
1

Same or Different? Diff-Vectors for Authorship Analysis

SILVIA CORBARA, Scuola Normale Superiore, 56126 Pisa, Italy.

ALEJANDRO MOREO, Istituto di Scienza e Tecnologie dell’Informazione, Consiglio Nazionale delle

Ricerche, 56124 Pisa, Italy.

FABRIZIO SEBASTIANI, Istituto di Scienza e Tecnologie dell’Informazione, Consiglio Nazionale delle

Ricerche, 56124 Pisa, Italy.

In this paper we investigate the effects on authorship identification tasks (including authorship verification,

closed-set authorship attribution, and closed-set and open-set same-author verification) of a fundamental shift

in how to conceive the vectorial representations of documents that are given as input to a supervised learner.

In “classic” authorship analysis a feature vector represents a document, the value of a feature represents (an

increasing function of) the relative frequency of the feature in the document, and the class label represents the

author of the document. We instead investigate the situation in which a feature vector represents an unordered

pair of documents, the value of a feature represents the absolute difference in the relative frequencies (or

increasing functions thereof) of the feature in the two documents, and the class label indicates whether the

two documents are from the same author or not. This latter (learner-independent) type of representation has

been occasionally used before, but has never been studied systematically. We argue that it is advantageous,

and that in some cases (e.g., authorship verification) it provides a much larger quantity of information to the

training process than the standard representation. The experiments that we carry out on several publicly

available datasets (among which one that we here make available for the first time) show that feature vectors

representing pairs of documents (that we here call Diff-Vectors) bring about systematic improvements in the

effectiveness of authorship identification tasks, and especially so when training data are scarce (as it is often

the case in real-life authorship identification scenarios). Our experiments tackle same-author verification,

authorship verification, and closed-set authorship attribution; while DVs are naturally geared for solving the

1st, we also provide two novel methods for solving the 2nd and 3rd that use a solver for the 1st as a building

block. The code to reproduce our experiments is open-source and available online.
1

Additional Key Words and Phrases: Supervised Learning; Vector-Based Representations; Authorship Analysis

ACM Reference Format:
Silvia Corbara, Alejandro Moreo, and Fabrizio Sebastiani. 2022. Same or Different? Diff-Vectors for Authorship

Analysis. ACM Trans. Knowl. Discov. Data. 1, 1, Article 1 (December 2022), 36 pages. https://doi.org/XXXXXXX.

XXXXXXX

1 INTRODUCTION
Recent years have seen an increased interest in automated authorship analysis, a set of tasks aiming

to infer the characteristics of the author of a text of unknown or disputed paternity. Authorship

1
https://github.com/AlexMoreo/diff-vectors

Authors’ addresses: Silvia Corbara, silvia.corbara@sns.it, Scuola Normale Superiore, 56126 Pisa, Italy. Alejandro Moreo,

alejandro.moreo@isti.cnr.it, Istituto di Scienza e Tecnologie dell’Informazione, Consiglio Nazionale delle Ricerche, 56124

Pisa, Italy. Fabrizio Sebastiani, fabrizio.sebastiani@isti.cnr.it, Istituto di Scienza e Tecnologie dell’Informazione, Consiglio

Nazionale delle Ricerche, 56124 Pisa, Italy.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1556-4681/2022/12-ART1 $15.00

https://doi.org/XXXXXXX.XXXXXXX

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://github.com/AlexMoreo/diff-vectors
https://doi.org/XXXXXXX.XXXXXXX

1:2 Corbara, Moreo, Sebastiani

analysis is concerned with inferring characteristics such as the gender [34], the age group [20], or

the native language [54] of the author, among others; these subtasks usually go under the name

of author profiling [3]. Alternatively, authorship analysis may be concerned with inferring the

identity of the author; tasks in which this is the goal are collectively referred to as authorship
identification tasks, and include authorship verification (AV – the task of predicting whether a given

author is or not the author of a given anonymous text [53]), authorship attribution (AA – the task

of predicting who among a given set of candidates is the most likely author of a given anonymous

text [27, 36, 52]), and same-author verification (SAV – the task of predicting whether two given

documents are by the same, possibly unknown, author or not [38]). Authorship analysis has several

applications, e.g., in supporting the work of philologists who try to identify the authors of texts

of literary or historical value [5, 11, 28, 30, 44, 50, 55], or in aiding linguistic forensics experts in

crime prevention or criminal investigation [9, 39, 48].

All of these tasks are usually approached as text classification tasks, whereby a supervised

machine learning algorithm, using a set of labelled documents, is used to train a classifier to

perform the required prediction task. As in many supervised learning endeavours, each training

example is usually represented as a vector of features, where the value of a feature in a vector

usually corresponds to the relative frequency with which a certain linguistic phenomenon (say, an

exclamation mark, or a POS-gram) occurs within the document.

Koppel andWinter [38] describe an alternative method for generating vectorial representations of

texts for authorship identification. Specifically, while in the standard representation methodology

a vector represents a document, in this alternative method a vector represents an unordered

pair of different documents. While in the standard methodology the value of a feature is (an

increasing function of) the relative frequency of occurrence of a given linguistic phenomenon in the

document, in this alternative method it is the absolute value of the difference between the relative

frequencies (or increasing functions thereof) of this phenomenon in the two documents. Since

these vectors represent differences, we call these representations Diff-Vectors (DVs). While in the

standard methodology the class label is the author of the document, in this DV-based methodology

the class label is one of the two classes Same or Different (standing for “same author” or “different

authors”, respectively).

However, the goal of Koppel and Winter [38] was actually to propose a different method (the

“impostors” method for SAV), and not to propose the DV-based methodology, which they dismiss

as a “simplistic baseline method” [38, p. 179]. Since then, the use of DVs has never been studied

systematically; to carry out such a systematic study is the goal of the present paper.

The contributions of this paper are thus as follows.

First, we study the consequences of the fact that, given 𝑛 labelled documents, while the standard

methodology gives rise to 𝑛 training vectors, the DV-based methodology gives rise to𝑂 (𝑛2) training
vectors, which seems, at first sight, advantageous. Is this advantage for real? The present study

answers this question.

Second, we carry out extensive experiments on a number of publicly available datasets (including

one that we here make available for the first time) representative of different textual genres, lengths,

and styles, with the goal of determining whether using DVs in place of “standard” vectors brings

about higher accuracy in authorship identification tasks. In these experiments we tackle different

authorship identification tasks, including SAV (for which DVs are naturally geared), AA, and

AV; for these two latter tasks we propose two new methods, Lazy AA and Stacked AA (two AA

methods that can also be used for AV) that solve AA by using a DV-based SAV classifier as a

building block. Our experiments show that the DV-based representation is advantageous, since

it brings about substantially increased effectiveness. The experiments also show that DVs bring

about substantial improvements especially in low-resource authorship analysis tasks, i.e., in tasks

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

Diff-Vectors for Authorship Analysis 1:3

characterised by small quantities of training data (which is the case in many real-life authorship

analysis scenarios, such as those dealing with ancient texts). Like the standard representation,

the DV-based representation is learner-independent, i.e., it can be used in connection with any

(supervised or unsupervised) learning method.

Third, we carry out an extensive comparative analysis of the efficiency of the two methodologies,

both by studying the computational complexity of authorship analysis tasks and by clocking actual

experiments. This study confirms that, as expected, the DV-based methodology is computationally

more expensive; however, as we argue in detail, the additional computational cost is tolerable,

especially in the light of the fact that, in authorship analysis, practical application scenarios often

involve a single document of uncertain paternity, which means that classification efficiency is not a

primary concern.

The rest of the paper is structured as follows. In Section 2 we formally describe DVs and justify

why they look like a superior means of representing authorship-related information; in particular,

we show that DVs result in more training examples for the AV task (Section 2.3) and that DVs make

training more robust in closed-set AA (Section 2.4). In Section 3 we describe algorithms for casting

authorship identification tasks (such as AV or AA) in terms of SAV (the task that DVs are naturally

designed for). Section 4 reports the results of our experiments; in particular, Section 4.4 discusses

our “intrinsic” evaluation of DVs, i.e., one in terms of same-author verification, while Section 4.5

discusses an “extrinsic” evaluation of DVs, i.e., one in terms of downstream tasks such as AV and

AA. Section 5 discusses related work, while Section 6 wraps up, also pointing at avenues for further

research.

2 DIFF-VECTORS FOR AUTHORSHIP IDENTIFICATION
2.1 Authorship identification tasks
We assume a finite set A of authors (where A will be often called the codeframe) and a domain

D of documents. For each document 𝑥𝑖 ∈ D we indicate by 𝑦𝑖 ∈ A the true author of 𝑥𝑖 . We also

assume the existence of a training set L = {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1 of documents of known paternity.

We define authorship verification (AV) as the task of predicting, given a document 𝑥𝑖 and a

candidate author 𝐴∗ ∈ A = {𝐴1, . . . , 𝐴𝑚}, whether 𝐴∗
is the author of 𝑥𝑖 or not, where the labels

𝑦1, . . . , 𝑦𝑛 of the training documents are in A = {𝐴1, . . . , 𝐴𝑚}, with𝑚 ≥ 2.
2

We define (closed-set) authorship attribution (AA) as the task of predicting, given a document 𝑥𝑖
and𝑚 candidate authors A = {𝐴1, . . . , 𝐴𝑚}, (one of whom is assumed to be the author of 𝑥𝑖), who

among the members of A is the author of 𝑥𝑖 , where the labels of the training documents are in

A = {𝐴1, . . . , 𝐴𝑚}, with𝑚 ≥ 2.
3

Wedefine same-author verification (SAV) as the task of predicting, given two unlabelled documents

𝑥𝑖 and 𝑥 𝑗 , if they are by the same author or not, where the labels of the training documents are

in A = {𝐴1, . . . , 𝐴𝑚}, with𝑚 ≥ 2. This task admits two different variants, i.e., (i) closed-set SAV,
which corresponds to the setup in which the authors of the unlabelled documents are assumed to

be in A, and (ii) open-set SAV, where the authors of the unlabelled documents are not necessarily

in A.

Note that terminology is somehow variable across the authorship analysis literature, and some

of the above tasks may be defined slightly differently in other works. For instance, authorship

verification is sometimes defined (see e.g., [29]) as the task of predicting whether, given a document

2
Note that, at training time, we assume to know the paternity (i.e., the labels) of documents written by authors other than

𝐴∗
. Alternatively, AV can be formulated as a problem in which𝑚 = 2 and A = {𝐴∗, 𝐴∗}, in which class 𝐴∗

collectively

represents the production of authors other than 𝐴∗
. This special case will be discussed more in detail in Section 4.7.

3
In real cases we may not be certain that the author of 𝑥𝑖 is indeed in A = {𝐴1, . . . , 𝐴𝑚 }; in these cases, closed-set AA

amounts to indicating who, among the authors in A = {𝐴1, . . . , 𝐴𝑚 }, is the most likely author of 𝑥𝑖 .

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

1:4 Corbara, Moreo, Sebastiani

𝑥𝑖 and one or more documents known to be by a candidate author 𝐴∗
, also 𝑥𝑖 is by 𝐴∗

. In this

latter definition authorship verification shares some characteristics with “our” AV (in the fact that

a candidate author 𝐴∗
for document 𝑥𝑖 is considered) and with “our” SAV (in the fact that we check

whether 𝑥𝑖 is by 𝐴
∗
by testing if 𝑥𝑖 is by the same author as other texts known to be by 𝐴∗

). Our

definition of AV and SAV are, we think, cleaner, since they clearly separate (i) the task of predicting

whether a document 𝑥𝑖 is by a candidate author 𝐴∗
, from (ii) the task of predicting whether a

document 𝑥𝑖 is by the same author as some other document. Our definitions are also more general,

since “our” SAV does not assume the author of one of the two documents to be known.

2.2 Diff-Vectors
In “standard” authorship identification, each document 𝑥𝑖 is represented via a labelled vector x𝑖 of
features, where each feature usually represents a linguistic phenomenon that may occur (possibly

several times) in a document of D, the label 𝑦𝑖 ∈ A represents the true author of 𝑥𝑖 , and the value

x𝑘𝑖 of the 𝑘-th feature in vector x𝑖 represents a non-decreasing function (e.g., tfidf) of the relative

frequency of the linguistic phenomenon in 𝑥𝑖 . For instance, if the 𝑘-th feature stands for character

3-gram “car”, then the value of x𝑘𝑖 may be the number of occurrences of character 3-gram “car” in

𝑥𝑖 divided by the number of all character 3-grams that 𝑥𝑖 contains.

We here study an alternative type of vectorial representation for authorship identification tasks.

Here, a labelled vector x𝑖 𝑗 represents an unordered pair (𝑥𝑖 , 𝑥 𝑗) of documents in D such that 𝑖 ≠ 𝑗 ,

each feature represents a linguistic phenomenon that may occur (possibly several times) in a

document of D, the label 𝑦𝑖 𝑗 ∈ P = {Same,Different} indicates whether the true authors of 𝑥𝑖 and
𝑥 𝑗 are the same person or not, and the value x𝑘𝑖 𝑗 of the 𝑘-th feature in vector x𝑖 𝑗 represents the
absolute difference between non-decreasing functions of the relative frequencies of the linguistic

phenomenon in 𝑥𝑖 and 𝑥 𝑗 . (In this section we provisionally assume this function to be the identity

function 𝑓 (𝑥) = 𝑥 , while in the sections to come this function will be some well-established feature

weighting function.) Since the difference between relative frequencies is central to the definition of

these vectors, we call them Diff-Vectors (DVs).
If we have chosen our features well, i.e., if the frequencies of occurrence of the corresponding

linguistic phenomena are indeed indicative of authorship, when two documents have been written

by the same author the values x𝑘𝑖 𝑗 of these features will be low, since the above frequencies will
be similar in the two documents. In other words, DVs belonging to class Same will tend to be

characterised by low feature values and low norms, while vectors belonging to class Different will
tend to be characterised by high feature values and high norms. The quintessential (although fairly

improbable) example of a DV likely to be in class Same is the vector of all 0’s, since the fact that
for all features the frequency of occurrence of the feature in the two documents is identical, is

highly indicative of the fact that (if the features have been chosen well) the two authors are the

same person. Conversely, the quintessential (although fairly improbable) example of a DV likely to

be in class Different is (if feature values are all normalised) a vector of all 1’s, since it represents

two documents with maximally different frequencies of occurrences for all features. All DVs fall, if

normalised, in the unit hypercube.

More in general, if a DV belongs to class Same, DVs that lie between it and the vector of all

0’s will also tend (if we have chosen our features well) to belong to Same. As a result, the region
that contains the DVs belonging to Same will tend to be the portion falling in the non-negative

orthant of a star-convex region centred at the origin of the axis.
4
In particular, if Same and Different

4
The non-negative orthant is the generalisation to 𝑡 > 2 dimensions of the 1st quadrant of the familiar 2-dimensional

Cartesian space. A star-convex region centred at point x0 is a region of 𝑡 -dimensional space in which for every point x in the

region all points between x0 and x are also in the region.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

Diff-Vectors for Authorship Analysis 1:5

Fig. 1. 3-dimensional example of the surface (in green) that (ideally) separates the region of DVs belonging to
Same (which corresponds to the tetrahedron comprised between the separating surface and the origin of the
axes) and the region of DVs belonging to Different, in the linear case. When the number of features is 𝑡 , the
tetrahedron becomes a 𝑡-simplex and the separating surface is a (𝑡 − 1)-simplex.

are linearly separable, and if 𝑡 is the dimensionality of the feature space, the region that contains

all the DVs belonging to Same will tend to be (see Figure 1) a 𝑡-simplex (in 𝑡 = 3 dimensions: a

tetrahedron) with an orthogonal corner, and the separating surface will tend to be a (𝑡 − 1)-simplex

(in 𝑡 = 3 dimensions: a triangle).
5

Any set of labelled documents L = {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)} can be represented either in the

standard way or via DVs. One of the main differences between the two representations is that the

“standard” representation gives rise to 𝑛 labelled vectors, while the alternative representation gives

rise to 𝑛(𝑛 − 1)/2 labelled vectors. The other main difference is that a classifier using the “standard”

representation attempts to predict, given an unlabelled document, its true author, while a classifier

using the DV-based representation attempts to predict, given two unlabelled documents, whether

the two documents are or not by the same author. In other words, the standard representation is
geared towards AV or AA, while the DV-based representation is geared towards SAV. However, AV and

AA can (as discussed below) be recast in terms of SAV, and vice-versa; as a result, we will consider

the two representations as general-purpose alternatives, and we will study them as such.

2.3 Diff-Vectors result in more training examples for AV
Our working hypothesis is that the DV-based representation is advantageous. In order to show

this, let us consider AV, and let us assume that 𝐴∗ ∈ A is our candidate author. When using the

standard representation, we typically replace each label in A \ {𝐴∗} with label 𝐴∗
(to indicate the

complement of 𝐴∗
) and train a binary classifier that discriminates between 𝐴∗

and 𝐴∗
. However, in

doing so a lot of information is lost, namely, the information whether two training examples in 𝐴∗

are by the same author or not. For authorship-related tasks this is valuable information, which the

standard representation wastes and the DV-based representation does not. The following example

shows that the information wasted by the standard representation is, indeed, a lot.

Example 2.1. Assume a set of 10 authors and a training set consisting of 100 training examples for

each author. The DV-based representation gives rise to (1,000·999)/2=499,500 DVs, among which:

5
A 𝑡 -simplex is the generalisation to 𝑡 > 3 dimensions of the 2-dimensional notion of triangle and the 3-dimensional notion

of tetrahedron. A 𝑡 -simplex with an orthogonal corner is one that has a vertex such that all its adjacent edges are pairwise

orthogonal.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

1:6 Corbara, Moreo, Sebastiani

(1) 10·(100·99)/2=49,500 examples have label Same, since for each author 𝐴𝑧 ∈ {𝐴1, . . . , 𝐴10}
there are (100·99)/2=4,950 unordered pairs of different examples such that the author of both

examples is 𝐴𝑧 ; of these

(a) (100·99)/2=4,950 are such that the author of both examples is 𝐴∗
;

(b) 9·(100·99)/2=44,550 are such that the author of both examples is 𝐴𝑧 for some 𝐴𝑧 ≠ 𝐴∗
;

(2) 45·(100·100)=450,000 examples have label Different, since there are 10·9/2=45 unordered

pairs (𝐴′, 𝐴′′) of different authors, and for each such pair there are 100·100=10,000 pairs of
examples in which one example is by 𝐴′

and the other example is by 𝐴′′
; of these

(a) 9·(100·100)=90,000 are such that one of 𝐴′
and 𝐴′′

is 𝐴∗
;

(b) 36·(100·100)=360,000 are such that neither of 𝐴′
and 𝐴′′

is 𝐴∗
.

Note that the information provided to the training process by the examples of Type 1a is also

provided (albeit in a different form) when using the standard representation, since with the latter

the learner is implicitly told that the two documents are from the same author. The same happens

for the examples of Type 2a, since with the standard representation the learner is implicitly told

that the two documents are from different authors. However, the key observation here is that the

examples of Type 1b and Type 2b provide information that is instead lost when using the standard

representation, since the standard representation only tells the learner that the two documents

are not by 𝐴∗
, but does not tell the learner if they are by the same author or not. In sum, 404,550

out of 499,500 training examples, i.e., about 81% of the entire set, provide information that was not

provided by the standard representation; in other words, in this case the learner receives more than

5 times the amount of information than the standard representation provides to it. □

More in general, if we have𝑚 authors and 𝑞 = 𝑛/𝑚 training examples per author, the number of

DVs that do not provide additional information with respect to the standard representation is

𝑞(𝑞 − 1)
2

+ (𝑚 − 1)𝑞2 (1)

i.e., the number of pairs of Type 1a plus the number of pairs of Type 2a, while the number of DVs

that do provide additional information is

(𝑚 − 1)𝑞(𝑞 − 1)
2

+ (𝑚 − 1) (𝑚 − 2)𝑞2
2

(2)

i.e., the number of pairs of Type 1b plus the number of pairs of Type 2b. Note that, while the amount

of information that was already available to the learning process is 𝑂 (𝑚𝑞2) (Equation 1), the new

information made available to it is 𝑂 (𝑚2𝑞2) (Equation 2). The latter amount of information can be

extremely valuable, especially since it comes at no cost, and especially in application scenarios (as

there are many in authorship identification) characterised by the scarcity of training data. Among

all of the above,

𝑞(𝑞 − 1)
2

+ (𝑚 − 1)𝑞(𝑞 − 1)
2

=
𝑚𝑞(𝑞 − 1)

2

(3)

are examples of Same, which are 𝑂 (𝑚𝑞2), while

(𝑚 − 1)𝑞2 + (𝑚 − 1) (𝑚 − 2)𝑞2
2

=
𝑚(𝑚 − 1)𝑞2

2

(4)

are examples of Different, which are 𝑂 (𝑚2𝑞2).
In sum, when our task is AV, if we switch from standard representations to DV-based repre-

sentations, we end up with a much higher quantity of training data, since DV-based representa-

tions exploit information that standard representations waste. Hovewer, note that switching from

standard representations to DV-based representations means switching (as noted at the end of

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

Diff-Vectors for Authorship Analysis 1:7

Section 2.2) from vectors geared towards AV to vectors geared towards SAV. This suggests the idea

to use these vectors to train a high-performance SAV classifier, and then to devise an algorithm

that can perform AV on top of this SAV classifier; this is the goal we will pursue in Section 3.3.

2.4 Diff-Vectors make training more robust in closed-set AA
The fact that more information is provided to the training process holds for AV, but does not

necessarily hold for other authorship identification tasks. In general, this fact only holds for tasks

in which, as in AV, the training documents by different authors end up being grouped together into

a single class; this happened in AV with the 𝐴∗
class. However, that more information is provided

to the training process does not hold when the above-mentioned grouping does not happen, as, e.g.,

in closed-set AA. In the latter task, the information conveyed to the training process by a DV with

label Same is obviously also implicitly conveyed when using the standard representation (where

the vectors corresponding to the two documents are labelled with the same author), and the same

holds for DVs with label Different (where the two vectors are labelled with different authors).

So, in closed-set AA (and in the latter tasks in general) it would appear that there is no advantage

in using DVs. This is actually not true, because the advantage is in the fact that, when using DVs, all
the training information is concentrated on labelling just two classes, i.e., Same and Different, while
in the classical representation this information is spread out thin, i.e., it is used for labelling𝑚

different classes, each of which thus ends up having a smaller number of positive training examples.

The following example makes the point more concrete.

Example 2.2. Assume we are dealing with closed-set AA; assume a set of𝑚 = 10 authors and a

training set consisting of 𝑞 = 20 training examples for each author. The standard representation

gives rise to 𝑞 ·𝑚 = 200 training vectors, 20 for each class, while the DV-based representation gives

rise to𝑚𝑞(𝑚𝑞 − 1)/2=19,900 training vectors, among which 10·(20·19)/2=1,900 DVs for class Same
and 10 · 9 · 202/2 = 18,000 DVs for class Different. □

More in general, if we have𝑚 authors and 𝑞 training examples per author, in closed-set AA we

have𝑚𝑞(𝑞 − 1)/2 DVs of class Same and𝑚(𝑚 − 1)𝑞2/2 DVs of class Different, which means that

the ratio between the number of training examples of Same and the number of training examples

of Different is
𝑞 − 1

𝑞(𝑚 − 1) ≈ 1

𝑚 − 1

This indicates that we are in the presence of an imbalanced binary classification problem (which

is even more imbalanced if𝑚 is large); however, this is not a problem because, since we typically

have many training DVs (see e.g., Example 2.2), we can subsample class Different, i.e., remove some

among its many training examples from the training set.

In sum, the use of the DV-based representation in closed-set AA allows the SAV binary classifier

to be trained robustly, thanks to the fact that the existing amount of training information can be

devoted to solving a comparatively easier binary classification task rather than a comparatively

more difficult 1-of-𝑚 classification task. We can thus expect to obtain accurate SAV classification

predictions; in Section 3.2 we will see that these SAV predictions can also be used by a downstream

process to solve authorship identification tasks such as AV and AA.

3 SOLVING SAV, AA, AND AV, BY MEANS OF DIFF-VECTORS
One difference between the standard representation, in which class labels represent authors, and

the representation based on DVs, in which class labels are in {Same,Different}, is that the tasks that
can be solved “directly” are AV and AA for the former, and SAV for the latter. That is, by using

the standard representation, AV and AA can be solved directly by setting up a classifier that, for a

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

1:8 Corbara, Moreo, Sebastiani

given document, returns a class label in A (for AA) or in {𝐴∗, 𝐴
∗} (for AV); SAV is instead to be

solved as a derivative, “downstream” task, e.g., by first determining the true authors of documents

𝑥𝑖 and 𝑥 𝑗 by means of two calls to an AA engine, and then checking whether the two returned

class labels are the same or not.
6
On the contrary, when using the DV-based representation, SAV is

solved directly; AV and AA are instead to be solved as derivative tasks, using SAV as the building

block of any algorithm for solving them. In this section we first formally define our method for

performing SAV (Section 3.1), and then go on to describe two alternative solutions for solving both

AV and AA (Section 3.2) that build on top of the former.

3.1 Solving SAV by means of Diff-Vectors
Given a training set L = {(𝑥1, 𝑦1), ..., (𝑥𝑛, 𝑦𝑛)} of documents 𝑥𝑖 ∈ D labelled by classes 𝑦𝑖 ∈ A =

{𝐴1, ..., 𝐴𝑚} representing authors, we define its pair-based version as

LP = {((𝑥𝑖 , 𝑥 𝑗), SD(𝑦𝑖 , 𝑦 𝑗)) | 𝑖, 𝑗 ∈ {1, ..., 𝑛}, 𝑗 < 𝑖} (5)

where SD(𝑦𝑖 , 𝑦 𝑗) is an indicator function that returns Same if 𝑦𝑖 = 𝑦 𝑗 and Different otherwise. We

also assume a feature extractor 𝑓 : D → R𝑡 which maps documents 𝑥 ∈ D into 𝑡-dimensional

vectors x of real numbers. We can thus rewrite L as {(x1, 𝑦1), ..., (x𝑛, 𝑦𝑛)} and redefine LP as

LP = {(x𝑖 𝑗 , SD(𝑦𝑖 , 𝑦 𝑗)) | 𝑖, 𝑗 ∈ {1, ..., 𝑛}, 𝑗 < 𝑖} (6)

where x𝑖 𝑗 ∈ R𝑡 is a vector of absolute differences of feature values, i.e., x𝑖 𝑗 is the vector such that

its 𝑘-th component is x𝑘𝑖 𝑗 = |x𝑘𝑖 − x𝑘𝑗 |, for all 1 ≤ 𝑘 ≤ 𝑡 , 𝑖 ≠ 𝑗 .

Note that |L| = 𝑛 while |LP | = 𝑛(𝑛 − 1)/2, i.e., the pair-based version LP is (𝑛 − 1)/2 times

larger than its standard counterpart L. In practice, the size of LP can be so large as to make the

learning process intractable for some batch learners. For example, the 499,500 training DVs of

Example 2.1 would result from a dataset of 10 authors and 100 training documents per author,

which is not a terribly large dataset. As shown in Section 2.4, LP tends to be imbalanced, with a

Same / Different training example ratio close, assuming a training set containing the same number

of documents for each author, to 1/𝑚.

In practice, we will be interested in generating and using only a subset L′
P ⊂ LP : by including

in L′
P a small enough number of elements of LP we can make the training process tractable, and

by including in L′
P an equal number of examples of Same and Different we can avoid the typical

negative consequences of imbalance. By using a subset L′
P with these characteristics, we can then

train a binary classifier ℎ : R𝑡 → {Same,Different}. We can this classifier DV-Bin, since it is a

binary classifier that uses DVs.

Without loss of generality, and for ease of notation, we will henceforth use ℎ as the function of

two arguments ℎ : D × D → {Same, Different}, thus leaving implicit the phases of (a) mapping

documents to feature vectors, and (b) computing DVs from the absolute differences of feature

values. As a result, we can simply write ℎ(𝑥𝑖 , 𝑥 𝑗) to indicate a predicted label in {Same,Different}.

3.2 Solving AA by means of Diff-Vectors
In this section we describe how SAV can be used to implement AA as downstream tasks.

In order to predict by whom among the authors in A a test document 𝑥 has been written, and to

do so by using a SAV classifier, it makes sense to look at how 𝑥 relates to the training documents in

terms of the Same and Different classes. For instance, if for all documents 𝑥 ′ ∈ L written by 𝐴𝑧

the pair (𝑥, 𝑥 ′) is assigned by the SAV classifier to class Same, and if for all 𝑥 ′′ ∈ L written by an

6
This is possible only for closed-set SAV, though, since open-set SAV cannot be recast in terms of AA.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

Diff-Vectors for Authorship Analysis 1:9

author in A \ {𝐴𝑧} the pair (𝑥, 𝑥 ′′) is assigned to class Different, it would be reasonable to predict

that 𝑥 has been written by 𝐴𝑧 .

Unfortunately, this uniformity rarely occurs in practice: in more typical cases the SAV classifier

will assign to class Same, say, some pairs (𝑥, 𝑥 ′) where 𝑥 ′ has been written by 𝐴𝑧 , and some pairs

(𝑥, 𝑥 ′′) where 𝑥 ′′ has been written by an author other than 𝐴𝑧 . This brings up the question: how

should we act in the presence of such apparently contradictory outcomes?

Given that we need to build our AA algorithm on top of the output of the SAV classifier, it is

in our best interest to squeeze every possible bit of information from this output. As a result, we

will be interested in exploiting not just the binary prediction of the SAV classifier, but also its

non-binary classification score, representing the degree of certainty with which it has issued this

prediction. We assume that our SAV classifier is of the form

ℎ : D × D → [0, 1] (7)

i.e., returns classification scores that are posterior probabilities. These latter are values Pr(Same|𝑥𝑖 , 𝑥 𝑗)
that denote the probability that the SAV classifier attributes to the fact that 𝑥𝑖 and 𝑥 𝑗 have been

written by the same author, and are such that Pr(Different|𝑥𝑖 , 𝑥 𝑗) = 1 − Pr(Same|𝑥𝑖 , 𝑥 𝑗).
We explore two techniques for building AA classifiers on top of SAV classifiers, one inspired by

lazy learning methods [1] and another inspired by the well known Stacked Generalisation algorithm

[58].

3.2.1 Lazy AA. The first SAV-based AA algorithm that we explore in this paper, and that we

call Lazy AA, draws inspiration from distance-weighted 𝑘-NN, but is different from it. Similarly to

distance-weighted 𝑘-NN, the underlying idea of our method is that, given a test document 𝑥 , if a

training document 𝑥 ′ authored by 𝐴𝑧 is “stylistically similar” to 𝑥 , this brings evidence towards the

fact that also 𝑥 is authored by 𝐴𝑧 , and this evidence can be quantified exactly by the amount of

stylistic similarity. Differently from distance-weighted 𝑘-NN, though, instead of having access to a

function that computes the similarity between two documents, we here have access to a SAV (soft)

classifier that computes the probability that the two documents are in class Same. It is thus just
natural to compute the stylistic similarity between 𝑥 and 𝑥 ′ as Pr(Same|𝑥, 𝑥 ′), i.e., as the probability
that the SAV classifier attributes to the fact that 𝑥 and 𝑥 ′ have been written by the same author.

Our combination rule thus consists of selecting, for each author𝐴𝑧 ∈ A, the𝑘 training documents

written by 𝐴𝑧 that are stylistically most similar to our test document 𝑥 (i.e., the ones for which

Pr(Same|𝑥, 𝑥 ′) is highest), and computing the average value of this stylistic similarity across these

𝑘 documents; the author for which this average stylistic similarity is highest is predicted to be the

author of 𝑥 . In symbols, this comes down to

ℎ′ (𝑥,L, 𝑘) = argmax

𝐴𝑧 ∈A

1

𝑘

∑︁
𝑥𝑖 ∈NN(𝑘,L,𝐴𝑧 ,𝑥,ℎ)

ℎ(𝑥, 𝑥𝑖)

= argmax

𝐴𝑧 ∈A

1

𝑘

∑︁
𝑥𝑖 ∈NN(𝑘,L,𝐴𝑧 ,𝑥,ℎ)

Pr(Same|𝑥, 𝑥𝑖)
(8)

where NN(𝑘,L, 𝐴𝑧, 𝑥, ℎ) returns the 𝑘 documents from training set L that have been written by

author 𝐴𝑧 and are closest to 𝑥 according to the SAV classifier ℎ. Note that the ℎ′ functional is
parameterised by L (and 𝑘) since, as in all lazy learning methods, there is no proper training phase

for ℎ′, and all the computation is carried out at classification time.

The optimal value for parameter 𝑘 can be found via “leave-one-out” (LOO) validation on the

training set L. That is, for each value of 𝑘 in the tested range each training document 𝑥𝑖 ∈ L is

classified by a classifier ℎ′ trained on L \ {𝑥𝑖 }; 𝑘 is thus set to the value that maximises a given

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

1:10 Corbara, Moreo, Sebastiani

effectiveness measure as computed on the entire set L.
7
If we use (vanilla) accuracy (i.e., the

proportion of correctly classified instances) as the effectiveness measure, this process comes down

to computing

𝑘∗ = argmax

𝑘

1

𝑛

∑︁
(𝑥𝑖 ,𝑦𝑖) ∈L

1[ℎ′ (𝑥𝑖 ,L \ {𝑥𝑖 }, 𝑘) = 𝑦𝑖] (9)

where 1[𝑠] is an indicator function returning 1 if statement 𝑠 is true and 0 otherwise. This optimi-

sation can be performed very quickly if the posterior probabilities Pr(Same|𝑥𝑖 , 𝑥 𝑗) are computed

only once for all 𝑥𝑖 , 𝑥 𝑗 ∈ L and stored for fast reuse. Similarly, NN(𝑘,L, 𝐴𝑧, 𝑥, ℎ) can be made

to return the top 𝑘 elements (for different values of 𝑘) from a fully ranked list that is computed

once and reused when necessary. Note also that the majority of these operations are amenable to

parallelisation.

3.2.2 Stacked AA. Stacked AA (so called since it is inspired by stacked generalisation – [58]) con-

sists of an AA (single-label multiclass) classifier ℎ′, trained by general-purpose learning algorithms,

that classifies documents represented by vectors of posterior probabilities Pr(Same|𝑥, 𝑥𝑘), each
of which has been returned by an underlying, previously trained SAV classifier ℎ (more precisely,

a DV-Bin classifier of the type described in Section 3.1). More in detail, in order to predict who

among the authors in A has written document 𝑥 , we represent 𝑥 via a vector

𝜙 (𝑥) = (ℎ(𝑥, 𝑥1), . . . , ℎ(𝑥, 𝑥𝑛))
= (Pr(Same|𝑥, 𝑥1), . . . , Pr(Same|𝑥, 𝑥𝑛))

(10)

of 𝑛 posterior probabilities, one for each training example in L. The 𝑘-th value in this vector is the

value ℎ(𝑥, 𝑥𝑘) = Pr(Same|𝑥, 𝑥𝑘), where 𝑥𝑘 is the 𝑘-th training example. In other words, in order

to classify 𝑥 we first need to perform |L| SAV classifications, where the 𝑘-th such classification

attempts to predict whether the test document 𝑥 was written by the same author who also wrote

training document 𝑥𝑘 .

At training time, we train the AA classifier ℎ′ by using all the training examples in L represented

in the style of Equation 10. In other words, by applying the mapping 𝜙 : R𝑡 → [0, 1]𝑛 to the training
documents themselves we define a new “view” Lℎ = {(𝜙 (𝑥𝑖), 𝑦𝑖)}𝑛𝑖=1 of the training set L, in which

the training documents are not represented via vectors of 𝑡 stylometric features but, thanks to

the underlying SAV classifier, via vectors of |L| posterior probabilities, with 𝜙 (𝑥) ∈ [0, 1]𝑛 . The
training set Lℎ can directly be used to train a general-purpose classifier ℎ′ : [0, 1]𝑛 → A in the

feature space of posterior probabilities.
8
Of course, in order to generate Lℎ = {(𝜙 (𝑥𝑖), 𝑦𝑖)}𝑛𝑖=1 we

first need to train a SAV classifier ℎ via the DV-Bin method of Section 3.1. In the experiments

of Section 4 we will concentrate on instantiations of ℎ′ that are generated by the same learning

method (e.g., logistic regression) used to generate ℎ.

At classification time, a given test document 𝑥 is classified by first computing 𝜙 (𝑥) (this requires
invoking 𝑛 times classifier ℎ) and then invoking classifier ℎ′ (𝜙 (𝑥)).

There are several important aspects in which Stacked AA differs from Lazy AA:

7
One might wonder why we go for LOO, a traditionally expensive (and sometimes too expensive) way of optimising

parameters, rather than the cheaper 𝑡 -fold cross-validation (𝑡 -FCV). The reason is that, in our case, LOO is no more expensive

than 𝑡 -FCV because we are in a lazy learning context. In other words, in traditional eager learning contexts LOO requires

| L | classifier retrainings, while 𝑡 -FCV requires only 𝑡 ≪ |L| classifier retrainings; however, in lazy learning contexts there

are no retrainings because classifiers are not “trained”, since all inductive inference is carried out at classification time.

8
Note that, if the learning algorithm is a linear model, then it takes the form of ℎ′ (𝑥) = ∑𝑛

𝑙=1
𝛼𝑙ℎ (𝑥, 𝑥𝑙) , in which {𝛼𝑙 }𝑛𝑙=1

are the parameters to be learned, and the set of functions {ℎ (·, 𝑥𝑙) }𝑛𝑙=1 plays the role of a set of basis functions centred at

the training points.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

Diff-Vectors for Authorship Analysis 1:11

• in Stacked AA, evidence is provided by all training examples, and not just by the 𝑘 examples

most similar to the test example, as is instead the case in Lazy AA;

• in Stacked AA, the combination rule (i.e., the rule that assembles the evidence provided by

the training examples into a final decision) is learnt by a metaclassifier, i.e., it is not static, as

is instead the case in Lazy AA;

• in Stacked AA, learning is performed offline (since the metaclassifier is trained before the

testing phase begins), while in Lazy AA all inductive inference is carried out at classification

time.

One important aspect in which Stacked AA differs from Stacked Generalisation, instead, is that in

Stacked Generalisation the metaclassifier and the base classifiers are homogeneous, i.e., all use the
same set of classes, while in Stacked AA the metaclassifier and the base classifiers are heterogeneous,
i.e., use different sets of classes. Indeed, the base classifiers use the classes in {Same,Different}, since
they are binary SAV classifiers, while the metaclassifier use the classes in A = {𝐴1, ..., 𝐴𝑛}, since it
is a single-label multiclass AA classifier.

3.3 Solving AV by means of Diff-Vectors
It is fairly straightforward to take the algorithms described in Sections 3.2.1 and 3.2.2 and generate

versions (that we will dub Lazy AV and Stacked AV) that solve AV instead of AA. The only difference

between Lazy AV and Lazy AA, and between Stacked AV and Stacked AA, is that in the AV versions

of the two algorithms the codeframe used is binary, i.e., it is A = {𝐴∗, 𝐴∗}; in particular, this means

that for Stacked AV the metaclassifier ℎ′ is a binary classifier instead of a multiclass classifier.

Everything else is unmodified.

However, in preliminary experiments that we have run, both Lazy AV and Stacked AV proved

substantially inferior to versions of Lazy AA and Stacked AA, respectively, in which we attribute

document 𝑥 to𝐴∗
if the AA algorithm does so and we attribute 𝑥 to𝐴∗

if the AA algorithm attributes

it to an author 𝐴𝑧 different from 𝐴. Concerning the reason why Lazy AV underperforms Lazy

AA, this has likely to do with the fact that there is an a priori high probability that the 𝑘 nearest

neighbours in 𝐴∗
are, on average, closer to 𝑥 than the 𝑘 nearest neighbours in 𝐴∗

, since 𝐴∗
is a

very large pool to choose from (this does not happen in AA, where, assuming an equal number of

training documents per author, all pools are equally large); this can give undue advantage to 𝐴∗

over 𝐴∗
, and thus generate a large quantity of false negatives. Concerning the reason why Stacked

AV underperforms Stacked AA, this has likely to do with the fact that the metaclassifier of Stacked

AV does not put the available class information to the best use, i.e., conflates all labels different

from 𝐴∗
into a single label 𝐴∗

that ends up being poorly characterised from the semantic point of

view.

Therefore, in the rest of the paper the algorithms we will use for solving AV via DV-based

representations will be the versions of Lazy AA and Stacked AA described at the beginning of

the previous paragraph. A consequence of this is that any AA experiment that involves the use

of either Lazy AA and Stacked AA and a codeframe A = {𝐴1, . . . , 𝐴𝑚}, is also de facto a set of𝑚
different AV experiments. In other words, we will not need to run separate AA and AV experiments,

i.e., we will evaluate the AA experiments that we describe in Section 4 both in terms of AA and AV.

4 EXPERIMENTS
In order to test whether a representation based on DVs is advantageous with respect to a represen-

tation based on standard vectors, we compare these two different design choices in experiments

that we run on four publicly available datasets (among which one that we here make available for

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

1:12 Corbara, Moreo, Sebastiani

the first time) and for all three authorship analysis tasks (AA, AV, SAV). The code to reproduce our

experiments is available online at https://github.com/AlexMoreo/diff-vectors .

4.1 Datasets
We run experiments on four datasets consisting of textual documents annotated by author; our

datasets are representative of different textual genres, lengths, and styles, are publicly available,

and all consist of English texts. The four datasets are:

• IMDB62. This dataset9 was created and made publicly available (along with an extended

version, IMDB1million) by Seroussi et al. [51]. It contains film reviews collected from the

popular Internet Movie Database, and accounts for 62 authors/reviewers and 1,000 reviews

authored by each of them. In order to divide the 62,000 documents into a training set and

a test set we perform a stratified split, resulting in 700 training documents and 300 test

documents for each author. We use these texts as examples of a “moderately formal” type

of communication, since the reviews are not as short as, for example, online messages, and,

despite some occasional slang, are written in a clear and correct (although often informal)

manner.

• PAN2011. This dataset10 was created for the PAN 2011 international authorship identification

competition [2]. The dataset is based on the Enron email corpus [33], i.e., the documents are

emails annotated by author. Klimt and Yang [33] have removed personal names and email

addresses and replaced them with specific tags, which means that an authorship identification

method is not able to use this extremely revealing information. In our experiments, we use the

“Large” versions of the training and test sets. We discard documents containing fewer than 15

words, thus ending up with 7,111 training documents and 1,157 test documents, altogether

accounting for 70 different authors. The emails are often extremely short, and show many

characteristics of online communication; in order to avoid texts which are excessively short

(and thus too difficult to attribute), we remove emails consisting of fewer than 15 words.

• Victorian. This dataset11 was created and made publicly available by Gungor [21]. It consists

of books by American or English 18th-19th century novelists, subdivided into segments of

1,000 words each by the creator of the dataset, who also (i) removed the first and last 500

words of each book and, (ii) as a topic-filtering measure, retained only the occurrences of

the 10,000 words most frequent in the dataset. The result is a corpus of more than 50,000

documents (i.e., segments) by 50 different authors. We restrict our attention to the “training”

partition made available by the authors, which accounts for 45 different authors. The corpus

is an imbalanced one, with the least represented author accounting for 183 segments and the

most represented one accounting for about 6,914 of them. In order to divide it into a training

set and a test set, we perform again a stratified split, including 70% of each author’s texts in

the training set and the remaining 30% in the test set. We use these documents as examples

of literary production characterised by a sophisticated style.

• arXiv. This dataset, which we have created and made publicly available ourselves,
12
consists

of abstracts of single-author papers from arXiv.13 In order to limit domain-dependence we

9
Available at: https://umlt.infotech.monash.edu/?page_id=266

10
Available at: https://pan.webis.de/clef11/pan11-web/authorship-attribution.html

11
Available at: https://archive.ics.uci.edu/ml/datasets/Victorian+Era+Authorship+Attribution

12
Available at: https://doi.org/10.5281/zenodo.7404702

13
https://arxiv.org/

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

https://github.com/AlexMoreo/diff-vectors
https://umlt.infotech.monash.edu/?page_id=266
https://pan.webis.de/clef11/pan11-web/authorship-attribution.html
https://archive.ics.uci.edu/ml/datasets/Victorian+Era+Authorship+Attribution
https://doi.org/10.5281/zenodo.7404702
https://arxiv.org/

Diff-Vectors for Authorship Analysis 1:13

Table 1. Main characteristics of the four datasets used in this work.

D
a
t
a
s
e
t

P
r
o
p
o
s
e
d
i
n

T
y
p
e
o
f
d
o
c
s

#
o
f
a
u
t
h
o
r
s

M
i
n
#
o
f
d
o
c
s
p
e
r
a
u
t
h
o
r

M
a
x
#
o
f
d
o
c
s
p
e
r
a
u
t
h
o
r

T
o
t
a
l
#
o
f
d
o
c
s

A
v
e
r
a
g
e
d
o
c
l
e
n
g
t
h
(
w
o
r
d
s
)

IMDB62 [51] film reviews 62 1,000 1,000 62,000 349.0

PAN2011 [2] emails 70 1 561 8,268 69.2

Victorian [21] [segments of] novels 45 183 6,914 53,678 1,000.0

arXiv [this work] abstracts of papers 100 10 34 1,469 129.3

have harvested these abstracts by querying arXiv’s API with a list of computer-science-

related keywords, mostly focused on machine learning.
14

Computer science articles are

seldom written by a single author, which means that this dataset is not large. The corpus

somehow follows a power-law distribution, with few prolific authors and many authors

accounting for very few abstracts each: we retain authors with at least 10 abstracts to their

name, resulting in a total of 1,469 documents from 100 authors. The 2 most prolific authors

have 34 abstracts to their name, the 10 most prolific authors have written 22 or more, while

50% of the authors have no more than 12 abstracts to their name. In order to divide the corpus

into a training set and a test set we perform a stratified split, with the production of each

author being split into a training set (70% of the abstracts) and a test set (30%). We use these

abstracts as examples of “scientific communication", characterised by a precise and compact

style, with an abundance of technical terminology.

Table 1 conveniently summarizes the main characteristics of these four datasets.

4.2 Learners
We use logistic regression (LR) as the learning method. LR is a simple linear model that has delivered

very good accuracy in a number of text-related applications. LR has two further advantages, i.e., (i)

the classification scores returned by the classifiers trained by it are posterior probabilities, and (ii)

these probabilities are well-calibrated.15 These are important advantages, since the methods we

14
The query used was “deep learning, machine learning, information retrieval, computer science, data mining, support

vector, logistic regression, artificial intelligence, supervised learning”.

15
A well-calibrated classifier is one that returns accurate posterior probabilities. An intuition of what “accurate posterior

probabilities” means can be provided by the following example. If 10% (resp., 90%) of all the documents 𝑥𝑖 for which

ℎ (𝑥𝑖) = Pr(𝐴 |𝑥𝑖) = 0.5 indeed belong to class 𝐴, we can say that the classifier ℎ has overestimated (resp., underestimated)

the probability that these documents belong to𝐴, and that their posteriors are thus inaccurate. Conversely, if this percentage

is 50%, we can say that the classifier ℎ has correctly estimated the probability that these documents belong to 𝐴, and that

their posteriors are thus accurate. Indeed, we say (see for instance [18]) that the posteriors ℎ (𝑥𝑖) = Pr(𝐴 |𝑥𝑖) are perfectly
calibrated (i.e., accurate) with respect to a (labelled) set 𝜎 = { (𝑥𝑖 , 𝑦𝑖) }𝑛𝑖=1 if, for all 𝛼 ∈ [0, 1], it holds that

| { (𝑥𝑖 , 𝑦𝑖) ∈ 𝜎 | ℎ (𝑥) = 𝛼, 𝑦𝑖 = 𝐴} |
| { (𝑥𝑖 , 𝑦𝑖) ∈ 𝜎 | ℎ (𝑥) = 𝛼 } | = 𝛼 (11)

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

1:14 Corbara, Moreo, Sebastiani

have described in Sections 3.2.1 and 3.2.2 do rely on posterior probabilities, and obviously benefit

from the fact that these posteriors are high-quality.

We optimise the hyperparameter 𝐶 of LR (the inverse of the L2 regularisation strength) in the

log-space {10𝑖 }𝑖=4𝑖=0, and select the value of 𝐶 that minimizes the multinomial loss in a stratified

𝑡-fold cross-validation (with 𝑡 = 5).
16

In order to generate the Same and Different training pairs, we adopt the following policy. Given

a training set L, we first compute the number of Same pairs that can be generated. If there are

fewer than 50,000 Same pairs, we generate them all; otherwise, we draw (uniformly at random)

and generate 50,000 Same pairs. We then draw (again, uniformly at random) and generate as many

Different pairs as the Same pairs we have generated. This is in order to guarantee a balanced

training set, since there are usually many more potential Different pairs than Same ones.

4.3 Features
As for the choice of features, we stick to ones well-known and broadly adopted in the field of

authorship analysis, i.e., features of a frequentistic nature that can be extracted automatically and

that are believed to convey stylistic information; see for example [16, 27, 52] for an overview, and

Kestemont et al. [31, 32] for a discussion of the most frequently used features in recent shared tasks

focused on authorship analysis. These features are considered a standard in the authorship analysis

field because they represent linguistic traits that are believed to remain more or less constant in an

author’s production and, conversely, to vary in noticeable fashion across different authors [27, p.

241]; as such, they tend to be identifiers of the idiosyncratic style of an author. Note that other sets

of features could have been equally plausible;
17
however, this is not an important concern for our

work, since it is completely agnostic with respect to the specific features that should be used.

The features we use can be naturally subdivided into two groups. Group 1 is composed of

• Function words. Each function word that appears in the training set is a feature in our vectorial
representations. We use the list of English function words provided by NLTK.

18

• Word lengths. Each word length instantiated in the training set is a feature.

• Sentence lengths. Each sentence length instantiated in the training set is a feature.

• Punctuation symbols. Each punctuation symbol that occurs in the training set is a feature.

while Group 2 is composed of

• POS 𝑛-grams. We extract parts of speech from our texts by using the Spacy library,
19
and we

consider each POS 𝑛-gram (for 𝑛 ∈ [3, 4]) that occurs in the training set as a potential feature

(where “potential” means “barring feature selection” – see below).

• Word uni-grams. We consider each word that occurs in the training set as a potential feature.

• Character 𝑛-grams. We consider each character 𝑛-gram (for 𝑛 ∈ [2, 5]) that occurs in the

training set as a potential feature.

The classifiers trained by means of some learners (and logistic regression is one of them) are known to return reasonably

well-calibrated probabilities. Those trained by means of some other learners (such as Naïve Bayes) return probabilities

which are known to be not well calibrated [14]. Yet other learners (such as SVMs or AdaBoost) train classifiers that return

confidence scores that are not probabilities (i.e., that do not range on [0,1] and/or that do not sum up to 1). In order to

address these two latter cases, probability calibration mechanisms exist (see e.g., [45–47, 59, 61]) that convert the outputs of

these classifiers into well calibrated probabilities.

16
We use the LogisticRegressionCV scikit-learn’s implementation, see https://scikit-learn.org/stable/modules/generated/

sklearn.linear_model.LogisticRegressionCV.html.

17
For instance, in [10] we use function words, word lengths, sentence lengths, and POS 𝑛-grams, but we do not use

punctuation symbols (since in that work we deal with medieval Latin texts, and since Latin does not have punctuation),

word-unigrams, and character 𝑛-grams; we instead use features based on “syllabic quantity”, which are specific to Latin.

18
https://www.nltk.org/

19
https://spacy.io/

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV.html
https://www.nltk.org/
https://spacy.io/

Diff-Vectors for Authorship Analysis 1:15

The features in Group 1 (i) are relatively few (typically: 𝑂 (102)), and (ii) are dense, i.e., all of them

can be expected to occur to some degree in most texts. Given one of these features and given

a document, as the value of the feature in the document we take its relative frequency in the

document; for instance, the value of punctuation symbol “!” in a document will be the number

of times symbol “!” occurs in the document divided by the number of punctuation symbols in

the document. We also apply standardisation to the columns that these features generate in the

document-by-feature matrix.
20

The features in Group 2 are many (typically: 𝑂 (104) or 𝑂 (105)). In order to deal with the fact

that they may be too many, we apply to them filter-style feature selection, using the chi-square

test as the term scoring function [60] and retaining the 50,000 highest-scoring features. As the

feature weighting function, rather than using plain relative frequency we use tfidf (an increasing

function of relative frequency) in its standard “ltc” variant (see e.g., [49]).
21
The features in Group 2

are sparse, i.e., in a given document a large number of them will not occur in it; we do not apply

any standardisation to the features in Group 2 since this would turn them into dense features, and

this would be detrimental to efficiency.

4.4 Intrinsic evaluation of Diff-Vectors
Our “intrinsic” evaluation of DVs consists of SAV experiments, since SAV is the task that a classifier

using DVs can solve directly. In these experiments we use a set of authors A = {𝐴1, . . . , 𝐴𝑚},
with𝑚 > 2, each one being the author of 𝑞 documents. Given a dataset that contains a test set U,

we test our systems on randomly drawn samples of test document pairs. The reason why we do

not test on all possible pairs is (see also Section 2.3) a practical one, i.e., the fact that the number

|U|(|U| − 1)/2 of all possible pairs is too high for all but the most trivial datasets. We randomly

draw balanced subsets of 1,000 test pairs (500 positive and 500 negative) for each experiment.

We investigate the impact on performance of the number𝑚 of authors and the number 𝑞 of

training documents per author. Specifically, for the IMDB62, PAN2011, and Victorian datasets we

run experiments varying the number𝑚 of authors in the set {5, 10, 15, 20, 25} and the number 𝑞

of documents per author in the set {10, 20, 30, 40, 50}. Samplings are incremental, i.e., we do not

resample from scratch; in other words, when moving from, say, 𝑞 = 20 to 𝑞 = 30, we add 10 new

documents per author to the previous 20. Regarding the test set, for each choice of𝑚 we draw 2,000

random test pairs, 1,000 of which consist of texts written by some among the𝑚 authors present in

the training set (closed-set SAV), while the other 1,000 pairs consist of texts written by𝑚 authors

other than the𝑚 authors present in the training set (open-set SAV).22

In order to compensate for the random effect introduced by sampling (authors, documents, and

test pairs), we report results obtained by averaging across 10 runs for each combination (dataset,𝑚,

𝑞); we use the same random samples for all the methods we compare. The only exception is the

arXiv dataset, which, due to its limited size, does not allow this extraction of multiple samples;

20
Standardisation (aka z-scoring) is a normalisation process consisting of centring and scaling a random variable so as to

force its distribution to have 0-mean and 1-variance, i.e., the z-score of a raw variable 𝑥 is defined as 𝑧 =
𝑥−`
𝜎

where ` and

𝜎 are the (sample) mean and (sample) standard deviation of 𝑥 as estimated in the training set. For the benefits in accuracy

deriving from standardising dense features, see [42].

21
Using tfidf (which is indeed an increasing function of relative frequency) for weighting sparse features is customary in

authorship analysis (see e.g., [25, 36, 38, 40]). This function is the combination of the tf factor, which is somehow akin to

relative frequency, with the idf factor, which lends a higher weight to features that are rare in the training set (see [49] for

details); in authorship analysis, the use of idf is justified by the fact that rare POS 𝑛-grams / word unigrams / character

𝑛-grams can be considered more indicative of style than common ones

22
As detailed in Section 2.1, in open-set SAV one normally assumes that the authors of the two unlabelled documents are not

necessarily among the authors represented in the training set; in these experiments we consider the more difficult setting in

which the authors of the two unlabelled documents are strictly not among the authors represented in the training set.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

1:16 Corbara, Moreo, Sebastiani

hence, for this dataset we simply report experiments across 10 random train/test splits of the entire

dataset.

We perform experiments in both closed-set SAV (Section 4.4.1) and open-set SAV settings (Section

4.4.2). We evaluate the performance in terms of vanilla accuracy (fraction of correctly classified

pairs), which is a perfectly valid evaluation measure when the test set is balanced across the classes,

such as the present one.

4.4.1 Experiments on closed-set SAV. In the closed-set scenario, the authors in the test set U are

the same as in the training set. We here explore two variants of our method:

• DV-Bin: the binary classifier discussed in Section 3.1.

• DV-2xAA: a method that solves SAV by building on top of the Lazy AA method discussed in

Section 3.2.1. In other words, this method first predicts, for both unlabelled documents, who

the author of the document is, and then checks if the two predicted authors are the same

author.

We consider the following baseline systems:

• STD-CosDist: This consists of a binary classifier trained to predict whether the pair belongs

to Same or Different, where a pair of documents is represented by a vector of one feature only.

The value of this feature is obtained by calculating the distance between the two documents,

each represented by a “standard” vector, and where the distance function is the cosine distance.

We have also run experiments using the L1 or L2 distances in place of the cosine distance; we

omit to report their results since cosine proved the best-performing one. The training set is

transformed into pairs following the same policy as in DV-Bin (see Section 4.2). The classifier

thus learns the distance threshold that best separates the Same pairs from the Different pairs.
• STD-2xAA: This consists of a single-label multiclass classifier that operates on standard

vector representations and that, as in DV-2xAA, solves SAV by performing closed-set AA for

both documents and then checking if the two predicted authors are the same.

Both baselines are equipped with the same learner as our method, i.e., LR optimised by running the

usual optimisation process for hyperparameter 𝐶 .

Figure 2 reports the experimental results we have obtained, displayed in terms of accuracy (on

the 𝑦 axis) as a function of the number of training documents per author (on the 𝑥 axis), in datasets

IMDB62, PAN2011, and Victorian (each corresponding to a different column), at varying number

of authors (each corresponding to a different row). The values for combination (PAN2011,25,50) are
missing since this combination is not feasible, given that in PAN2011 there are fewer than 50 authors

(25 for the closed-set setting and 25 for the open-set setting) with at least 50 training documents

each. Coloured dots each represent an average result across 10 experiments, while the colour band

frontiers indicate ± one standard deviation from the mean. Table 2 reports the results for the arXiv
dataset.

The results clearly indicate that the DV-based variants perform well; of the two methods that

achieve SAV by running AA on both documents (i.e., the DV-2xAA and STD-2xAA methods), the

DV-based method is always better or much better than the standard vector-based method, and the

same happens of the two non-AA-based methods. The top-performing method is unquestionably

DV-2xAA, which always outperforms (often by a very large margin) all others, for all numbers𝑚

of authors and for all numbers 𝑞 of training examples per author. As for the reason why DV-2xAA

outperforms DV-Bin, we conjecture that this may happen because the Lazy AA method uses only

evidence conveyed by few relevant training documents (the 𝑘 documents most similar to the test

document, for both test documents), thus filtering out other less relevant documents; this is in

keeping with the fact that methods based on nearest neighbours, as our DV-2xAA method, always

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

Diff-Vectors for Authorship Analysis 1:17

50

60

70

80

90

ac
c

dataset = imdb62 dataset = pan2011

n_authors =
 5

dataset = victorian

50

60

70

80

90

ac
c

n_authors =
 10

50

60

70

80

90

ac
c

n_authors =
 15

50

60

70

80

90

ac
c

n_authors =
 20

10 20 30 40 50
docs_by_author

50

60

70

80

90

ac
c

10 20 30 40 50
docs_by_author

10 20 30 40 50
docs_by_author

n_authors =
 25

method
DV-Bin
DV-2xAA
STD-CosDist
STD-2xAA

Fig. 2. Intrinsic evaluation of DVs: results on closed-set SAV, using vanilla accuracy (on the 𝑦 axis) as the
evaluation measure on datasets IMDB62, PAN2011, and Victorian.

pick, during their parameter optimisation phase, values of 𝑘 that are much smaller than the entire

size of the training set.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

1:18 Corbara, Moreo, Sebastiani

mean std ttest

DV-Bin .756 0.017

DV-2xAA .803 0.025

STD-CosDist .629 0.022

STD-2xAA .646 0.014

Table 2. Intrinsic evaluation of DVs: results on closed-set SAV, using vanilla accuracy as the evaluation
measure on dataset arXiv. Boldface indicates the best method. Symbols * and ** denote the method (if any)
whose score is not statistically significantly different from the best one at 𝛼 = 0.05 (*) or at 𝛼 = 0.001 (**)
according to a paired sample, two-tailed t-test. No symbols * and ** appear in this particular table since all
differences are statistically significant.

All algorithms obviously improve their performance as the number of documents per author

increases, with the sole exception of STD-CosDist. This latter fact might indicate that the optimal

distance threshold that STD-CosDist finds is fairly stable, and is well estimated even by using few

training data. However, it seems clear from these results that distances alone do not carry as much

information as DVs do.

Figure 3 shows the distribution of Pr(Same|𝑥 ′, 𝑥 ′′) values for Same and Different pairs that
STD-CosDist and DV-Bin compute. For this experiment we have set𝑚 = 20 and 𝑞 = 50 for all

datasets except for arXiv, where we have set𝑚 = 50 and used all the documents written by the 50

authors. (Note that the “2xAA” variants do not compute a single posterior probability and are thus

not amenable to a similar analysis.) The STD-CosDist method manages to separate the posteriors of

the Same and Different pairs to some extent in the IMDB62 and Victorian datasets, but it fails to
separate them well in PAN2011 and arXiv. Interestingly enough, the posteriors generated by STD-

CosDist are close to being normally distributed, both for the Same pairs and for the Different pairs.
Things are very different for the DV-Bin method, which tends to generate much more polarised

scores (i.e., separate the positives from the negatives much better), placing most of the density

mass around 0 for Different pairs and around 1 for Same pairs, which is indicative of a very good

performance. Still, the score distribution generated for Victorian and, especially, for PAN2011,
reveal that the DV-Bin method still has room for improvement.

4.4.2 Experiments on open-set SAV. In the open-set SAV experiments, there is no intersection

between the set of𝑚 authors that we draw to compose the test set and the set of𝑚 authors observed

during training. This aspect automatically rules out any attempt to perform SAV via authorship

attribution (i.e., DV-2xAA); for this reason, in this setting the only DV-based method we test is

DV-Bin. The baseline systems we consider are:

• STD-CosDist: This is the same distance-based method that we have used in the closed-set

SAV experiments. In this case the method is constrained to learn the optimal threshold from

authors different from those in the test set.

• Impostors: This is a method developed by Koppel and Winter [38]. We use our own imple-

mentation of the “blogger’s” variant, which had proved superior to others in the experiments

of [38] and amounts to using documents from the same domain (blogs in the original authors’

experiments, documents from the training set in our case) as the impostors candidates. We

use cosine as the distance function since in our experiments we have found it to consistently

deliver better results than the “minmax” criterion (the similarity function of choice in [38]).

We set parameter 𝐼 (the number of impostor candidates) to 50 instead of 250 (which was

found to work well by Koppel and Winter [38]) since our training sets are much smaller

than those they considered (sticking to𝑚 = 250 would basically result in a random choice

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

Diff-Vectors for Authorship Analysis 1:19

I
M
D
B
6
2

STD-CosDist DV-Bin

P
a
n
2
0
1
1

STD-CosDist DV-Bin

V
i
c
t
o
r
i
a
n

STD-CosDist DV-Bin

a
r
X
i
v

STD-CosDist DV-Bin

Fig. 3. Distribution of Pr(Same|𝑥 ′, 𝑥 ′′) values for Same and Different pairs as computed by STD-DistCos
(first column) and DV-Bin (second column).

of impostor candidates); following [38], the rest of the parameter values we use are 𝑖 = 10

(number of impostors) and 𝑘 = 100 (number of bagging trials). Also following [38], we opti-

mise parameter 𝜎∗
(the decision threshold) on a validation set. Note that we have not used

this baseline method in the closed-set SAV experiments, since in that case the “impostors”

cannot be created.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

1:20 Corbara, Moreo, Sebastiani

50

55

60

65

70

75

80

ac
c

dataset = imdb62 dataset = pan2011

n_authors =
 5

dataset = victorian

50

55

60

65

70

75

80

ac
c

n_authors =
 10

50

55

60

65

70

75

80

ac
c

n_authors =
 15

50

55

60

65

70

75

80

ac
c

n_authors =
 20

10 20 30 40 50
docs_by_author

50

55

60

65

70

75

80

ac
c

10 20 30 40 50
docs_by_author

10 20 30 40 50
docs_by_author

n_authors =
 25

method
DV-Bin
STD-CosDist
Impostors

Fig. 4. Intrinsic evaluation of DVs: results on open-set SAV, using vanilla accuracy (on the 𝑦 axis) as the
evaluation measure on datasets IMDB62, PAN2011, and Victorian.

Figure 4 displays the experimental results we have obtained on IMDB62, PAN2011, and Victorian,
while Table 3 reports the results obtained for the arXiv dataset.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

Diff-Vectors for Authorship Analysis 1:21

mean std ttest

DV-Bin .663 0.020

STD-CosDist .661 0.019 **

Impostors .642 0.025 **

Table 3. Intrinsic evaluation of DVs: results on open-set SAV, using vanilla accuracy as the evaluation measure
on dataset arXiv. The notational conventions are the same as in Table 2.

There is no clear winner in the light of these results. DV-Bin seems to perform best in IMDB62,
especially when the number of authors increases; all methods seem to perform comparably in

PAN2011 and arXiv, and STD-CosDist seems to perform slightly better in Victorian. Somehow

surprisingly, the Impostors method seems not to take advantage of the increase in the number of

documents per author, likely because the number of actual impostors (𝑖 = 10) is set in advance and

thus the method is indifferent to variations in 𝑞. DV-Bin tends to perform poorly when the number

of documents per author is very small (i.e., 10); this may be explained by the fact that the number of

Same pairs that can be generated from 10 elements is relatively small. Concerning STD-CosDist, it

proves a fairly stable method, as in the closed-set scenario. PAN2011 proves the hardest dataset here,
with all methods performing only marginally better than a random classifier (which would obtain

an expected accuracy of 0.50). Regarding the arXiv dataset, DV-Bin performs best on average, but

the t-test reveals that this superiority is not significant from a statistical point of view.

Summing up, there is no strong enough empirical evidence to claim that the DV-Bin method

outperforms Impostors in open-set SAV. However, there are some technical reasons why one should

prefer the DV-Bin method to the Impostors method. The first concerns its efficiency. Impostors is a

lazy method, meaning that it has no offline training phase, i.e., all inductive inference is carried out

in the classification phase, and the workload that a single test pair entails is significant, since it

involves computing the similarity between the test document and each training document, and

computing 𝑘 rounds of bagging for each impostor and for each element in the pair. Conversely, once

trained, classifying an unlabelled pair using Diff-Vectors comes down to computing a simple linear

combination of feature differences.
23
The second reason concerns its applicability. By definition,

the Impostors method cannot be used, as observed above, in closed-set SAV and, more generally, in

SAV settings in which documents written by any of the authors of the test pair are observed in

training. The reason is that the method would likely consider training documents by one of the test

authors as candidate impostors (since these training documents are expected to be more similar to

the test document), and thus the test author could wrongly be taken for an impostor of herself.

Figure 5 shows the distribution of the decision scores (i.e., the posteriors Pr(Same|𝑥 ′, 𝑥 ′′)) for
Same pairs and Different pairs that Impostors and Diff-Vectors compute. As for closed-set SAV, we

set𝑚 = 20 and 𝑞 = 50 for all datasets except arXiv, for which we instead set𝑚 = 50 and keep all

documents per author. Recall that, in our open-set setting,𝑚 specifies both the number of authors

involved in the training set and the number of authors involved in test (e.g., in the case of arXiv,
we are using the entire dataset since there are 100 distinct authors). For ease of visualisation, we

report the score values according to a logarithmic scale.

The Impostors method produces decision scores which tend to be very close to 0. The dashed

vertical line indicates the decision threshold found optimal in the validation phase; this threshold

23
Of course, it is fair to mention that the Impostors method incurs no cost for training. But this only applies if the value of

the parameter 𝜎∗
is hard-wired. In practice, the optimal 𝜎∗

has to be estimated in a validation phase, which amounts to

using a training set to perform repeated rounds of tests which, as indicated above, require a considerable computational

effort.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

1:22 Corbara, Moreo, Sebastiani

I
M
D
B
6
2

Impostors DV-Bin

P
a
n
2
0
1
1

Impostors DV-Bin

V
i
c
t
o
r
i
a
n

Impostors DV-Bin

a
r
X
i
v

Impostors DV-Bin

Fig. 5. Distribution of decision scores for positive and negative (i.e., Same and Different) pairs as computed
by the Impostors method (1st column; note the log scale) and by the DV-Bin method (2nd column).

is 𝜎∗ = 0.005 in all cases but in arXiv, where 𝜎∗ = 0.01 worked better. Note that this threshold

succeeds in placing most of the negative scores below it, but still misclassifies many positives.

Particularly, in PAN2011 and arXiv it fails to push many of the positive scores beyond the decision

threshold.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

Diff-Vectors for Authorship Analysis 1:23

The DV-Bin method instead succeeds at polarising the decision scores of Same and Different
pairs in IMDB62 and arXiv, although it fails to allocate most of the negative mass below the 0.5

threshold in Victorian and, to a greater extent, in PAN2011.
Overall, as clear from a simple visual inspection, the DV-Bin method is better than the Impostors

method at correctly separating the scores of the Same pairs from those of the Different pairs on
each of our four datasets.

4.5 Extrinsic evaluation of Diff-Vectors
Our “extrinsic” evaluation of DVs consists of closed-set AA experiments. We do not run experiments

for AV since, as discussed in Section 3.3, each of our AA experiments is also a set of𝑚AV experiments,

and can be evaluated as such.

4.5.1 The AA results. At the core of our AA methods is a SAV classifier that operates on pairs of

documents. Given a test document 𝑥 , attribution for it is performed by applying a combination rule

to the posterior probabilities generated for pairs of documents consisting of the test document 𝑥

and a training document 𝑥 ′. In particular, we explore:

• Lazy AA: the lazy combination rule inspired by 𝑘-NN discussed in Section 3.2.1.

• Stacked AA: the linear combination rule inspired by stacked generalisation discussed in

Section 3.2.2.

In these experiments we consider a set of authors A = {𝐴1, . . . , 𝐴𝑚}, with𝑚 > 2, each one having

𝑞 training documents. Given a test setU, the method is asked to attribute each test document to

one of the authors in A, in a single-label multiclass fashion.

We investigate the impact on AA accuracy of the number𝑚 of authors and the number 𝑞 of

documents per author. We let𝑚 take values in the set {5, 10, 15, 20, 25} as before, and we let 𝑞 take

values in the set {5, 10, ..., 45, 50}.24 As in Section 4.4, and for analogous reasons, the experiments

are different for the arXiv dataset, in which the above fine-grained exploration is not possible. For

both Lazy AA and Stacked AA, we use DV-Bin as the underlying SAV mechanism.

In this case, instead of vanilla accuracy we use 𝐹1 as the evaluation measure, since not all our

datasets are balanced, and since vanilla accuracy is, differently from 𝐹1, a notoriously bad measure

for working with imbalanced datasets. For all datasets we report the values of macro-averaged 𝐹1,

i.e., 𝐹1 averaged across the authors in A; in the case of the arXiv dataset, we also report micro-

averaged 𝐹1 (i.e., 𝐹1 as obtained on a global contingency table generated by all the classification

predictions for all authors), since this is the only imbalanced dataset of the lot (and since micro-

averages would coincide with macro-averages in the perfectly balanced datasets IMDB62, PAN2011,
and Victorian). All results are reported as averages across 10 runs that use different random seeds.

As our baseline we consider STD-AA, a single-label multiclass classifier trained to distinguish

among the𝑚 classes from the observation of “standard” vectors of features. Given a test document,

the classifier returns the author which obtains the maximum posterior probability.

Figure 6 displays the experimental results we have obtained for the IMDB62, PAN2011, and
Victorian datasets (for the moment being let us disregard the curves for STD-Bin, on which we

will comment later), while the first three rows of Table 4 report the results obtained on the arXiv
dataset.

These results show the drastic superiority of DVs over standard vectors for AA. Only for𝑞 = 5, and

infrequently for 𝑞 = 10, does STD achieve (marginally) better results than the DVs-based variants;

24
The reason why we explore a finer-grain grid for 𝑞 with respect to our previously discussed SAV experiments is that in

this case we are not considering Impostors as a competitor, and thus these experiments are considerably faster to run. Note

also that, differently from our SAV experiments, we here report experiments also for the combination (PAN2011,25,50) since
here we are only considering the closed-set setting, and since in PAN2011 there are at least 25 authors with 50 documents.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

1:24 Corbara, Moreo, Sebastiani

0.0

0.2

0.4

0.6

0.8

1.0

m
a
cr

o
-F

1

dataset = imdb62 dataset = pan2011

n
_a

u
th

o
rs =

 5

dataset = victorian

0.0

0.2

0.4

0.6

0.8

1.0

m
a
cr

o
-F

1

n
_a

u
th

o
rs =

 1
0

0.0

0.2

0.4

0.6

0.8

1.0

m
a
cr

o
-F

1

n
_a

u
th

o
rs =

 1
5

0.0

0.2

0.4

0.6

0.8

1.0

m
a
cr

o
-F

1

n
_a

u
th

o
rs =

 2
0

10 20 30 40 50
docs_by_author

0.0

0.2

0.4

0.6

0.8

1.0

m
a
cr

o
-F

1

10 20 30 40 50
docs_by_author

10 20 30 40 50
docs_by_author

n
_a

u
th

o
rs =

 2
5

method
Lazy AA

Stacked AA

STD AA

STD-Bin

Fig. 6. Extrinsic evaluation of DVs: results on closed-set AA in terms of 𝐹1 for the IMDB62, PAN2011, and
Victorian datasets.

in this case, the reason might have to do with the fact that low values of 𝑞 result in fewer Same
pairs (e.g., for 𝑞 = 5 there are only 10 unordered pairs), which might lead to subobptimal accuracy

for the underlying SAV methods. Regarding our variants, the 𝑘-NN -inspired combination rule

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

Diff-Vectors for Authorship Analysis 1:25

macro-𝐹1 micro-𝐹1
Method mean std ttest mean std ttest

Lazy AA 0.682 0.024 0.676 0.019

Stacked AA 0.639 0.028 0.639 0.024

STD-AA 0.374 0.018 0.405 0.021

STD-Bin 0.235 0.014 — —

Table 4. Extrinsic evaluation of DVs: results on closed-set AA in terms of 𝐹1 for the arXiv dataset. The
notational conventions are the same as for Table 2.

consistently outperforms the linear one in IMDB62 and arXiv, and is slightly better or comparable

in the rest of the cases. All methods understandably benefit from the increase in 𝑞, but DVs seem to

do so at a much greater rate; indeed, the increase in the number of training examples is quadratic

in 𝑞 for the DVs-based variants, while it is linear in 𝑞 for STD.

4.5.2 The AV results. Concerning the AV task, note that macro-averaged 𝐹1 is also the right

measure for evaluating AV; in fact, 𝐹1 as measured on a specific author 𝐴∗
is the right measure

for evaluating AV once 𝐴∗
is considered the candidate author, and macro-averaged 𝐹1 is the right

measure for computing the average performance for all possible choices of 𝐴∗
. As a consequence,

the results reported in Figure 6 and Table 4 also count as an evaluation of the reported methods for

the AV task.

For AV, we add another baseline (which we call STD-Bin), which consists of a binary classifier

trained to distinguish between 𝐴∗
and 𝐴∗

from the observation of “standard” vectors of features; it

is fair to add this baseline since it would be just natural to solve AV by means of a binary classifier,

instead of by means of a multiclass classifier as STD-AA does.

However, the experimental results show STD-Bin to be inferior to STD-AA, as clear from both

Figure 6 and Table 4. This is in keeping with the results of our preliminary experiments (discussed

in Section 3.3) that had convinced us to abandon the idea of performing AV via Lazy AV and Stacked

AV, in favour of versions of Lazy AA and Stacked AA in which we attribute document 𝑥 to 𝐴∗
if

the AA algorithm does so and we attribute 𝑥 to 𝐴∗
if the AA algorithm attributes it to an author

𝐴𝑧 different from 𝐴. Concerning the likely reasons why this happens, the same considerations we

made in Section 3.3 apply.

In sum, given that STD-Bin is not a serious contender, the same considerations on the superiority

of DV-based methods over standard methods that we had made in Section 4.5.1 for AA also apply

to AV.

4.6 Efficiency
The improvements in performance obtained by DV-based methods with respect to methods based

on standard vectorial representations can be attributed to the increase in the number of training

examples resulting from pairing documents. However, this can be expected to come at a computa-

tional cost. In this section we compare the actual cost of DV-based methods with that of methods

based on standard representations.

4.6.1 Efficiency analysis. Let 𝑛 = |L| be the number of training documents. Let also assume that

the total cost of training a classifier is bounded by some function 𝑓 on the number 𝑛 of training

documents, a cost which depends on the learning algorithm and its implementation; in other words,

this total cost is 𝑂 (𝑓 (𝑛)), where we can safely assume 𝑓 (𝑛) to grow faster than or equal to 𝑛. (We

take the number of features as constant, which means that this number does not impact our analysis

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

1:26 Corbara, Moreo, Sebastiani

of efficiency.) Let also assume that the classification of a document requires constant time, i.e., is

𝑂 (1).
The cost of training the DV-Bin classifier of Section 3.1 comes down to the cost of generating the

𝑛(𝑛 − 1)/2 pairs, which is 𝑂 (𝑛2), plus the cost of training a classifier using 𝑛(𝑛 − 1)/2 DVs, which
is 𝑂 (𝑓 (𝑛2)). In practice, and in order to keep the computational burden under reasonable bounds,

we only generate a fixed number of examples (i.e., we avoid generating all pairs first and discarding

some of them later). Let 𝑛 =𝑚𝑞, with𝑚 the number of authors and 𝑞 the number of documents

per author, as before; we generate all𝑚𝑞(𝑞 − 1)/2 pairs of type Same and as many pairs of type

Different, thus ending up with𝑚𝑞(𝑞− 1) documents, which has a cost𝑂 (𝑚𝑞2) = 𝑂 (𝑛𝑞), plus, again,
the cost of training the classifier from the𝑚𝑞(𝑞 − 1) documents, which is 𝑂 (𝑓 (𝑛𝑞)); since we have
assumed 𝑓 (𝑛) to grow faster than or equal to 𝑛, the total cost of generating a DV-Bin classifier

is 𝑂 (𝑓 (𝑛𝑞)). At classification time we only need to compute the absolute difference between two

vectors and invoke the classifier; for most classifiers (and for LR in particular) this cost can be

considered constant, i.e., 𝑂 (1).
As a lazy algorithm, Lazy AA does not involve any real training phase. However, it seeks for the

optimal value of 𝑘 , and this entails pre-computing a matrix of distances, which is done only once

(and is𝑂 (𝑛2)), plus sorting, for each of the𝑚 authors and for each of the 𝑛 training documents (see

Equation 8), the 𝑞 training documents by this author (which is 𝑂 (𝑞 log𝑞)). Altogether, this entails
a total cost of 𝑂 (𝑛2 +𝑚𝑛𝑞 log𝑞) = 𝑂 (𝑛2 log𝑞). At classification time (for both the AA and the AV

settings), we only need to sort, for each of the𝑚 training authors, the 𝑞 training documents by this

author, which means that this is 𝑂 (𝑚𝑞 log𝑞) = 𝑂 (𝑛 log𝑞).
Concerning Stacked AA, training the system entails (i) training a DV-Bin classifier, which, as

argued above, has a cost 𝑂 (𝑓 (𝑛𝑞)); (ii) creating the projections 𝜙 (𝑥) for each of the 𝑛 training

documents, which has a cost𝑂 (𝑛2) (since creating one such projection has a cost𝑂 (𝑛)); (iii) training
the metaclassifier on the 𝑛 vectors 𝜙 (𝑥) thus generated, which has a cost 𝑂 (𝑓 (𝑛)); the total cost
of training the system is thus the larger of 𝑂 (𝑛2) and 𝑂 (𝑓 (𝑛𝑞)). At classification time we need to

generate the representation 𝜙 (𝑥) of the test document, which has a cost 𝑂 (𝑛), and to invoke the

meta-classifier, which we can assume to require constant time.

The Impostors method does not properly carry out a training phase, but incurs the cost of

optimising the 𝜎 parameter, which consists of carrying out 𝑡 rounds of test, with 𝑡 a user-defined

parameter. The computational cost of testing whether two documents have been written by the

same author or not entails computing, for each of the 𝑛 training instances, the similarity with

each test document, which is 𝑂 (𝑛), plus sorting by similarity in order to choose the “impostors”,

which is 𝑂 (𝑛 log𝑛); this means that the total cost is 𝑂 (𝑛 log𝑛). Impostors then performs 𝑘 rounds

of bagging trials with respect to each of the 𝑖 impostors, which adds a cost 𝑂 (𝑘𝑖) if we assume the

similarity function to be computed in constant time.

Table 5 summarizes all the costs involved.

Tasks Training Test

STD AV, AA 𝑂 (𝑓 (𝑛)) 𝑂 (1)
DVs SAV 𝑂 (𝑓 (𝑛𝑞)) 𝑂 (1)

Lazy AA AV, AA 𝑂 (𝑛2 log𝑞) 𝑂 (𝑛 log𝑞)
Stacked AA AV, AA max{𝑂 (𝑛2),𝑂 (𝑓 (𝑛𝑞))} 𝑂 (𝑛)
Impostors SAV 𝑂 (𝑛 log𝑛) 𝑂 (𝑛 log𝑛)

Table 5. Computational cost of a number of algorithms discussed in this paper.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

Diff-Vectors for Authorship Analysis 1:27

|L| |LP | |U|
IMDB62 1,000 49,000 6,000

PAN2011 1,000 49,000 463

Victorian 1,000 49,000 7,937

arXiv-SAV 518 5,784 255

arXiv-AA 1,028 11,106 441

Table 6. Size of the datasets used for the efficiency test.

IMDB62 PAN2011 Victorian arXiv-SAV
Train Test Train Test Train Test Train Test

DV-Bin 438.3 1.4 173.7 0.7 870.2 2.5 49.8 0.3

STD-CosDist 6.7 0.3 3.5 0.8 11.9 0.3 0.7 0.2
Impostors 271.9 625.1 247.6 455.7 283.2 651.3 225.2 224.6

Table 7. Training and testing times (in seconds) clocked when solving the SAV task. Boldface and underlining
indicate the fastest and slowest methods for each dataset, respectively.

4.6.2 Timings. As for the experiments reported in Figures 3 and 5, we report actual timings

clocked for𝑚 = 20 and 𝑞 = 50 in the case of the IMDB62, PAN2011, and Victorian datasets, and for
the entire dataset in the case of arXiv. The variables that influence the analysis include the number

of training documents (|L|), the number of pairs generated by DVs (|LP |), and the number of test

documents (|U|). Recall that |LP | depends on the number of Same pairs that can be generated,

which is fixed and amounts to 20(50 · 49)/2=24,500 for IMDB62, PAN2011, and Victorian, and
which is variable and depends on the random split (we report the value averaged across 10 runs)

for arXiv. The values are summarised in Table 6 for convenience. Recall that the number of test

pairs in SAV tasks is fixed for all datasets and is equal to 1,000. Note that the arXiv dataset is split

differently for SAV and AA since, although we used the entire dataset in both tasks, in the former

we held half the authors out for composing the open set. All times refer to computations carried out

on the same machine, equipped with a 12-core processor Intel Core i7-4930K at 3.40GHz with 32 GB

of RAM, under Ubuntu 18.04. All methods run on CPU and are implemented using scikit-learn
and the SciPy stack. We have parallelised all parallelisable steps, both in training and test, for all

algorithms.

Table 7 reports the average time each method requires to complete the SAV task, both in terms of

training time and testing time for each dataset. The method that uses standard vectors to compute

the cosine distance (STD-CosDist) is much faster than any competing method, both in terms of

training times and test times. This is due to the fact that cosine can be computed very quickly, and

that the classifier operates on one single feature. At training time, both DV-Bin and Impostors

are computationally much more expensive, with neither one being clearly better than the other.

However, at classification time DV-Bin is much faster than Impostors, and costs no more than a

few seconds to accomplish the 1,000 SAV computations, comparably to STD-CosDist. Impostors,

on the contrary, requires much more time, and its testing times are higher than its training times.

(Recall that, for the Impostors method, by “training” we mean the search for the optimal value of

parameter 𝜎 by using the training set, since Impostors does not properly perform any training.)

Table 8 reports the average time each method requires to complete the AA Task. It is immediately

evident that, at least on IMDB62, PAN2011 and Victorian, the two most expensive methods are the

ones based on DVs, both at training time and at classification time (neither one is systematically

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

1:28 Corbara, Moreo, Sebastiani

better or worse than the other, though); the STD method is thus almost always the fastest. The

reason for this high computational cost of the DV-based methods is that, despite the fact that

DV-Bin proved very fast at classification time in SAV, Lazy AA and Stacked AA invoke DV-Bin

many times, i.e., require computing, for all training documents (in the training phase) and for all

test documents (in the testing phase), the similarity (viewed as a posterior probability computed by

DV-Bin) with each training document. This has an important impact both in the training phase

and in the testing phase.

Although the increase in training time with respect to the SAV task is not marked, the penalty

paid during the testing phase is instead evident; for arXiv, training times of the DV-based methods

increase substantially with respect to those seen for the SAV task, which is due to the fact that in

this case the training set is twice as large as that for SAV – see Table 6). In some cases (IMDB62 and

Victorian) testing times even surpass training times; this can be explained by the fact that those

datasets contain the largest tests sets (6,000 and 7,937 instances, respectively), which means that

computing the matrix of posterior probabilities becomes especially costly.

Somehow surprisingly, though, the variants based on DV-Bin were trained faster than STD

in arXiv; the reason for this lies in the number of authors involved, which in this dataset is the

largest, i.e., 𝑚 = 100. STD thus needs to train 100 binary classifiers on a document-by-feature

matrix of 𝑂 (105) dimensions, while DV-based variants need to train only one binary classifier

in order to discern between Same or Different; note also that in this case the number of pairs

generated is comparatively smaller than for other datasets. The rest of the work that DV-based

methods undertake is on a matrix of posterior probabilities that has just |L|=1,028 dimensions

in the case of arXiv; training 100 binary classifiers in Stacked AA is thus much faster than with

STD. To conclude, DVs bring about substantially higher computational costs than the “standard”

representations, both at training time and at test time.

4.6.3 Are the costs incurred by DVs tolerable? The conclusions reached in the previous section

bring up the issue whether we should look for simplifications of our algorithms that cut down on

training and/or classification time, maybe at the cost of some reduction in accuracy.

One example is the use of StackedAA for performingAV. In the current setting, in order to perform

AV (i.e., to choose, for a disputed document x, between a candidate author𝐴𝑖 and its complement𝐴𝑖),

(i) we invoke Stacked AA in order to decide who among the authors of A = {𝐴1, . . . , 𝐴𝑖 , . . . , 𝐴𝑚} is
the true author of x, and (ii) we assign x to 𝐴𝑖 if Stacked AA predicts 𝐴𝑖 to be the author of x and to

𝐴𝑖 if Stacked AA predicts an author in {𝐴1, . . . , 𝐴𝑖−1, 𝐴𝑖+1, . . . , 𝐴𝑚} to be the author of x. In other

words, in order to solve the (binary) AV problem we first invoke a multiclass algorithm (Stacked

AA) and then convert its multiclass decision into a binary decision. A much more efficient way

would be to use Stacked AV (see Section 3.3 for details), which directly solves a binary problem

by means of a binary algorithm. However, as discussed in Section 3.3, preliminary experiments

that we had run had shown this “direct” method to be less accurate than the “indirect” method we

adopt. Other simplifications of Lazy AA or Stacked AA that we have come up with are, as in the

case above, more efficient but less accurate.

As often in classification, there is thus a tradeoff between efficiency and accuracy. We have

decided to stick to our methods, in the forms described in Sections 3.2.1 and 3.2.2, and to avoid

the simplifications discussed above, because we think that, in authorship identification, accuracy

should not be compromised on the altar of efficiency. There are three reasons for this.

The first reason is that, in real authorship identification cases, increased classification times are

usually tolerable, because typical such cases do not involve many unlabelled documents. Indeed, there
is often a single unlabelled document, of extremely high value, that we need to make a prediction

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

Diff-Vectors for Authorship Analysis 1:29

IMDB62 PAN2011 Victorian arXiv-AA
Train Test Train Test Train Test Train Test

Lazy AA 460.2 955.5 228.3 61.8 917.4 1232.6 145.0 66.1

Stacked AA 480.3 942.8 267.3 61.2 955.4 1235.9 250.4 66.5

STD-AA 156.0 0.2 157.6 0.1 202.9 0.5 483.8 0.1
Table 8. Training and testing times (in seconds) clocked for solving the AA task. Boldface and underlining
indicate the fastest and slowest methods for each dataset, respectively.

for (e.g., a text of literary value [5, 11, 44, 50, 55], or an anonymous letter), and in this case issuing

a prediction in milliseconds or in minutes does not make a big difference.

The second is that the decisions of an authorship identifier are often of paramount importance

(typical examples are its applications in cultural heritage, in cybersecurity, and in digital forensics),

so no user would prefer to increase the risk of a misidentification for the sake of efficiency.

The third reason is that classifier training is performed once for all, and the times reported

in Tables 7 and 8 are plausible for most application contexts. Note also that, in most authorship

analysis applications, training documents are scarce, which means that scenarios in which the

training documents are many more than in our datasets (which would mean training times higher

than those reported in Tables 7 and 8) are unfortunately infrequent.

All this indicates that reduced (training and/or classification) efficiency is not a critical issue in

authorship identification, and that this reduced efficiency is tolerable if it leads to higher accuracy.

4.7 Can we use Diff-Vectors for “natively binary” AV problems?
So far, we have tested DVs in situations in which, at training time, we assume we know who among

the 𝑛 authors in A has written which training documents. That is, we have recast SAV, AA, and AV

in terms of a multiclass task. In this section we turn to analyse experimentally the suitability of DVs

for AV in a different situation, i.e., one in which all we know about a certain training document is

whether it has been written by the author of interest or not, that is, whether this document is a

positive example or a negative example with respect to a binary classification scheme.

To this aim, we randomly draw𝑚 = 10 authors for each dataset, and perform, for each author,

an AV experiment in which we take this author as the positive class and the rest of the authors

(grouped together) as the negative class, and where we employ an AA method (i.e., one that was

originally devised for tackling arbitrary values of 𝑛) for the particular case of 𝑛 = 2. That is, given

A = {𝐴1, 𝐴2, . . . , 𝐴10}, we generate a binary setting A′
𝑖 = {𝐴𝑖 , 𝐴𝑖 }, and we do this for all authors

by letting 𝑖 vary in the range {1, . . . , 10}. In each of these experiments, we take 𝑞 = 50 documents

for each author in A = {𝐴1, 𝐴2, . . . , 𝐴10} in all datasets but in arXiv, for which we take all the

documents available for the author. We repeat the entire process 10 times with different random

seeds and report results averaged across all experiments. The results reported in Table 9 show that,

in such a setting, DVs do not bring about any benefit.

IMDb62 PAN2011 Victorian arXiv
mean std ttest mean std ttest mean std ttest mean std ttest

Lazy AA 0.287 0.044 0.166 0.019 0.205 0.010 0.234 0.037

Stacked AA 0.664 0.062 ** 0.278 0.056 ** 0.619 0.044 ** 0.365 0.075 **

STD-Bin 0.683 0.045 0.285 0.028 0.639 0.042 0.432 0.097

Table 9. Results, in terms of macro-𝐹1, obtained by applying AA methods to “native” AV problems.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

1:30 Corbara, Moreo, Sebastiani

This was somehow to be expected, since DVs bring useful additional evidence to the learning

process for AV only when we have access to the entire labelling information, i.e., when author

𝐴 𝑗 can help improve classification for author 𝐴𝑖 indirectly, by strengthening the internal SAV

function with additional instances of the class Same that come from documents written by 𝐴 𝑗 (see

Section 2.3). This is not possible in a pure binary setting, since the negative class is not homogeneous
(i.e., it does not represent the production of one single author, but the production of many authors

that have been mixed together), and thus cannot be leveraged to generate positive instances for the

class Same. For similar reasons, we cannot generate instances of Different by simply picking two

documents from the negative class, since those could have been written by the same (unknown)

author. What we are left with, thus, is the possibility to generate 𝑞(𝑞 − 1)/2 instances of Same
only from pairs of instances from the positive class 𝐴𝑖 , and 𝑞

2 (𝑚 − 1) instances of Different by

generating pairs in which one document has been written by 𝐴𝑖 and the other by 𝐴𝑖 . Since the

positive evidence for the surrogate SAV problem (class Same) comes exclusively from the positive

class of the AV problem (author𝐴𝑖), there is no real information gain with respect to using standard

representations. Indeed, we observe a degradation in performance of both variants with respect to

the adoption of “standard” vector representations; this degradation is not statistically significant

for the stacking variant, though.

For this reason, we conclude that, in AV settings, DV-based methods should be used only in

situations in which we have access to the entire class label information. Luckily enough, access

to the entire class label information is something that characterises most scenarios in which AV

is to be applied since, when investigating whether document 𝑥 is indeed by author 𝐴∗
or not, it

makes sense to generate a training dataset in which negative instances are known to be by authors

“close” (in a stylistic sense) to 𝐴∗
, and we can know this only by knowing who the author of each

document is.

4.8 Results with a different learner
In this section we discuss some additional experiments that we have run in order to check whether

the DV-based methods are superior to methods based on standard vectors also when using a

learning algorithm different from logistic regression. For these experiments, in which we compare

the Stacked AA DV-based method with the “standard” STD-AA method (see Section 4.5.1), we

have thus switched to support vector machines (SVMs), since they are frequently used in the

authorship analysis field (see e.g., [12, 13, 19, 31, 56, 62]), where they have usually shown very good

performance. Similarly to logistic regression, we use the implementation of (linear) SVMs available

from the scikit-learn library;
25

as customary in the text learning field, we use a linear kernel.

In order to speed up the computation we simply rely on default hyper-parameters and perform

dimensionality reduction using “lightweight random indexing” [41], projecting the original space

onto a 1,000-dimensional space. This attempt at reducing the computational cost of the process

is justified by the fact that SVMs are not probabilistic classifiers, and their outputs need thus

be converted into posterior probabilities; this conversion is attained by means of “calibration”, a

process that incurs the additional cost of performing model selection via cross-validation. For this,

we set the number of folds to 3 and adopt Platt scaling as our calibration method.

Themacro-𝐹1 andmicro-𝐹1 results reported in Table 10 are obtained by running the corresponding

setup for 𝑚 = 25 randomly chosen authors, for which we randomly choose 𝑞 = 50 training

documents per author (except for the arXiv dataset, for which we use all data available). We report

the mean results, along with their standard deviation, across 10 runs performed with different

random seeds.

25
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html

Diff-Vectors for Authorship Analysis 1:31

As evident from Table 10, these results clearly confirm the conclusions that we had drawn from

the logistic regression experiments (see Section 4.5.1), and indicate that the Stacked AA DV-based

method is largely superior to the “standard” STD-AA method; indeed, the former outperforms the

latter on all four datasets and for both evaluation measures, always by a large margin.

As a final note, we recall from Section 4.5.2 that the macro-𝐹1 results of an AA experiment also

count as an evaluation of the tested methods for the AV task, which indicates that, also when using

SVMs as the learning algorithm, DV-based methods are superior not only in terms of AA but also

in terms of AV.

Measure Learner Method IMDB62 PAN2011 Victorian arXiv-AA

Macro-𝐹1

LR

Stacked AA 0.8596 ± 0.0163 0.4754 ± 0.0256 0.7315 ± 0.0131 0.6386 ± 0.0277

STD-AA 0.6365 ± 0.0295 0.2259 ± 0.0161 0.5471 ± 0.0172 0.3741 ± 0.0178

SVMs+LRI

Stacked AA 0.8270 ± 0.0226 0.4313 ± 0.0323 0.6549 ± 0.0276 0.5655 ± 0.0227

STD-AA 0.6213 ± 0.0335 0.2095 ± 0.0263 0.4722 ± 0.1236 0.3177 ± 0.0220

Micro-𝐹1

LR

Stacked AA 0.8599 ± 0.0158 0.5546 ± 0.0331 0.7509 ± 0.0163 0.6395 ± 0.0236

STD-AA 0.6406 ± 0.0286 0.2682 ± 0.0231 0.5795 ± 0.0276 0.4045 ± 0.0213

SVMs+LRI

Stacked AA 0.8233 ± 0.0217 0.5066 ± 0.0376 0.6928 ± 0.0305 0.5889 ± 0.0184

STD-AA 0.6381 ± 0.0307 0.2660 ± 0.0313 0.5183 ± 0.1230 0.3857 ± 0.0198

Table 10. Macro-𝐹1 andmicro-𝐹1 results obtained on the authorship attribution taskwith a different supervised
learning method (SVMs); the logistic regression (LR) results are included for comparison purposes, and are
repeated from Section 4.5.1.

5 RELATEDWORK
In the authorship analysis literature, some example works (starting from Koppel and Winter [38])

in which two or more documents are represented by a single vector have been presented before; the

main difference between those papers and the present one is that none among the former performed

any systematic study, as we instead do, of the implications of the use of these representations. In

the next paragraphs we summarise the major approaches along this line.

As previously mentioned, [38] was the first work in which vectors each representing more than

one document were used in the authorship analysis literature. In this representation, a vector

represented two documents, the label of the vector was either Same or Different, character 4-grams

were used as features, and the value of each feature was the absolute difference between the tf-idf

weights of the feature in the two documents. As mentioned in the introduction, the goal of Koppel

and Winter [38] was to propose a different method (the “impostors” method for SAV), and they

dismiss the DV-based representation as a “simplistic baseline method” [38, p. 179].

Since then, a number of authors started to view the AV task in terms of predicting whether vector

𝑓 (𝑋𝐴∗ , 𝑥) belongs to class Same or to class Different, where 𝑓 (𝑋𝐴∗ , 𝑥) is a vector derived from the

entire set (here represented as 𝑋𝐴∗) of training documents known to be by candidate author𝐴∗
, and

from the document of unknown paternity (here noted as 𝑥). For instance, in [4] vector 𝑓 (𝑋𝐴∗ , 𝑥) is
a vector in which each feature value is the absolute difference between the value of the feature

in 𝑥 and the mean of the values of the feature across the documents in 𝑋𝐴. A slightly different

approach is used in the PRNN method presented by Hosseinia and Mukherjee [24]. They view 𝑋𝐴∗

as a document (generated by the concatenation of all the documents in it), use both this document

and document 𝑥 as input for a parallel neural network composed of an embedding layer and an

RNN layer, and combine the two outputs by computing a vector 𝑓 (𝑋𝐴∗ , 𝑥) consisting of values of
similarity between the two documents. The same work also proposes a different method, called TE,

which is based on a transformation encoder that transforms the vector representing 𝐴∗
into the

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

1:32 Corbara, Moreo, Sebastiani

vector representing 𝑥 , and takes the resulting loss as a measure of similarity; the authors repeat the

process several times using different feature sets, and generate a vector 𝑓 (𝑋𝐴∗ , 𝑥) consisting of the

different similarity values. In a similar vein, in [6] the 𝑓 (𝑋𝐴∗ , 𝑥) vector is composed of 7 similarity

values computed on the char 𝑛-grams of the two documents. Unlike the present work, none of the

above works attempts to tackle the AV and AA tasks by recasting them in terms of SAV.

More recently, [25, 40, 57] tested the use of DVs for the open-set SAV problem at the PAN2021

shared task; in particular, Menta and Garcia-Serrano [40] propose a method that feeds DVs to a

double-channel neural network, where the feature values are the tf-idf weights of character 𝑛-grams

in one channel, and of punctuation marks in the other channel. The outputs of the two channels

are then concatenated in a final series of layers, that ultimately leads to the classification decision.

Finally, we note that the DV-based representations that we have discussed are reminiscent of

ideas that have been independently explored in multilingual text classification. In particular, Moreo

et al. [41] investigate the idea of applying lightweight random projections to the feature space.

Mathematically, a random projection 𝑋𝑅 of a matrix 𝑋 ∈ R𝑛𝑝 , with 𝑛 the number of documents

and 𝑝 the number of features, can be attained by multiplying it with a random matrix 𝑅 ∈ R𝑝𝑟 ,
with 𝑟 ≪ 𝑝 the number of dimensions. The term “lightweight” refers to the fact that the rows

in 𝑅 contain only two non-zero values (-1,+1). The pair-based version LP of a dataset L can be

defined in terms of |𝑅 · 𝑋 |, where 𝑋 ∈ R𝑛𝑝 is our document-by-feature matrix and 𝑅 is instead a

lightweight projection matrix 𝑅𝑟𝑛 , this time with 𝑟 , the number of pairs, much higher than 𝑛; here

| · | represents the element-wise absolute value. Such a projection effectively computes the absolute

difference between two chosen documents.

6 CONCLUSION
In this work we have discussed the implications of the use of Diff-Vectors (DVs) in authorship

identification tasks. A DV is a vector that represents a pair of documents in such a way that the

value of a feature in the DV is the absolute difference between the relative frequencies (or increasing

functions thereof) of the feature in the two documents. DVs were originally introduced by Koppel

and Winter [38], but in that work the authors dismissed DVs as a “simplistic baseline method”;

neither Koppel and Winter [38] nor other authors studied the implications of the use of DVs in

authorship identification. A systematic study of these implications is what this paper describes.

DVs are naturally geared towards solving the “same-author verification” (SAV) task, i.e., the

binary task of deciding whether two documents have been written by the Same (possibly unknown)
author or by Different authors. However, we have shown that both (i) (closed-set) authorship

attribution (the task of predicting who among a given set of candidates is the true author of a given

text), and (ii) authorship verification (the task of predicting whether a given author is or not the

author of a given text), can be recast in terms of SAV; we have presented two original algorithms

(Lazy AA and Stacked AA) that do this for both AA and AV.

In order to compare DV-based authorship identification methods with their counterparts based

on “standard” vectors, we have carried out experiments on four datasets of texts labelled by author

(one of which we have created ourselves and we here make publicly available for the first time) and

representative of different textual genres, lengths, and styles, and on three authorship identification

tasks (SAV, AA, AV). Our experiments have shown that DV-based methods are particularly suited to

some authorship identification tasks and are not suited to others. For instance, the results indicate

that neither standard methods nor DV-based methods clearly outperform each other on open-set

SAV (see Section 4.4.2). Instead, DV-based methods vastly outperform the competition on three

important tasks, i.e., (a) on closed-set SAV (see Section 4.4.1), (b) on closed-set AA (see Section 4.5),

and (c) on AV (see Section 4.5). As we have argued, these benefits derive from the fact that, in many

cases, DV-based methods may exploit more training data than methods based on standard vectors

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

Diff-Vectors for Authorship Analysis 1:33

(see Section 2.3), and that DVs may make training more robust also when the above is not the case

(see Section 2.4).

In future work we would like to study “diff-functions” other than the absolute difference of (a

static, fixed increasing function of) the feature frequencies of the two documents, by testing the

possibility of dynamically learning such functions from data, in the style of [43]. Other aspects worth

exploring include testing DVs in authorship profiling tasks, such as native language identification.

ACKNOWLEDGMENTS
The authors’ work has been supported by the SoBigData++ project, funded by the European

Commission (Grant 871042) under the H2020 Programme INFRAIA-2019-1, by the AI4Media

project, funded by the European Commission (Grant 951911) under the H2020 Programme ICT-

48-2020, and by the SoBigData.it, FAIR and ITSERR projects funded by the Italian Ministry of

University and Research under the NextGenerationEU program. These authors’ opinions do not

necessarily reflect those of the funding agencies.

REFERENCES
[1] Charu C. Aggarwal. 2014. Instance-based learning: A survey. In Data Classification: Algorithms and Applications,

Charu C. Aggarwal (Ed.). CRC Press, London, UK, 157–185.

[2] Shlomo Argamon and Patrick Juola. 2011. Overview of the International Authorship Identification Competition at PAN

2011. In Working Notes of the 2011 Conference and Labs of the Evaluation Forum (CLEF 2011). Amsterdam, NL.

[3] Shlomo Argamon, Moshe Koppel, James W. Pennebaker, and Jonathan Schler. 2009. Automatically profiling the author

of an anonymous text. Commun. ACM 52, 2 (2009), 119–123. DOI:http://dx.doi.org/10.1145/1461928.1461959
[4] Alberto Bartoli, Alex Dagri, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao. 2015. An author verification approach

based on differential features. InWorking Notes of the 2015 Conference and Labs of the Evaluation Forum (CLEF 2015).
Toulouse, FR.

[5] Dario Benedetto, Mirko Degli Esposti, and Giulio Maspero. 2013. The puzzle of Basil’s Epistula 38: A mathematical

approach to a philological problem. Journal of Quantitative Linguistics 20 (2013), 267–287. DOI:http://dx.doi.org/10.
1080/09296174.2013.830549

[6] Janek Bevendorff, Matthias Hagen, Benno Stein, and Martin Potthast. 2019. Bias analysis and mitigation in the evaluation

of authorship verification. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
(ACL 2019). Firenze, IT, 6301–6306.

[7] Benedikt Boenninghoff, Robert M Nickel, Steffen Zeiler, and Dorothea Kolossa. 2019. Similarity learning for authorship

verification in social media. In Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP 2019). Brighton, UK, 2457–2461.

[8] Daniele Cerra, Mihai Datcu, and Peter Reinartz. 2014. Authorship analysis based on data compression. Pattern Recognition
Letters 42 (2014), 79–84.

[9] Carole E. Chaski. 2005. Who’s at the keyboard? Authorship attribution in digital evidence investigations. International
Journal of Digital Evidence 4, 1 (2005).

[10] Silvia Corbara, Alejandro Moreo, and Fabrizio Sebastiani. 2023. Syllabic quantity patterns as rhythmic features for

Latin authorship attribution. Journal of the Association for Information Science and Technology 74, 1 (2023), 128–141.

DOI:http://dx.doi.org/10.1002/asi.24660
[11] Silvia Corbara, Alejandro Moreo, Fabrizio Sebastiani, and Mirko Tavoni. 2019. The Epistle to Cangrande through the

lens of computational authorship verification. In Proceedings of the 1st International Workshop on Pattern Recognition for
Cultural Heritage (PatReCH 2019). Trento, IT, 148–158. DOI:http://dx.doi.org/10.1007/978-3-030-30754-7_15

[12] Silvia Corbara, Alejandro Moreo, Fabrizio Sebastiani, and Mirko Tavoni. 2022. MedLatinEpi and MedLatinLit: Two

datasets for the computational authorship analysis of medieval Latin texts. ACM Journal of Computing and Cultural
Heritage 15, 3 (2022), 57:1–57:15. DOI:http://dx.doi.org/10.1145/3485822

[13] Joachim Diederich, Jörg Kindermann, Edda Leopold, and Gerhard Paass. 2003. Authorship attribution with support

vector machines. Applied Intelligence 19, 1/2 (2003), 109–123.
[14] Pedro M. Domingos and Michael J. Pazzani. 1996. Beyond independence: Conditions for the optimality of the simple

Bayesian classifier. In Proceedings of the 13th International Conference on Machine Learning (ICML 1996). Bari, IT, 105–112.
[15] Sri Harsha Dumpala, Rupayan Chakraborty, and Sunil K. Kopparapu. 2018. A novel data representation for effective

learning in class imbalanced scenarios. In Proceedings of the 27th International Joint Conference on Artificial Intelligence
(IJCAI 2018). Stockholm, SE, 2100–2106. DOI:http://dx.doi.org/10.24963/ijcai.2018/290

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

http://dx.doi.org/10.1145/1461928.1461959
http://dx.doi.org/10.1080/09296174.2013.830549
http://dx.doi.org/10.1080/09296174.2013.830549
http://dx.doi.org/10.1080/09296174.2013.830549
http://dx.doi.org/10.1002/asi.24660
http://dx.doi.org/10.1007/978-3-030-30754-7_15
http://dx.doi.org/10.1145/3485822
http://dx.doi.org/10.24963/ijcai.2018/290

1:34 Corbara, Moreo, Sebastiani

[16] Maciej Eder. 2011. Style-markers in authorship attribution: A cross-language study of the authorial fingerprint. Studies
in Polish Linguistics 6, 1 (2011), 99–114.

[17] Andrea Esuli, Alejandro Moreo, and Fabrizio Sebastiani. 2019. Funnelling: A new ensemble method for heterogeneous

transfer learning and its application to cross-lingual text classification. ACM Transactions on Information Systems 37, 3
(2019), Article 37. DOI:http://dx.doi.org/https://doi.org/10.1145/3326065

[18] Peter A. Flach. 2017. Classifier calibration. In Encyclopedia of Machine Learning (2nd ed.), Claude Sammut and Geoffrey I.

Webb (Eds.). Springer, Heidelberg, DE, 212–219.

[19] Christopher W. Forstall, Sarah L. Jacobson, and Walter J. Scheirer. 2011. Evidence of intertextuality: Investigating Paul

the Deacon’s Angustae Vitae. Literary and Linguistic Computing 26, 3 (2011), 285–296.

[20] Tim Gollub, Martin Potthast, Anna Beyer, Matthias Busse, Francisco M. Rangel Pardo, Paolo Rosso, Efstathios Sta-

matatos, and Benno Stein. 2013. Recent trends in digital text forensics and its evaluation: Plagiarism detection, author

identification, and author profiling. In Proceedings of the 4th International Conference of the CLEF Initiative (CLEF 2013).
Valencia, ES, 282–302. DOI:http://dx.doi.org/10.1007/978-3-642-40802-1_28

[21] Abdulmecit Gungor. 2018. Benchmarking authorship attribution techniques using over a thousand books by fifty Victorian
era novelists. Master’s thesis. Department of Computer and Information Science, Purdue University, Indianapolis, US.

[22] Yuhong Guo, Russell Greiner, and Dale Schuurmans. 2005. Learning coordination classifiers. In Proceedings of the 19th
International Joint Conference on Artificial Intelligence (IJCAI 05). Edinburgh, UK, 714–721.

[23] Oren Halvani, Lukas Graner, and Inna Vogel. 2018. Authorship verification in the absence of explicit features and

thresholds. In Proceedings of the 40th European Conference on Information Retrieval (ECIR 2018). Grenoble, FR, 454–465.
[24] Marjan Hosseinia and Arjun Mukherjee. 2018. Experiments with neural networks for small and large scale authorship

verification. arXiv preprint arXiv:1803.06456 (2018).
[25] Catherine Ikae. 2021. UniNE at PAN-CLEF 2021: Authorship verification. In Working Notes of the 2021 Conference and

Labs of the Evaluation Forum (CLEF 2021). Bucharest, RO, 1995–2003.
[26] Magdalena Jankowska, Evangelos Milios, and Vlado Keselj. 2014. Author verification using common n-gram profiles of

text documents. In Proceedings of the 25th International Conference on Computational Linguistics (COLING 2014). Dublin,
IE, 387–397.

[27] Patrick Juola. 2006. Authorship attribution. Foundations and Trends in Information Retrieval 1, 3 (2006), 233–334. DOI:
http://dx.doi.org/10.1561/1500000005

[28] Jakub Kabala. 2020. Computational authorship attribution in medieval Latin corpora: The case of the Monk of Lido

(ca. 1101–08) and Gallus Anonymous (ca. 1113–17). Language Resources and Evaluation 54, 1 (2020), 25–56. DOI:
http://dx.doi.org/10.1007/s10579-018-9424-0

[29] Mike Kestemont, Enrique Manjavacas, Ilia Markov, Janek Bevendorff, Matti Wiegmann, Efstathios Stamatatos, Benno

Stein, and Martin Potthast. 2021. Overview of the cross-domain authorship verification task at PAN 2021. In Working
Notes of the 2021 Conference and Labs of the Evaluation Forum (CLEF 2021). Bucharest, RO, 1743–1759.

[30] Mike Kestemont, Sara Moens, and Jeroen Deploige. 2015. Collaborative authorship in the twelfth century: A stylometric

study of Hildegard of Bingen and Guibert of Gembloux. Digital Scholarship in the Humanities 30, 2 (2015), 199–224.
DOI:http://dx.doi.org/10.1093/llc/fqt063

[31] Mike Kestemont, Efstathios Stamatatos, Enrique Manjavacas, Walter Daelemans, Martin Potthast, and Benno Stein.

2019. Overview of the cross-domain authorship attribution task at PAN-2019. In Working Notes of the 2019 Conference
and Labs of the Evaluation Forum (CLEF 2019). Lugano, CH, 1–15.

[32] Mike Kestemont, Michael Tschuggnall, Efstathios Stamatatos, Walter Daelemans, Günther Specht, Benno Stein, and

Martin Potthast. 2018. Overview of the author identification task at PAN-2018: Cross-domain authorship attribution and

style change detection. In Working Notes of the 2018 Conference and Labs of the Evaluation Forum (CLEF 2018). Avignon,
FR, 1–25.

[33] Bryan Klimt and Yiming Yang. 2004. The Enron Corpus: A new dataset for email classification research. In Proceedings
of the 15th European Conference on Machine Learning (ECML 2004). Pisa, IT, 217–226. DOI:http://dx.doi.org/10.1007/
978-3-540-30115-8_22

[34] Moshe Koppel, Shlomo Argamon, and Anat R. Shimoni. 2002. Automatically categorizing written texts by author

gender. Literary and Linguistic Computing 17, 4 (2002), 401–412. DOI:http://dx.doi.org/10.1093/llc/17.4.401
[35] Moshe Koppel and Jonathan Schler. 2004. Authorship verification as a one-class classification problem. In Proceedings

of the 21st International Conference on Machine Learning (ICML 2004). Banff, CA. DOI:http://dx.doi.org/10.1145/1015330.
1015448

[36] Moshe Koppel, Jonathan Schler, and Shlomo Argamon. 2009. Computational methods in authorship attribution. Journal
of the American Society for Information Science and Technology 60, 1 (2009), 9–26. DOI:http://dx.doi.org/10.1002/asi.20961

[37] Moshe Koppel, Jonathan Schler, and Elisheva Bonchek-Dokow. 2007. Measuring differentiability: Unmasking pseudony-

mous authors. Journal of Machine Learning Research 8 (2007), 1261–1276.

[38] Moshe Koppel and Yaron Winter. 2014. Determining if two documents are written by the same author. Journal of the

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

http://dx.doi.org/https://doi.org/10.1145/3326065
http://dx.doi.org/10.1007/978-3-642-40802-1_28
http://dx.doi.org/10.1561/1500000005
http://dx.doi.org/10.1007/s10579-018-9424-0
http://dx.doi.org/10.1093/llc/fqt063
http://dx.doi.org/10.1007/978-3-540-30115-8_22
http://dx.doi.org/10.1007/978-3-540-30115-8_22
http://dx.doi.org/10.1007/978-3-540-30115-8_22
http://dx.doi.org/10.1093/llc/17.4.401
http://dx.doi.org/10.1145/1015330.1015448
http://dx.doi.org/10.1145/1015330.1015448
http://dx.doi.org/10.1145/1015330.1015448
http://dx.doi.org/10.1002/asi.20961

Diff-Vectors for Authorship Analysis 1:35

Association for Information Science and Technology 65, 1 (2014), 178–187. DOI:http://dx.doi.org/10.1002/asi.22954
[39] Samuel Larner. 2014. Forensic authorship analysis and the World Wide Web. Springer, Heidelberg, DE.
[40] Antonio Menta and Ana Garcia-Serrano. 2021. Authorship verification with neural networks via stylometric feature

concatenation. InWorking Notes of the 2021 Conference and Labs of the Evaluation Forum (CLEF 2021). Bucharest, RO.
[41] Alejandro Moreo, Andrea Esuli, and Fabrizio Sebastiani. 2016. Lightweight random indexing for polylingual text

classification. Journal of Artificial Intelligence Research 57 (2016), 151–185. DOI:http://dx.doi.org/10.1613/jair.5194
[42] Alejandro Moreo, Andrea Esuli, and Fabrizio Sebastiani. 2018. Revisiting distributional correspondence indexing: A

Python reimplementation and new experiments. arXiv:1810.09311 [cs.CL]. (2018).

[43] Alejandro Moreo, Andrea Esuli, and Fabrizio Sebastiani. 2020. Learning to weight for text classification. IEEE
Transactions on Knowledge and Data Engineering 32, 2 (2020), 302–316. DOI:http://dx.doi.org/10.1109/TKDE.2018.2883446

[44] Frederick Mosteller and David L. Wallace. 1964. Inference and disputed authorship: The Federalist. Addison-Wesley,

Reading, MA.

[45] Alexandru Niculescu-Mizil and Rich Caruana. 2005a. Obtaining calibrated probabilities from boosting. In Proceedings
of the 21st Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI 2005). Arlington, US, 413–420.

[46] Alexandru Niculescu-Mizil and Rich Caruana. 2005b. Predicting good probabilities with supervised learning. In

Proceedings of the 22nd International Conference on Machine Learning (ICML 2005). Bonn, DE, 625–632. DOI:http:
//dx.doi.org/10.1145/1102351.1102430

[47] John C. Platt. 2000. Probabilistic outputs for support vector machines and comparison to regularized likelihood methods.

In Advances in Large Margin Classifiers, Alexander Smola, Peter Bartlett, Bernard Schölkopf, and Dale Schuurmans

(Eds.). The MIT Press, Cambridge, MA, 61–74.

[48] Anderson Rocha, Walter J. Scheirer, Christopher W. Forstall, Thiago Cavalcante, Antonio Theophilo, Bingyu Shen,

Ariadne Carvalho, and Efstathios Stamatatos. 2017. Authorship attribution for social media forensics. IEEE Transactions
on Information Forensics and Security 12, 1 (2017), 5–33. DOI:http://dx.doi.org/10.1109/TIFS.2016.2603960

[49] Gerard Salton and Christopher Buckley. 1988. Term-weighting approaches in automatic text retrieval. Information
Processing and Management 24, 5 (1988), 513–523.

[50] Jacques Savoy. 2019. Authorship of Pauline epistles revisited. Journal of the Association for Information Science and
Technology 70, 10 (2019), 1089–1097. DOI:http://dx.doi.org/10.1002/asi.24176

[51] Yanir Seroussi, Ingrid Zukerman, and Fabian Bohnert. 2014. Authorship attribution with topic models. Computational
Linguistics 40, 2 (2014), 269–310. DOI:http://dx.doi.org/10.1162/COLI_a_00173

[52] Efstathios Stamatatos. 2009. A survey of modern authorship attribution methods. Journal of the American Society for
Information Science and Technology 60, 3 (2009), 538–556. DOI:http://dx.doi.org/10.1002/asi.21001

[53] Efstathios Stamatatos. 2016. Authorship verification: A review of recent advances. Research in Computing Science 123
(2016), 9–25.

[54] Joel R. Tetreault, Daniel Blanchard, Aoife Cahill, and Martin Chodorow. 2012. Native tongues, lost and found:

Resources and empirical evaluations in native language identification. In Proceedings of the 24th International Conference
on Computational Linguistics (COLING 2012). Mumbai, IN, 2585–2602.

[55] Enrico Tuccinardi. 2017. An application of a profile-based method for authorship verification: Investigating the

authenticity of Pliny the Younger’s letter to Trajan concerning the Christians. Digital Scholarship in the Humanities 32,
2 (2017), 435–447. DOI:http://dx.doi.org/10.1093/llc/fqw001

[56] Raija Vainio, Reima Välimäki, Anni Hella, Marjo Kaartinen, Teemu Immonen, Aleksi Vesanto, and Filip Ginter. 2019.

Reconsidering authorship in the Ciceronian corpus through computational authorship attribution. Ciceroniana On Line
3, 1 (2019). DOI:http://dx.doi.org/10.13135/2532-5353/3518

[57] Janith Weerasinghe, Rhia Singh, and Rachel Greenstadt. 2021. Feature vector difference based authorship verification

for open world settings. InWorking Notes of the 2021 Conference and Labs of the Evaluation Forum (CLEF 2021). Bucharest,
RO.

[58] David H. Wolpert. 1992. Stacked generalization. Neural Networks 5, 2 (1992), 241–259. DOI:http://dx.doi.org/10.1016/
s0893-6080(05)80023-1

[59] Ting-Fan Wu, Chih-Jen Lin, and Ruby C. Weng. 2004. Probability estimates for multi-class classification by pairwise

coupling. Journal of Machine Learning Research 5 (2004), 975–1005.

[60] Yiming Yang and Jan O. Pedersen. 1997. A comparative study on feature selection in text categorization. In Proceedings
of the 14th International Conference on Machine Learning (ICML 1997). Nashville, US, 412–420.

[61] Bianca Zadrozny and Charles Elkan. 2002. Transforming classifier scores into accurate multiclass probability estimates.

In Proceedings of the 8th ACM International Conference on Knowledge Discovery and Data Mining (KDD 2002). Edmonton,

CA, 694–699. DOI:http://dx.doi.org/10.1145/775107.775151
[62] Rong Zheng, Jiexun Li, Hsinchun Chen, and Zan Huang. 2006. A framework for authorship identification of online

messages: Writing-style features and classification techniques. Journal of the American Society for Information Science
and Technologies 57, 3 (2006), 378–393.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: December 2022.

http://dx.doi.org/10.1002/asi.22954
http://dx.doi.org/10.1613/jair.5194
http://dx.doi.org/10.1109/TKDE.2018.2883446
http://dx.doi.org/10.1145/1102351.1102430
http://dx.doi.org/10.1145/1102351.1102430
http://dx.doi.org/10.1145/1102351.1102430
http://dx.doi.org/10.1109/TIFS.2016.2603960
http://dx.doi.org/10.1002/asi.24176
http://dx.doi.org/10.1162/COLI_a_00173
http://dx.doi.org/10.1002/asi.21001
http://dx.doi.org/10.1093/llc/fqw001
http://dx.doi.org/10.13135/2532-5353/3518
http://dx.doi.org/10.1016/s0893-6080(05)80023-1
http://dx.doi.org/10.1016/s0893-6080(05)80023-1
http://dx.doi.org/10.1016/s0893-6080(05)80023-1
http://dx.doi.org/10.1145/775107.775151

	Abstract
	1 Introduction
	2 Diff-Vectors for authorship identification
	2.1 Authorship identification tasks
	2.2 Diff-Vectors
	2.3 Diff-Vectors result in more training examples for AV
	2.4 Diff-Vectors make training more robust in closed-set AA

	3 Solving SAV, AA, and AV, by means of Diff-Vectors
	3.1 Solving SAV by means of Diff-Vectors
	3.2 Solving AA by means of Diff-Vectors
	3.2.1 Lazy AA
	3.2.2 Stacked AA

	3.3 Solving AV by means of Diff-Vectors

	4 Experiments
	4.1 Datasets
	4.2 Learners
	4.3 Features
	4.4 Intrinsic evaluation of Diff-Vectors
	4.4.1 Experiments on closed-set SAV
	4.4.2 Experiments on open-set SAV

	4.5 Extrinsic evaluation of Diff-Vectors
	4.5.1 The AA results
	4.5.2 The AV results

	4.6 Efficiency
	4.6.1 Efficiency analysis
	4.6.2 Timings
	4.6.3 Are the costs incurred by DVs tolerable?

	4.7 Can we use Diff-Vectors for ``natively binary'' AV problems?
	4.8 blackResults with a different learner

	5 Related work
	6 Conclusion
	Acknowledgments
	References

