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Abstract. Structural Health Monitoring (SHM) is increasingly impor-
tant in protecting and maintaining architectural heritage. Its main goal
is to distinguish ordinary fluctuations in a building’s response from other,
possibly anomalous, behaviour. SHM starts setting sensors to measure
accelerations or velocities and other environmental parameters over time
at fixed points of the structure. The time-series processing makes it pos-
sible to perform modal tracking and damage/anomaly detection while
correlating dynamical and environmental parameters. In practice, these
activities are conducted separately, using different numerical codes. Thus,
the idea is to take the first step to distance from such practice, lever-
aging the MOSCARDO system, which encompasses a Wireless Sensor
Network (WSN) and a platform designed according to a cloud archi-
tecture that provides services for storing and processing data from the
WSN. We employ a code based on the Stochastic Subspace Identification
(SSI) technique to improve the system’s capabilities, and we exploit the
SSI’s theoretical features to get an efficient implementation that will be
integrated into the cloud-based platform. This pipeline is here presented
considering data collected from a monitoring campaign on the “Matilde
donjon” in Livorno (Italy) and reporting preliminary numerical results
on the identification of the modal parameters.

Keywords: Structural Health Monitoring · Automated Operational Modal
Analysis · Stochastic Subspace Identification · Modal Tracking.

1 Introduction and Main Motivations

Long-term dynamic monitoring of historical towers and buildings is aimed at
identifying the modal parameters (natural frequencies, i.e. poles, modal shapes
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and damping ratios) of a structure and tracking them over time to detect possible
anomalies in the vibrational features. To do that, it is common to work within
the framework of Operational Model Analysis (OMA) [2] and exploit ambient
vibration sources available on in-operation structures (crowd, wind, traffic, etc.).
In this case, the input excitation is unknown and assumed to be a white Gaussian
noise, thus ensuring that all the vibration modes are suitably excited.

This assumption is a basic hypothesis of output-only algorithms [2], common
to both the (parametric) time-domain identification techniques, where outputs
are estimated by means of correlation functions on a subset of the input dataset,
and the (non-parametric) frequency-domain identification methods, where the
processing of input data is achieved via Fourier’s transforms.

Time-domain techniques have turned out to be more effective when dealing
with civil engineering applications. Among several available techniques (AutoRe-
gressive Moving Average model [5], AutoRegressive/Poly Reference model [14],
Ibrahim Time Domain method [3]), the Stochastic Subspace Identification (SSI)
[13] is nowadays the most popular to combine the advantages of the previous
ones. The method, stemming from the Eigensystem Realisation Algorithm [4, 7],
deals with a stochastic state-space model, in which the dynamic identification is
performed without addressing nonlinear computations.

In this paper, we focus on the reference-based data-driven stochastic real-
ization algorithm [9], which refers to the basic state-space formulation reported
below for the k-th time instant:

xk+1 = Axk + wk

yk = Cxk + vk,

in which the input is modelled by the noise terms wk ∈ Rn, vk ∈ Rm (n, m ∈ N),
such that E[wk] = 0 = E[vk], and covariance matrices

E
[(

wp

vp

)(
w⊤

q v⊤q
)]

=
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Q S
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)
δpq,

being Q, R, S suitable matrices to describe the block structure of the covariance
matrices, δpq the Kronecker’s delta and with E denoting the expected value
operator. A is the n × n state matrix, C is the m × n influence matrix, while
xk ∈ Rn (n being the model order) and yk ∈ Rm are the state vector and
the vector of observations at the k-th time instant, respectively. Moreover, the
stochastic process is assumed to be stationary with zero mean (E[xk] = 0), the
state covariance matrix Σ = E[xkx

⊤
k ] is independent of the time index k and

wk, vk are independent of the actual state, in the sense that E[xkw
⊤
k ] = 0,

E[xkv
⊤
k ] = 0.

Although SSI methods are not totally free of drawbacks, their practical em-
bedding into an automatic identification framework is hindered by a certain
amount of interaction required to the user, consisting in the manual and sub-
jective selection of the meaningful natural frequencies of the structure under
examination from the stabilization diagrams. Moreover, such a non automatic
feature significantly increases the elapsed time effort when a great amount of
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data has to be processed. These considerations have been formerly taken over
in [11], but the development of a fully automatic SSI framework is still an open
issue.

The main aim of this paper is thus to take the first step towards an auto-
matic use of the reference-based data-driven SSI algorithm, following two sub-
sequent stages. At first, an efficient implementation of the algorithm is carried
out, grounded on state–of–art software. Then, the implementation is embedded
into an unsupervised hierarchical clustering strategy, to automatically select the
stable eigenfrequencies and the corresponding mode shapes without any actions
needed by the user, after setting some parameters described below. This even
paves the way for integrating such a strategy into the cloud-based platform of
the MOSCARDO system [15] and enrich its capabilities, that is our end as well.

The paper is organized as follows. The next section recalls the MOSCARDO
system. Section 3 presents the developed automatic OMA framework, applied
in Section 4 to data collected during the monitoring campaign on the “Matilde
donjon” in Livorno (Italy) [1] . Some numerical results on the identification of
the tower’s modal properties are shown and compared with those given by the
commercial software MACEC [10]. Section 5 states conclusions and perspectives.

2 The MOSCARDO System

MOSCARDO is a system for the structural health monitoring of ancient con-
structions. It integrates Information and Communication Technologies (wire-
less sensor networks, signal processing and computer vision) with methodologies
coming from engineering and computational mechanics, to develop complex pre-
dictions and promptly operate if needed. The system was developed within the
MOSCARDO project conducted by Infomobility S.r.l., Engineering Italy Solu-
tions S.r.l., ISTI-CNR and the University of Florence from April 2016 to October
2018 and funded by the Region of Tuscany and the Italian Ministry of Education,
University and Research (PAR–FAS 2007–2013).

The MOSCARDO infrastructure is composed by Wireless Sensor Networks
(WSNs) for the acquisition of structural (accelerations and displacements at
prescribed points of the structure) and environmental data (pressure, humid-
ity and temperature), coupled with a flexible and reliable Internet of Things
communication infrastructure. A further essential component of the system is
the so-called Monitoring Control Center (MCC), a cloud-based platform to pro-
vide services for storage, processing, and interpretation of data coming from
the WSNs. The MCC architecture collects and stores large amounts of data to
monitor the structure in time and provide continuous supervision.

Our goal is the development of automated management tools that allow
tracking in time the structural behaviour of the monitored building and obtaining
prompt information on any damage in standard conditions or during events of
great significance (such as crowded demonstrations or earthquakes). In fact, such
a capability is currently carried out offline and is not yet integrated within the

This is an original manuscript of an article published by Springer in  Lecture Notes in Civil Engineering - 
 Experimental Vibration Analysis for Civil Engineering Structures EVACES 2023 - Volume 1, available at: 

https://doi.org/10.1007/978-3-031-39109-5



4 Croce, T. et al.

infrastructure. The goal is thus equipping the MCC platform with online SHM
tools that do not require actions by the user throughout the running.

3 An Automatic OMA Pipeline for Dynamic
Identification of Modal Parameters

The developed OMA framework consists of the following steps. As the MCC is
a Python–based platform, we have implemented the first three steps by using
Python 3.9.13, while the last two are based on MATLab R2019b.

Step 1. Dataset recovery, assembling and storing. The structure is pro-
vided with sensors located at different positions measuring one or more quantities
with a prescribed sampling frequency. Thus, at each time slot, a total number
of nc time series of length nt (nc, nt ∈ N) is measured on the structure. Let us
consider time slots lasting 1 hour. The first step of the pipeline consists in ac-
quiring the times series in the right format and store them into a nc×nt matrix
that will constitute the input dataset. To this aim, isolated missing data in each
time series are restored by using a linear interpolation, while in case of massive
missing data the registered time-series is ignored.

Step 2. Pre-processing of the input dataset. The input dataset is then pre-
processed via detrending and filtering operations in a suitable frequency band,
applying two fourth-order low-pass/high-pass Butterworth filters.

Step 3. Dynamic identification for the stabilization diagram visual-
ization. This step is devoted to the Python implementation of SSI solvers.
Specifically, we have implemented the already mentioned reference-based covari-
ance driven stochastic realization and the reference-based data-driven stochastic
realization algorithms [9, 8], whose implementations are hereafter referred to as
Python SSI/cov and Python SSI/dat, respectively. We have chosen to follow
the algorithms in [9] that clearly provide hints on how to computationally take
advantage of the factors Q and R of the QR− factorization of the block Hankel
matrices needed for the projection procedure in the SSI/dat method. The ob-
tained Python solvers take the pre-processed dataset and the sampling frequency
as the input, together with suitable specifications to build the stabilization di-
agram (i.e., maximum and minimum order method, relative accuracy on the
frequency, damping ratio and MAC value to verify the stability of the poles,
maximum tolerance on the damping ratio), returning and storing the stabiliza-
tion diagram and the list of stable poles with related damping ratios, frequencies
and mode shapes vectors.

Step 4. Automatic estimation of the modal parameters and results
export. Once the stabilization diagram is computed, we need to automatically
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select the most representative poles. For such a reason, the list of poles resulting
from the previous phase is detached by an agglomerative hierarchical cluster-
ing strategy ([6, 12]), that proceeds as follows. i) The matrix with the pairwise
Euclidean distances between pairs of poles of the list is computed. ii) Such a
matrix is used for a linkage procedure to obtain a new matrix that encodes a
bottom-up tree (dendrogram) containing the hierarchical clusters of the list of
poles, following the shortest distance criterion to compute the distances between
clusters. iii) Clusters are constructed from the agglomerative hierarchical cluster
tree of the linkage phase using a specified cutoff parameter, coming out with the
cluster assignments of each pole in the list. For each cluster, the centroid is then
computed to identify the resulting closest stable pole, namely the “representa-
tive” stable pole. Finally, the stable poles are listed and stored, together with
the corresponding damping ratios and mode shapes.

Step 5. Post-processing for modal tracking and visualization of the
results over time. The above four steps are repeated for the measurements of
each time slot, in order to perform modal tracking and plot the representative
stable poles with respect to time. Additionally, few post-processing operations
have been considered for a suitable visualization of the results. They are shown
in the figures, tables and comparisons of the next section.

4 Numerical Tests

The automatic OMA pipeline described in the previous section has been tested
on the “Matilde donjon” in the Old Fortress of Livorno (Tuscany, Italy). The
tower’s accelerations are measured by one radial and two tangential accelerom-
eters at the entrance of the structure (Figure 1, level 0), while at level 2 an
additional radial and three tangent accelerometers are placed, for a total num-
ber of seven measurement channels. More details on the monitoring system can
be found in [1]. The sensors, which were installed in October 2018 and are still
running, are set to measure for 15 minutes per hour. These sensors are grouped
in nodes that transmit the acceleration values via wireless to a gateway that
sends the data to a remote server that hosts the MCC. A representation of the
cross-sections of the tower and the exact location of the sensors are reported in
Figure 1.

With reference to Steps 1–4 of Section 3, the channels number nc = 7 and the
number of data samples values nt = 45000 at each time slot are considered at
Step 1, the sampling frequency is 50 Hz, the frequency band for the Butterworth
filters to apply at Step 2 is 0.3–10 Hz, while 2 and 80 are the minimum and
maximum model order needed in the input of Step 3. In addition, 0.01, 0.05,
0.02 are the relative errors allowed on frequency, damping and mode shapes,
respectively, being 0.5 the upper bound on the damping ratio for a stable pole
to be accounted; a cutoff distance value of 0.1 has been considered at Step 4 and
the clusters with less than 5 elements have been neglected. Concerning this point,
we notice that the cutoff distance value is a hyperparameter for our method, here
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Fig. 1. Longitudinal view and cross section of the tower with the locations of the
sensors: radial (r) and tangent (t) accelerometers (red).

tuned by using the results of the identification tests conducted on the tower in
March, 2019, [1].

We have performed modal tracking focusing on the first year of monitor-
ing (2019), using the Python solver SSI/dat and the corresponding method of
MACEC [10], hereafter named as MACEC SSI/dat. The results obtained via
Python SSI/cov and MACEC SSI/cov are here omitted for the sake of brevity.
The Matlab algorithm for clustering developed in Step 4 has been also applied to
the results of the MACEC stabilization diagrams, to avoid manual intervention
by the user and fully automate the modal tracking procedure. The results are
shown in Figures 2–3. Figure 2 compares the plot of the first two natural fre-
quencies of the tower obtained via MACEC SSI/dat (left) and Python SSI/dat
(right) in March, June, September and December 2019. The results obtained
with the two codes are similar, except for the fact that the right-hand side pic-
ture of Figure 2 is more dense. This could be attributable to the fact that the
MACEC solver consider more strict criteria to build the stabilization diagram.
The detection of the two lowest natural frequencies, whose average values are
shown in Table 1, is in accordance with the results given in [1]. The plots also
show the number of sensors for which Step 1 ends up with a complete time series,
addressed as the “active” sensors.

Moreover, an accurate look at the modal tracking of the two lowest frequen-
cies highlights that the frequency values tend to increase over the hottest months
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Fig. 2. Modal tracking via MACEC (left) and Python (right) solvers SSI/dat (black
points) over the daily slot of hours of March, June, September and December, 2019.
The auxiliary right y-axis refers to the number of active sensors, whose plot over the
daily slot of hours is the magenta dashed line.

of the year. Figure 3 shows the daily variation of the two lowest frequency values
due to the change of temperature measured by a meteorological station on top
of the tower.
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Fig. 3. Modal tracking of the two lowest frequencies of vibrations via MACEC (black
line) and Python (black dashed line) solvers SSI/cov (left) and SSI/dat (right) over
the daily slot of hours of March 28–31, 2019. The auxiliary right y-axis refers to the
measured temperatures, whose plot over the daily slot of hours is marked as the blue
line.

The monthly average values of the two fundamental frequencies and corre-
sponding damping ratios are reported in Table 1, showing a good agreement
between the MACEC and Python solvers. The relative errors of the two first
frequencies calculated via MACEC and Python are reported in Figure 4; the
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errors belong to the interval [10−6, 5 · 10−1] and, for the greatest part, are lower
than 10−2. Finally, a comparison of the computation time for Step 3 highlights
the better performance of Python with respect to MACEC, with a mean ratio
of 0.38. The procedures were run on an Intel(R) Core(TM) i7, 2.67 GHz × 1
CPU, 18 GB RAM.

Table 1. Estimation of the two lowest frequencies of vibrations with related damping
ratios via MACEC/Python SSI/dat in March, June, September and December, 2019.

Method Mode 1 Mode 2
Freq. (Hz) Damp. (%) Freq. (Hz) Damp. (%)

MACEC (March) 2.6791 3.63 3.3072 3.65
Python (March) 2.6774 3.42 3.3001 3.41

MACEC (June) 2.8381 3.92 3.5095 4.24
Python (June) 2.8413 3.62 3.5050 4.21

MACEC (September) 2.7658 3.37 3.4302 3.94
Python (September) 2.7735 3.28 3.4253 3.85

MACEC (December) 2.6810 3.78 3.3020 3.79
Python (December) 2.6936 3.81 3.3137 3.46
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Fig. 4. Relative errors of the first (left) and second (right) lowest frequency of vibra-
tions via Python SSI/dat, with respect to MACEC SSI/dat, versus the daily slot hours
of March, June, September, December, 2019. Logarithmic scale is adopted on the y-
axis.

5 Conclusions

In this paper we integrated the reference-based data driven stochastic algorithms,
using a Python implementation of the methods in [9], with agglomerative hierar-
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chical clustering methods for modal tracking. This implementation gives a first
contribution towards the development of a fully automated platform for Opera-
tional Modal Analysis. The numerical tests performed on the case study of the
“Matilde donjon” in Livorno show good results. In particular, the comparison
between the Python solver and the commercial software MACEC highlights the
consistency of the identification results and a substantial saving in terms of com-
putational time. These results make indeed possible the effective integration of
our strategy into the Monitoring Control Center of the MOSCARDO platform
mentioned in Section 2, that is our final plan for future work.

To this scope, several aspects should be further investigated, as the use of
adaptive methods to automatically tune the cutoff distance in the clustering
algorithm and the possibility of testing other clustering techniques. Moreover,
the set of criteria considered by the Python solvers to plot the stabilization
diagrams is rather essential and could be enlarged. Finally, another key aspect
is the use of suitable strategies of anomaly detection, even investigating the use
of deep learning techniques.

References

1. Barsocchi, P., Bartoli, G., Betti, M., Girardi, M., Mammolito, S., Pellegrini, D.,
Zini, D.: Wireless sensor networks for continuous structural health monitoring of
historic masonry towers. International Journal of Architectural Heritage 15(1), 22–
44 (2021).

2. Brincker, R., Ventura, C.: Introduction to operational modal analysis. John Wiley
& Sons (2015).

3. Ibrahim, S. R., Mikulcik, E. C.: A method for the direct identification of vibration
parameters from the free response. The Shock and Vibration Inform. Ctr. Shock
and Vibration Bull. Part. 4, vol. 47, pp. 183–196 (1977).

4. Juang, J. N., Pappa, R. S.: An eigensystem realisation algorithm for modal param-
eter identification and modal reduction. Journal of guidance, control, and dynamics
8(5), 620–627 (1985).

5. Ljung L.: Theory for the User, System Identification (1987).

6. Murtagh, F., Contreras, P.: Algorithms for hierarchical clustering: an overview.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2(1), 86–97
(2012).

7. Pappa, R. S., Elliott, K. B., Schenk, A.: Consistent-mode indicator for the eigen-
system realization algorithm. Journal of Guidance, Control, and Dynamics 16(5),
852–858 (1993).

8. Pasca, D. P., Aloisio, A., Rosso, M. M., Sotiropoulos, S.: PyOMA and PyOMA GUI:
A Python module and software for Operational Modal Analysis. SoftwareX 20,
101216 (2022).

9. Peeters, B., De Roeck, G.: Reference-based stochastic subspace identification for
output-only modal analysis. Mechanical systems and signal processing 13(6), 855–
878 (1999).

10. Reynders, E., Schevenels, M., De Roeck, G.: MACEC 3.4: The Matlab toolbox
for experimental and operational modal analysis. User’s manual. Katholieke Uni-
versiteit, Leuven (2021).

This is an original manuscript of an article published by Springer in  Lecture Notes in Civil Engineering - 
 Experimental Vibration Analysis for Civil Engineering Structures EVACES 2023 - Volume 1, available at: 

https://doi.org/10.1007/978-3-031-39109-5



10 Croce, T. et al.

11. Reynders, E., Houbrechts, J., De Roeck, G.: Fully automated (operational) modal
analysis. Mechanical systems and signal processing 29, 228–250 (2012).

12. Sasirekha, K., Baby, P.: Agglomerative hierarchical clustering algorithm-a. Inter-
national Journal of Scientific and Research Publications 83(3), 83 (2013).

13. Van Overschee, P., De Moor, B.: Subspace algorithms for the stochastic identifica-
tion problem. Automatica 29(3), 649–660 (1993).

14. Vold, H., Kundrat, J., Rocklin G. T., Russell, R.: A multi-input modal estimation
algorithm for mini-computers. SAE Transactions, 815–821 (1982).

15. MOSCARDO Project Homepage, http://www.moscardo.it (in Italian).

This is an original manuscript of an article published by Springer in  Lecture Notes in Civil Engineering - 
 Experimental Vibration Analysis for Civil Engineering Structures EVACES 2023 - Volume 1, available at: 

https://doi.org/10.1007/978-3-031-39109-5




