name) (AVG(ofn:asHours(?t_end - ?t_start))
AS ?average_duration_hrs) (AVG(?poi_distance)
AS ?average_distance)

2 WHERE
3 {
4 ?traj ˆstep:hasTrajectory / foaf:name ‘‘3’’ ;
5 step:hasID ?traj_id.
6 ?traj step:hasFeature / step:hasEpisode ?ep.
7 ?ep step:hasSemanticDescription ?sys_stop.
8

9 ?sys_stop rdf:type ?sys_type.
10 ?sys_type rdfs:subClassOf step:SystematicStop.
11

12 ?sys_stop step:hasPOI ?poi.
13 ?poi step:hasOSMValue ?poi_id ;
14 step:hasOSMName ?poi_name ;
15 step:hasDistance ?poi_distance.
16

17 ?ep step:hasExtent / step:hasStartingPoint /
step:atTime / time:inXSDDateTime ?t_start ;

18 step:hasExtent / step:hasEndingPoint /
step:atTime / time:inXSDDateTime ?t_end.

19 }
20 GROUP BY ?sys_type ?poi_id
21 ORDER BY DESC(?poi_count)

during working hours, in close proximity to the Department
of Computer Science and Technology while spending their
free time close to the dormitory complex.

The second problem requires identifying the POIs that
augment the individual’s systematic stops. To this end, con-
sider the query presented next. The query first finds out
the systematic stops and the associated activity (lines 7–10).
Then, for each POI augmenting a systematic stop, the query
retrieves its OSM identifier, name, and distance from the stop
centroid (lines 12 – 15). The query subsequently GROUP
BY the results according to the systematic stop activities and
POI identifiers. This yields a set of (activity, POI) pairs, for
each of which the query provides, via the final SELECT, the
associated activity, POI identifier, frequency, name, average
duration, and the average distance from the stop centroid. The
pairs are finally ORDER(ed) BY their frequency.

From the results, we report that systematic stops aug-
mented with theHome activity have been associated 12 times
with the dormitory n.25 and 12 times with the dormitory n.26,
while they have been associated 6 times with the dormitory
n.24. Such stops have also been found having an average
duration between 3.7 and 4.2 hours, and their centroids were
found to be at an average distance from the aforementioned
POIs comprised between 16 and 25 meters. Overall, the
findings suggest that the individual has consistently spent a
relevant part of their free time within the dormitory complex.
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For what concerns the systematic stops augmented with the
Work activity, 40 out of 56 have been associated with the uni-
versity’s Department of Computer Science and Technology,
with an average duration of 3 hours and an average distance
between their centroids and the building of 15 meters. This
suggests that the individual consistently spent their working
hours in that building, likely attending classes or engaging in
other related academic activities.

In conclusion, all the findings strongly suggest that the
individual has the profile of a student who studies computer
science at Tsinghua University and lives in one of the univer-
sity’s dormitories.

C. FINAL CONSIDERATIONS
In the example scenarios, we qualitatively demonstrate
how our methodology enables users to easily instantiate
their semantic enrichment processes (i.e., MAT-building
pipelines), involving different trajectory datasets, external
semantic data sources, and specific application questions.
The pipeline used in the scenarios enriches movement data
by incorporating various aspects from different data sources,
and stores the resulting MAT datasets in RDF knowledge
graphs. Such uniform representation facilitates interesting,
useful, and flexible analyses.

Finally, let us discuss the simplicity with which a pipeline,
and thus the underlying process, can be customized or com-
pletely changed to address alternative analysis tasks. For
example, if we shift our focus to studying how individuals use
public transportation for intra-city travel, we might employ a
set of modules that combine movement data with additional
factors such as traffic conditions, weather, and public trans-
port timetables. By executing this pipeline, we can obtain
suitable MAT datasets that capture the relevant information
for subsequent analysis.

VII. CONCLUSION
This paper introduces a comprehensive methodology for cre-
ating heavily semantically enriched trajectory datasets, also
known as multiple aspect trajectories (MATs). The goal is
to create datasets in which movement data is augmented
with dynamic and heterogeneous aspects (semantic dimen-
sions), the information for which can be derived from various
external semantic data sources. Our proposed methodology
is agnostic towards the types of moving objects, aspects, and
external semantic data sources being used, making it univer-
sally applicable across different scenarios. This is achieved
thanks to the three pillars on which the methodology is
built: the design principles, the MAT-Builder system which
embodies these principles, and the use of an RDF knowledge
graph-based representation. This last pillar allows the storage
and querying of MAT datasets in a unified manner.

To the best of our knowledge, this is the first methodology
that empowers practitioners to fully customize the semantic
enrichment processing of movement data, taking into account
different data, scenarios, aspects, and external semantic data
sources. In the final qualitative evaluation, we demonstrate

how our methodology allows practitioners to implement var-
ious semantic enrichment processes and construct different
versions of enriched movement data, based on their specific
analytical needs. Using the MAT-Builder system, we instan-
tiate particular semantic enrichment processes to generate
MAT datasets stored in RDF knowledge graphs.We then con-
duct several analyses on the movement behaviors of specific
individuals, revealing how the MATs generated by MAT-
Builder are useful and insightful.

REFERENCES
[1] R. D. S. Mello, V. Bogorny, L. O. Alvares, L. H. Z. Santana, C. A. Ferrero,

A. A. Frozza, G. A. Schreiner, and C. Renso, ‘‘MASTER: A multiple
aspect view on trajectories,’’ Trans. GIS, vol. 23, no. 4, pp. 805–822,
May 2019.

[2] C. Renso, V. Bogorny, K. Tserpes, S. Matwin, and J. A. F. de Macedo,
‘‘Multiple-aspect analysis of semantic trajectories (MASTER),’’ Int.
J. Geograph. Inf. Sci., vol. 35, no. 4, pp. 763–766, Jan. 2021.

[3] L. Ehrlinger and W. Wöß, ‘‘Towards a definition of knowledge graphs,’’ in
Proc. Joint Posters Demos Track 12th Int. Conf. Semantic Syst. (SEMAN-
TiCS), 1st Int. Workshop Semantic Change Evolving Semantics, 2016,
pp. 1–4.

[4] S. Spaccapietra, C. Parent, M. L. Damiani, J. A. de Macedo, F. Porto,
and C. Vangenot, ‘‘A conceptual view on trajectories,’’ Data Knowl. Eng.,
vol. 65, no. 1, pp. 126–146, Apr. 2008.

[5] M. A. Abebe, J. Tekli, F. Getahun, R. Chbeir, and G. Tekli, ‘‘Generic
metadata representation framework for social-based event detection,
description, and linkage,’’ Knowl.-Based Syst., vol. 188, Jan. 2020,
Art. no. 104817.

[6] A. Preece, I. Spasic, K. Evans, D. Rogers, W. Webberley, C. Roberts, and
M. Innes, ‘‘Sentinel: A codesigned platform for semantic enrichment of
social media streams,’’ IEEE Trans. Computat. Social Syst., vol. 5, no. 1,
pp. 118–131, Mar. 2018.

[7] J. Tekli, ‘‘An overview of cluster-based image search result organiza-
tion: Background, techniques, and ongoing challenges,’’ Knowl. Inf. Syst.,
vol. 64, no. 3, pp. 589–642, Mar. 2022.

[8] Y. Abgaz, R. R. Souza, J. Methuku, G. Koch, and A. Dorn, ‘‘A method-
ology for semantic enrichment of cultural heritage images using artificial
intelligence technologies,’’ J. Imag., vol. 7, no. 8, p. 121, Jul. 2021.

[9] F. Özcan, C. Lei, A. Quamar, and V. Efthymiou, ‘‘Semantic enrichment of
data for AI applications,’’ in Proc. 5th Workshop Data Manage. End-to-
End Mach. Learn., Jun. 2021, pp. 1–7.

[10] H. Noueihed, H. Harb, and J. Tekli, ‘‘Knowledge-based virtual outdoor
weather event simulator using unity 3D,’’ J. Supercomput., vol. 78, no. 8,
pp. 10620–10655, May 2022.

[11] M. Ciavotta, V. Cutrona, F. De Paoli, N. Nikolov, M. Palmonari, and
D. Roman, ‘‘Supporting semantic data enrichment at scale,’’ in Technolo-
gies and Applications for Big Data Value. Berlin, Germany: Springer,
2022, pp. 19–39.

[12] Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and K. Aberer,
‘‘SeMiTri: A framework for semantic annotation of heterogeneous trajec-
tories,’’ inProc. 14th Int. Conf. Extending Database Technol., A. Ailamaki,
S. Amer-Yahia, J. M. Patel, T. Risch, P. Senellart, and J. Stoyanovich, Eds.,
Mar. 2011, pp. 259–270.

[13] V. Bogorny, C. Renso, A. R. de Aquino, F. de Lucca Siqueira, and
L. Alvares, ‘‘Constant—A conceptual data model for semantic trajectories
of moving objects,’’ Trans. GIS, vol. 18, no. 1, pp. 66–88, Feb. 2014.

[14] R. Fileto, C. May, C. Renso, N. Pelekis, D. Klein, and Y. Theodoridis,
‘‘The Baquara2 knowledge-based framework for semantic enrichment and
analysis of movement data,’’ Data Knowl. Eng., vol. 98, pp. 104–122,
Jul. 2015.

[15] L. Ruback, M. A. Casanova, A. Raffaetà, C. Renso, and V. Vidal, ‘‘Enrich-
ing mobility data with linked open data,’’ in Proc. 20th Int. Database Eng.
Appl. Symp. (IDEAS), E. Desai, B. C. Desai,M. Toyama, and J. Bernardino,
Eds., Jul. 2016, pp. 173–182.

[16] T. P. Nogueira, R. B. Braga, C. T. de Oliveira, andH.Martin, ‘‘FrameSTEP:
A framework for annotating semantic trajectories based on episodes,’’ Exp.
Syst. Appl., vol. 92, pp. 533–545, Feb. 2018.

90874 VOLUME 11, 2023



F. Lettich et al.: Semantic Enrichment of Mobility Data

[17] T. P. Nogueira and H. Martin, ‘‘Querying semantic trajectory episodes,’’ in
Proc. 4th ACM SIGSPATIAL Int. Workshop Mobile Geographic Inf. Syst.,
Nov. 2015, pp. 23–30.

[18] C. Pugliese, F. Lettich, C. Renso, and F. Pinelli, ‘‘MAT-BUILDER: A sys-
tem to build semantically enriched trajectories,’’ in Proc. 23rd IEEE Int.
Conf. Mobile Data Manage. (MDM), Jun. 2022, pp. 274–277.

[19] F. Lettich, C. Pugliese, C. Renso, and F. Pinelli, ‘‘A general methodology
for building multiple aspect trajectories,’’ in Proc. 38th ACM/SIGAPP
Symp. Appl. Comput., Tallinn, Estonia, Mar. 2023, pp. 515–517.

[20] A. Ibrahim, H. Zhang, S. Clinch, and S. Harper, ‘‘From GPS to semantic
data: How and why—A framework for enriching smartphone trajectories,’’
Computing, vol. 103, no. 12, pp. 2763–2787, Dec. 2021.

[21] L. Pappalardo, F. Simini, G. Barlacchi, and R. Pellungrini, ‘‘scikit-
mobility: A Python library for the analysis, generation, and risk assessment
of mobility data,’’ J. Stat. Softw., vol. 103, no. 4, pp. 1–38, Jul. 2022.

[22] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, ‘‘A density-based algorithm
for discovering clusters in large spatial databases with noise,’’ in Proc.
KDD, vol. 96. 1996, pp. 226–231.

[23] G. Boeing, ‘‘OSMnx: Newmethods for acquiring, constructing, analyzing,
and visualizing complex street networks,’’ Comput., Environ. Urban Syst.,
vol. 65, pp. 126–139, Sep. 2017.

[24] S. Haidri, Y. J. Haranwala, V. Bogorny, C. Renso, V. P. da Fonseca,
and A. Soares, ‘‘PTRAIL—A Python package for parallel trajectory data
preprocessing,’’ SoftwareX, vol. 19, Jul. 2022, Art. no. 101176.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, and D. Cournapeau, ‘‘Scikit-learn: Machine learning in
Python,’’ J. Mach. Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011.

[26] Y. Zheng, X.Xie, andW.-Y.Ma, ‘‘GeoLife: A collaborative social network-
ing service among user, location and trajectory,’’ IEEE Data Eng. Bull.,
vol. 33, no. 2, pp. 32–39, Jun. 2010.

FRANCESCO LETTICH received the bachelor’s,
master’s, and Ph.D. degrees from Universita Ca’
Foscari, Venice, Italy. He has been a Postdoc-
toral Researcher with Universita Ca’ Foscari,
the Federal University of Ceara’, Brazil, and
the University of Alberta, Canada. He is cur-
rently a Researcher with ISTI-CNR, Italy. His
research interests include spatial, spatio-temporal,
and mobility data.

CHIARA PUGLIESE received the bachelor’s and
master’s degrees in digital humanities from the
University of Pisa, in 2018 and 2020, respectively,
where she is currently pursuing the Ph.D. degree
in computer science. She is also a member of the
High Performance Computing Laboratory, ISTI
Institute of CNR, Pisa, Italy. Her research inter-
est includes data mining applied to semantically
enriched mobility data.

CHIARA RENSO received the Ph.D. degree
in computer science. She is currently a Senior
Researcher with the ISTI Institute of CNR, Italy.
She has more than 100 peer-reviewed publications
in the areas of mobility analysis, machine learn-
ing and artificial intelligence methods for mobility
data, analysis of geolocated social media, semantic
enrichment of trajectories, and privacy. She is an
Associate Editor of Viewpoints of theCommunica-
tions of the ACM and an Editorial Board Member

of the International Journal of GIS.

FABIO PINELLI received the M.Sc. degree in
computer science and the Ph.D. degree in infor-
mation engineering from the University of Pisa,
in 2005 and 2010, respectively. He is currently an
Assistant Professor with the SySMA Group, IMT
School for Advanced Studies. He was a Research
Scientist with IBM-Research Ireland and a Senior
Data Scientist with Vodafone Italia. His research
interests include data mining andmachine learning
methods applied to different domains, from eco-

nomics to urban environments.

Open Access funding provided by ‘Consiglio Nazionale delle Ricerche-CARI-CARE-ITALY’
within the CRUI CARE Agreement

VOLUME 11, 2023 90875


