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Quantification, variously called supervised prevalence estimation or learning to quantify, is the supervised

learning task of generating predictors of the relative frequencies (a.k.a. prevalence values) of the classes of

interest in unlabelled data samples. While many quantification methods have been proposed in the past

for binary problems and, to a lesser extent, single-label multiclass problems, the multi-label setting (i.e.,

the scenario in which the classes of interest are not mutually exclusive) remains by and large unexplored.

A straightforward solution to the multi-label quantification problem could simply consist of recasting the

problem as a set of independent binary quantification problems. Such a solution is simple but naïve, since

the independence assumption upon which it rests is, in most cases, not satisfied. In these cases, knowing

the relative frequency of one class could be of help in determining the prevalence of other related classes.

We propose the first truly multi-label quantification methods, i.e., methods for inferring estimators of class

prevalence values that strive to leverage the stochastic dependencies among the classes of interest in order

to predict their relative frequencies more accurately. We show empirical evidence that natively multi-label

solutions outperform the naïve approaches by a large margin. The code to reproduce all our experiments is

available online.
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1 INTRODUCTION

Many fields such as the social sciences, political science, market research, or epidemiology (to

name a few), are inherently interested in aggregate data, i.e., in how populations of individuals

are distributed according to one or more indicators of interest. Researchers who operate in these
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specialty areas are instead little interested in the individuals per se, since in these fields the individ-

uals are relevant only inasmuch as they are members of the population of interest; in other words,

disciplines such as the above are interested “not in the needle, but in the haystack” [29].

Sometimes, researchers active in these fields use supervised learning to obtain the data they need.

For instance, epidemiologists interested in the distribution of the causes of death across different

geographical regions may sometimes need to infer the cause of death of each person by classifying,

via a machine-learned text classifier, a verbal description of the symptoms that affected a deceased

person [32]. However, these researchers are not specifically interested in the class (representing

a given cause of death) to which an individual belongs; rather, their final goal is estimating the

prevalence (i.e., relative frequency, or prior probability) of each class in the unlabelled data.

At a first glance, estimating these prevalence values via supervised learning looks like a direct

application of classification, since one could simply (i) train a classifier on labelled data, (ii) use this

classifier to issue label predictions for each unlabelled datapoint (i.e., individual) in the population of

interest, (iii) count how many datapoints have been attributed to each of the classes of interest, and

(iv) normalize the counts by the total number of labelled datapoints, thus obtaining the estimated

relative frequencies of the classes. However, there is by now abundant evidence [5, 13, 20, 23, 43, 53]

that such an approach, known in the literature as the “Classify and Count” (CC) method, yields poor

class prevalence estimates when the distribution of the unlabelled datapoints across the classes

differs substantially from the analogous distribution observed during training. This latter condition

is typically known as prior probability shift [40, 57]; in the aforementioned disciplines this condition

is ubiquitous since, quite obviously, there is interest in inferring a distribution only when we assume

this unknown distribution to be possibly different from the known distribution that characterizes

the training data. The main reason why CC tends to fail in the presence of prior probability shift is

that, in this case, the IID assumption on which most classifiers based on supervised learning rest

upon, does not hold.

Quantification (variously called learning to quantify, supervised prevalence estimation, or class prior

estimation) is the research field concerned with obtaining accurate estimators of class prevalence

values viamachine learning [13, 23]. Given its obvious relationshipwith classification, quantification

has been extensively studied in the two main settings typical of classification, i.e., the binary setting

(binary quantification – BQ), in which the codeframe (i.e., the set of classes of interest) contains only

two classes [2, 6, 16, 20, 26], and the single-label multiclass setting (single-label quantification – SLQ),

which involves three or more mutually exclusive classes [3, 18, 22, 43, 53]. Quantification has also

been studied in other (less popular) settings, such as the ordinal case (ordinal quantification – OQ),

in which there is a total ordering among the classes (see, e.g., [5, 7, 10]). A graphical comparison of

the different types of quantification problems is given in Figure 1.

One important setting which remains to a large extent unexplored in the quantification literature

is multi-label quantification (MLQ), the scenario in which every datapoint may belong to zero, one,

or several classes at the same time. Multi-label data arise naturally in many applicative contexts,

including the medical domain [31], the legal domain [9], industry [61], or cybersecurity [44], among

many others, and has been thoroughly studied under the lens of classification in past literature

[12, 38, 69], especially in the field of text classification [21, 37, 49, 71]; see [27, 62] for an overview

of this topic. Despite the ubiquity of multi-label data, we are aware of only one previous attempt to

cope with the MLQ problem [33]; in this paper we set out to analyze MLQ systematically. We start

by noting that, since quantification systems are expected to be robust to prior probability shift, we

need to test them against datasets exhibiting substantial amounts of shift. Our first contribution is

the first experimental protocol specifically designed for multi-label quantification, a protocol that

guarantees that the data MLQ systems are tested against do comply with the above desideratum.
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Fig. 1. Different types of quantification problems. From left to right: binary quantification (e.g., estimating

the prevalence values of positive reviews and negatives reviews in a set of product reviews), single-label

quantification (e.g., estimating the prevalence values of different merchandise classes in a set of product

reviews), ordinal quantification (e.g., estimating how a set of reviews of a certain product distributes across

different “star” ratings), and multi-label quantification (e.g., estimating the prevalence values of different,

non mutually exclusive symptoms in a set of patients).

We carry on by noting that a trivial solution for MLQ could simply consist of training one

independent binary quantifier for each of the classes in the codeframe. However, such a solution is

arguably a “naïve” one, as it assumes the classes to be independent of each other, and thus does not

attempt to leverage the class-class correlations, i.e., the stochastic dependencies that may exist among

different classes. We show empirical evidence that multi-label quantifiers constructed according

to this naïve intuition yield suboptimal performance, and that this happens independently of the

method used for training the binary quantifiers.

We then move on to studying different possible strategies for tackling MLQ, and subdivide these

strategies in four groups, based on their way of addressing (if at all) the multi-label nature of the

problem. While the first two groups can be instantiated by using already available techniques, the

other two cannot, since this would require “aggregation” techniques (see Section 5) that leverage

the stochastic relations between classes, and no such method has been proposed before. We indeed

propose two such methods, called RQ and LPQ. By means of extensive experiments that we have

carried out using 15 publicly available datasets, we show that, when working in combination with

a classifier that itself leverages the above-mentioned stochastic relations, LPQ and (especially) RQ

outperform all other MLQ techniques.

The rest of this article is structured as follows. After devoting Section 2 to notation and pre-

liminaries, in Section 3 we survey related work on quantification and on coping with multi-label

data. In Section 4 we move on to propose an evaluation protocol specifically devised for MLQ. In

Section 5 we characterize the four groups of MLQ systems according to the stages in which the

multi-label nature of the problem is tackled, and propose the first methods (Section 5.2) that allow

doing this also at the “aggregation” stage. In Section 6 we present the experiments we have carried

out and discuss the results, while Section 7 wraps up. The code to reproduce all our experiments is

available at https://github.com/manuel-francisco/quapy-ml/ .

2 NOTATION AND DEFINITIONS

In this paper we use the following notation. By xwe indicate a datapoint drawn from a domainX of

datapoints, while by 𝑦 we indicate a class drawn from a finite, predefined set of classes (also known

as a codeframe)Y = {𝑦1, ..., 𝑦𝑛}, with 𝑛 the number of classes of interest. Symbol 𝜎 denotes a sample,
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i.e., a non-empty set of (labelled or unlabelled) datapoints drawn from X. By 𝑝𝜎 (𝑦) we indicate
the true prevalence of class 𝑦 in sample 𝜎 , by 𝑝𝜎 (𝑦) we indicate an estimate of this prevalence, and

by 𝑝
𝑞
𝜎 (𝑦) we indicate the estimate of this prevalence obtained by means of quantification method

𝑞. We will denote by p = (𝑝1, . . . , 𝑝𝑛) a real-valued vector. When p is a vector of class prevalence

values, then 𝑝𝑖 is short for 𝑝𝜎 (𝑦𝑖 ).
We first formalize the SLQ problem (Section 2.1) and then propose a definition of the MLQ

problem (Section 2.2).

2.1 Single-Label Codeframes

In single-label problems, each datapoint x belongs to one and only one class in Y. We denote a

datapoint with its true class label as a pair (x, 𝑦), indicating that𝑦 ∈ Y is the true label of x ∈ X. We

represent a set of 𝑘 datapoints as {(x(𝑖 ) , 𝑦 (𝑖 ) )𝑘𝑖=1 : x(𝑖 ) ∈ X, 𝑦 (𝑖 ) ∈ Y}. By 𝐿 we denote a collection

of labelled datapoints, that we typically use as a training set, while by𝑈 we denote a collection of

unlabelled datapoints, that we typically use for testing purposes.

We define a single-label hard classifier as a function

ℎ : X → Y

i.e., a predictor of the class attributed to a datapoint. We will instead take a single-label soft classifier

to be a function

𝑠 : X → Δ𝑛−1

with Δ𝑛−1
the unit (𝑛-1)-simplex (aka probability simplex or standard simplex) defined as

Δ𝑛−1 = {(𝑝1, . . . , 𝑝𝑛) | 𝑝𝑖 ∈ [0, 1],
𝑛∑︁
𝑖=1

𝑝𝑖 = 1}

i.e., as the domain of all vectors representing probability distributions over Y. We define a single-

label quantifier as a function

𝑞 : 2
X → Δ𝑛−1

i.e., a function mapping samples drawn from X into probability distributions over Y.
Note that, despite the fact that the codomains of soft classifiers and quantifiers are the same,

in the former case the 𝑖-th component of 𝑠 (x) denotes the posterior probability Pr(𝑦𝑖 |x), i.e., the
probability that x belongs to class 𝑦𝑖 as estimated by 𝑠 , while in the latter case it denotes the class

prevalence value 𝑝𝜎 (𝑦𝑖 ) as estimated by 𝑞.

By 𝑑 (p, p̂) we denote an evaluation measure for SLQ; these measures are typically divergences,

i.e., functions that measure the amount of discrepancy between two probability distributions.

Everything we say for single-label problems applies to the binary case as well, since the latter is

the special case of the former in which 𝑛 = 2, with one class typically acting as the “positive class”,

and the other as the “negative class”.

2.2 Multi-Label Codeframes

In multi-label problems each datapoint x can belong to zero, one, or more than one class in Y; as a
result, the sum

∑𝑛
𝑖=1 𝑝𝑖 may be different from 1. We denote a datapoint with its true labels as a pair

(x, 𝑌 ), in which 𝑌 ⊆ Y is the set of true labels assigned to x ∈ X. A multi-label collection with

𝑘 datapoints is represented as {(x(𝑖 ) , 𝑌 (𝑖 ) )𝑘𝑖=1 : x(𝑖 ) ∈ X, 𝑌 (𝑖 ) ⊆ Y}. We define a multi-label hard

classifier as a function

ℎ : X → 2
Y
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i.e., as a classifier that can assign zero, one, or more than one label to each datapoint, while we

define a multi-label soft classifier as a function

𝑠 : X → [0, 1]𝑛

Note that, unlike in the single-label case, the codomain of function 𝑠 is not a probability simplex,

since the sum

∑𝑛
𝑖=1 𝑝𝑖 may be different from 1, but the set of all real-valued vectors (𝑝1, . . . , 𝑝𝑛)

such that 𝑝𝑖 ∈ [0, 1].
We define a multi-label quantifier as a function

𝑞 : 2
X → [0, 1]𝑛

i.e., a function mapping samples from X into vectors of 𝑛 class prevalence values, where, differently

from the single-label multiclass case, the class prevalence values in a vector do not need to sum up

to 1.

3 RELATEDWORK

3.1 Multi-LabelQuantification

The task of quantification was first proposed by Forman in 2005 [19], and emerges from the

observation that in some applications of classification the real goal is the estimation of class

prevalence values, and the prediction of individual class labels is nothing but an intermediate

step to achieve it. Forman [19] observed that the so-called “classify and count” method (discussed

in the introduction) tends to deliver biased estimators of class prevalence when confronted with

situations characterized by prior probability shift. Since then, many contributions to this field

have been published (see [13, 23] for overviews). However, most of this work has focused on the

binary [14, 16, 19, 20, 36], single-label multiclass [3, 18, 22, 43], or ordinal [5, 7, 10, 51] versions of

the problem, with essentially no attention devoted to the multi-label case.

To the best of our knowledge, the only previously proposed method dealing with multi-label

(text) quantification is [33]. The method, dubbed PCC-PAV, mainly consists of performing a refined

calibration of the posterior probabilities returned by a set of binary classifiers, each trained to

issue soft predictions for a specific class in the codeframe, followed by the application of the

(binary version of the) “probabilistic classify and count” (PCC) quantification method (explained

in Section 5.1). The refinement amounts to constraining the calibration algorithm (Pair Adjacent

Violators – PAV [68]) to generate posterior probabilities that have an expected value equal to the class

prevalence values observed in the training set. PCC-PAV involves a complex quadratic programming

problem that the authors try to alleviate by imposing a “document unification” heuristics (thus

giving rise to the variant PCC-EPAV). However, aside from its substantial computational cost,

the method presents two important limitations. The first limitation is that the calibration process

encourages the quantifier to stick to the class prevalence values encountered in the training set

(hereafter: the training prevalence), and thus makes it inadequate to tackle prior probability shift.

Indeed, in [33] the authors test this method by means of an experimental protocol that offers no

guarantee that the system is confronted with substantial amounts of prior probability shift; this is

witnessed by the fact that the trivial baseline (one that simply returns the training prevalence for

every test sample) achieves reasonably high scores. A second limitation is that the method uses

independently trained binary classifiers; to put it another way, the method does not in any way

address the multi-label nature of the problem, and is billed “multi-label” only since it is tested on

multi-label datasets. This method thus squarely falls within the class of “naïve methods” that we

have discussed in the introduction, and that we will more formally define as the simplest group of

MLQ methods in the scheme that we propose in Section 5.2.
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3.2 Multi-Label Classification

Apart from PCC-PAV and PCC-EPAV, no other publishedmethod explicitly addressesMLQ. However,

the field of quantification is closely related to the field of classification, and many of the concepts

and principles adopted in quantification have been borrowed from the classification literature. We

will thus devote most of this section to review existing approaches for multi-label classification,

since some among the methods we propose in Section 5.2 for MLQ are inspired by them.

In their survey [62], Tsoumakas and Katakis group the approaches to MLC in two main families:

“problem transformation” approaches (Section 3.2.1) and “algorithm adaptation techniques” (Sec-

tion 3.2.2). Later on, a third family of MLC approaches based on “ensemble methods” (Section 3.2.3)

was introduced by Madjarov et al. [35].

3.2.1 Problem Transformation Approaches. The “problem transformation” approach consists of

recasting the original multi-label classification problem as a single-label one, so that existing

techniques for the single-label case can be applied directly.

The simplest approach relying on this principle is the so-called “binary relevance” (BR) ap-

proach [34, 38]. BR consists of treating each label independently, thus tackling the multi-label

problem as a set of 𝑛 binary classification problems. BR is a simplistic approach, since the stochastic

dependencies among the classes are not taken into account. Despite its simplicity, BR has proven

to work well in previous studies [35], and has always been, by far, the most frequently adopted

approach for tackling multi-label classification problems.

The “label powerset” (LP) approach consists instead of transforming each unique assignment of

labels, as found in the training datapoints, in a new label. For example, if a training datapoint x has

labels 𝑌 = {𝑦1, 𝑦5, 𝑦6}, with 𝑦1, 𝑦5, 𝑦6 ∈ Y, then the datapoint is relabelled as 𝑌 ′ = 𝑦1:5:6, with 𝑦1:5:6 a

new “synthetic” class belonging to a single-label codeframeY′ ⊇ Y. Once this relabelling has been
performed for all unique label assignments, the problem is treated as a single-label problem usingY′
as the codeframe. Although this approach models label dependencies [56], the number of possible

classes in the new codeframe Y′ is exponential in the number of classes in the original codeframe,

since there are actually 2
𝑛
possible assignments of a datapoint to classes inY (hence the name of the

approach). Even if not all label combinations occur in practice in a single dataset, the total number

of different assignments that could be found when large multi-label codeframes are used could

easily make the problem intractable. Some heuristics based on ensembles (discussed in Section 3.2.3)

have been proposed to make the problem tractable. A further limitation of this approach is its low

statistical robustness, since, once a training datapoint x with labels 𝑌 = {𝑦1, 𝑦5, 𝑦6} is given the

synthetic label 𝑦1:5:6 ∈ Y′, it “loses” the individual labels 𝑦1, 𝑦5, 𝑦6, which means that these latter

classes end up having fewer training examples than in the standard BR approach. In other words,

having more classes means having, on average, fewer training examples per class, which may bring

about lower accuracy for the individual (non-synthetic) classes. Yet another problem of the LP

approach is the fact that combinations of labels never found in the training set cannot be predicted

at all.

The “classifier chains” (CChain) approach [11, 49] consists instead of training a sequence of 𝑛

binary classifiers, one for each class in 𝑛, chained so that each classifier receives, as additional

inputs, the predictions made by the previous classifiers in the chain. That is, the first classifier ℎ1 in

the chain is trained to predict label 𝑦1 using the original vector x as input, while the 𝑖-th classifier

in the chain is trained to predict label 𝑦𝑖 using as inputs the original vector x concatenated with a

vector of predictions (ℎ1 (x), . . . , ℎ𝑖−1 (x)) for labels 𝑦1, . . . , 𝑦𝑖−1, respectively. While this has turned

out to be one of the best-performing MLC methods [35], CChain presents a number of limitations.

The first has to do with the fact that CChain is sensitive to the order of the classes; in other words,

Y is treated as an ordered sequence (rather than a set) of classes, and reshuffling the sequence would
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bring about different results, which is undesirable. Some approaches to counter this limitation

consist of training an ensemble of CChains using different label orderings in each of them, and

then implementing some aggregation policy such as majority voting [49]. Yet another limitation

of CChain is that the classification phase is (unlike for the simpler BR strategy) not amenable to

parallelization, since the application of classifier ℎ𝑖 to unlabelled data must occur strictly after the

application of classifiers ℎ1, ..., ℎ𝑖−1.

3.2.2 Algorithm Adaptation Approaches. “Algorithm adaptation” approaches consist of adapting

single-label classifiers to return multi-label predictions. Schapire and Singer proposed a multi-label

adaptation of AdaBoost, called AdaBoost.MH [52], which is based on choosing, for a given

iteration of the boosting process, a unique “pivot term” around which all the binary classifiers for

the individual classes hinge. ML-knn [69] is an adaptation of the well-known (lazy) KNN algorithm,

which treats each class independently, and relies on the maximum a posteriori (MAP) principle to

return multi-label predictions, where the prior and posterior probabilities needed to compute the

MAP rule are estimated on the training set. Other classical methods that have been used within

algorithm adaptation approaches include decision trees (DT – see, e.g., [65]) and random forests

(RF – see, e.g., [35]).

3.2.3 Ensemble-Based Approaches. Ensemble-based approaches to MLC aim at improving model

performance by combining different base classifiers. Some ensembles have been proposed as a

response to specific problems encountered in other MLC systems.

A first class of such ensembles are based on a divide-and-conquer approach, according to which the

set of classes is first partitioned (using any clustering method), and the smaller, cluster-specific multi-

label problems are then solved independently of each other. Different instances implementing this

principle exist in the literature. For example, the authors of [63] create a tree in which the internal

nodes are associated with sets of classes (called meta-classes) and their children are associated

with subsets of the classes of the parent node. The root represents the set of all classes, while the

leaves represent single classes. For each node, a multi-label classifier is trained to predict (zero,

one, or more) meta-classes, each associated with one of the children nodes. The final set of labels

returned is the union of all labels in the leaf nodes reached. HOMER implements the partitioning

as balanced clustering, while HOMER-R relies instead on 𝑘-means; in both cases the smaller multi-

label problems are tackled via the binary relevance approach discussed in Section 3.2.1. RakEL [64]

instead relies on random clustering (with the number of clusters a hyperparameter of the model) for

partitioning the classes, and then runs an instance of the label powerset technique (LP – discussed

in Section 3.2.1) for each cluster. Since the number of classes in each cluster is smaller than the

total number of classes, the combinatorial problem affecting the LP approach is mitigated. In a

similar vein, Label Space Clustering (LSC) [60] uses 𝑘-means for clustering, followed by an instance

of ML-knn local to each cluster.

Other methods rely instead on label embeddings, i.e., on representing each class by means of a

low-dimensional dense vector in a continuous space, so that similar classes (i.e., classes that tend to

co-occur with each other) tend to be close to each other in the embedding space. The Cost-Sensitive

Label Embedding with Multidimensional Scaling (CLEMS) method [30] is one such example, and

one that has proven to be among the best performers in the label embedding arena (see e.g., [58]).

Stacked Generalization (SG) [67] has often been employed to carry out multi-label classification.

The idea is to train an ensemble of binary classifiers, each for a different class (somehow similarly

to the BR approach) and use the classification predictions as additional features to train a meta-

classifier. An advantage of SG with respect to CChain is that the former can be easily parallelized,

since it is not dependent on the order of presentation of the classes.
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3.2.4 Extreme multi-label classification. While not related to the three families of approaches

mentioned in [62] and [35], we should also hint at a fourth strand of MLC literature, i.e., that

concerned with large-scale (a.k.a. extreme) MLC, which can be defined as MLC using codeframes

containing a very large number 𝑛 of labels (even more than a million – see e.g., [1, 45, 66]). In these

contexts, even the simple BR approach discussed in Section 3.2.1 may be infeasible, since invoking

a million binary classifiers for classifying a single instance is computationally hard. The task is

computationally simpler if the codeframe is hierarchical (since in this case only 𝑂 (log𝑛) classifiers
need to be invoked), but in many applications of extreme MLC (say, assigning a given datapoint to

all the Wikipedia categories relevant to it [45]) the codeframe is not hierarchical; many works in

extreme MLC thus concentrate in ways to generate a hierarchy out of a very large codeframe in

such a way as to make the training phase and the classification phase computationally feasible.

We will not deal with extreme MLC in the rest of this paper since this literature (a) mostly targets

computational efficiency (while it is increasing accuracy with respect to the basic BR approach that

we are after), and (b) does not deal with leveraging the stochastic correlations between the classes,

which is instead our goal.

4 AN EVALUATION PROTOCOL FOR TESTING MULTI-LABEL QUANTIFIERS

For the evaluation of quantifiers, researchers often use the same datasets that are elsewhere used

for testing classifiers. On one hand this looks natural, because both classification and quantification

deal with datapoints that belong to classes in a given codeframe. On the other hand this looks

problematic, since classification deals with estimating class labels for individual datapoints while

quantification deals with estimating class prevalence values for samples (sets) of such datapoints.

Simply estimating the accuracy of a quantifier on the entire test set of a dataset used for classification

purposes (hereafter: a “classification dataset”) would not be enough, since this would be a single

prediction only, which would be akin to testing a classifier on a single datapoint only. As a result, it

is customary to generate a dataset to be used for quantification purposes (a “quantification dataset”)

from a classification dataset by extracting from the test set of the latter a number of samples

than will form the test set of the quantification dataset. Exactly how these samples are extracted

is specified by an evaluation protocol. Different evaluation protocols for the binary case [16, 19],

for the single-label multiclass case [15], and for the ordinal case [5], have been proposed in the

quantification literature.

For the binary case, the most widely adopted protocol is the so-called artificial prevalence protocol

(APP) [19]. The APP consists of extracting, from a set of test datapoints, many samples at controlled

prevalence values. The APP takes four parameters as input: the unlabelled collection𝑈 , the sample

size 𝑘 , the number of samples 𝑚 to draw for each predefined vector of prevalence values, and

a grid of prevalence values g (e.g., g = (0.0, 0.1, . . . , 0.9, 1.0)). We then generate all the vectors

p = (𝑝 (⊕), 𝑝 (⊖)) of 𝑛 = 2 prevalence values consisting of combinations of values from the grid

g that represent valid distributions (i.e., such that the elements in p sum up to 1). For each such

prevalence vector, we then draw𝑚 different samples of 𝑘 elements each, which become the elements

of our test set. The APP thus confronts the quantifier with samples characterized by class prevalence

values very different from the ones seen during training, and can thus test the robustness of the

quantifiers to the presence of prior probability shift. This protocol is, by far, the most popular one

in the quantification literature (see, e.g., [6, 14, 17, 19, 36, 39, 43, 46, 47, 53]).

For the single-label multiclass case (which is the closest to our concerns) the APP needs to

take a slightly different form, since the number of vectors p = (𝑝 (𝑦1), ..., 𝑝 (𝑦𝑛)) representing valid

distributions for arbitrary 𝑛 is combinatorially high, for any reasonable grid of class prevalence

values. As a solution, one can generate a number of random points on the probability simplex,
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without constraining the individual class prevalence values to lie on a predetermined grid; when

this number is high enough, it probabilistically covers the entire spectrum of valid combinations.

However, even this form of the APP is not directly applicable to the multi-label scenario, because

in this latter the class prevalence values in a valid vector do not necessarily sum up to 1. One could

attempt to simply treat the multi-label problem as a set of independent binary problems, and then

apply the APP independently to each of the classes. Unfortunately, such a solution is impractical,

for at least three reasons:

• The first reason is that the number of samples thus generated is exponential in 𝑛, since there

are𝑚 |g|𝑛 such combinations. Note that 𝑛 (the number of classes in the codeframe) cannot be

set at will since it is fixed, and thus, in order to keep the number of combinations tractable

in cases in which 𝑛 is large (in our experiments we use datasets with up to 𝑛 = 983 classes),

one would be compelled to set𝑚 = 1 and choose a very coarse grid g of values (this would

anyway prove insufficient when dealing with large codeframes).

• The second and perhaps most problematic reason is that, in any case, many of the combina-

tions are not even realisable. That is, there may be prevalence vectors for which no sample

could be drawn at all. To see why, assume that, among others, we have classes 𝑦1, 𝑦2, 𝑦3 in

our codeframe, and assume that in our test set𝑈 , every time a datapoint is labelled with 𝑦1 it

is also labelled with either 𝑦2 or 𝑦3 but not both. This means that all samples 𝜎 for which

prevalence values 𝑝𝜎 (𝑦1) ≠ (𝑝𝜎 (𝑦2) + 𝑝𝜎 (𝑦3)) are requested, cannot be generated.
• Yet another reason why applying the APP would be, in any case, undesirable, is that the

classes in most multi-label datasets typically follow a power-law distribution, i.e., there are

few very popular classes and a long tail of many rare, or extremely rare, classes. The APP

will sometimes impose high prevalence values for classes that in reality are very rare, which

means that the sampling must be carried out with replacement; this would generate samples

consisting of many replicas of the same few datapoints, which is clearly undesirable.

For all these reasons we have designed a brand new protocol for MLQ, that we call ML-APP, since

it is an adaptation of the APP to multi-label datasets. The protocol amounts to performing multiple

rounds of the APP, each targeting a specific class, but with the range of prevalence values explored

for each class being limited by the amount of available positive examples. This allows all samples to

be drawn without replacement. In each round, a class 𝑦𝑖 is actively sampled at controlled prevalence

values while the prevalence values for the remaining classes are not predetermined. Pseudocode

describing the ML-APP is shown as Algorithm 1.

The ML-APP covers the entire spectrum of class prevalence values, by drawing without replace-

ment, for every single class. This means that, for large enough classes, there will be samples for

which the prevalence of the class exhibits a large prior probability shift with respect to the training

prevalence, while for rare classes the amount of shift will be limited by the availability of positive

examples. Note that, when actively sampling a class 𝑦𝑖 , any other class 𝑦 𝑗 will co-occur with it

with a probability that depends on the correlation between 𝑦𝑖 and 𝑦 𝑗 . For cases in which the class

𝑦𝑖 being sampled is completely independent of the class 𝑦 𝑗 , the samples generated will display a

class prevalence for 𝑦 𝑗 that is approximately similar to the prevalence of 𝑦 𝑗 in 𝑈 . In other words,

samples generated via the ML-APP have a desirable property, i.e., they preserve the stochastic

correlations between the classes while also exhibiting widely varying degrees of prior probability

shift. Finally, note that the total number of samples that can be generated via the ML-APP can

vary from dataset to dataset (even if they have the same number of classes), and depends on the

actual number of positive instances for each class that are contained in the dataset. In any case, the

maximum number of samples that can be generated via the ML-APP is bounded by𝑚𝑛 |g|.
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Algorithm 1ML-APP protocol for multi-label data.

Input:𝑈 , a test collection

Input: 𝑘 , the sample size

Input:𝑚, the number of samples to draw for each prevalence

Input: g, the grid of prevalence values

𝑆 = {}
for 𝑦𝑖 ∈ Y do

// Split𝑈 in two sets, with𝑈𝑦𝑖 containing all datapoints with label 𝑦𝑖 and𝑈𝑦𝑖

// containing the others

𝑈𝑦𝑖 ← {(x, 𝑌 ) ∈ 𝑈 : 𝑦𝑖 ∈ 𝑌 }
𝑈𝑦𝑖
← {(x, 𝑌 ) ∈ 𝑈 : 𝑦𝑖 ∉ 𝑌 }

for 𝑔 𝑗 ∈ g do
// Compute the number of positives and negatives to extract

Pos← ⌈𝑘 · 𝑔 𝑗 ⌉
Neg← 𝑘−Pos
// Generate samples only if the number of datapoints in𝑈𝑦𝑖 allows

// the sampling to be performed without replacement

if |𝑈𝑦𝑖 | ≥ Pos then
for𝑚 repetitions do

draw 𝜎𝑦𝑖 from𝑈𝑦𝑖 , with |𝜎𝑦𝑖 | =Pos, uniformly at random w/o replacement

draw 𝜎𝑦𝑖 from𝑈𝑦𝑖
, with |𝜎𝑦𝑖 | =Neg, uniformly at random w/o replacement

// Members of 𝜎𝑦𝑖 and 𝜎𝑦𝑖 are not removed from𝑈𝑦𝑖 or𝑈𝑦𝑖

𝜎 ← 𝜎𝑦𝑖 ∪ 𝜎𝑦𝑖 // Note that 𝑝𝜎 (𝑦𝑖 ) = 𝑔 𝑗 ; the prevalence for the other

// classes is not predetermined

𝑆 ← 𝑆 ∪ {𝜎}
end for

end if
end for

end for
Return: 𝑆

5 PERFORMING MULTI-LABEL QUANTIFICATION

In this section we present the multi-label quantification methods that we will experimentally

compare in Section 6. Throughout this paper we will focus on aggregative quantification methods,

i.e., methods that require all unlabelled datapoints to be classified (by a hard or a soft classifier,

depending on the method) as an intermediate step, and that aggregate the individual (hard or soft)

predictions in some way to generate the class prevalence estimates. The reason why we focus on

aggregative methods is that they are by far the most popular quantification methods in the literature,

and that this focus allows us an easier exposition. We will later show how the most interesting

intuitions for performing MLQ that we discuss in this paper also apply to the non-aggregative case.

Before presenting truly multi-label quantifiers, though, we will introduce a number of single-label

(aggregative) multiclass quantification methods from the literature, that will form the basis for our

extensions to the MLQ case.

5.1 Single-Label MulticlassQuantification Methods

Classify and Count (CC), already hinted at in the introduction, is the naïve quantification method,

and the one that is used as a baseline that all genuine quantification methods are supposed to beat.
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Given a hard classifier ℎ and a sample 𝜎 , CC is formally defined as

𝑝CC𝜎 (𝑦𝑖 ) =
|{x ∈ 𝜎 |ℎ(x) = 𝑦𝑖 }|

|𝜎 | (1)

In other words, the prevalence of a class 𝑦𝑖 is estimated by classifying all unlabelled datapoints,

counting the number of datapoints that have been assigned to 𝑦𝑖 , and dividing the result by the

total number of datapoints. The Adjusted Classify and Count (ACC) method (see [17, 20]) attempts

to correct the estimates returned by CC by relying on the law of total probability, according to

which

𝑝 (ℎ(x) = 𝑦𝑖 ) =
∑︁
𝑦 𝑗 ∈Y

𝑝 (ℎ(x) = 𝑦𝑖 |𝑦 𝑗 ) · 𝑝 (𝑦 𝑗 ) (2)

which can be more conveniently rewritten using matrix notation as

pCC𝜎 = Mℎ · pACC𝜎 (3)

where pCC𝜎 is the vector representing the distribution across Y of the datapoints as estimated via

CC, and matrixMℎ contains the misclassification rates of ℎ, i.e.,𝑚𝑖 𝑗 is the probability that ℎ will

assign class 𝑦𝑖 to a datapoint whose true label is 𝑦 𝑗 . MatrixMℎ is unknown, but can be estimated

via 𝑘-fold cross-validation, or on a validation set. Vector pACC𝜎 is the true distribution; it is unknown,

and the ACC method consists of estimating it by solving the system of linear equations of Equation

3 (see [4] for more on the multiclass version of ACC).

While CC and ACC rely on the crisp counts returned by a hard classifier ℎ, it is possible to define

variants of them that use instead the expected counts computed from the posterior probabilities

returned by a calibrated probabilistic classifier 𝑠 [2]. This is the core idea behind Probabilistic

Classify and Count (PCC) and Probabilistic Adjusted Classify and Count (PACC). PCC is defined as

𝑝PCC𝜎 (𝑦𝑖 ) =
1

|𝜎 |
∑︁
x∈𝜎
[𝑠 (x)]𝑖

=
1

|𝜎 |
∑︁
x∈𝜎

Pr(𝑦𝑖 |x)
(4)

while PACC is defined as

pPCC𝜎 = M𝑠 · pPACC𝜎 (5)

Equation 5 is identical to Equation 3, but for the fact that the leftmost part is replaced with the

prevalence values estimated via PCC, and for the fact that the misclassification rates of the soft

classifier 𝑠 (i.e., the rates computed as expectations using the posterior probabilities) are used.

Methods CC, ACC, PCC, PACC, are sometimes collectively referred to as the “CC variants”, and

are all (as it is easy to verify) aggregative quantification methods. Although more sophisticated

quantification systems have been proposed in the literature, the CC variants have recently been

found to be competitive contenders when properly optimized [42]. This, along with their simplicity,

has motivated us to focus on the four CC variants as a first step towards devising multi-label

quantifiers.

A further, very popular (aggregative) quantification method is the one proposed in [50], which is

often called SLD, from the names of its proposers, and which was called EMQ in [22]. SLD was the

best performer in a recent data challenge centred on quantification [15], and consists of training a

probabilistic classifier and then using the EM algorithm (i) to update the posterior probabilities

that the classifier returns, and (ii) to re-estimate the class prevalence values of the test set. Steps (i)
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and (ii) are carried out in an iterative, mutually recursive way, until mutual consistency, defined as

the situation in which

𝑝𝜎 (𝑦𝑖 ) ≈
1

|𝜎 |
∑︁
x∈𝜎

Pr(𝑦𝑖 |x) (6)

is achieved for all 𝑦𝑖 ∈ Y.

5.2 Multi-LabelQuantification

In this paper we will describe and compare many different (aggregative) MLQ methods. In order

to better assess their relative merits, we subdivide them into four different groups, depending on

whether the correlations between different classes are exploited in the classification phase (i.e., by

the classifier which provides input to an aggregative quantifier), or in the aggregation phase (i.e.,

in the phase in which the individual predictions are aggregated), or in both phases, or in neither of

the two phases.

The first and simplest such group is that of MLQ methods that treat each class as completely

independent, and thus solve𝑛 independent binary quantification problems.We call such an approach

BC+BA (“binary classification followed by binary aggregation”), since in both the classification

phase and the aggregation phase we treat the multi-label task as𝑛 independent binary tasks; we thus

disregard, in both phases, the correlations among classes when predicting their class prevalence

values. This is similar to the binary relevance (BR) problem transformation described in Section 3.2.1

for classification, and consists of transforming the multi-label dataset 𝐿 into a set of binary datasets

𝐿1, . . . , 𝐿𝑛 in which 𝐿𝑖 = {(x, 1[𝑦𝑖 ∈ 𝑌 ]) : (x, 𝑌 ) ∈ 𝐿} is labelled according to Y𝑖 = {0, 1}, since
the datapoints are relabelled using the indicator function 1[𝑧] that returns 1 (the minority class)

if 𝑧 is true or 0 (the majority class) otherwise. BC+BA methods then train one quantifier 𝑞𝑖 for

each training set 𝐿𝑖 . At inference time, the prevalence vector for a given sample 𝜎 is computed

as pBC+BA𝜎 = (𝑝𝑞1𝜎 (1), 𝑝
𝑞2
𝜎 (1), . . . , 𝑝

𝑞𝑛
𝜎 (1)). Although this is technically a multi-label quantification

method, BC+BA is actually the trivial solution that we expect any truly multi-label quantifier to

beat.

A second, less trivial group is that of MLQ methods based on the use of binary aggregative

quantifiers that receive input from (truly) multi-label classifiers. Methods in this group consist

of 𝑛 independent binary aggregative quantifiers (e.g., built via one of the methods described in

Section 5.1) that rely on the (hard or soft) predictions returned by a classifier natively designed to

tackle the multi-label problem (e.g., built by means of one of the methods described in Section 3).

Each binary quantifier takes into account only the predictions for its associated class, disregarding

the predictions for the other classes. This represents a straightforward solution to the MLQ problem,

as it simply combines already existing technologies (binary aggregative quantifiers built via off-the-

shelf methods and (truly) multi-label classifiers built via off-the-shelf methods). In such a setting,

the classification stage is influenced by the class-class correlations, but the quantification methods

in charge of producing the class prevalence estimates for each class do not pay attention to any

such correlation, and are disconnected from each other. Since methods in this group will consist of

a (truly) multi-label classification phase followed by a binary quantification phase, we will refer to

this group of methods as MLC+BA.

We next propose a third group of MLQ systems, i.e., ones consisting of natively multi-label

quantificationmethods that receive ad input the outputs of𝑛 independent binary classifiers. Methods

like these represent a non-trivial novel solution for the field of quantification, because no natively

multi-label quantification method has been proposed so far in the literature; in Section 5.2.1 we

propose some such methods. In order to clearly evaluate the merits of such a multi-label aggregation
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Fig. 2. The four groups of multi-label quantification methods. Dotted lines connecting class labels with a

model (classifier or quantifier) indicate that the model learns from (or has access to) the class labels of the

training datapoints. Solid lines connecting classifiers with quantifiers indicate a transfer of outputs from the

classifier to the quantifier. With a slight deviation from our notation, here ℎ denotes any classifier, hard or

soft.

phase, as the underlying classifiers we use independent binary classifiers only. For this reason, we

will call this group of methods BC+MLA.

The methods in the fourth and last group that we consider consist of combinations of a (truly)

multi-label classification method and a (truly) multi-label quantification method among our newly

proposed ones; this allows to exploit the class dependencies both at the classification stage and at

the aggregation stage. We call this group of methods MLC+MLA.

Figure 2 illustrates in diagrammatic form the four types of multi-label quantification methods

we study in this paper. In order to generate members of these four classes, we already have off-the-

shelf components for implementing the binary classification, multi-label classification, and binary

aggregation phases, but we have no known method from the literature to implement multi-label

aggregation; Sections 5.2.1 and 5.2.2 are devoted to proposing two novel methods of this type.

5.2.1 Exploiting Class-Class Correlations at the Aggregation Stage by means of Regression. Let us
assume we have a multi-label quantifier 𝑞 of type BC+BA or MLC+BA. Our idea is to detect how

quantifier 𝑞 fails in capturing the correlations between classes, and to correct 𝑞 accordingly. This is

somehow similar to the type of correction implemented in ACC (with respect to CC) and PACC
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(with respect to PCC). However, we will formalize this intuition as a general regression problem,

thus not necessarily assuming this correction to be linear (as ACC and PACC instead do).

Roughly speaking, the idea that underlies our method is that of learning a regression function

𝑟 : R𝑛 → R𝑛 that takes as input the vector of prevalence values as estimated by 𝑞, and returns a

vector of corrected prevalence values. More concretely, we split our training set 𝐿 into two parts,

𝐿𝑄 (that we use for training our quantifier 𝑞) and 𝐿𝑅 (that we use for training a regressor 𝑟 ).1 We

then use the ML-APP protocol described in Section 4 to extract, from set 𝐿𝑅 , a new training set

R = {𝜎𝑖 ∼ ML-APP(𝐿𝑅, 𝑘,𝑚, g)} of 𝑙 samples, where 𝑘 (sample size),𝑚 (number of samples to draw

for each prevalence value on the grid), and g (grid of prevalence values) are the parameters of the

ML-APP protocol.

Having done this, we first train our quantifier 𝑞 on 𝐿𝑄 . Note that, since 𝑞 is a multi-label quantifier,

it is a function that, given a sample 𝜎 , returns a vector p̂𝑞𝜎 of𝑛 class prevalence values, not necessarily

summing up to 1. We then apply 𝑞 to all the samples in our newly created dataset R. As a result,
for each sample 𝜎𝑖 ∈ R, we obtain a pair (p̂𝑞𝜎𝑖 , p𝜎𝑖 ), where p̂

𝑞
𝜎𝑖 is the vector of the 𝑛 prevalence

values estimated by 𝑞, and p𝜎𝑖 is the vector of the 𝑛 true prevalence values. We use this set of 𝑙

pairs as the training set for training a multi-output regressor 𝑟 : R𝑛 → R𝑛 that takes as input a

vector of 𝑛 “uncorrected” prevalence values (i.e., values generated without exploiting the class-class

correlations) and returns a vector of 𝑛 “corrected” prevalence values (i.e., values generated by

exploiting the class-class correlations); for training the regressor we can use any off-the-shelf multi-

output regression algorithm. Note that the regressor indeed captures the correlations between

classes, since it receives as input, for each sample, the class prevalence estimates for all the 𝑛

classes.
2

At inference time, given an (unlabelled) sample 𝜎 , we first obtain a preliminary estimate of the

class prevalence values p̂𝑞𝜎 by means of 𝑞, and then apply the correction learned by the regressor 𝑟 ,

thus computing p̂𝑟𝜎 = 𝑟 (p̂𝑞𝜎 ). We then normalize, by means of clipping,
3
every prevalence value in

p̂𝑟𝜎 so that it falls in the [0, 1] interval, and return the estimate. The method (which we here call RQ,

for “regression-based quantification”) is described succinctly as Algorithm 2 (training phase) and

Algorithm 3 (inference phase).

As noted above, the regressor exploits the class-class correlations during the aggregation phase.

This means that, according to the subdivision of MLQ methods illustrated in Table 2, the addition

of a regression layer on top of an existing quantifier 𝑞 has the effect of transforming a BC+BA

method into a BC+MLA method, or of transforming a MLC+BA method into a MLC+MLA method.

5.2.2 Exploiting Class-Class Correlations at the Aggregation Stage by means of Label Powersets. We

investigate an alternative way of modelling class-class correlations at the quantification level, this

time by gaining inspiration from label powersets (LPs – see Section 3.2.1) and the heuristics for

making their application tractable (Section 3.2.3).

LP is a problem transformation technique devised for transforming any multi-label classification

problem into a single-label one by replacing the original codeframe with another one that encodes

subsets of this codeframe into “synthetic” classes (see Section 3.2.1 for details). This problem trans-

formation is directly applicable to the case of quantification as well. Of course, the combinatorial

1
Note that, for reasons discussed in [55, 59], multi-label datasets cannot be split in a stratified way using standard algorithms

for single-label stratification. For splitting the training set 𝐿, we thus use the iterative stratification method implemented in

scikit-multilearn (http://scikit.ml/stratification.html) and described in [59].

2
The fact that the regressor captures the correlations between classes does not depend on it being a multi-output regressor;

even a set of 𝑛 single-output regressors would obtain the same effect, which is only due to the fact that the regressor takes

as input all the 𝑛 class prevalence estimates at the same time.

3
Clipping a value 𝑣 to the interval [𝑎,𝑏 ] amounts to returning 𝑣 if 𝑣 ∈ [𝑎,𝑏 ], 𝑎 if 𝑣 < 𝑎, or 𝑏 if 𝑣 > 𝑏. This is needed since,

in principle, the regressor might sometimes return values that fall outside the [0,1] interval.
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Algorithm 2 MLQ correction via regression:

Training

Input: 𝐿, a training collection
Input: 𝑞, a multi-label quantifier

Input: 𝑟 , a multi-output regressor

Input: 𝑘 ,𝑚, g, parameters of the ML-APP

𝐿𝑄 , 𝐿𝑅 = iterative-stratification(𝐿)
train 𝑞 on 𝐿𝑄

R = { (p̂𝑞𝜎𝑖 , p𝜎𝑖 )
𝑙
𝑖=1

: 𝜎𝑖 ∼ ML-APP(𝐿𝑅, 𝑘,𝑚, g) }
train 𝑟 on R
Return: 𝑞, 𝑟

Algorithm 3 MLQ correction via regression:

Inference

Input: 𝜎 , an unlabelled sample

Input: 𝑞, a trained multi-label quantifier

Input: 𝑟 , a trained multi-output regressor

p̂𝑞𝜎 ← 𝑞 (𝜎 )
p̂𝑟𝜎 ← clip(𝑟 (p̂𝑞𝜎 ), [0, 1] )

Return: p̂𝑟𝜎

explosion of the number of synthetic classes has to be controlled somehow but, fortunately enough,

the same heuristics investigated for MLC can come to the rescue.

Our method (which we here call LPQ, for “label powerset -based quantification”) consists of

generating, by means of any existing clustering algorithm, a set C of (non-overlapping) clusters

consisting of few classes each, before applying the LP strategy, so that the number of possible

synthetic classes remains under reasonable bounds. For example, if our codeframe has 𝑛 = 100

classes, extracting 25 clusters of 4 classes each results in the maximum possible number of synthetic

classes being 25 · 24 = 400, which is much smaller than the original 2
100

. We perform this clustering

by treating classes inY as instances and training datapoints as features, so that a class is represented

by a binary vector of datapoints, where 1 indicates that the datapoint belongs to the class and 0 that

it does not. The clustering algorithm is thus expected to put classes displaying similar assignment

patterns (i.e., classes that tend to label the same documents) in the same cluster.

Once we have performed the clustering, given the subset of classes Y𝑐 ⊆ Y contained in each

cluster 𝑐 ∈ C, we need to convert the multi-label assignments into single-label assignments.

This amounts to defining a mapping 2
Y𝑐 → Y′𝑐 , so that, e.g., the set of classes {𝑦1, 𝑦5, 𝑦6} ⊆ Y𝑐

corresponds to a new synthetic class 𝑦1:5:6 ∈ Y′𝑐 . Once (single) labels have been assigned, we

can train a single-label quantifier. This process is independently carried out for each cluster.

At inference time, in order to provide class prevalence estimates for the classes in Y𝑐 from the

predictions made for the classes in Y′𝑐 by the above-mentioned quantifier, we have to “reverse” the

assignment. This process is straightforward since the mapping is bijective. By doing so, we can

reconstruct the estimated prevalence value for class 𝑦𝑖 ∈ Y𝑐 as the sum of the estimated prevalence

values of all labels 𝑦′ ∈ Y′𝑐 that involve 𝑦𝑖 . This process is repeated for each cluster 𝑐 ∈ C in order

to obtain prevalence estimates for all classes 𝑦𝑖 ∈ Y.
More formally, let us define a matrix A that records the label assignment in cluster 𝑐 , so that

𝑎𝑖 𝑗 = 1 if the set of classes represented by the synthetic class 𝑦′𝑖 ∈ Y′𝑐 contains class 𝑦 𝑗 ∈ Y𝑐 , and
𝑎𝑖 𝑗 = 0 if this is not the case. Note that A has as many rows as there are classes in Y′𝑐 and as many

columns as there are classes in Y𝑐 . Once our single-label quantifier 𝑞 produces an output p̂𝑞𝜎 , we
only need to compute the product (p̂𝑞𝜎 )⊤A to obtain the vector of prevalence estimates for the

classes in Y𝑐 . Performing all this for each cluster 𝑐 ∈ C returns prevalence estimates for all classes

𝑦𝑖 ∈ Y. The example shown in Figure 3 may clarify things.

In principle, the disadvantage of this method is that it cannot learn the correlations between

classes that belong to different clusters. However, the method is based on the intuition that classes

that are indeed correlated tend to end up in the same cluster, and that the inability to model
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Fig. 3. An example considering a cluster made of three classes only (left), and the computations carried out

for reconstructing the prevalence values for the original multi-label codeframe (right).

Y𝑐 Y′𝑐 p̂𝑞𝜎𝑦1 𝑦2 𝑦3

A:

0 0 0 𝑦′∅ 𝑝
𝑞
𝜎 (𝑦′∅) = 0.15

1 0 0 𝑦′
1

𝑝
𝑞
𝜎 (𝑦′1) = 0.10

0 1 0 𝑦′
2

𝑝
𝑞
𝜎 (𝑦′2) = 0.26

1 1 0 𝑦′
1:2

𝑝
𝑞
𝜎 (𝑦′1:2) = 0.19

0 0 1 𝑦′
3

𝑝
𝑞
𝜎 (𝑦′3) = 0.05

1 0 1 𝑦′
1:3

𝑝
𝑞
𝜎 (𝑦′1:3) = 0.13

0 1 1 𝑦′
2:3

𝑝
𝑞
𝜎 (𝑦′2:3) = 0.11

1 1 1 𝑦′
1:2:3

𝑝
𝑞
𝜎 (𝑦′1:2:3) = 0.01

(𝑝𝑞𝜎 (𝑦1), 𝑝
𝑞
𝜎 (𝑦2), 𝑝

𝑞
𝜎 (𝑦3)) = (p̂

𝑞
𝜎 )⊤A

𝑝
𝑞
𝜎 (𝑦1) = 𝑝

𝑞
𝜎 (𝑦′1) + 𝑝

𝑞
𝜎 (𝑦′1:2) + 𝑝

𝑞
𝜎 (𝑦′1:3) + 𝑝

𝑞
𝜎 (𝑦′1:2:3)

= 0.30

𝑝
𝑞
𝜎 (𝑦2) = 𝑝

𝑞
𝜎 (𝑦′2) + 𝑝

𝑞
𝜎 (𝑦′1:2) + 𝑝

𝑞
𝜎 (𝑦′2:3) + 𝑝

𝑞
𝜎 (𝑦′1:2:3)

= 0.57

𝑝
𝑞
𝜎 (𝑦3) = 𝑝

𝑞
𝜎 (𝑦′3) + 𝑝

𝑞
𝜎 (𝑦′1:3) + 𝑝

𝑞
𝜎 (𝑦′2:3) + 𝑝

𝑞
𝜎 (𝑦′1:2:3)

= 0.43

correlations between classes that belong to different clusters will be more than compensated by the

reduction in the number of combinations that one needs to take into account.

In the experiments of Section 6.5 we explore different configurations of this approach, in which

we combine different clustering strategies.

6 EXPERIMENTS

In this section we turn to describing the experiments we have carried out in order to evaluate the

performance of the different methods for MLQ that we have presented in the previous sections.

In Section 6.1 we discuss the evaluation measure we adopt, while in Section 6.2 we describe the

datasets on which we perform our experiments. In Section 6.3 we report experiments aiming at

comparing the four groups of methods discussed in Section 5.2 and illustrated in Figure 2. In

Section 6.4 and 6.5 we then move on to exploring further instances of methods belonging to those

four groups.

6.1 Evaluation Measures

Any evaluation measure for binary quantification can be easily turned into an evaluation measure

for multi-label quantification, since evaluating a multi-label quantifier can be done by evaluating

how well the prevalence value 𝑝 (𝑦𝑖 ) of each class 𝑦𝑖 ∈ |Y| is approximated by the prediction

𝑝 (𝑦𝑖 ). As a result, it is natural to take a standard measure 𝑑 (p, p̂) for the evaluation of binary

quantification, and turn it into a measure

D(p, p̂) = 1

𝑛

𝑛∑︁
𝑖=1

𝑑 ((𝑝𝑖 , (1 − 𝑝𝑖 )), (𝑝𝑖 , (1 − 𝑝𝑖 ))) (7)

for the evaluation of multi-label quantification. (This is exactly what we do in multi-label classi-

fication, in which we take 𝐹1, a standard measure for the evaluation of binary classification, and

turn it into macroaveraged 𝐹1, which is the standard measure for the evaluation of multi-label

classification.)

The study of evaluationmeasures for binary (and single-label multiclass) quantification performed

in [54] concludes that the most satisfactory such measures are absolute error and relative absolute

error ; these are the two measures that we are going to use in this paper. In the binary case, absolute
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error is defined as

ae(p, p̂) = |𝑝1 − 𝑝1 | + |𝑝2 − 𝑝2 |
2

=
|𝑝1 − 𝑝1 | + |(1 − 𝑝1) − (1 − 𝑝1) |

2

= |𝑝1 − 𝑝1 |

(8)

which yields the multi-label version

AE(p, p̂) = 1

𝑛

𝑛∑︁
𝑖=1

|𝑝𝑖 − 𝑝𝑖 | (9)

In the binary case, relative absolute error is instead defined as

rae(p, p̂) = 1

2

(
|𝑝1 − 𝑝1 |

𝑝1
+ |𝑝2 − 𝑝2 |

𝑝2

)
=
1

2

(
|𝑝1 − 𝑝1 |

𝑝1
+ |(1 − 𝑝1) − (1 − 𝑝1) |(1 − 𝑝1)

) (10)

which yields the multi-label version

RAE(p, p̂) = 1

2𝑛

𝑛∑︁
𝑖=1

(
|𝑝𝑖 − 𝑝𝑖 |

𝑝𝑖
+ |(1 − 𝑝𝑖 ) − (1 − 𝑝𝑖 ) |(1 − 𝑝𝑖 )

)
(11)

Since RAE is undefined when 𝑝𝑖 = 0 or 𝑝𝑖 = 1, we smooth the probability distributions p and p̂ via

additive smoothing; in the binary case, this maps a distribution p = (𝑝𝑖 , (1 − 𝑝𝑖 )) into

s(p) =
(
𝜖 + 𝑝𝑖
2𝜖 + 1 ,

𝜖 + (1 − 𝑝𝑖 )
2𝜖 + 1

)
(12)

with 𝜖 the smoothing factor, that we set, following [20], to 𝜖 = (2|𝜎 |)−1.
Note that we do not use, as a measure, concordance ratio, i.e.,

CR(p, p̂) = 1

𝑛

𝑛∑︁
𝑦=1

min{𝑝𝑖 , 𝑝𝑖 }
max{𝑝𝑖 , 𝑝𝑖 }

(13)

despite the fact that it is the measure used in [33], the only paper in the literature that addresses

multi-label quantification. The reason why we do not use it is the fact that, as later shown in [54],

the mathematical properties of CR do not make it (similarly to other measures used in the quantifi-

cation literature in the past, such as the Kullback-Leibler Divergence) a satisfactory measure for

quantification; see [54, pp. 272–273] for details.

In the experiments we describe in Section 6, the trends we observe and the conclusions we

draw for AE hold for RAE as well. In Section 6 we will thus report our results in terms of AE only,

deferring the results in terms of RAE to Appendix A.

6.2 Datasets

For our experiments we use 15 popular MLC datasets, including 3 datasets specific to text clas-

sification (Reuters-21578,
4
Ohsumed [28], and RCV1-v2

5
), plus all the datasets linked from the

scikit-multilearn package [58] with the exception of the RCV1-v2 subsets (we omit them since

4
http://www.daviddlewis.com/resources/testcollections/reuters21578/

5
http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004_rcv1v2_{R}EADME.htm
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we already include the much larger collection from which they were extracted). We refer to the

original sources for detailed descriptions of these datasets.
6

For the three textual datasets, we pre-process the text by applying lowercasing, stop word

removal, and punctuation removal, as implemented in scikit-learn,
7
and by masking numbers

with a special token.We retain all terms appearing at least 5 times in the training set, and convert the

resulting set of words into (sparse) tfidf-weighted vectors using scikit-learn’s default vectorizer.
8

For all datasets, we remove very rare classes (i.e., those with fewer than 5 training examples)

from consideration, since they pose a problem when it comes to generating validation (i.e., held-out

data) sets. Indeed, since we optimize the hyperparameters for all the methods we use (as explained

below), we need validation sets, and it is sometimes impossible to have positive examples for

these classes in both the training and validation sets (let us remember that pure stratification in

multi-label datasets is not always achievable, as argued in [55, 59]). Note that all this only concerns

the training set, and has nothing to do with the test set, which can include (and indeed includes, for

most datasets) extremely rare classes, since removing classes that are rare in the test set would lead

to an unrealistic experimentation. Note also that removing classes that are rare in the training set

is “fair”, i.e., equally affects all methods that we experimentally compare, since all of them involve

hyperparameter optimization. Finally, note that, whenever a method requires generating additional

(and maybe nested) validation sets, it is inevitably exposed to the problems mentioned above, and

can thus be at a disadvantage with respect to other methods that do not require additional validation

data. Table 1 shows a complete description of the datasets we use (after deleting rare classes), along

with some useful statistics proposed in [48, 70], while Figure 4 shows the distribution of prevalence

values for each dataset. Note that, in most datasets, this distribution obeys a power law.

We set the parameters of the ML-APP for generating test samples (see Section 4) as follows.

We fix the sample size to 𝑘 = 100 in all cases. We set the grid of prevalence values to g =

{0.00, 0.01, . . . , 0.99, 1.00} in all cases but for dataset Delicious, since in this latter the number of

combinations thus generated would be intractable, given that this is dataset with no fewer than

983 classes; for Delicious we use the coarser-grained grid g = {0.00, 0.05, . . . , 0.95, 1.00}. We set

𝑚 (the number of samples to be drawn for each prevalence value) independently for each dataset,

to the smallest number that yields more than 10,000 test samples (𝑚 ranges from 1 in Delicious
to 40 in Birds).

We break down the results into three groups, each corresponding to a different amount of shift.

The rationale behind this choice is to allow for a more meaningful analysis of the quantifiers’

performance, since the APP (and, by extension, the ML-APP) has often been the subject of criticism

for generating samples exhibiting degrees of shift that are judged unrealistic and unlikely to occur

in real cases [16, 25]. We instead believe that general-purpose quantification methods should be

tested in widely varying situations, from low-shift to high-shift ones, and we thus prefer to test all

such scenarios, but split the corresponding results into groups characterized by of more or less

homogeneous amounts of shift.

More specifically, for each test sample generated via the ML-APP, we compute its prior probability

shift with respect to the training set in terms of AE between the vectors of training and test class

prevalence values. We then bring together all the resulting shift values and split the range of such

values in three equally-sized intervals (that we dub low shift,mid shift, and high shift). The accuracy

values we report are thus not averages across the same number of experiments, since the ML-APP

often tends to generate more samples in the low-shift region than samples in the mid-shift region

6
See also http://mlkd.csd.auth.gr/multilabel.html#Datasets and http://mulan.sourceforge.net/datasets-mlc.html

7
https://scikit-learn.org/stable/index.html

8
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
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Table 1. Description of the datasets. Columns #Classes, #Train, and #Test indicate the number of classes,

training datapoints, and test datapoints, respectively. Label cardinality (Card) reports the mean number of

labels per datapoint. Label density (Dens) is the result of dividing the label cardinality by the total number of

labels. Label diversity (Div) is the number of unique labelsets that are present in the dataset. Normalised label

diversity (NormDiv) reports the ratio between label diversity and the total number of labels. The proportion

of unique label combinations (PUniq) is the total number of labelsets that are unique in the dataset, divided

by the number of examples. PMax reports the ratio of datapoints with the most frequent labelset divided by

the total number of datapoints.

Dataset #Classes #Train #Test #Features Card Dens Div NormDiv PUniq PMax

Emotions 6 391 202 72 1.868 0.311 27 4.500 0.010 0.207

Scene 6 1211 1196 294 1.074 0.179 15 2.500 0.002 0.334

Yeast 14 1500 917 103 4.237 0.303 198 14.143 0.051 0.158

Birds 17 322 323 260 0.991 0.058 124 7.294 0.205 0.932

Genbase 18 463 199 1186 1.219 0.068 23 1.278 0.006 0.369

Medical 18 333 645 1449 1.135 0.063 50 2.778 0.033 0.495

Tmc2007_500 22 21519 7077 500 2.220 0.101 1172 53.273 0.019 0.115

Ohsumed 23 24061 10328 18238 1.657 0.072 1901 82.652 0.041 0.120

Enron 45 1123 579 1001 3.357 0.075 734 16.311 0.491 0.147

Reuters21578 72 9603 3299 8250 1.029 0.014 447 6.208 0.028 0.409

RCV1-v2 98 23149 781265 24816 3.199 0.033 14820 151.224 0.345 2.323

Mediamill 100 30993 12914 120 4.374 0.044 6548 65.480 0.132 0.076

Bibtex 159 4880 2515 1836 2.402 0.015 2856 17.962 0.451 0.097

Corel5k 292 4500 500 499 3.480 0.012 3113 10.661 0.543 0.012

Delicious 983 12920 3185 500 19.020 0.019 15806 16.079 1.211 0.001
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Fig. 4. Histograms of class prevalence values, one per dataset, sorted from highly populated datasets to lowly

populated ones; values on the 𝑥 axis indicate intervals [𝛼𝑘 , 𝛽𝑘 ] of class prevalence values, while values on the

𝑦 axis indicate the fraction of classes in the dataset that have prevalence values in the [𝛼𝑘 , 𝛽𝑘 ] interval.

and (above all) in the high-shift region. The number of samples, as well as the distribution of shift

values, depends on each dataset.

Figure 5 shows the distributions of shift values that the ML-APP generates (blue) along with

the distributions of shift values that we would obtain via uniform sampling (red). Note that the
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ML-APP succeeds in generating larger amounts of shift, and that most of the samples generated

via uniform sampling would fall within what we call the “low shift” region.
protocol app npp

RCV1-v2 Mediamill Bibtex Corel5k Delicious

Medical tmc2007_500 Ohsumed Enron Reuters-21578

Emotions Scene Yeast Birds Genbase

.091 .104 .081 .023 .020

.034 .054 .039 .026 .020

.031 .031 .016 .008 .014

.170 .201 .152 .036 .033

.061 .097 .067 .042 .036

.055 .054 .025 .010 .021

Fig. 5. Shifts generated via the proposed ML-APP (blue) and via uniform sampling (red), as computed in

terms of AE between the training set and the test samples.

6.3 Testing Instances of the Four Types of Multi-LabelQuantification Methods

The goal of this section is to provide an answer to the question: “Which among the four groups of

multi-label quantification methods tends to perform best?”

To this aim,we choose one representative instance from each group, and carry out the experiments

using all the datasets. We perform this choice by combining the following components:

• As the binary classification method, we choose logistic regression (LR), and use the

implementation of it available from scikit-learn.
9
We consider LR a good choice, given that

it is a probabilistic classifier that already provides fairly well calibrated posterior probabilities

(which is of fundamental importance in PCC, PACC, and SLD), and given that, as indicated

by previously reported results [41], it tends to perform well. A set of LR classifiers are used

when testing the binary relevance (BR) method described in Section 3.2.2.

• As the multi-label classification method, we adopt stacked generalization [67] (SG –

see Section 3.2.3). We use our own implementation (since the implementation of stacked

generalization available from scikit-learn only caters for the single-label case)
10
, that

relies on 5-fold cross-validation to generate the intermediate representations (in the form of

posterior probabilities) given as input to the meta-learner, concatenated with the original

input features. The base members of the ensemble consist of binary logistic regression

classifiers as implemented in scikit-learn.

• As the binary aggregation method Q, we experiment with all the methods covered in

Section 5.1, i.e., CC, PCC, ACC, PACC, SLD. For all these methods we use the implementations

made available in theQuaPy open-source library [41].
11

• As the multi-label aggregation method, we use the regressor-based strategy for quan-

tification (that we dub RQ) described in Section 5.2.1. We implement this method as part of

theQuaPy framework. For training the base quantifier 𝑞 we experiment again with all the

9
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

10
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingClassifier.html

11
https://github.com/HLT-ISTI/QuaPy
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methods covered in Section 5.1, i.e., CC, PCC, ACC, PACC, SLD, while as the internal regressor

which receives its input from the base quantifier 𝑞 we use linear support vector regression

(SVR), for which we use the scikit-learn implementation.
12
As the held-out validation set

𝐿𝑅 needed for training the regressor we use a set consisting of 40% of the training datapoints,

chosen via iterative stratification [55, 59] as implemented in scikit-multilearn.
13
We call

this aggregation method SVR-RQ.

The methods we use in this experiment thus amount to the combinations illustrated in Table 2.

Table 2. Methods we use as instances of the four types of methods illustrated in Figure 2.

Type Classification Aggregation

BC+BA LR Q∈{CC,PCC,ACC,PACC,SLD}
MLC+BA SG Q∈{CC,PCC,ACC,PACC,SLD}
BC+MLA LR Q∈{CC,PCC,ACC,PACC,SLD} + SVR-RQ

MLC+MLA SG Q∈{CC,PCC,ACC,PACC,SLD} + SVR-RQ

Following [42], we perform model selection by using, as the loss function to minimize, a

quantification-oriented error measure (and not a classification-oriented one), and by adopting

the same protocol used for the evaluation of our quantifiers. That is, model selection is carried out

by first splitting the training set 𝐿 into two disjoint sets, i.e., (a) a proper training set 𝐿tr and (b) a

held-out validation set 𝐿va consisting of 40% of the labelled datapoints. For splitting the training

set, we again rely on the iterative stratification routine of scikit-multilearn (see Footnote 1). We

use 𝐿tr to train the quantifiers with different combinations of hyperparameters, while from 𝐿va
we extract, via the ML-APP, validation samples on which we assess, via AE (the same measure

we use in the evaluation phase), the quality of the hyperparameter combinations. We explore

the hyperparameters via grid-search optimization, and use the best configuration to retrain the

quantifier on the entire training set 𝐿 after model selection. During the model selection phase, for

the ML-APP we use the same parameters 𝑘 and g that we use in the test phase, but we reduce

the number of repetitions𝑚 to 5 in the datasets with fewer than 90 classes, and to 1 in the other

datasets, in order to keep the computational burden under reasonable bounds.

The hyperparameters we explore for LR include 𝐶 , the inverse of the regularization strength,

in the range {10−1, 100, 101, 102, 103}, and ClassWeight, which takes values in Balanced (which

reweights the importance of the examples so as to equate the overall contribution of each class)

or None (which gives the same weight to all datapoints, irrespectively of the prevalence of the

class they belong to). In cases in which the class-specific classifiers are independent of each other

(i.e., for methods belonging to the BC+BA and BC+MLA types) we optimize the hyperparameters

independently for each class. For SG, we only optimize the hyperparameters of the meta-classifier,

leaving the hyperparameters of the base members to their default values. In particular, we explore

the parameters 𝐶 and ClassWeight as before, plus the hyperparameter Normalize, which takes

values in True (which has the effect of standardizing the inputs of the meta-classifier so that every

dimension has zero mean and unit variance) and False (which does not standardize the inputs). For

RQ we only explore the regularization hyperparameter𝐶 in the range {10−1, 100, 101, 102, 103}. Note
that the base quantifiers (i.e., CC, PCC, ACC, PACC, SLD) have no specific internal hyperparameters

to be tuned.

12
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html

13
http://scikit.ml/stratification.html
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The results we have obtained for the different choices of the base quantifier are reported in

Table 3 for CC, Table 4 for PCC, Table 5 for ACC, Table 6 for PACC, and Table 7 for SLD. The

results clearly show (see especially the last two rows of each table) that there is an ordering BC+BA

≺ MLC+BA ≺ BC+MLA ≺ MLC+MLA, in which ≺ means “performs worse than”, which holds,

independently of the base quantifier of choice, in almost all cases. The same experiments also

indicate that there is a substantial improvement in performance that derives from simply replacing the

binary classifiers with one multi-label classifier (moving from BC+BA to MLC+BA or from BC+MLA

to MLC+MLA), i.e., from bringing to bear the class-class correlations at the classification stage, and

that there is an equally substantial improvement when binary aggregation is replaced by multi-label

aggregation (switching from BC+BA to BC+MLA or from MLC+BA to MLC+MLA), i.e., when the

class-class correlations are exploited at the aggregation stage. What also emerges from these results

is that, consistently with the above observations, the best-performing group of methods is MLC+MLA,

i.e., methods that explicitly take class dependencies into account both at the classification stage and

at the aggregation stage.

Note that methods that learn from the stochastic correlations among the classes perform much

better than methods that do not, even in the low shift regime. Overall, the best-performing method

on average is MLC+MLA when equipped with PCC as the base quantifier.

The reader might wonder why we do not use as a baseline the system presented in the only paper

in the literature that tackles multi-label quantification, i.e., [33]. There are several reasons for this:

(a) the authors do not make the code available; (b) the method is, as already discussed in Section 3.1,

computationally expensive, and as a result the authors test it on a single dataset whose codeframe

consists of 16 classes only; using this method on our 15 datasets, whose codeframes count up to 983

classes, and 125 classes on average, would be prohibitive; (c) the method is essentially a calibration

strategy for binary classification, which means that it falls in the group of “naive” BC+BA methods

since it does not tackle at all, as already mentioned in Section 3.1, the multi-label nature of the

MLQ problem.

As a final remark, something that jumps to the eye is that “long-tailed datasets” (i.e., datasets

whose label distribution presents a long and thin tail), such as Delicious, Corel5K, and Bibtex
(see Figure 4), tend to give rise to lower error values than “short-tailed” ones (i.e., datasets whose

label distribution presents a short and thick tail), like Emotions and Scene; see, e.g., Table 4. This
might seem unexpected, since we know from multi-label classification that rare classes are harder

and thus tend to penalize the overall accuracy results, especially when these latter are computed

by averaging accuracy scores across the classes (as in “macroaveraged 𝐹1” – this is different from

“microaveraged 𝐹1”, which is obtained by averaging across all the classification decisions).

However, the lower error figures we observe for long-tailed datasets can instead be explained

by the fact that samples generated from these datasets are, on average, simpler to tackle for

quantification algorithms. The reason is that rare classes limit the amount of drift that the ML-APP

can generate out of them (recall that we avoid producing samples containing duplicate instances

– see Section 4). Obviously, small variations in prevalence values between training set and test

sample imply easier prediction problems, hence lower absolute error on average. However, this

behavior is not due to a flaw of the ML-APP since, as shown in Figure 5, the ML-APP succeeds in

generating interesting amounts of drift. Actually, the seeming simplicity of rare classes is only true

under the lens of AE. Other evaluation measures tell a different story; see, for example, how the

error figures displayed in terms of RAE (Tables 12-16 in the appendix) are by and large comparable

for all these datasets.

In the following sections, we turn to explore other instances of methods of the four groups in

Figure 2 beyond the ones we choose in Table 2.
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Table 3. Values ofAE obtained in our experiments for different amounts of shift using CC as the base quantifier.

The number of test samples generated for each dataset exceeds 10,000, though there is a variable number

of samples allocated in each region of shift. Boldface indicates the best method for a given dataset and

shift region. Superscripts † and ‡ denote the methods (if any) whose scores are not statistically significantly

different from the best one according to a Wilcoxon signed-rank test at different confidence levels: symbol †
indicates 0.001 < 𝑝-value < 0.05 while symbol ‡ indicates 0.05 ≤ 𝑝-value. For ease of readability, for each pair

{dataset, shift} we colour-code cells via intense green for the best result, intense red for the worst result, and

an interpolated tone for the scores in-between.

low shift mid shift high shift

B
C
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B
A

M
L
C
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B
A

B
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M
L
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L
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+
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+
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+
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C
+
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L
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B
C
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B
A
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L
C
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B
A

B
C
+
M
L
A

M
L
C
+
M
L
A

Emotions .0749 .0626 .0478 .0644 .0838 .0776 .0598 .0848 .0967 .0899 .0616 .1039

Scene .0754 .0558 .0458 .0349 .0908 .0759 .0553 .0508 .1110 .0966 .0609 .0668

Yeast .1481 .1119 .0511 .0516
†

.1644 .1397 .0879 .0958 .1919 .1754 .1272 .1403

Birds .0229 .0243 .0191 .0202 .0258 .0276 .0255 .0264 .0293 .0331 .0371 .0357

Genbase .0003 .0006 .0016 .0007 .0003 .0006 .0018 .0007 .0003 .0005 .0017 .0006

Medical .0182 .0121 .0175 .0121 .0183 .0130 .0206 .0130 .0174 .0141 .0230 .0141

tmc2007_500 .0700 .0333 .0222 .0214 .0758 .0464 .0313 .0278 .0651 .0468 .0333 .0320
Ohsumed .0338 .0184 .0198 .0176 .0395 .0252 .0246 .0236 .0457 .0303 .0270 .0272

‡

Enron .0239 .0207 .0172 .0198 .0274 .0247 .0228 .0245 .0280 .0253 .0254
‡

.0265

Reuters-21578 .0067 .0035 .0055 .0036 .0120 .0056 .0081 .0058 .0291 .0071 .0113 .0075

RCV1-v2 .0198 .0081 .0101 .0083 .0251 .0118 .0162 .0122 .0360 .0176 .0240 .0192

Mediamill .1390 .0236 .0159 .0155 .1488 .0341 .0252 .0247 .1690 .0476 .0322 .0310
Bibtex .0137 .0097 .0093 .0096 .0150 .0111 .0117 .0113 .0177 .0120 .0131 .0124

Corel5k .0357 .0093 .0082 .0082 .0363 .0097 .0087 .0092 .0371 .0100 .0099 .0095
Delicious .1037 .0116 .0096 .0094 .1036 .0134 .0113

‡ .0112 .0904 .0128 .0109 .0110
‡

Average .0492 .0237 .0180 .0177 .0555 .0358 .0288 .0295 .0757 .0576 .0433 .0483

Rank Average 3.7 2.5 2.0 1.8 3.5 2.4 2.1 1.9 3.5 2.1 2.3 2.1

6.4 Testing Additional Instances of MLC+BA

In this section we explore other methods relying on different multi-label classifiers, with the aim of

studying the extent to which the results we have obtained in the previous experiments depend on

the choice of the classifier being employed. To this aim, we focus on the MLC+BA group of methods,

so that the aggregation stage plays only a minimal role. As a quantification method we adopt PCC,

since this is the base quantifier that has yielded the best performance overall in the experiments

of Section 6.3. The methods we study here thus consist of genuinely multi-label classifiers that

generate posterior probabilities, where the latter are then aggregated by computing the expected

value for each class. The aim of this experiment is not to provide an exhaustive evaluation of

existing multi-label classifiers, but rather to study other MLC+BA configurations in action, and

hopefully pinpoint interesting performance trends.

With this in mind, we choose some representative instances from the main families of multi-

label classifiers discussed in Section 3. The multi-label classifiers we consider here include (a)

classifier chains (CChains)
14
as representative of the family of “problem transformation” methods

(Section 3.2.1); (b) multi-label versions of KNN (ML-knn),
15

decision trees (DT),
16

and random

14
https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.ClassifierChain.html#sklearn.multioutput.

ClassifierChain

15
http://scikit.ml/api/skmultilearn.adapt.mlknn.html

16
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
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Table 4. Values of AE obtained in our experiments for different amounts of shift using PCC as the base

quantifier. Notational conventions are as in Table 3.

low shift mid shift high shift
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C
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A

M
L
C
+
M
L
A

Emotions .0418 .0420 .0586 .0474 .0685 .0654 .0720 .0564 .0923 .0857 .0951 .0664
Scene .0842 .0362 .0384 .0323 .1140 .0827 .0459 .0445 .1427 .1221 .0499 .0589

Yeast .1756 .0444 .0480 .0472 .1900 .0992 .0913 .0845 .2206 .1549 .1361 .1226
Birds .0286 .0208 .0181 .0213 .0328 .0246 .0243 .0288 .0440 .0321 .0351 .0404

Genbase .0011 .0005 .0022 .0007 .0011 .0005 .0025 .0007 .0010 .0005 .0023 .0006

Medical .0127 .0138 .0191 .0120 .0146 .0156 .0279 .0136 .0169 .0183 .0351 .0160
tmc2007_500 .1108 .0193 .0213 .0186 .1154 .0331 .0292 .0231 .1008 .0399 .0321 .0255
Ohsumed .1004 .0177 .0183 .0168 .1087 .0262 .0209 .0238 .1177 .0321 .0215 .0284

Enron .0347 .0161 .0169 .0185 .0397 .0235 .0227 .0228
†

.0439 .0287 .0253 .0246
Reuters-21578 .0167 .0036 .0049 .0037 .0243 .0059 .0070 .0060 .0370 .0075 .0088 .0078

RCV1-v2 .0456 .0084 .0093 .0084 .0533 .0129
†

.0146 .0128 .0654 .0198 .0215 .0201

Mediamill .1697 .0154 .0157 .0148 .1736 .0285 .0251 .0231 .1806 .0401 .0322 .0285
Bibtex .0354 .0091 .0092 .0093 .0374 .0126 .0116 .0120 .0423 .0152 .0129 .0142

Corel5k .0582 .0077 .0075 .0066 .0585 .0083 .0082 .0074 .0594 .0089 .0087 .0085
Delicious .1420 .0088 .0093 .0084 .1417 .0117 .0109 .0098 .1238 .0119 .0104 .0092

Average .0677 .0158 .0177 .0160 .0761 .0312 .0288 .0261 .1012 .0602 .0452 .0414
Rank Average 3.6 1.7 2.9 1.8 3.7 2.5 2.3 1.5 3.7 2.4 2.3 1.5

Table 5. Values of AE obtained in our experiments for different amounts of shift using ACC as the base

quantifier. Notational conventions are as in Table 3.

low shift mid shift high shift

B
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B
A
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B
A
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A
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+
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M
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Emotions .1060 .1279 .0626 .0440 .1367 .1487 .0732 .0551 .1608 .1602 .1125 .0750
Scene .0537 .0436 .0456 .0361 .0626 .0601 .0512 .0513

‡
.0615 .0603

‡ .0596 .0711

Yeast .1937 .1765 .0506 .0531 .2164 .2191 .0896 .0957 .2301 .2620 .1204 .1480

Birds .1542 .1353 .0233 .0278 .1526 .1384 .0286 .0307 .1547 .1472 .0359 .0391

Genbase .0014 .0007 .0036 .0006 .0014 .0007 .0039 .0007
‡

.0013 .0006
‡

.0037 .0006
Medical .0212 .0307 .0187 .0183 .0189 .0329 .0259 .0248 .0153 .0329 .0311 .0294

tmc2007_500 .0366 .0365 .0220 .0222 .0612 .0581 .0302 .0278 .0647 .0591 .0339 .0315
Ohsumed .0253 .0241 .0198 .0180 .0320 .0292 .0228

† .0226 .0407 .0337 .0239 .0263

Enron .1810 .0935 .0187 .0207 .1882 .0982 .0243 .0272 .1853 .1043 .0269 .0339

Reuters-21578 .0307 .0074 .0055 .0065 .0336 .0121 .0078 .0096 .0421 .0254 .0104 .0123

RCV1-v2 .0124 .0217 .0099 .0106 .0189 .0259 .0158 .0167 .0287 .0335 .0246 .0269

Mediamill .0539 .0425 .0164 .0163 .0976 .0539 .0246 .0274 .1467 .0647 .0316 .0374

Bibtex .0692 .0816 .0102 .0107 .0734 .0858 .0125 .0152 .0861 .0903 .0146 .0196

Corel5k .1515 .0173 .0081 .0062 .1537 .0158 .0089 .0076 .1509 .0149 .0099 .0094
Delicious .0846 .0528 .0097 .0093 .1000 .0531 .0111 .0110 .1016 .0492 .0106 .0109

†

Average .0750 .0558 .0193 .0182 .0841 .0716 .0302 .0296 .0901 .0808 .0482 .0495

Rank Average 3.7 3.1 1.7 1.5 3.5 3.2 1.7 1.7 3.5 3.1 1.5 1.9

forests (RF)
17
as representatives of the family of “algorithm adaptation” methods (Section 3.2.2);

17
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.

RandomForestClassifier.fit
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Table 6. Values of AE obtained in our experiments for different amounts of shift using PACC as the base

quantifier. Notational conventions are as in Table 3.

low shift mid shift high shift

B
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B
A
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B
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B
C
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M
L
A

M
L
C
+
M
L
A

Emotions .1326 .0715 .0509 .0516 .1451 .1049 .0659 .0633 .1578 .1485 .1101 .0872
Scene .0508 .0379 .0391 .0310 .0697 .0498 .0433 .0441 .0757 .0499

‡ .0496 .0645

Yeast .1654 .1436 .0489 .0494 .2122 .1803 .0878 .0837 .2474 .2053 .1316 .1264
Birds .1253 .1290 .0191 .0227 .1243 .1286 .0244 .0282 .1250 .1173 .0377 .0434

Genbase .0018 .0010 .0041 .0016 .0018 .0010 .0043 .0015 .0018 .0010 .0041 .0015

Medical .0395 .0272 .0169 .0161 .0477 .0276 .0204 .0222 .0484 .0267 .0286
†

.0286

tmc2007_500 .0351 .0285 .0213 .0192 .0617 .0454 .0281 .0236 .0619 .0466 .0320 .0275
Ohsumed .0239 .0221 .0189 .0179 .0345 .0285 .0205 .0234 .0452 .0332 .0216 .0278

Enron .1433 .1429 .0198 .0201 .1618 .1539 .0243
† .0239 .1504 .1693 .0275 .0253

Reuters-21578 .0086 .0465 .0053 .0054 .0311 .0519 .0076 .0087 .0643 .0619 .0113 .0117

RCV1-v2 .0173 .0130 .0098 .0093 .0334 .0228 .0159 .0148 .0505 .0342 .0243 .0232
Mediamill .0482 .0466 .0158

† .0158 .0941 .0779 .0237 .0235 .1387 .1076 .0299 .0300
‡

Bibtex .0320 .0218 .0099 .0100 .0459 .0387 .0121 .0133 .0684 .0662 .0140 .0161

Corel5k .1519 .1014 .0107 .0111 .1559 .1087 .0112
‡ .0112 .1711 .1221 .0120 .0116

Delicious .0594 .0480 .0094 .0092 .0837 .0828 .0107 .0105 .0871 .0914 .0101
† .0099

Average .0646 .0561 .0181 .0175 .0823 .0701 .0279 .0276 .0958 .0782 .0463 .0467
†

Rank Average 3.8 2.9 1.7 1.5 3.8 3.0 1.7 1.5 3.8 2.8 1.7 1.7

Table 7. Values of AE obtained in our experiments for different amounts of shift using SLD as the base

quantifier. Notational conventions are as in Table 3.

low shift mid shift high shift
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C
+
M
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Emotions .2169 .0549 .0710 .0509 .2189 .0719 .0791 .0652 .2088 .0890 .0822 .0717
Scene .0407 .0433 .0337 .0424 .0467 .0753 .0497 .0709 .0487 .1012 .0628 .0881

Yeast .2557 .0948 .0511 .0500 .2607 .1192 .0889 .0827 .2939 .1438 .1362 .1171
Birds .0759 .0284 .0196 .0281 .0819 .0312 .0255 .0312 .1089 .0355

†
.0358

† .0351
Genbase .0011 .0004 .0039 .0005 .0011 .0003 .0042 .0005 .0010 .0003 .0041 .0005

Medical .0233 .0133 .0190 .0129 .0211 .0135 .0263 .0131 .0189 .0133 .0312 .0132
tmc2007_500 .0384 .0248 .0202 .0187 .0526 .0407 .0285 .0230 .0546 .0432 .0330 .0228
Ohsumed .0294 .0186 .0173 .0185 .0316 .0232 .0189 .0232 .0321 .0250 .0200 .0250

Enron .0918 .0208 .0183 .0182 .0915 .0253 .0238 .0243 .0838 .0261
† .0258 .0263

†

Reuters-21578 .0050 .0039 .0048 .0040 .0177 .0055 .0079 .0056 .0956 .0088 .0112 .0083
RCV1-v2 .0109 .0089 .0090

† .0088 .0185 .0110 .0151 .0113 .0340 .0173 .0261 .0178

Mediamill .2040 .0237 .0151 .0145 .2204 .0444 .0238 .0223 .2481 .0695 .0308 .0282
Bibtex .0819 .0103 .0100 .0101 .0919 .0116

†
.0137 .0116 .1084 .0128

‡
.0183 .0127

Corel5k .1043 .0098 .0140 .0178 .1041 .0101 .0145 .0177 .1043 .0099 .0155 .0182

Delicious .1406 .0137 .0095 .0100 .1511 .0155 .0110 .0114 .1345 .0155 .0106 .0108
‡

Average .0842 .0219 .0189 .0182 .0862 .0346 .0296 .0285 .0957 .0562 .0466 .0459
Rank Average 3.8 2.5 2.1 1.7 3.7 2.3 2.3 1.8 3.7 2.3 2.3 1.7

and (c) CLEMS
18
and label space clustering (LSC)

19
as representatives of the family of “ensemble”

methods (Section 3.2.3). For the sake of comparison, we also include stacked generalization (SG –

18
http://scikit.ml/api/skmultilearn.embedding.clems.html

19
This was implemented by combining different classes from scikit-multilearn.
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another ensemble method, which is also the multi-label classifier we choose for the experiments of

Section 6.3), and BC+BA (with PCC as the binary quantifier and LR as the binary classifier) acting

as a lower bound baseline. The results for SG and BC+BA are taken from Table 4. We carry out

model selection by optimizing the hyperparameters listed succinctly in Table 8. The results we

have obtained are presented in Table 9.

Table 8. Hyperparameters we explore during model selection for different multi-label classifiers.

Classifier Hyperparameter Description Values

ML-knn

𝑘 number of neighbours {1, 3, 5, 7, 9}

𝑠 smoothing factor {0.5, 0.7, 1}

DT Criterion split function {Gini, Entropy}

RF N_estimators number of trees {10, 100, 200}

CChains

𝐶 inverse regularization strength {10−1, . . . , 102, 103}
ClassWeight weights associated with classes {None, Balanced}

CLEMS

N_estimators number of trees {10, 20, 50}

𝑘 number of neighbours {1, 3, 5, 7, 9}

𝑠 smoothing factor {0.5, 0.7, 1}

LSC

N_clusters number of clusters {2, 3, 5, 10, 50}

𝑘 number of neighbours {1, 3, 5, 7, 9}

𝑠 smoothing factor {0.5, 0.7, 1}

SG

Norm center and scale features {True, False}

𝐶 inverse regularization strength {10−1, . . . , 102, 103}
ClassWeight weights associated with classes {None, Balanced}

These results reveal that, despite the fact that SG is the best-performing method, other multi-label

classifiers work comparably well and could be used to yield multi-label aggregative quantifiers

with similar performance levels. In particular, CChains tends to fare very well in all cases, followed

by RF and DT; these results are, by and large, consistent with those reported in [35] for multi-

label classification. The methods ML-knn, CLEMS, and LSC, however, prove inferior, sometimes

performing even worse than the BC+BA baseline.

Although the results we report in Table 9 are obtained on the test set, we confirm that they are

strongly correlated with the performance levels we measured on the held-out validation set. Indeed,

we chose SG as our multi-label classifier for the experiments of Section 6.3 since this was the model

yielding the lowest AE on the held-out validation set.

6.5 Testing Additional Instances of BC+MLA

In this section we compare the different multi-label aggregation strategies proposed in Section 5.2.1

and 5.2.2. In order to do so, we focus on the BC+MLA group of methods (i.e., those relying on binary

classifiers for the label predictions) so that all the correlations between the labels are modelled

exclusively at the aggregation stage.

For the label powerset -based strategy (LPQ) we consider two different ways for generating the

clusters, after which SLQ is applied to the resulting label powersets of each cluster. In particular,

we investigate:
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Table 9. Values ofAE obtained for different multi-label classifiers using PCC as the base quantifier inMLC+BA.

(All results are reported with only three digits after the decimal point, unlike in other tables, in order to

maximize readability.)
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Emotions .042 .223 .065 .041 .050 .223 .274 .042 .069 .232 .088 .071 .071 .232 .279 .065 .092 .250 .102 .092 .096 .250 .301 .086
Scene .084 .150 .042 .036

‡
.037 .150 .169 .036 .114 .157 .084 .087 .071 .157 .175 .083 .143 .160 .114 .127 .099 .160 .175 .122

Yeast .176 .166 .055 .045 .056 .161 .244 .044 .190 .192 .106 .101 .103 .189 .259 .099 .221 .222 .153 .155 .147 .220 .290 .155

Birds .029 .048 .024 .016 .019 .048 .049 .021 .033 .052 .026 .021 .025 .052 .053 .025 .044 .063 .034 .029 .035 .063 .065 .032

Genbase .001 .057 .001 .003 .001 .057 .058 .001 .001 .057 .001 .004 .001 .057 .059 .001 .001 .057 .001 .003 .001 .057 .059 .001
Medical .013 .054 .014 .016 .013 .054 .059 .014 .015 .057 .015 .023 .015 .057 .062 .016 .017 .063 .015 .031 .017 .062 .068 .018

tmc2007_500 .111 .078 .001 .009 .020 .078 .095 .019 .115 .095 .002 .017 .033 .095 .112 .033 .101 .103 .002 .023 .039 .103 .119 .040

Ohsumed .100 .067 .024 .021 .017 .067 .071 .018 .109 .077 .037 .036 .025 .077 .082 .026 .118 .083 .046 .049 .029 .083 .087 .032

Enron .035 .057 .021 .017 .016 .058 .066 .016 .040 .061 .027 .025 .024 .061 .069 .023 .044 .060 .031 .031 .029 .060 .069 .029

Reuters-21578 .017 .015 .006 .007 .004 .016 .016 .004 .024 .024 .009 .013 .006 .024 .024 .006 .037 .039 .012 .019 .007
‡

.039 .039 .007
RCV1-v2 .046 .030 .013 .014 .009 .030 .033 .008 .053 .036 .022 .027 .014 .036 .039 .013 .065 .053 .036 .046 .021 .053 .056 .020
Mediamill .170 .032 .018 .016 .019 .035 .039 .015 .174 .044 .031 .030 .033 .046 .051 .029 .181 .058 .043 .043 .047 .060 .065 .040
Bibtex .035 .016 .011 .009 .010 .016 .016 .009 .037 .021 .013 .013 .011 .021 .021 .013 .042 .025 .014 .015 .012 .025 .025 .015

Corel5k .058 .011 .013 .008 .009 .011 .011 .008 .059 .011 .013 .009 .009 .011 .011 .008 .059 .011 .013 .010 .010 .012 .011 .009
Delicious .142 .016 .010 .009 .011 .018 .017 .009 .142 .017 .013 .012 .013 .019 .019 .012 .124 .018 .012

‡
.013 .013 .018 .018 .012

Average .068 .059 .019 .016 .017 .060 .070 .016 .076 .081 .034 .034 .031 .081 .094 .031 .101 .115 .059 .065 .056 .115 .132 .060

Rank Average 6.2 5.5 3.7 2.7 2.8 6.3 7.2 1.6 6.1 5.5 3.7 3.1 2.3 6.4 7.2 1.7 5.8 6.0 2.9 3.3 2.4 6.1 7.4 2.1

• RakEL-LPQ: this is a method inspired by RakEL [64] which generates 𝑘 disjoint random

clusters;

• kMeans-LPQ: this is a method inspired by LSC [60] which generates clusters via 𝑘-means.

For the regression-based (RQ) strategy we consider two alternative regressors (other results explor-

ing further regression algorithms can be found in Appendix B):

• Ridge-RQ: using ridge regression;
20

• RF-RQ: using random-forest regression.
21

For the sake of comparison, we add the regression-based strategy SVR-RQ (Section 5.2.1), that

corresponds to our configuration of choice for BC+MLA in Section 6.3, and we also add the

BC+BA system (PCC+LR) as a lower-bound baseline. The results for SVR-RQ and BC+BA are

taken from Table 4. Model selection is carried out by exploring, via grid-search optimization, the

hyperparameters indicated in Table 10. The results we have obtained are shown in Table 11.

Table 10. Hyperparameters explored during model selection for different multi-label quantifiers. All methods

are deployed with an LR classifier; for the hyperparameters 𝐶 and ClassWeight, we explore in the ranges

{10−1, . . . , 102, 103} and {None, Balanced}, respectively.

Quantifier Hyperparameter Description Values

RakEL-LP 𝑘 number of clusters {2, 5, 10, 50, 100}

kMeans-LP 𝑘 number of clusters {5, 15, 50, 100}

Ridge-RQ Alpha regularization strength {10−3, . . . , 102, 103}
RF-RQ N_estimators number of trees {10, 100, 200}

SVR-RQ 𝐶 inverse regularization strength in Linear SVR {10−1, . . . , 102, 103}

These results show that all the multi-label aggregation methods perform comparably in the

low-shift regime, although the LP-based methods tend to perform slightly better. In the mid-shift

20
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html

21
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
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Table 11. AE for different multi-label aggregation methods in BC+MLA.
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Emotions .0418
‡

.0451 .0416 .0500 .0484 .0586 .0685 .0687 .0657 .0626 .0707 .0720 .0923 .0940 .0869 .0782 .1235 .0951

Scene .0842 .0333 .0345 .0350 .0303 .0384 .1140 .0680 .0735 .0454 .0306 .0459 .1427 .0961 .1063 .0581 .0507
‡ .0499

Yeast .1756 .0443
‡ .0443 .0477 .0561 .0480 .1900 .0972 .0970 .0920 .0956 .0913 .2206 .1520 .1521 .1374 .1517 .1361

Birds .0286 .0242 .0194 .0213 .0185 .0181 .0328 .0286 .0237 .0289 .0251 .0243 .0440 .0405 .0317 .0405 .0382 .0351

Genbase .0011 .0005 .0014 .0015 .0103 .0022 .0011 .0005 .0015 .0014 .0148 .0025 .0010 .0004 .0013 .0013 .0172 .0023

Medical .0127 .0122 .0130 .0230 .0202 .0191 .0146 .0149 .0142 .0306 .0393 .0279 .0169 .0181 .0158 .0365 .0651 .0351

tmc2007_500 .1108 .0188 .0182 .0226 .0211 .0213 .1154 .0319 .0303 .0274 .0224 .0292 .1008 .0385 .0354 .0282 .0237 .0321

Ohsumed .1004 .0171 .0174 .0193 .0183 .0183 .1087 .0249 .0251 .0208 .0184 .0209 .1177 .0300 .0304 .0221 .0201 .0215

Enron .0347 .0163 .0163 .0192 .0174 .0169 .0397 .0242 .0239 .0250 .0219 .0227 .0439 .0301 .0297 .0287 .0212 .0253

Reuters-21578 .0167 .0037 .0037 .0048 .0073 .0049 .0243 .0062 .0060 .0070 .0109 .0070 .0370 .0081 .0077 .0103 .0135 .0088

RCV1-v2 .0456 .0085 .0089 .0095 .0125 .0093 .0533 .0130 .0135 .0144 .0208 .0146 .0654 .0196 .0205 .0221 .0370 .0215

Mediamill .1697 .0159 .0159 .0184 .0158 .0157 .1736 .0297 .0298 .0259 .0229 .0251 .1806 .0413 .0414 .0316 .0294 .0322

Bibtex .0354 .0092
† .0092 .0097 .0104 .0092 .0374 .0126 .0127 .0125 .0147 .0116 .0423 .0153 .0154 .0140 .0199 .0129

Corel5k .0582 .0079 .0080 .0074 .0087 .0075 .0585 .0086 .0088 .0084 .0091 .0082 .0594 .0088
†

.0096 .0094 .0100 .0087
Delicious .1420 .0089 .0091 .0093 .0093 .0093 .1417 .0121 .0124 .0108 .0102 .0109 .1238 .0126 .0131 .0102 .0092 .0104

Average .0677 .0159 .0157 .0180 .0186 .0177 .0761 .0308 .0303 .0288 .0300 .0288 .1012 .0560 .0564 .0454 .0529 .0452
Rank Average 5.2 2.0 2.2 4.1 4.1 3.5 5.3 3.4 3.3 2.8 3.3 2.9 5.3 3.4 3.5 2.9 3.4 2.6

and high-shift regimes the regression-based strategies tend to fare better. These results, obtained on

the test set, are well correlated with the results we obtain during model selection on the validation

set; our choice of SVR-RQ as a representative method for BC+MLA was indeed based on the

performance of the different multi-label aggregation methods obtained on the validation set.

The most important observation we can draw from this table is that all these methods tend to

outperform not only the BC+BA system (as expected) but also all the variants from the MLC+BA

group explored in Section 6.4. This may be an indication that in MLQ, bringing to bear the sto-

chastic correlations among classes at the aggregation phase is more effective than doing so at the

classification phase.

6.6 Multi-Label Aggregation for Non-AggregativeQuantifiers

Since the methods of type MLC+MLA that we have proposed in this paper have proven to be the

most effective in all our experiments, we want to add an important observation about them.

Concerning our regression-based RQ method described in Section 5.2.1, although we have

assumed, for ease of exposition, that the quantifier 𝑞 is an aggregative one, this assumption is

not strictly necessary, since the regressor 𝑟 does not look at predicted class labels for individual

datapoints, but only at the class prevalence estimates returned by the underlying quantifier 𝑞. A

similar observation can bemade for our label powerset -based LPQmethod described in Section 5.2.2;

this method leverages a single-label multiclass quantifier 𝑞 and uses its class prevalence estimates,

and does not require any prediction at the level of the individual datapoint, which means that

aggregative methods and non-aggregative methods are equally suitable for training 𝑞. In other

words, both RQ and LPQ can use any type of quantification method, aggregative or non-aggregative.

The reasons why in this paper we have focused on aggregative quantifiers are (i) ease of ex-

planation, and (b) the fact that, as a recent large-scale experimental study has confirmed [8],

non-aggregative quantification methods (such as the HDx method of [24]) are, from the point of

view of sheer performance, not yet on a par with aggregative methods. However, the above obser-

vations indicate that, should high-performance non-aggregative quantification methods spring up

in the future, RQ and LPQ can be used in connection with them straightaway.
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7 CONCLUSIONS

In this paper we have investigated MLQ, a quantification task which had remained, since the origins

of quantification research, essentially unexplored.

The first contribution of this paper is ML-APP, the first protocol for the evaluation of MLQ

systems that is able to confront these systems with samples that exhibit from low to high levels of

prior probability shift while at the same time preserving the stochastic correlations between the

classes.

As a second contribution, we have also described and experimentally compared a number of

MLQ methods. For ease of exposition, we have particularly focused on multi-label quantifiers that

work by aggregating predictions for individual datapoints issued by a classifier (“aggregative” multi-

label quantifiers), and have subdivided them into four groups, based on whether the correlations

between classes are brought to bear in the classification stage (MLC+BA), in the quantification

stage (BC+MLA), in both stages (MLC+MLA), or in neither of the two stages (BC+BA). Some of

these methods (specifically: those in the BC+BA and MLC+BA groups) are trivial combinations

of available classification and quantification methods, while others (specifically: those in the

BC+MLA and MLC+MLA groups) are non-obvious, and proposed here for the first time. The

thorough experimentation that we have carried out on an extensive number of datasets has clearly

shown that there is a substantial improvement in performance that derives from simply replacing

binary classifiers with truly multi-label classifiers (i.e., from switching from BC to MLC), and that

there is an equally substantial improvement when binary aggregation is replaced by truly multi-

label aggregation (i.e., when switching from BA to MLA). Consistently with these two intuitions,

MLC+MLAmethods unequivocally prove the best of the lot; of the twoMLC+MLAmethods we have

proposed, RQ proves clearly superior to LPQ. In the light of this superiority of MLA with respect

to BA, it is also interesting that both RQ and LPQ can be straightforwardly used in association to

non-aggregative quantifiers too.
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Table 12. Values of RAE obtained in our experiments for different amounts of shift using CC as the base

quantifier. Notational conventions are as in Table 3.

low shift mid shift high shift
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C
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B
C
+
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M
L
C
+
M
L
A

Emotions 0.1728 0.1463 0.1163 0.1529 0.3138 0.3180 0.2872 0.3523 0.4024 0.4225 0.3575 0.5395

Scene 0.3509 0.2647 0.1803 0.1464 0.5922 0.4659 0.3044 0.2490 2.7287 2.2747 1.2898 1.3553
‡

Yeast 0.7124 0.4604 0.2163 0.2254 0.7935 0.5856 0.3626 0.4000 1.2682 1.0984 0.9905 1.0610

Birds 0.2981 0.3766 0.2842 0.3129 0.3435 0.4379 0.3649 0.3867 0.4039 0.4758 0.4244 0.4159
†

Genbase 0.0088 0.0254 0.0718 0.0273 0.0101 0.0270 0.0755 0.0288 0.0088 0.0257 0.0704 0.0275

Medical 0.2073 0.1402 0.3248 0.1403 0.2052 0.1673 0.4483 0.1673 0.2908 0.3065
†

0.6873 0.3065
†

tmc2007_500 1.1568 0.2116 0.2620 0.2351 1.2240 0.2924 0.3263 0.2779 1.1152 0.4701 0.4691 0.3989
Ohsumed 0.5071 0.1982 0.2452 0.1887 0.5857 0.2527 0.3014 0.2387 0.7796 0.4588 0.4709 0.4353
Enron 0.3524 0.3099 0.3068 0.2732 0.4227 0.3670 0.3920 0.3345 0.6222 0.5026 0.5554 0.4635
Reuters-21578 0.2352 0.0858 0.1433 0.0911 0.2315 0.0987 0.1676 0.1051 0.2648 0.0949 0.1697 0.1054

RCV1-v2 0.5356 0.1513 0.1979 0.1523 0.6071 0.1915 0.2997 0.2015 0.7414 0.3032 0.5434 0.3291

Mediamill 6.4321 0.2278 0.2798 0.2703 7.2338 0.2792 0.3815 0.3745 7.9048 0.5052 0.5427 0.5363

Bibtex 0.5653 0.3249 0.3501 0.3220 0.4882 0.2830 0.3349 0.2833
‡

0.4091 0.2313 0.3320 0.2401

Corel5k 1.3528 0.2474
‡ 0.2471 0.2643 1.4460 0.2522 0.2588 0.2923 1.6125 0.2798 0.3262 0.3444

Delicious 4.9852 0.3564 0.3032 0.3043 5.3796 0.4033 0.3431 0.3449
‡

5.0129 0.4246 0.3745 0.3805
†

Average 1.2509 0.2301 0.2380 0.2083 1.1155 0.2916 0.3085 0.2665 1.4849 0.7943 0.6530 0.6209
Rank Average 3.6 2.1 2.3 2.0 3.4 2.0 2.5 2.1 3.3 2.1 2.5 2.1

Table 13. Values of RAE obtained in our experiments for different amounts of shift using PCC as the base

quantifier. Notational conventions are as in Table 3.

low shift mid shift high shift
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Emotions 0.3105 0.1720 0.1297 0.1318 0.4089 0.2945 0.3116 0.2812 0.4459 0.4191 0.6205 0.4639

Scene 0.2023 0.1416 0.1530 0.1332 0.4292 0.2893 0.2266 0.2171 1.7304 1.1136
‡ 1.1121 1.3674

Yeast 1.4781 0.8704 0.2080 0.2024 2.0566 1.0807 0.3571 0.3319 2.9340 1.4858 1.0029 0.9498
Birds 3.4391 3.7460 0.2908 0.2730 3.5060 3.7643 0.3516 0.3316 3.3622 2.7057 0.4570 0.4704

†

Genbase 0.0376 0.0228 0.1290 0.0378 0.0376 0.0243 0.1466 0.0401 0.0360 0.0250 0.1497 0.0422

Medical 0.8565 0.5073 0.2812 0.2437 1.2243 0.5253 0.4063 0.3556 2.0092 0.6634
‡

0.8955 0.6556
tmc2007_500 0.3455 0.2420 0.2443 0.1987 0.5268 0.3260 0.3092 0.2507 0.4738 0.3160 0.4486 0.4338

Ohsumed 0.2628 0.2192 0.2356 0.1689 0.3865 0.2698 0.2784 0.2200 0.5300 0.3342 0.4005 0.4537

Enron 5.5524 5.4773 0.3640 0.3452 6.6795 5.7874 0.4409 0.4329 6.3135 7.0035 0.6331 0.5825
Reuters-21578 0.4275 3.9328 0.1359 0.1292 1.7934 3.9820 0.1844 0.1687 2.6267 3.9425 0.2238 0.1942
RCV1-v2 0.5285 0.4427 0.1824 0.1652 1.0813 0.8803 0.3071 0.2816 1.5968 1.2673 0.5635 0.5201
Mediamill 1.8713 1.8111 0.2798 0.2833 3.4939 2.6875 0.3841 0.3854

‡
4.6897 3.2192 0.5216 0.5511

Bibtex 1.3104 0.7556 0.3709 0.3102 1.4016 1.0460 0.3695 0.3492 1.4682 1.3451 0.3970 0.4261
†

Corel5k 9.8431 6.2210 0.3989 0.3997
‡

10.3929 6.6651 0.4224 0.4054 12.0719 7.4614 0.5075 0.4682
Delicious 3.2613 2.5366 0.3042 0.2875 4.2250 4.1529 0.3396 0.3240 4.1574 4.4159 0.3677 0.3478
Average 2.0194 1.8966 0.2510 0.2252 1.9582 1.6894 0.3134 0.2791 2.0662 1.4948 0.6694 0.6728

Rank Average 3.7 2.8 2.1 1.3 3.7 2.9 2.2 1.2 3.5 2.5 2.1 1.8

trends that emerge from them are essentially the same as for the AE measure. Tables 12, 13, 14, 15,

16, 17, 18, are the RAE equivalents of Tables 3, 4, 5, 6, 7, 9, 11, respectively

B EXPLORING OTHER REGRESSORS IN RQ

We here report additional experiments that extend the ones presented in Section 6.5; the present

experiments concern the use of regression algorithms other than ridge regression (Ridge-RQ),

random forest regression (RF-RQ), and linear SVR (SVR-RQ), which were the only regression

algorithms we considered in Section 6.5. Tables 19 and 20 report the results of these experiments in
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Table 14. Values of RAE obtained in our experiments for different amounts of shift using ACC as the base

quantifier. Notational conventions are as in Table 3.

low shift mid shift high shift
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Emotions 0.2491 0.2991 0.1579 0.1069 0.4297 0.4301 0.3294 0.2672 0.4519 0.4690 0.6290 0.4285
Scene 0.2035 0.1676 0.1792 0.1554 0.3371 0.3863 0.2778 0.2576 1.3324

‡
1.5409 1.3054 1.4589

Yeast 2.2331 0.5355 0.2116 0.2121
†

2.4014 0.6702 0.3733 0.3834 2.7847 1.4287 0.9628 1.1162

Birds 3.3221 3.0772 0.3130
† 0.3060 3.2554 3.0525 0.3861 0.3320 2.5615 2.3043 0.4546 0.3517

Genbase 0.0266 0.0081 0.1277 0.0058 0.0266 0.0076 0.1440 0.0065 0.0253 0.0081 0.1381 0.0065
Medical 0.2321 0.6153 0.3447 0.2579 0.2192 0.9236 0.5121 0.3689 0.2408 1.3156 0.8683 0.6021

tmc2007_500 0.3560 0.3457 0.2564 0.2597
†

0.5111 0.4541 0.3327 0.3252 0.4769 0.4228 0.5063
†

0.4963
†

Ohsumed 0.2620 0.2467 0.2381 0.1935 0.3216 0.2863 0.2820 0.2437 0.4047 0.3372 0.4122 0.4397

Enron 7.3850 1.8492 0.3285
‡ 0.3278 8.1460 2.1083 0.4251 0.4155 9.3550 3.3057 0.5961 0.6283

Reuters-21578 2.1867 0.1421 0.1320 0.1491 2.1224 0.1381 0.1672 0.1798 1.5822 0.1984 0.1723 0.2147

RCV1-v2 0.2434 1.0216 0.1758 0.1609 0.3070 1.0289 0.2919 0.2450 0.4303 0.9287 0.5660 0.5090

Mediamill 2.2137 0.9835 0.2969 0.2527 3.7688 1.1194 0.4184 0.3713 5.3468 1.3355 0.5751 0.5984
‡

Bibtex 3.6761 3.8536 0.3600 0.3549 3.7272 4.4074 0.3696 0.3863 4.1667 5.0247 0.4294 0.4587
‡

Corel5k 9.8232 0.2167 0.2457 0.1865 10.2793 0.1994 0.2622 0.2165 10.7374 0.1848 0.3477 0.3049

Delicious 5.0943 1.9548 0.3215 0.2694 5.7915 2.2703 0.3597 0.3020 5.9927 2.5536 0.3907 0.3355
Average 2.6225 1.1079 0.2468 0.2167 1.9959 1.1025 0.3264 0.2793 1.8528 1.1373 0.7049 0.6926

Rank Average 3.5 3.0 2.1 1.3 3.5 3.0 2.1 1.4 2.9 2.7 2.3 2.1

Table 15. Values of RAE obtained in our experiments for different amounts of shift using PACC as the base

quantifier. Notational conventions are as in Table 3.

low shift mid shift high shift
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M
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+
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A

Emotions 0.3105 0.1720 0.1297 0.1318 0.4089 0.2945 0.3116 0.2812 0.4459 0.4191 0.6205 0.4639

Scene 0.2023 0.1416 0.1530 0.1332 0.4292 0.2893 0.2266 0.2171 1.7304 1.1136
‡ 1.1121 1.3674

Yeast 1.4781 0.8704 0.2080 0.2024 2.0566 1.0807 0.3571 0.3319 2.9340 1.4858 1.0029 0.9498
Birds 3.4391 3.7460 0.2908 0.2730 3.5060 3.7643 0.3516 0.3316 3.3622 2.7057 0.4570 0.4704

†

Genbase 0.0376 0.0228 0.1290 0.0378 0.0376 0.0243 0.1466 0.0401 0.0360 0.0250 0.1497 0.0422

Medical 0.8565 0.5073 0.2812 0.2437 1.2243 0.5253 0.4063 0.3556 2.0092 0.6634
‡

0.8955 0.6556
tmc2007_500 0.3455 0.2420 0.2443 0.1987 0.5268 0.3260 0.3092 0.2507 0.4738 0.3160 0.4486 0.4338

Ohsumed 0.2628 0.2192 0.2356 0.1689 0.3865 0.2698 0.2784 0.2200 0.5300 0.3342 0.4005 0.4537

Enron 5.5524 5.4773 0.3640 0.3452 6.6795 5.7874 0.4409 0.4329 6.3135 7.0035 0.6331 0.5825
Reuters-21578 0.4275 3.9328 0.1359 0.1292 1.7934 3.9820 0.1844 0.1687 2.6267 3.9425 0.2238 0.1942
RCV1-v2 0.5285 0.4427 0.1824 0.1652 1.0813 0.8803 0.3071 0.2816 1.5968 1.2673 0.5635 0.5201
Mediamill 1.8713 1.8111 0.2798 0.2833 3.4939 2.6875 0.3841 0.3854

‡
4.6897 3.2192 0.5216 0.5511

Bibtex 1.3104 0.7556 0.3709 0.3102 1.4016 1.0460 0.3695 0.3492 1.4682 1.3451 0.3970 0.4261
†

Corel5k 9.8431 6.2210 0.3989 0.3997
‡

10.3929 6.6651 0.4224 0.4054 12.0719 7.4614 0.5075 0.4682
Delicious 3.2613 2.5366 0.3042 0.2875 4.2250 4.1529 0.3396 0.3240 4.1574 4.4159 0.3677 0.3478

Average 2.0194 1.8966 0.2510 0.2252 1.9582 1.6894 0.3134 0.2791 2.0662 1.4948 0.6694 0.6728

Rank Average 3.7 2.8 2.1 1.3 3.7 2.9 2.2 1.2 3.5 2.5 2.1 1.8

terms of AE and RAE, respectively, obtained by optimizing the hyperparameters shown in Table 21.

These results show that there are no substantial differences in performance for the low-shift regime,

while these differences are instead noticeable in the mid-shift and (especially) in the high-shift

regimes. These results are well correlated with the results we obtained in the validation phase, on

which we relied upon for choosing ridge regression, random forest regression, and linear SVR, as

representative regression models.
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Table 16. Values of RAE obtained in our experiments for different amounts of shift using SLD as the base

quantifier. Notational conventions are as in Table 3.

low shift mid shift high shift
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Emotions 0.5117 0.1310 0.1646 0.1199 0.6961 0.2455 0.3179 0.2907
†

0.5526 0.2769 0.4625 0.3885

Scene 0.1519 0.1914 0.1432 0.1847 0.2518 0.3744 0.2587
†

0.3693 1.0904 2.1677 1.3721 1.9117

Yeast 1.3664 0.3688 0.2111 0.2210 1.3507 0.4597 0.3471 0.3409 1.8907 0.9233 1.0121 0.8924
Birds 0.9407 0.4495 0.2837 0.4340 1.1251 0.5193 0.3447 0.5015 1.7344 0.5495 0.3750 0.5064

Genbase 0.0273 0.0052 0.1146 0.0081 0.0282 0.0053 0.1344 0.0082 0.0268 0.0051 0.1430 0.0084

Medical 0.2526 0.1661 0.3077 0.1611 0.2617 0.2028 0.4439 0.1968 0.4769 0.3791 0.7228 0.3722
tmc2007_500 0.2548 0.1979 0.2212 0.1987 0.3232 0.2751 0.2939 0.2479 0.3446 0.2761 0.4381 0.3597

Ohsumed 0.2232 0.1701 0.1998 0.1693 0.2495 0.2079 0.2464 0.2072 0.2801 0.3330 0.3193 0.3374

Enron 1.1351 0.2639 0.3135 0.3362 1.2907 0.3181 0.3931 0.4285 1.8511 0.4268 0.5422 0.5888

Reuters-21578 0.1398 0.0810 0.1320 0.0869 0.3150 0.0821 0.2248 0.0927 1.6152 0.0974 0.2528 0.1060

RCV1-v2 0.2199 0.1282 0.1624 0.1328 0.4811 0.1456 0.2821 0.1724 0.7695 0.2318 0.5706 0.2990

Mediamill 10.8687 0.4144 0.2649 0.2549 11.3338 0.7821 0.4033 0.3748 11.1308 1.2462 0.5882 0.5481
Bibtex 3.7700 0.3307 0.3830 0.3284 3.7014 0.2854 0.4529 0.2913 3.4731 0.2393 0.6482 0.2614

Corel5k 5.3304 0.2248 0.5850 0.6043 5.4527 0.2321 0.6448 0.6184 5.6702 0.2668 0.7806 0.7129

Delicious 7.8086 0.4778 0.3098 0.3587 8.6288 0.5295 0.3578 0.4013 7.8740 0.5120 0.3911 0.4135

Average 2.3798 0.2376 0.2562 0.2396 1.7450 0.3066 0.3154 0.2835 1.5997 0.7513 0.6837 0.7033

Rank Average 3.7 2.0 2.4 1.9 3.7 1.9 2.6 1.8 3.3 1.9 2.7 2.1

Table 17. Values of RAE obtained for different multi-label classifiers using PCC as the base quantifier in

MLC+BA.
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C
L
E
M
S

L
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G

Emotions 0.104
†

0.511 0.160 0.106 0.129 0.512 0.625 0.104 0.366 0.589 0.423 0.388 0.373 0.590 0.670 0.342 0.543 0.790 0.548 0.556 0.593 0.788 0.932 0.504
Scene 0.407 0.494 0.194 0.178 0.175 0.495 0.556 0.171 0.742 0.565 0.441 0.447 0.376 0.567 0.643 0.416 3.491 2.277 2.571 2.851 2.205 2.262 2.387

‡
2.710

Yeast 0.929 0.509 0.251 0.210 0.251 0.495 0.723 0.205 1.038 0.654 0.475 0.441 0.449 0.647 0.831 0.430 1.607 1.389 1.225 1.199
† 1.172 1.393 1.515 1.202

†

Birds 0.550 0.386 0.315 0.246 0.326 0.386 0.389 0.342 0.684 0.388 0.359 0.318 0.417 0.388 0.391 0.409 1.007 0.397 0.441 0.384 0.541 0.397 0.401 0.469

Genbase 0.047 0.406 0.030 0.064 0.025 0.406 0.400 0.022 0.051 0.402 0.032 0.072 0.027 0.402 0.398 0.024 0.053 0.427 0.031 0.075 0.026 0.425 0.408 0.023
Medical 0.173

‡
0.396 0.172 0.216 0.205 0.395 0.415 0.212 0.218 0.389 0.201 0.313 0.265 0.388 0.405 0.283 0.397 0.547 0.311 0.629 0.465 0.537 0.567 0.534

tmc2007_500 1.939 0.419 0.007 0.093 0.191 0.420 0.464 0.197 2.192 0.521 0.009 0.162 0.299 0.522 0.575 0.304 2.402 0.899 0.012 0.327 0.524 0.895 0.973 0.546

Ohsumed 1.912 0.427 0.248 0.213 0.169 0.430 0.447 0.193 2.326 0.484 0.357 0.352 0.228 0.486 0.506 0.266 2.961 1.031 0.825 0.946 0.481 1.033 1.064 0.548

Enron 0.621 0.370 0.369 0.308 0.284 0.372 0.386 0.282 0.741 0.408 0.431 0.401 0.376 0.408 0.428 0.373 1.146 0.537 0.641 0.662 0.631 0.530 0.570 0.631

Reuters-21578 0.910 0.171 0.146 0.192 0.095 0.171 0.175 0.091 1.184 0.215 0.171 0.283 0.110 0.215 0.220 0.106 1.040 0.298 0.191 0.292 0.105 0.297 0.302 0.100
RCV1-v2 2.028 0.253 0.264 0.282 0.166 0.253 0.262 0.160 2.525 0.303 0.432 0.560 0.227 0.300 0.316 0.218 2.970 0.550 0.752 0.997 0.379 0.545 0.566 0.351
Mediamill 7.677 0.222 0.355 0.343 0.295 0.231 0.243 0.290 8.616 0.287 0.522 0.528 0.438 0.302 0.327 0.444 8.941 0.553 0.831 0.839 0.748 0.563 0.605 0.726

Bibtex 1.669 0.275 0.392 0.365 0.336 0.275 0.274 0.323 1.643 0.259 0.364 0.370 0.297 0.259 0.258 0.336 1.513 0.278 0.294 0.345 0.246 0.277 0.276 0.335

Corel5k 2.284 0.173 0.297 0.292 0.266 0.177 0.176 0.220 2.511 0.163 0.330 0.324 0.284 0.166 0.166 0.226 2.973 0.173 0.397 0.403 0.334 0.175 0.175 0.266

Delicious 6.631 0.234 0.356 0.341 0.281 0.215 0.225 0.325 7.474 0.235 0.410 0.412 0.318 0.194 0.215 0.387 7.327 0.279 0.439 0.464 0.352 0.194 0.235 0.430

Average 1.990 0.330 0.248 0.242 0.216 0.329 0.358 0.211 1.931 0.415 0.332 0.364 0.299 0.415 0.450 0.301 2.421 1.025 0.931 1.077 0.854 1.020 1.087 0.952

Rank Average 6.7 4.6 4.3 4.3 3.1 4.8 5.6 2.5 6.9 4.4 4.3 4.7 3.1 4.5 5.3 2.9 6.9 4.2 4.2 5.3 3.1 3.8 5.0 3.5
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Table 18. Values of RAE obtained for different multi-label aggregation methods in BC+MLA.
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R
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S
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R
Q

Emotions 0.1045 0.1119 0.1028 0.1202 0.1179 0.1454 0.3657 0.3507 0.3490 0.2843 0.2700 0.2935 0.5430 0.5707 0.5265 0.4284 0.6379 0.4726

Scene 0.4068 0.1540 0.1612 0.1426 0.1382 0.1519 0.7417 0.3454 0.3696 0.2340 0.1695 0.2515 3.4909 2.1628 2.3644 1.1922 1.2952
† 1.0550

Yeast 0.9286 0.2037 0.2049 0.2256 0.2469 0.2084 1.0377 0.4173 0.4187 0.4065 0.3798 0.3816 1.6070 1.1721
‡

1.1786
‡

1.0485 0.9558 1.0586

Birds 0.5500 0.3923 0.3263 0.3348 0.2642 0.2646
†

0.6844 0.4967 0.4161 0.4264 0.3353 0.3372 1.0065 0.6907 0.5887 0.4836 0.4117 0.3643
Genbase 0.0472 0.0155 0.0351 0.0209 0.2265 0.0874 0.0506 0.0166 0.0362 0.0217 0.3069 0.0947 0.0530 0.0161 0.0358 0.0217 0.3450 0.0864

Medical 0.1725 0.1879 0.1487 0.3360 0.3186 0.3463 0.2177 0.2553 0.1803 0.4714 0.6118 0.5229 0.3974 0.4843 0.3328 0.7950 1.5663 0.8961

tmc2007_500 1.9392 0.1892 0.1735 0.2462 0.2906 0.2626 2.1917 0.2964
†

0.2709 0.2702 0.3068 0.3226 2.4020 0.5277 0.4822 0.3361 0.3852 0.4660

Ohsumed 1.9122 0.1687 0.1876 0.2185 0.2554 0.2285 2.3257 0.2275 0.2519 0.2563 0.2858 0.2736 2.9609 0.4925 0.5201 0.3393 0.3995 0.3872

Enron 0.6213 0.2876 0.3000 0.3429 0.3391 0.3272 0.7415 0.3847 0.3972 0.4201 0.4164 0.4117 1.1457 0.6518 0.6627 0.6278 0.4975 0.5685

Reuters-21578 0.9101 0.0890 0.0936 0.1469 0.2540 0.1389 1.1838 0.1091 0.1125 0.1754 0.2732 0.1740 1.0398 0.1091 0.1145 0.2379 0.2457 0.1616

RCV1-v2 2.0283 0.1480 0.2005 0.2038 0.3375 0.1896 2.5246 0.2026 0.2687 0.3146 0.5212 0.2836 2.9699 0.3350 0.4316 0.5659 0.9107 0.5063

Mediamill 7.6767 0.3203 0.3214 0.4169 0.3768 0.2708 8.6165 0.4931 0.4933 0.5394 0.4639 0.3722 8.9409 0.7837 0.7821 0.6751 0.5796 0.5320
Bibtex 1.6686 0.3097 0.3183 0.3959 0.4328 0.3532 1.6432 0.3180 0.3320 0.3897 0.4883 0.3297 1.5127 0.3186 0.3338 0.3796 0.6234 0.3046
Corel5k 2.2844 0.2205 0.2941 0.2996 0.2903 0.2299 2.5112 0.2337 0.3164 0.3265 0.3091 0.2458 2.9733 0.2669 0.3760 0.3956 0.3686 0.2898

Delicious 6.6314 0.3309 0.3353 0.3425 0.3633 0.3012 7.4738 0.4034 0.4165 0.3628 0.3635 0.3357 7.3272 0.4569 0.4822 0.3565
‡ 0.3459 0.3599

†

Average 1.9897 0.2101 0.2188 0.2598 0.2965 0.2366 1.9312 0.3035 0.3058 0.3213 0.3705 0.3043 2.4206 0.8541 0.8796 0.6423
‡

0.7820 0.6270
Rank Average 5.3 1.9 2.5 3.9 4.1 3.2 5.6 2.5 3.1 3.3 3.5 2.9 5.5 3.3 3.7 2.7 3.4 2.5

Table 19. AE for different regressors for multi-label quantifiers
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Emotions .0418 .0500 .0633 .0484 .0687 .0574 .0586 .0685 .0626 .0811 .0707 .1038 .1153 .0720 .0923 .0782 .1029 .1235 .1295 .1767 .0951

Scene .0842 .0350 .0440 .0303 .0363 .0359 .0384 .1140 .0454 .1110 .0306 .0859 .0868 .0459 .1427 .0581 .1764 .0507
‡

.1251 .1260 .0499
Yeast .1756 .0477 .0491 .0561 .0457 .0464 .0480 .1900 .0920 .0943 .0956 .0982 .1004 .0913 .2206 .1374 .1424 .1517 .1517 .1542 .1361
Birds .0286 .0213 .0230 .0185 .0217 .0213 .0181 .0328 .0289 .0299 .0251 .0297 .0280 .0243 .0440 .0405 .0424 .0382 .0436 .0427 .0351
Genbase .0011 .0015 .0137 .0103 .0168 .0177 .0022 .0011 .0014 .0175 .0148 .0245 .0246 .0025 .0010 .0013 .0173 .0172 .0364 .0347 .0023

Medical .0127 .0230 .0186 .0202 .0207 .0194 .0191 .0146 .0306 .0263 .0393 .0315 .0265 .0279 .0169 .0365 .0314 .0651 .0439 .0380 .0351

tmc2007_500 .1108 .0226 .0260 .0211 .0312 .0272 .0213
‡

.1154 .0274 .0436 .0224 .0528 .0508 .0292 .1008 .0282 .0571 .0237 .0726 .0714 .0321

Ohsumed .1004 .0193 .0220 .0183
‡

.0231 .0230 .0183 .1087 .0208 .0363 .0184 .0433 .0428 .0209 .1177 .0221 .0472 .0201 .0601 .0591 .0215

Enron .0347 .0192 .0187 .0174 .0180 .0189 .0169 .0397 .0250 .0256 .0219 .0267 .0269 .0227 .0439 .0287 .0300 .0212 .0332 .0325 .0253

Reuters-21578 .0167 .0048 .0072 .0073 .0082 .0082 .0049 .0243 .0070 .0114 .0109 .0181 .0182 .0070
‡

.0370 .0103 .0143 .0135 .0267 .0279 .0088
RCV1-v2 .0456 .0095 .0129 .0125 .0147 .0147 .0093 .0533 .0144 .0245 .0208 .0295 .0295 .0146 .0654 .0221 .0366 .0370 .0472 .0472 .0215
Mediamill .1697 .0184 .0169 .0158 .0167 .0176 .0157 .1736 .0259 .0266 .0229 .0315 .0321 .0251 .1806 .0316 .0321 .0294 .0440 .0442 .0322

Bibtex .0354 .0097 .0105 .0104 .0106 .0111 .0092 .0374 .0125 .0154 .0147 .0168 .0157 .0116 .0423 .0140 .0198 .0199 .0224 .0197 .0129
Corel5k .0582 .0074 .0080 .0087 .0073 .0091 .0075 .0585 .0084 .0088 .0091 .0088 .0102 .0082 .0594 .0094 .0098 .0100 .0106 .0117 .0087
Delicious .1420 .0093 .0096 .0093 .0100 .0109 .0093 .1417 .0108 .0134 .0102 .0139 .0147 .0109 .1238 .0102 .0151 .0092 .0163 .0172 .0104

Average .0677 .0180 .0206 .0186 .0211 .0207 .0177 .0761 .0288 .0401 .0300 .0440 .0444 .0288 .1012 .0454
‡

.0781 .0529 .0788 .0831 .0452
Rank Average 5.8 3.1 4.3 3.0 4.6 4.8 2.3 5.9 2.3 4.2 2.7 5.2 5.5 2.3 5.8 2.3 3.9 3.1 5.5 5.4 2.0
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Table 20. RAE for different regressors for multi-label quantifiers.
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Emotions 0.104 0.120 0.149 0.118 0.165 0.149 0.145 0.366 0.284 0.360 0.270 0.454 0.559 0.293 0.543 0.428 0.543 0.638 0.716 1.026 0.473

Scene 0.407 0.143 0.220 0.138 0.173 0.170 0.152 0.742 0.234 0.578 0.169 0.455 0.443 0.252 3.491 1.192 4.040 1.295
†

2.857 2.743 1.055
Yeast 0.929 0.226 0.217 0.247 0.220 0.228 0.208 1.038 0.407 0.403

‡ 0.380 0.438 0.455 0.382 1.607 1.049 1.081
† 0.956 1.199 1.238 1.059

Birds 0.550 0.335 0.346 0.264 0.353 0.305 0.265
†

0.684 0.426 0.435 0.335 0.462 0.405 0.337 1.007 0.484 0.510 0.412 0.595 0.609 0.364
Genbase 0.047 0.021 0.266 0.226 0.283 0.336 0.087 0.051 0.022 0.355 0.307 0.411 0.445 0.095 0.053 0.022 0.369 0.345 0.652 0.675 0.086

Medical 0.173 0.336 0.305 0.319 0.297 0.226 0.346 0.218 0.471 0.445 0.612 0.449 0.320 0.523 0.397 0.795 0.693 1.566 0.919 0.711 0.896

tmc2007_500 1.939 0.246 0.377 0.291 0.331 0.279 0.263 2.192 0.270 0.495 0.307 0.526 0.463 0.323 2.402 0.336 0.900 0.385 1.092 0.975 0.466

Ohsumed 1.912 0.219 0.332 0.255 0.254 0.250 0.228 2.326 0.256 0.456 0.286 0.444 0.435 0.274 2.961 0.339 0.953 0.400 1.186 1.168 0.387

Enron 0.621 0.343 0.346 0.339 0.338 0.328
‡ 0.327 0.741 0.420 0.443 0.416 0.455 0.428 0.412 1.146 0.628 0.691 0.498 0.741 0.651 0.569

Reuters-21578 0.910 0.147 0.261 0.254 0.227 0.232 0.139 1.184 0.175
†

0.291 0.273 0.389 0.382 0.174 1.040 0.238 0.246 0.246 0.393 0.437 0.162
RCV1-v2 2.028 0.204 0.329 0.338 0.324 0.324 0.190 2.525 0.315 0.585 0.521 0.638 0.643 0.284 2.970 0.566 0.889 0.911 1.060 1.068 0.506
Mediamill 7.677 0.417 0.407 0.377 0.331 0.361 0.271 8.616 0.539 0.524 0.464 0.523 0.561 0.372 8.941 0.675 0.649 0.580 0.810 0.874 0.532
Bibtex 1.669 0.396 0.434 0.433 0.425 0.427 0.353 1.643 0.390 0.490 0.488 0.523 0.477 0.330 1.513 0.380 0.567 0.623 0.661 0.544 0.305
Corel5k 2.284 0.300 0.296 0.290 0.320 0.423 0.230 2.511 0.327 0.316 0.309 0.362 0.453 0.246 2.973 0.396 0.374 0.369 0.460 0.549 0.290
Delicious 6.631 0.343 0.369 0.363 0.371 0.415 0.301 7.474 0.363 0.462 0.364 0.478 0.532 0.336 7.327 0.357

‡
0.567 0.346 0.648 0.720 0.360

†

Average 1.990 0.260 0.319 0.296 0.302 0.307 0.237 1.931 0.321 0.458 0.370 0.483 0.478 0.304 2.421 0.642
‡

1.358 0.782 1.276 1.260 0.627
Rank Average 5.9 3.0 4.9 3.8 4.3 4.1 2.1 6.1 2.7 4.4 2.6 5.3 4.9 2.1 6.0 2.3 3.9 3.0 5.5 5.3 2.0

Table 21. Hyperparameters explored during model selection for different regressors. Only the hyperpa-

rameters which are specific to the regressor are listed. All methods are deployed with an LR classifier; for

hyperparameters 𝐶 and ClassWeight, we explore in the ranges {10−1, . . . , 102, 103} and {Balanced, None},

respectively.

Regressor Hyperparameter Description Values

Ridge Alpha regularization strength {10
−3, . . . , 102, 103}

MultitaskLasso Alpha regularization strength {10
−3, . . . , 102, 103}

RandomForest N_estimators number of trees {10, 100, 200}

StackedLinearSVR 𝐶 inverse of regularization strength in Linear SVR {10
−1, . . . , 102, 103}

ChainedLinearSVR 𝐶 inverse of regularization strength in Linear SVR {10
−1, . . . , 102, 103}

LinearSVR 𝐶 inverse of regularization strength in Linear SVR {10
−1, . . . , 102, 103}
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