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Abstract: The entropy-oriented approach called security- or cybersecurity-informed safety (SIS or
CSIS, respectively) is discussed and developed in order to analyse and evaluate the safety and
dependability of autonomous transport systems (ATSs) such as unmanned aerial vehicles (UAVs),
unmanned maritime vehicles (UMVs), and satellites. This approach allows for extending and inte-
grating the known techniques FMECA (Failure Modes, Effects, and Criticality Analysis) and IMECA
(Intrusion MECA), as well as developing the new SISMECA (SIS-based Intrusion Modes, Effects, and
Criticality Analysis) technique. The ontology model and templates for SISMECA implementation are
suggested. The methodology of safety assessment is based on (i) the application and enhancement of
SISMECA considering the particularities of various ATSs and roles of actors (regulators, developers,
operators, customers); (ii) the development of a set of scenarios describing the operation of ATS in
conditions of cyberattacks and physical influences; (iii) AI contribution to system protection for the
analysed domains; (iv) scenario-based development and analysis of user stories related to different
cyber-attacks, as well as ways to protect ATSs from them via AI means/platforms; (v) profiling of AI
platform requirements by use of characteristics based on AI quality model, risk-based assessment of
cyberattack criticality, and efficiency of countermeasures which actors can implement. Examples of
the application of SISMECA assessment are presented and discussed.

Keywords: autonomous transport system; unmanned aerial vehicle; unmanned maritime vehicles;
artificial intelligence; AI-powered attack; IMECA; SISMECA

1. Introduction
1.1. Motivation

Cyberattacks have emerged as significant threats that can severely impact the safety
of critical infrastructures, industrial control systems, and transport [1–3]. Attacks refer
to exploiting vulnerabilities within systems, software, or networks with malicious intent.
From individual hackers to sophisticated hacker centres, adversaries constantly seek to
identify and exploit vulnerabilities to gain unauthorised access, steal sensitive information,
disrupt operations, or even cause physical harm. The consequences of successful attacks
can be devastating, leading to financial losses; reputational damage; and, most importantly,
safety compromise.

This issue is challenging for autonomous transport systems (ATS), such as unmanned
aerial vehicles (UAVs), driverless cars, unmanned maritime vehicles (UMVs), satellites, and
so on. The application of artificial intelligence (AI) as a means for improving the efficiency
of cyberattacks [4] and protection of ATS assets is an additional extremely important
direction of research and development in the context of security and safety. Studying and
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analysing different attack vectors, techniques, and associated vulnerabilities is needed to
understand the risks various ATSs face and develop effective countermeasures considering
AI-powered attacks and protection issues.

This paper aims to contribute to the growing body of knowledge in the field by
examining the specific effects of cybersecurity attacks on safety, focusing in particular on
ATSs in different domains, enhancing the Security-Informed Safety (SIS) approach and
introducing the SISMECA (SIS-based Intrusion Modes, Effects and Criticality Analysis)
technique aimed at systematising threats, vulnerabilities, attacks, and safety risks, as
well as at reducing criticality by providing countermeasures for identified critical failures.
This technique is added considering the analysis of artificial intelligence influence on
ATS security and safety using decomposition of AI quality characteristics set to minimise
uncertainties/entropy of assessment. Three kinds of ATSs are detailed in the investigation
of safety and security: UAVs, UMVs, and satellites.

1.2. State of the Art

Keeping in mind the SIS approach mentioned above, the analysed references were
subdivided into the following:

• the references describing stages of the Modified Cybersecurity Kill Chain for AI-
powered attacks [5,6];

• the references addressing AI-powered attacks utilised against various components of
the ATS infrastructure [5–13];

• the references presenting ATSs cybersecurity assessment and assurance techniques,
including decisions based on the application of AI and AI platform (AIP) [14–34];

• the references highlighting ATS safety issues in the context of the ATS cybersecurity
assessment [35–38].

The groups of publications mentioned in this list are further detailed in reference
analysis Tables 1 and 2; then, explanations for each of these references is also provided.

Table 1. AI-powered attacks utilised against various components of the ATS infrastructure.

AI-Powered Attack Ref. Technique Stage Safety
Issues

Targets in the ATS Infrastructure for Attacks

On-Board Equipment GCS Channel

AI-Based Non-
AI-Based AI-Based Non-

AI-Based ATS-ATS ATS-GCS

Intelligent
malware [7] ChatGPT Rec - -

√
-

√ √ √

PassGAN [8] GAN Acc&Pen - - - -
√

- -

Intelligent password
brute force attack [9] RNN Acc&Pen - - - -

√
- -

Offensive password
authentication [10]

LR, SVM,
SVC, RF,

KNN, GBRT
Acc&Pen - - - -

√
- -

Adversarial
malware generation [11] GAN Del -

√
-

√
- - -

Self-learning
malware [12] K-means

clustering Exp -
√ √ √ √

- -

DeepLocker [13] DNN C&C - - - -
√

- -
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Table 2. Potential threats to ATS assets and AI-based intrusion detection/prevention solutions.

Considered
Type

of ATS
Ref.

Analysed Component
of the ATS

Infrastructure
Main Contribution

AI-Based Intrusion
Detection/
Prevention

Solution

UAV

[14]
on-board equipment,

UAV–UAV,
UAV–GCS

The level of security threats for the various drone
categories. A comprehensive taxonomy of the

attacks on the Internet of Drones (IoD) network.
The results of the review of the recent IoD attack

mitigation techniques.

-

[18] on-board equipment,
UAV–GCS

An autonomous intrusion detection system
utilising deep convolutional neural networks

(CNNs) to detect the malicious threats invading
the UAV efficiently.

√

[20] on-board equipment,
UAV–GCS

A detection method based on principal
component analysis and one-class classifiers for

identifying and mitigating spoofing and jamming
attacks.

√

[23] on-board equipment,
UAV–GCS

The results of the experiments to detect, intercept,
and hijack a UAV through either
de-authentication or jamming.

-

Satellite

[16]
on-board equipment,

satellite–satellite,
satellite–GCS

The results of the analysis of the past satellite
security threats and incidents. The results of

segment and sector analysis of satellite security
incidents.

-

[17]
on-board equipment,

satellite–satellite,
satellite–GCS

Deep Learning (DL)-based flexible satellite
network intrusion detection system for detecting

unforeseen and unpredictable attacks.

√

[19] on-board equipment,
satellite–GCS

A lightweight CNN-based detection scheme for
detecting barrage, pilot tone, and intermittent

jamming attacks against satellite systems.

√

[21]
GCS,

satellite–satellite,
satellite–GCS

DL-based network forensic framework for the
detection and investigation of cyber-attacks in

smart satellite networks.

√

[22]
GCS,

satellite–satellite,
satellite–GCS

A robust and generalised DL-based intrusion
detection approach for terrestrial and satellite

network environments.

√

Maritime
Autonomous
Surface Ship

(MASS)

[15]
on-board equipment,

MASS–MASS,
MASS–GCS

STRIDE (Spoofing, Tampering, Repudiation,
Information Disclosure, Denial of Service and

Elevation of Privilege) threat modelling
methodology for analysing the accordant risk. A
special risk matrix and threat/likelihood criteria

for assessing the risk.

-

[24]
on-board equipment,

MASS–MASS,
MASS–GCS

The results of the analysis of attack scenarios for
MASS cybersecurity risk management. A secure

ship network topology for realising MASS
operations.

-

Kaloudi et al. [5] described the Modified Cybersecurity Kill Chain as having five stages
and allocated classes of AI-powered attacks among them in the following ways, based on
the study [4]:

1. Access and penetration (Acc&Pen) stage. This stage covers automated payload genera-
tion/phishing, password guessing/cracking, intelligent capture attack/manipulation,
smart abnormal behaviour generation, and AI model manipulation.
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2. Reconnaissance (Rec) stage. This stage involves intelligence target profiling, smart
vulnerability detection/intelligent malware, intelligent collection/automated learn
behaviour, and intelligent vulnerability/outcome prediction.

3. The delivery (Del) stage. This stage entails intelligent concealment and evasive malware.
4. The exploitation (Exp) stage. This stage addresses intelligent lateral movement and

behavioural analysis to identify new exploitable vulnerabilities.
5. The command and control (C&C). This stage deals with intelligent self-learning

malware, automated domain generation, and denial of service attacks.

AI-powered attacks which can be utilised against the ATS infrastructure are presented
in Table 1. In particular, on-board equipment (AI-based/non-AI-based equipment), ground
control station (GCS) equipment (AI-based/non-AI-based equipment), and two channels
(ATS-ATS and ATS-GCS) are considered. For each attack, both the technique used for its
implementation and the stage at which it is applied are indicated. The techniques used are
as follows: Neural Networks (NNs), Generative Adversarial Network (GAN), Recurrent
Neural Network (RNN), Logistic Regression (LR), Support Vector Machine (SVM), Support
Vector Classification (SVC), Random Forest (RF), K-Nearest Neighbour (KNN), Gradient
Boosted Regression Trees (GBRT), K-means clustering, and Deep Neural Network (DNN).

Table 1 reveals that (1) a non-AI-based GCS is the most vulnerable component of the
ATS infrastructure to AI-powered attacks, (2) vulnerability prediction and self-learning mal-
ware are the most common types of attacks on components of the ATS infrastructure, (3) the
most significant number of AI-powered attacks (free attacks) occurs at stage Acc&Pen, and
(4) none of the analysed papers paid due attention to safety issues.

A considerable number of publications are connected to ATSs cybersecurity assessment
and assurance techniques, including decisions based on the application of AI and AIP. They
can be divided into the following groups: (a) application of AI for the cyber defence of
ATSs and cases dealing with cyber incidents and potential threats to ATS assets [14–24]
(Table 2), (b) methods and techniques of ATS cybersecurity analysis and assurance [25–27],
and (c) AI quality models in the context of cybersecurity assessment assurance [28–32].

Table 2 reveals that (1) all significant types of ATSs (UAVs, satellites, MASSs) are
vulnerable to cyberattacks, (2) UAVs and satellites are increasingly using AI-based intrusion
detection/prevention solutions to withstand cyberattacks, (3) DL-based and CNN-based
intrusion detection/prevention solutions are the most common for UAVs and satellites,
and (4) the utilisation of AI-based intrusion detection/prevention solutions for MASS has
not yet become widespread enough.

To assess the consequences of unauthorised intrusion into IoD systems, the Intrusion
Modes, Effects, and Criticality Analysis (IMECA) method was utilised [25]. The authors
of [26] presented a solution to automate the FMECA process for complex cyber-physical
systems to reduce and mitigate the number of critical faults. Both a theoretical and math-
ematical model and a method to analyse the internal components of a security system
and access to assets were suggested in [27]. The technique allowed for the analysis of
asset security through the use of environment variables and physical security controls of
the facility.

Principles of AI quality model development, as well as the procedure for realising its
hierarchical construction considering trustworthiness, explainability, cybersecurity, and
other characteristics, are described in [28,29]. The paper [30] suggested a quality model
that allowed for objectively specifying and assessing qualities for ML systems based on
an industrial use case. An example of a quality model building for a concrete industrial
use case was given, and lessons learned from applying the construction process were
analysed and discussed. A metric-based assessment technique of AI system (AIS) quality
using radial diagrams is described in [31]. The study in [32] examined terminology and
challenges in quality assurance for AI-based systems and characterised AI-based systems
along the three dimensions of artefact type, process, and quality characteristics.

Thus, the cybersecurity domain for ATS encompasses the issues (both challenges and
opportunities) considering the application of AI means, which should be analysed and
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assessed. The system has vulnerabilities that lead to the risk of being exploited, causing
operational impacts. In this case, it is necessary to systemise and define requirements
for AI means, assess the risks of critical failures, and mitigate risks by proper choice of
countermeasures [33,34]. However, it is also important to note that ATS cybersecurity
assessment should be performed considering safety issues [35–38]. The authors of [36]
propose an STPA (System-Theoretic Process Analysis)-based methodology for MASS safety
and security assessment, namely, STPA-SynSS. To continually track and manage hazards,
the STPA-SynSS provides a comprehensive process for identifying risks, revealing causal
factors, and implementing hazard elimination/mitigation strategies into the system design
via system safety and security requirements. The work [37] addresses a methodological
framework for the risk assessment of drone intrusions in airports, tailored to drone intrusion
features, airport features, and current operations, and considering both safety-related and
security-related causes. The study [38] identifies the vulnerabilities that AI systems may
introduce to satellite networks and analyses the potential operational threats and effective
technological and regulatory mitigation measures. Even though the analysed references
emphasise the necessity of ensuring ATS safety with cybersecurity issues in mind, no real
techniques for assessing such an impact are offered. That is, there is no systematic risk
assessment approach at the IT (cybersecurity) and IoT (safety) levels.

Safety is of paramount importance in the context of the cybersecurity of ATSs due to
several reasons:

• Human lives at stake: ATSs are designed to operate without direct human control,
thus placing a significant responsibility on ensuring the safety of ordinary citizens
and users of other ATSs/non-ATSs. Any compromise in cybersecurity could result in
accidents, injuries, or even loss of life.

• Public trust and acceptance: The successful implementation of ATSs relies on public
trust and acceptance. If safety is not prioritised and incidents occur frequently, it can
erode public confidence in the technology. To gain widespread adoption, cybersecurity
measures should be effective and transparent enough to demonstrate that ATSs are at
least as safe, if not safer, than human-operated vehicles.

• Legal and regulatory compliance: Governments and regulatory bodies play a crucial
role in establishing rules and regulations for ATSs. The cybersecurity measures ap-
plied should align with the safety standards and guidelines. Failing to meet these
standards can result in legal and regulatory consequences, including restrictions or
bans on deployment.

• Reputation and liability: Reputation management is essential to businesses creating
and utilising ATSs. Safety incidents can severely damage a company’s reputation,
resulting in financial losses and a loss of market share. Additionally, when accidents
happen, liability issues arise, and figuring out responsibility can be problematic in the
absence of explicit safety procedures.

• Ethical considerations: ATSs often face challenging ethical decisions, such as deter-
mining how to prioritise the safety of one group of people versus another in potential
collision scenarios. Safety protocols need to address these ethical dilemmas in a trans-
parent and accountable manner to ensure that the systems make the most ethically
sound decisions possible.

Given these reasons, ensuring safety in the context of cybersecurity of ATSs is cru-
cial for protecting human lives, gaining public trust, complying with legal requirements,
preserving reputation, and addressing ethical considerations.

1.3. Objectives and Contribution

The main objectives of the investigation conducted in this work are as follows:

1. To suggest a methodology, principles, and stages of Security-Informed Safety (SIS)
and AI Quality Model (AIQM)-based assessment of autonomous transport systems,
considering the application of artificial intelligence as a means to increase the power
of cyberattacks and protect ATS assets;
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2. To develop modifications of known FMECA/IMECA (XMECA) techniques (table-
based templates, algorithms of analysing failures/intrusions modes and effects crit-
icality, criticality matrixes, and sets of countermeasures applied by various actors),
their integrated option called SISMECA, and the corresponding ontology model;

3. To investigate user stories related to ATSs in three domains (maritime, aviation, and
space), connected with the application of AI for providing security and safety by use
of AIQM and SISMECA-based techniques;

4. To analyse the influence of countermeasures to decrease risks of successful attacks
and ATS failures in the context of the SISMECA approach;

5. To discuss the application of AIQM and SISMECA-based techniques to develop a
roadmap of AI cybersecurity for ATSs in the context of the SIS approach.

The main contribution of the research is the development of a methodological base
and techniques for providing an assessment of cybersecurity and safety that depends on
cybersecurity and reliability of ATSs, considering the means of AI-powered attacks and
protection. The suggested AIQM and SISMECA-based techniques allow for decreasing the
uncertainty of risk assessment, due to the decomposition of safety and AI quality attributes,
and minimising entropy measures. The methodology that is proposed develops and
integrates several important things from a theoretical point of view. First, the principle of SIS
was detailed and improved through the technique proposed by SISMECA, which ensures
transparency of the assessment the consequences of cyberattacks. Secondly, combining
this technique with an adapted AI quality model made it possible to implement SIS-
based assessment of safety risks, taking into account the functions performed by AI tools
(implementing the functions of ATSs or strengthening the protection of cyber assets).

This paper is organised as follows. Section 2 presents the methodology of research and
the SIS approach to ensure the safety of ATSs, based on the AIQM and SISMECA techniques.
Section 3 discusses examples of their application to analyse the cybersecurity and safety
of ATSs. Section 4 describes the application of the mentioned techniques to develop a
roadmap of AI cybersecurity for ATSs considering new challenges such as developing and
using generative AI. Sections 5 and 6 discuss the main results of the investigation and
present conclusions and future research, respectively.

2. Methodology

As shown in Section 1, traditional cybersecurity and safety assessment methodologies
must be revised due to the abovementioned challenges in today’s rapidly evolving ATS
technological landscape. To address these challenges and therefore improve safety assess-
ment, new methodologies should focus on the SIS approach and yet consider models of
cutting-edge technologies such as AI.

This section provides a general scheme of the proposed methodology, highlights the
SIS approach in the context of entropy, describes FMECA and IMECA as basic approaches
used in SISMECA, and provides templates for all techniques and sample criticality matrices.

The place of SISMECA, among other XMECA-based techniques, is shown through an
appropriate ontology.

2.1. General Scheme

The methodology of this investigation is based on the following consistently imple-
mented principles (Figure 1):

1. Specification of the SIS approach to the assessment of the ATS. The safety assessment
is carried out considering the security threats and the analysis of the consequences of
cyber intrusions for the functional safety of the ATS.

2. Development of the modified and extended XMECA technique [39] considering the
SIS/CSIS approach called SISMECA to assess the ATS security and safety step by
step. The evolution from FMEA to SISMECA is illustrated by suggested ontology and
templates. The SISMECA technique is a natural modernisation and generalisation
of XMECA.
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3. User story/scenario-based SISMECA risk-oriented analysis of ATSs. Such analysis
allows step-by-step formalisation of verbal information about incidents when AI has
been applied or could be applied to protect cyber and physical assets.

4. Decreasing risks considering:

a. utilising a quality model (AIQM) [28,29] to assess AI-powered protection and
AI [40] by identifying of important characteristics and subcharacteristics, as well
as their metric-based assessment. In this study, AI means, applied to improve
the cyber defence of ATS, are considered as a black box.

b. possibilities of actors (regulators, developers, operators, customers) to choose
countermeasures and provide acceptable risks [40]. The offered methodology
favours the efficiency of the implemented countermeasures through the analysis
of their consistency, costs, and so on.

Figure 1. Schematic view of the methodology.

The proposed methodology and technique allow for improving the trustworthiness
and accuracy of the ATS safety assessment when AI components are used to protect cyber
and physical assets, mainly by reducing the level of entropy through the decomposing fac-
tors of the impact of security threats and AI characteristics on safety. A detailed description
of the principles is given in Sections 2.2–2.4.

2.2. Safety as a Top ATS Attribute: SIS Approach in the Context of Entropy

For ATS, safety is a top priority for the following reasons:

• human lives are at stake: autonomous transport systems have the potential to save
thousands of lives by reducing the number of accidents caused by human error.
However, if autonomous transport systems are not designed and tested to be safe,
they can also pose a significant risk to human life.

• public perception: the success of autonomous transport systems depends on public
acceptance. They will not be adopted if the public does not perceive them as safe.
Safety is, therefore, crucial to building trust in autonomous transport systems.

• legal and regulatory requirements: autonomous transport systems are subject to legal
and regulatory requirements that dictate safety standards. Failure to comply with
these requirements can result in legal and financial consequences.

• reputation and liability: companies developing autonomous transport systems are
vested in ensuring their vehicles are safe. If a severe accident were to occur, it could
damage the reputation of the company and result in legal liability.

• technical challenges: developing safe autonomous transport systems is a complex tech-
nical challenge that requires significant research and development. Safety is, therefore,
a top priority throughout the development process to ensure that the technology is
reliable and robust enough to operate safely in a wide range of scenarios.

Traditional ATS are designed with a primary focus on safety and reliability require-
ments. Cybersecurity is usually added as an additional process that could make ATS
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vulnerable to various attacks. Modern ATS have a higher probability of cybersecurity
vulnerabilities utilisation than hardware failures.

So, it is natural that safety should be considered primarily as a function of security,
or more precisely, cybersecurity. Other attributes of reliability, repairability, etc., are also
considered, but on the one hand, as mentioned, they have less impact on safety; on the
other hand, their influence is studied in much more detail. Therefore, considering the
approach called Security-Informed Safety (SIS) [35] or Cybersecurity-Informed Safety
(CSIS) is relatively objective and appropriate for evaluating ATS safety and dependability.
Within this paper, the authors do not distinguish between SIS and CSIS, because the scope
of the application of SIS already considers cyberspace and cyberattacks.

The SIS/CSIS approach is entropy oriented since the impact of security on safety is
characterised by tremendous uncertainty, which grows as physical assets are replaced by
cyber assets at an increasing pace, as well as the diversification of cyber threats, alongside
the increase in the intensity and impact of cyber wars. Considering the role played by ATSs,
first of all, UAVs and UAV fleets in modern wars and their use in smart cities as efficient,
robust, and dependable services [41], shows that the relevance of developing and applying
the SIS-based approach appears very high.

2.3. SISMECA Technique

Security-informed safety means that security measures are integrated into safety
systems to mitigate potential risks and threats. To perform a safety assessment of such
systems, it is possible to perform FMECA to identify all possible failure modes and then
classify their impact on safety, and in addition IMECA to identify potential threats and
countermeasures. Such an approach requires a considerable number of resources and
therefore is rarely achievable in practice.

In this work, we present the SISMECA technique aimed to focus on safety issues
caused by either failures or threats. We describe FMECA and IMECA in the following
subsections to provide a brief overview of existing approaches and then describe SISMECA
and its specifics.

2.3.1. FMECA

FMECA is a structured method for identifying, analysing, and prioritising potential
failure modes and their effects on a system [42]. It is commonly used in engineering and
manufacturing industries to identify potential failures and implement preventative measures.

For ATS, FMECA can be used to identify potential failure modes and their conse-
quences and to develop strategies for mitigating these risks. By performing FMECA on
ATS, experts can identify possible points of failure, assess the likelihood and severity of
these failures, and prioritise them based on their criticality, so that the most critical risks
are addressed first.

The FMECA process typically involves the following steps:

• system analysis: a thorough examination of the autonomous vehicle system is con-
ducted to identify the various components and subsystems that make up the system;

• failure modes (Failure Mode, MOD) identification: potential failure modes for each
component and subsystem are identified through brainstorming, previous experience,
and research;

• failure modes analysis: each failure mode is analysed to determine its potential effects
(Failure Effect, EFF) on the system and its criticality;

• criticality analysis: the criticality of each failure mode is assessed based on its severity
(Failure Severity, SEV), frequency of occurrence (Failure Probability, PRO), and the
likelihood of detection (Detectability, DET);

• risk prioritisation: the identified failure modes are prioritised based on their criticality
(Risk Priority Number, RPN), and appropriate mitigation measures (Countermeasures,
CTM) are implemented to address the highest-priority risks.
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By using FMECA, experts can proactively identify potential failure modes and develop
strategies for mitigating these risks before they occur. This helps ensure that autonomous
transport systems are designed and built to the highest possible safety standards, essential
for gaining public trust and acceptance of this new technology.

FMECA technique analysis is based on the development of a special table consisting of
the elements MOD, EFF, SEV, PRO, DET, RPN, and CTM that are combined into a template.

2.3.2. IMECA

IMECA is a technique intended for cybersecurity assessment considering refinements
in the system. It can be applied to analyse the intrusions in the assessed object [25].

IMECA focuses on vulnerabilities that intrusions can utilise. In gap analysis, the
detection of nonconformities and discrepancies (and related vulnerabilities in the case
of cybersecurity assessment) can be implemented by separately identifying/analysing
problems caused by human factors, techniques, and tools, considering the impact of the
development environment. Then, after identifying all the vulnerabilities as a priority, it
is possible to ensure the cybersecurity of critical instrumentation and control systems by
implementing appropriate countermeasures.

Depending on the critical instrumentation and control system considered, each intru-
sion should be presented as a formal description that identifies any discrepancies (between
“ideal”, i.e., described in the requirements, and real). Such a formal description should be
made for the set of inconsistencies identified by a gap.

The IMECA table must represent each detected gap, and each discrepancy within
the gap can be represented by a row in this table, considering the characteristics of the
product and/or process feature. A separate table for each gap contains the vulnerabilities
identified during the gap analysis. All individual tables are then combined into a common
IMECA table.

The IMECA technique for cybersecurity analysis is based on the development of a
special table considering the following elements:

• threats to system operation (THR);
• vulnerabilities of system components and operation processes (VLN);
• attacks on system assets (ATA);
• effects for system operation (EFF);
• assessment of the criticality of effects (CRT) estimated by the probability of an event and

corresponding effects of the attacks (PRE), as well as the severity of the effects (SVE):

CRT = PRE × SVE.

A set of sub-stories (SS1, . . ., SSn) is formed as a list of analysed events related to
different attacks on vulnerabilities. Sub-stories detail elements of stories and are separate
rows of the IMECA table (see Table 3).

Table 3. Template of the traditional IMECA table.
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. . .

SSN

In [40], it was shown that a table could be added by columns of recovery (REC) as a
metric of criticality and countermeasures (CTM).
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REC is a level of system operation maintainability regarding the possibility of recovery
after an attack on assets. The lower the REC value, the lower the time and cost of recovery.
In this case:

CRT = PRE × SVE × REC.

Table 4 provides a template of the IMECA table extended with the REC and CTM columns.

Table 4. Template of an extended IMECA table.
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Furthermore, the IMECA table could be extended by specifying actors (ACT) imple-
menting CTMs (see Table 5).

Table 5. Template of an IMECA table extended with the ACT column.
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Using IMECA, a matrix of cyber risks of successful intrusions can be developed
accordingly (Figure 2a). The green colour marks a square of low risk (sub-stories SSi, SSj,
SSk), the yellow colour marks a square of moderate risks (SSl, SSp, SSq), and the red colour
marks a square of high or unacceptable risk (SSr, SSs, SSt).

Figure 2. Matrixes of cyber risks. (a) Initial matrix. (b) Matrix after the implementation of countermeasures.
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The IMECA process typically includes the following steps:

1. Determination (collection) of stories and sub-stories set for the analysed system
considering the domain experience;

2. Decomposition and analysis of sub-stories, filling in the IMECA table and the matrix
of risks;

3. Analysis of the matrix or cube of criticality and assessment of the risk value;
4. Determination of a set of countermeasures considering the responsibility of actors;
5. Specification of criteria for the choice of countermeasures;
6. Choice of countermeasures and verification of acceptable risk.

IMECA fits well for cybersecurity assessment, but it does not separate effects caused
by attacks on vulnerabilities to safety-related and non-safety-related ones.

2.3.3. SISMECA Ontology and Template for Assessment

In [39], XMEA was suggested as a unified safety and security assessment approach.
The main idea was to utilise the same universal approach for different domains. The
disadvantage of such an approach lies in the necessity of carrying out separate procedures
for safety and security, which, though they follow the same sequence of operations, still are
significantly resource consuming.

In SISMECA, the ‘Effects’ column is divided into two columns: one with an effect
on security (EFF_SEC) and one with an effect on safety (EFF_SAF); a template of such a
table is shown in Table 6. This allows for focusing only on security issues that affect safety,
implementing the SIS approach.

Table 6. Template of SISMECA table.
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Figure 3 shows the SISMECA ontology model, providing its relations with known
techniques such as FMEA, FMECA, and IMECA.

Extending FMEA by analysing criticality, FMECA is obtained; while focusing on
diagnostics, the result is FMEDA, and so on. SISMECA is obtained from IMECA by
profiling safety-related rows.

Considering the SISMECA ontology model and template, Figure 4 illustrates the
relations among different safety, security, and reliability risk assessment techniques. SIS-
MECA considers security-related risks for safety, and SafMECA combines the results of the
SISMECA and FMECA analysis.

2.4. SISMECA-Based Safety Assessment and Ensuring

SISMECA is suggested to be used as a key method in AI quality model-based strategy.
An overview of this approach is shown in Figure 5 and includes the following principles [40]:

• development of scenarios set describing the operation of ATS under cyberattacks and
actor activities considering AI contribution to system protection for the analysed domains;

• scenario-based development and analysis of user stories describing different cyberat-
tacks, their influence, and ways to protect ATS from them via AI means/platforms;
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• profiling of AI platform requirements by use of characteristics-based AI quality models;
• SISMECA-based assessment of cyberattack criticality and effect on safety, as well as

efficiency of countermeasures that actors can implement.

Figure 3. The SISMECA ontology model.

Figure 4. SISMECA as a part of safety assessment techniques.

It should be mentioned that the application of artificial intelligence as a means to
protect ATS assets in the context of the SIS approach is considered as follows:

• AI means can reduce, but not completely eliminate, the risks of dangerous ATS failures
caused by cyberattacks;

• failures or other anomalies of AI means can cause dangerous states of ATSs.
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Figure 5. AI quality model and SISMECA-based approach: an overview.

3. Security-Informed Safety Assessment of ATSs

Based on the developed SIS methodology of analysis and use of the AI quality model,
further in this section, examples of its application for various types of ATS are provided
based on consideration of specific user stories: US-ATS.A (User Story for Autonomous
Transport Systems from Aviation domain), US-ATS.M (User Story for Autonomous Trans-
port Systems from Maritime domain), US-ATS.S (User Story for Autonomous Transport
Systems from Satellite domain). In these systems, AI tools are used to protect cyber assets
in the face of information intrusions, which can also be supported by AI tools.

Analysing user stories, as well as features of relevant AI systems and tools, a quality
model of the investigated system (as a subset of the general model) is built with the help of
a general AI quality model. The purpose of building such an AI model from the point of
view of the SIS approach for the system under study is as follows:

• determine the need to consider the safety issue in this model from the point of view of
the effects of failures and any anomalies of AI tools on the ATS safety.

• based on the built AI model, determine which of its characteristics affect safety-related
risks. As part of this work, only the impacts related to security (cybersecurity) are
analysed, since the SIS approach is being investigated. Analysis of the impact of other
AI characteristics on safety is a separate task.

• AI tools within the framework of the quality model and follow-up assessment using
SISMECA tables can and should also be analysed from the point of view of the presence
of their vulnerabilities and their impact on the ATS safety.
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The aspect of AI-powered attacks and AI-powered protection is considered through a
set of competitive scenarios described in [43] by

• expanding the number of cases of cyberattacks, considering their reinforcement using
AI, which will lead to an increase in the number of rows of IMECA/SISMECA tables
and the corresponding tracing of analysis results (modes, effects, and criticality).

• increasing opportunities for asset protection (countermeasures) thanks to the use of
AI (AI-powered protection).

It should be mentioned that AI can also be considered as an object of protection when it
is a subsystem of the ATS performing its respective functions. In this case, its vulnerabilities
should be considered, as well as all subsystems.

Thus, the structure of the analysis of AI-based ATS cases using the SIS approach is
the following:

• analysing the corresponding user story from the point of view of security and safety
issues and the role of AI means.

• profiling of AI quality model based on the general one.
• carrying out IMECA and SISMECA analysis and developing relevant tables and

criticality matrixes.
• analysing acceptable risks after the application of countermeasures.

To demonstrate the examples of the proposed methodology application for the three
domains (maritime, aviation, space), the following structure of the further Sections 3.1–3.3
is applied. The first-level Sections 3.1.1, 3.2.1 and 3.3.1 contain the description of the user
story from the respective domain (maritime, aviation, space). The mentioned user story
can be used during further requirement elicitation for the cybersecurity of ATS in the
particular domain, where AI is applied and cybersecurity restrictions are to be applied.
The second-level Sections 3.1.2, 3.2.2 and 3.3.2 describe the profiling of the user story via
building the quality model of AI tools and AI systems mentioned in the user story. The
third-level Sections 3.1.3, 3.2.3 and 3.3.3 contain a cybersecurity assessment of the user
story via the application of IMECA with the indication of the initial risks in the risk matrix,
countermeasures implemented by four stakeholders (developer, regulator, operator, user),
and the respective changes in the risk matrices. Finally, Sections 3.1.4, 3.2.4 and 3.3.4
describe SISMECA safety assessment for the user story from the respective domains. The
goal here is to demonstrate how cybersecurity reflects on functional safety. Cybersecurity
violation impact (cyberattacks on vulnerabilities) is analysed in its application to the
corresponding safety impact.

3.1. Case Study for the Maritime Domain
3.1.1. User Story US-ATS.M: Human Machine Interface of the Shore Control Centre

Experience with using an autonomous ship revealed that the Human–Machine In-
terface (HMI) of the Shore Control Centre (SCC) is vulnerable to AI-powered spoofing,
tampering, information disclosure, denial of service, and elevation of privilege attacks.
Through the HMI, humans can operate the ship under various conditions. As for spoofing,
an attacker could access the system and critical information. This will influence the entire
infrastructure and cause a bad reputation for the company or even litigation. As for tam-
pering, data tampering in this system will put the ship in danger since, through this system,
unauthorised humans on the shore can control and monitor the ship. As for information
disclosure, the HMI contains information crucial for the ship’s sailing. Disclosure of this in-
formation could lead to damage since it relates to the vessel’s navigation and management.
As for denial of service, availability is critical for secure sailing. If this system becomes
unavailable, the ship will be control-less and invisible to the SCC. As for the elevation of
privilege, an attacker with administrative rights to the system could access sensitive data
about the vessel’s condition, customers, and passengers. This could raise legal issues for
the shipping company. To respond effectively to cyberattacks, the developer proposed an
AI-based Intrusion Detection System (IDS), using a Recurrent Neural Network (RNN). The
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proposed methodology takes either of the two intrusion detection benchmark datasets and
pre-processes it. The pre-processed data are then given to the proposed model for training,
and once the model is trained, the weights are saved for future use. The test data are then
evaluated on the trained model for intrusion classification. Two benchmark datasets were
used to evaluate the proposed model: NSL-KDD and CICIDS. NSL-KDD is an improved
version of the famous KDD cup 99 dataset and contains around 41 features, and the class
labels are labelled either normal or specific types of attack. CICIDS is a relatively new
dataset that is being used as a benchmark for intrusion detection systems. One of the
reasons for choosing this dataset is that it contains wider data for the most recent and more
common attacks over any other dataset.

3.1.2. Profiling of the User Story US-ATS.M

A quality model for the AI-based IDS system described in the user story US-ATS.M
as an AI system is shown as a subgraph with the characteristics of AIS, being important
for the analysed system; it is marked with a grey colour. For this system, the following
characteristics should be taken into consideration:

• for the first level of AI quality: LFL (Lawfulness), EXP (Explainability), and TST
(Trustworthiness). In this case, the characteristic ETH (Ethics) is not obvious.

• for the second level of AI quality: CMT (Completeness), CMH (Comprehensibility),
TRP (Transparency), INP (Interpretability), INR (Interactivity), and VFB (Verifiability)
for AI explainability; RSL (Resiliency), RBS (Robustness), SFT (Safety), SCR (security),
and ACR (Accuracy) for AI trustworthiness.

• for the first level of AIP quality: ADT (Auditability), AVL (Availability), EFS (Effective-
ness), RLB (Reliability), MNT (Maintainability), and USB (Usability).

VFB, DVS, RSL, RBS, SFT, SCR, and ACR characteristics are general for AI and AIP
quality sub-models (AIG). To show this on the graph (Figure 6), the vertices VFB, DVS,
RSL, RBS, SFT, SCR, ACR, and AIP are connected to the vertex AIG using dashed lines.
Profiled quality model (Figure 6) can be applied to assess the AIS using metric-based
techniques [27,30]. This technique comprises the following operations: assessing metrics
values for AI quality characteristics/sub-characteristics, determining their weights, and
calculating integrated quality indicator using additive convolution.

Figure 6. The graph of a general AIS quality model with marked characteristics for the system
described in the user story US-ATS.M.

3.1.3. IMECA Cybersecurity Assessment for the User Story US-ATS.M

To demonstrate the utility of the IMECA technique for the maritime domain ATSs, we
analysed Story US-ATS.M. Results of the application of the IMECA technique are shown
in Table 7. Criticality level was assessed for two cases: with the application of recovery
procedures and without application. Moreover, a feature of this table is that the column of
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countermeasures is divided into four columns, presenting results of possible decreasing of
criticality for the corresponding sub-stories considering CTM implemented by four actors:
developer (DEV), regulator (REG), operator (OPR), and the user (USR).

Table 7. IMECA table for the user story US-ATS.M.

THR VLN ATA EFF PRE SVE REC
CRT

(no REC/
REC)

AI-Based CTM
(Criticality via PRE

Decreasing) SS

DEV REG OPR USR

Activities of
hacker
centres

Human
machine
interface

weaknesses

Spoofing
Access to the system

and critical
information

M H M H/M

PRE:
L/M;
CRT:
M/M

PRE:
L/M;
CRT:
M/M

PRE:
M/M;
CRT:
H/H

PRE:
L/M;
CRT:
M/M

SS1

Tampering Control and monitor
the ship from the shore M H M H/M

PRE:
L/M;
CRT:
M/M

PRE:
L/M;
CRT:
M/M

PRE:
M/M;
CRT:
H/M

PRE:
L/M;
CRT:
M/M

SS2

Information
disclosure

Damages related to the
vessel’s navigation and

management
M H M H/M

PRE:
L/M;
CRT:
M/M

PRE:
L/M;
CRT:
M/M

PRE:
M/M;
CRT:
H/H

PRE:
L/M;
CRT:
M/M

SS3

Denial of
service

A ship can be
control-less and

invisible to the Shore
Control Centre

M H M H/M

PRE:
L/M;
CRT:
M/M

PRE:
L/M;
CRT:
M/M

PRE:
M/M;
CRT:
H/M

PRE:
L/M;
CRT:
M/M

SS4

Elevation of
privilege

Access sensitive data
about the vessel’s

condition, its
customers, and

passengers

M H M H/M

PRE:
L/M;
CRT:
M/M

PRE:
L/M;
CRT:
M/M

PRE:
M/M;
CRT:
H/M

PRE:
L/M;
CRT:
M/M

SS5

Repudiation Distortion of data,
which is stored in logs L M M L/L

PRE:
L/L;
CRT:
L/L

PRE:
L/L;
CRT:
L/L

PRE:
L/L;
CRT:
L/L

PRE:
L/L;
CRT:
L/L

SS6

The results of the SSs analysis (matrixes of risks) are shown in Figures 7 and 8. The first
matrix did not consider the application of countermeasures by different actors (Figure 7).
The matrixes (Figure 8) describe a potential risk decrease after implementing countermea-
sures by developers, regulators, and operators.

Figure 7. An initial matrix of risks.

The application of countermeasures for this example shows that the efforts of DEV,
REG, and USR can achieve the same effect, namely, reducing the risks of successful attacks
for states SS1-SS5 due to decreasing their probabilities. OPR’s efforts for this case cannot
reduce the risks.

3.1.4. SISMECA Safety Assessment for the User Story US-ATS.M

Considering the SISMECA template introduced in Section 2.3.3. (Table 7), we analysed
security violation impact (cyberattacks on vulnerabilities) for corresponding safety impact.
One row was added to the SISMECA table in order to consider possible countermeasures
to reduce ATS critical failures.
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Figure 8. Matrix of risks considering CTMs implemented by DEV (a), REG (b), OPR, (c) and USR (d).

In addition, Table 8 analyses the effects in terms of safety, as well as capabilities of
reducing the effects of cyberattacks on such failures, provided that countermeasures are
proposed and implemented only at the developer level:

• security ensuring means (information technologies level, CTMsec);
• safety ensuring means (information and operation technologies level CTMsaf);
• combined usage of ensuring means at IT and OT levels.

Table 8. Example of the SISMECA table.
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The criticality matrix (Figure 9) serves to illustrate an effect from the implementation
of the means mentioned above, in terms of initial high criticality level for substory (M × H)
to medium risk levels SS1sec (L × H), SS1saf (M ×M) and low-risk level SS1comb (L ×M)
in the case of combined usage.

Figure 9. Matrix of risks considering CTMs implemented by DEV.
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3.2. Case Study for the Aviation Domain
3.2.1. User Story US-ATS.A: UAV-Based Surveillance System

A company used UAVs as components of an aerial surveillance system. Experience
with the utilisation of UAVs revealed that UAVs are vulnerable to AI-powered GPS spoofing
attacks and AI-powered GPS jamming attacks. These attacks can happen because of
weaknesses in the navigation system. GPS spoofing occurs when someone uses a radio
transmitter to send a counterfeit GPS signal to a receiver antenna to counter a legitimate
GPS satellite signal. Most navigation systems are designed to use the strongest GPS signal,
and the fake signal overrides the weaker but legitimate satellite signal. GPS jamming
happens when an attacker blocks GPS signals altogether. An AI-powered GPS spoofing
attack is initiated when the UAV uses the autopilot flight mode, which can be automatically
initiated when the drone has lost contact with the ground control station (GCS). This kind
of connection disruption is triggered by a jamming attack (jamming attacks forcibly switch
the drone’s flight mode into autopilot even if the drone is still within the communication
range of the control unit) from the attacker’s ground station. After hacking the UAV using
AI-powered jamming attacks, the attacker forces the UAV to land in a pre-picked zone by
spoofing GPS signals. In such a situation, the UAV cannot initiate its safe return-to-home
(RTH) facility due to the absence of connection with the GCS, as in typical challenging
scenarios. As countermeasures, a deep-learning-based, adaptive Intrusion Detection System
(IDS) was used by an aerial surveillance system developer for a UAV to identify its intruders
and ensure its safe RTH. In the proposed IDS, Self-Taught Learning (STL) with a multiclass
SVM (Support Vector Machine) was used to maintain the high true positive rate of the
IDS, even in uncharted territory. A self-healing method in the IDS recovery phase uses the
Deep-Q Network, a deep reinforcement learning algorithm for dynamic route learning to
facilitate the UAV’s safe RTH.

3.2.2. Profiling of the User Story US-ATS.A

A quality model for the AI-based IDS system, which is described in the user story
US-ATS.A as an AI system, is shown as a subgraph with the characteristics of AIS, which
are important for the analysed system and marked with grey colour. For this system, the
following characteristics should be considered:

• for the first level of AI quality: ETH, LFL, EXP, and TST (in this case, all characteristics
of the first level of AI quality are essential for this AIS);

• for the second level of AI quality: FRN for AI ethics; CMT, CMH, TRP, and VFB for AI
explainability; RSL, RBS, SFT, SCR, and ACR for AI trustworthiness;

• for the first level of AIP quality: ADT, AVL, CNT, EFS, and RLB.

The characteristics VFB, RSL, RBS, SFT, SCR, and ACR are general for AI and AIP
quality sub-models. A profiled quality model (Figure 10) can be applied to assess the AIS
using metric-based techniques [30]. This technique comprises the following operations:
assessing metrics values for AI quality characteristics/sub-characteristics, determining
their weights, and calculating the integrated quality indicator using additive convolution.

3.2.3. IMECA Cybersecurity Assessment for the User Story US-ATS.A

Results of the IMECA technique application are presented in Table 9. Criticality level
was assessed for two cases: with the application of recovery procedures and without
application. Moreover, a feature of this table is that the column of countermeasures
is divided into four columns, presenting results of possible decreasing of criticality for
the corresponding sub-stories considering CTM implemented by four actors (DEV, REG,
OPR, USR).



Entropy 2023, 25, 1123 19 of 35

Figure 10. The graph of a general AIS quality model with marked characteristics for the system
described in the user story US-ATS.A.

Table 9. IMECA table for the user story US-ATS.A.

THR VLN ATA EFF PRE SVE REC
CRT

(no REC/
REC)

AI-Based CTM
(Criticality via PRE Decreasing)

SS
DEV REG OPR USR

Activities of
hacker
centres

Navigation
system

weaknesses

GPS spoofing
attacks

Ability to force
the UAV to land
in a pre-picked

zone

M H H H/H

PRE:
L/M;
CRT:
M/M

PRE:
L/M;
CRT:
M/M

PRE:
M/M;
CRT:
H/H

PRE:
L/M;
CRT:
M/M

SS1

GPS jamming
attacks

Loss of control
of the UAV M M L M/M

PRE:
L/M;
CRT:
L/L

PRE:
L/M;
CRT:
L/L

PRE:
M/M;
CRT:
M/M

PRE:
L/M;
CRT:
L/M

SS2

The results of SSs analysis (matrixes of risks) are shown in Figures 11 and 12. The first
matrix did not consider the application of countermeasures by different actors (Figure 11).
The matrixes (Figure 12) describe a potential decrease in risks after implementing counter-
measures by developers, regulators, and operators.

Figure 11. An initial matrix of risks.

The application of countermeasures for this example can be efficient due to efforts of
DEV, REG, and USR and achieve the same effect of reducing the risks of successful attacks
for states SS1 and SS2. OPR’s efforts in this case cannot reduce the risks.

3.2.4. SISMECA Safety Assessment for the User Story US-ATS.A

Results of SISMECA, performed in the same way as in Section 3.1.4, are provided in
Table 10 and Figure 13.
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Figure 12. Matrix of risks considering CTMs implemented by DEV (a), REG (b), OPR (c), and USR (d).

Table 10. SISMECA table for the user story US-ATS.A.

T
hr

ea
ts

(T
H

R
)

V
ul

ne
ra

bi
li

ti
es

(V
LN

)

A
tt

ac
ks

(A
TA

)

Ef
fe

ct
s

on
se

cu
ri

ty
(E

FF
_S

EC
)

Ef
fe

ct
s

on
sa

fe
ty

(E
FF

_S
A

F)

Pr
ob

ab
il

it
y

(P
R

E)

Se
ve

ri
ty

(S
V

E)

R
ec

ov
er

y
(R

EC
)

C
ri

ti
ca

li
ty

(C
R

T
)

C
ou

nt
er

m
ea

su
re

s
(C

T
M

),
(A

ct
or

s,
A

C
T

)

C
R

T
/C

T
M

Su
b-

St
or

ie
s

(S
SX

)

Activities
of hacker
centres

Navigation
system
weak-
nesses

GPS
jamming
attacks

Loss of
control of
the UAV

Damages
caused by

uncontrolled
UAV

M M L M/M
(1) sec
(2) saf

(3) comb

M/M
M/L
L/L

SS1sec
SS1saf

SS1comb

Figure 13. Matrix of risks considering CTMs implemented by DEV.

3.3. Case Study for the Space Domain
3.3.1. User Story US-ATS.S: Smart Satellite Network

A company used a Smart Satellite Network (SSN), which can be defined as a network
of satellite systems, the processes of which have been augmented by including smart
sensors and actuators. Experience with the utilisation of the SSN revealed that it is vul-
nerable to the following AI-powered attacks: Distributed Denial of Service (DDoS) attacks
because of weaknesses in communication protocol or power supply devices (A1), targeted
attacks because of deficiencies in power supply devices (A2), tampering attack because of
the Operating System (OS)/firmware weaknesses (A3), Man-In-The-Middle (MITM) (A4)
attacks, and data manipulation attacks (A5) because of weaknesses in channels responsible
for transmitting data between satellites and ground stations. It is vital to note that A1
resulted in increased network interactions, A1 and A2 resulted in power depletion, A3
resulted in a non-functional state known as bricks, and A4 and A5 resulted in violating the
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confidentiality/integrity of smart satellite data. To detect and investigate the cyberattacks,
the developer proposed a DL-based network forensic framework, consisting of augmented
satellites and IoT devices, called INSAT-DLNF (Intelligent Satellite Deep Learning-based
Network Forensics). For the development of the proposed INSAT-DLNF framework, the
Gated Recursive Unit Recurrent Neural Network (GRU-RNN) was utilised, which made it
possible to create a model for detecting attacks in collected network traces. Big data collec-
tions, such as NSL-KDD, UNSW-NB15, and Bot-IoT, were analysed for investigating attack
events, and their traces were analysed for developing reliable network forensics models.

3.3.2. Profiling of the User Story US-ATS.S

A quality model for the AI-based IDS system described in the user story US-ATS.S as
an AI system is shown as a subgraph with the characteristics of AIS, which are important
for the analysed system and marked with grey colour. For this system, the following
characteristics should be taken into consideration:

• for the first level of AI quality: LFL, EXP, and TST (in this case, characteristic ETH is
not obvious);

• for the second level of AI quality: CMT, TRP, INR, and VFB for AI explainability; DVS,
RSL, SFT, and SCR for AI trustworthiness;

• for the first level of AIP quality: ADT, AVL, EFS, RLB, MNT, and USB.

VFB, DVS, RSL, and CSR characteristics are general for AI and AIP quality sub-models.
Profiled quality model (Figure 14) can be applied to assess the AIS using metric-based
techniques [30]. This technique comprises the following operations: assessing metrics
values for AI quality characteristics/sub-characteristics, determining their weights, and
calculating the integrated quality indicator using additive convolution.

Figure 14. The graph of a general AIS quality model with marked characteristics for the system
described in the user story US-ATS.S.

3.3.3. IMECA Cybersecurity Assessment for the User Story US-ATS.S

To demonstrate the utility of the IMECA technique for the space ATSs, we analysed
the user story US-ATS.S. Results of the IMECA technique application are presented in
Table 11. Criticality level was assessed for two cases: with and without the application of
recovery procedures. Moreover, a feature of this table is that the column of countermeasures
is divided into four columns, presenting results of possible decreasing of criticality for
the corresponding sub-stories considering CTM implemented by four actors (DEV, REG,
OPR, USR).



Entropy 2023, 25, 1123 22 of 35

Table 11. IMECA table for the user story US-ATS.S.

THR VLN ATA EFF PRE SVE REC
CRT

(no REC/
REC)

AI-Based CTM
(Criticality via PRE Decreasing)

SS
DEV REG OPR USR

Activities of
hacker
centres

Communication
protocol

weaknesses

DDoS
attack

Increased
network

interactions
M M L M/L

PRE:
L/M;
CRT:
L/L

PRE:
L/M;
CRT:
L/L

PRE:
MM;
CRT:
M/L

PRE:
L/M;
CRT:
M/L

SS1

Power supply
devices

DDoS or
targeted attack Power depletion L M H L/M

PRE:
L/L;
CRT:
L/M

PRE:
L/L;
CRT:
L/L

PRE:
L/L;
CRT:
L/L

PRE:
L/L;
CRT:
L/L

SS2

Possibility of
tampering with

the
OS/firmware

Tampering
attack

A non-functional
state known as

bricks
L H M M/M

PRE:
M/M;
CRT:
M/M

PRE:
M/M;
CRT:
M/M

PRE:
M/M;
CRT:
M/M

PRE:
M/M;
CRT:
M/M

SS3

Vulnerabilities
of transmitting
data between
satellites and

ground station

Man-In-The-
Middle (MITM)

attack
Violation of

confidentiality
and integrity of
smart satellites

data

M M L M/L

PRE:
L/L;
CRT:
L/L

PRE:
L/L;
CRT:
L/L

PRE:
M/L;
CRT:
M/L

PRE:
L/L;
CRT:
L/L

SS4

Data
manipulation

attacks
M H M H/H

PRE:
L/L;
CRT:
M/M

PRE:
L/L;
CRT:
M/M

PRE:
M/M;
CRT:
H/H

PRE:
L/L;
CRT:
M/M

SS5

The results of SSs analysis (matrixes of risks) are shown in Figures 15 and 16. The first
matrix did not consider the application of countermeasures by different actors (Figure 15).
The matrixes (Figure 16) describe a potential decrease in risks after implementing counter-
measures by developers, regulators, and operators.

Figure 15. An initial matrix of risks.

Figure 16. Matrix of risks considering CTMs implemented by DEV (a), REG (b), OPR (c), and USR (d).
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The application of countermeasures for this example can be efficient due to efforts of
DEV, REG, and USR and achieve the same effect of reducing the risks of successful attacks
for states SS1, SS4, and SS5. OPR’s efforts for this case cannot reduce the risks.

3.3.4. SISMECA Safety Assessment for the User Story US-ATS.I

Results of SISMECA, performed in the same way as in Section 3.1.4., are provided in
Table 12 and Figure 17.

Table 12. SISMECA table for the user story US-ATS.A.
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Figure 17. Matrix of risks considering CTMs implemented by DEV.

4. Towards the Roadmap of AI Cybersecurity for ATS in the Context of the SIS Approach

Based on the analysed information and the cybersecurity concerns connected with
the application of AI in ATS, we developed an innovative technology roadmap entitled
“AI/ML Cybersecurity for Aviation/Space and Maritime Autonomous Transport” [43]
within the project ECHO (the European network of Cybersecurity centres and competence
Hub for innovation and Operations) funded under the H2020 programme.

Elements of the developed evaluation methodology, in particular AIQM and their
profiling for specific types of ATS, IMECA-based analysis of cybersecurity considering
the use of AI, and a review of almost 30 user stories for three types of ATS (maritime,
aviation, space) were included into the roadmap developed in the frame of the project
ECHO [40]. As far as the main concern of the roadmap was exactly in ATS cybersecurity
(without safety consideration) and the need to investigate the research results of the impact
of ATS cybersecurity on functional security, we see the need to clarify some positions of
the developed roadmap. This section describes the possibilities for further extension of the
roadmap, considering the aspect of safety and the proposed SIS approach.

4.1. AI Cybersecurity for the ATS Roadmap Evolution

The following high-level statements provide a general framework for enhancing the
roadmap for the next several years. The exact timeframe was challenging to indicate
precisely due to the apparent complexity and constant growth of AI evolution velocity. As
the most realistic in terms of the possible prognosis, the period of 3 years has been chosen
considering the rising application of generative AI and the accompanied challenges (some
of which cannot even be known now, which is a subject of raising concern in society). It is
essential to adapt and refine the roadmap and the statements based on the specific needs,
advancements, and challenges within each domain of ATS. By considering the evolution of
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cybersecurity tools, AI as a whole, and generative AI particularly, we propose the refining
the roadmap with the following points of focus:

• Constantly reassess the current threat landscape: conduct an ongoing and comprehen-
sive assessment of the current cybersecurity threats facing ATS, considering various
domains (maritime, aviation, space, ground). Identify potential vulnerabilities and
attack vectors specific to AI-powered ATS.

• Implement advanced threat detection: deploy AI-powered threat detection systems
that leverage machine learning algorithms, including behaviour-based analysis and
anomaly detection. Continuously update and enhance these systems to adapt to
evolving cyber threats.

• Strengthen AI governance: develop robust AI governance frameworks that ensure the
ethical, secure, and safe development, deployment, and operation of AI systems in
ATS. Establish accountability, transparency, and monitoring mechanisms to mitigate
cybersecurity risks and functional safety threats.

• Enhance intrusion detection and prevention: continuously improve intrusion detec-
tion and prevention capabilities by integrating advanced cybersecurity tools with AI
algorithms. Leverage AI techniques, such as deep learning, for the more accurate and
proactive identification of cyber threats in real time.

• Foster collaboration for threat intelligence: establish partnerships and alliances with
industry stakeholders, cybersecurity experts, and academia to share threat intelligence
and best practices. Leverage collective knowledge to enhance the overall cybersecurity
and safety posture of ATS.

• Implement secure data sharing: develop the frameworks that ensure the confidentiality,
integrity, privacy, and cybersafety (attribute connecting cybersecurity with safety) of
data exchanged within and between ATS. Utilise encryption, access controls, and
blockchain technology for secure and trusted data sharing.

• Embrace generative AI security and cybersafety: address the potential cybersecurity
risks and safety threats associated with generative AI algorithms in ATS. Develop
robust security testing and validation procedures specific to generative AI models to
identify and mitigate vulnerabilities.

• Continuously monitor and update security measures: establish a continuous mon-
itoring system to track the effectiveness of cybersecurity measures in AI-powered
ATS. Regularly update security protocols, leverage threat intelligence, and adapt to
emerging cyber threats.

• Foster AI-driven threat hunting: utilise AI-driven threat hunting techniques to proac-
tively search for potential cyber threats in ATS. Develop AI models to analyse large
datasets, identify patterns, and detect anomalies to enhance proactive defence strategies.

4.2. Evolution of Cybersecurity Tools, AI as a Whole, and Generative AI in Particular

The evolution of cybersecurity tools, AI as a whole, and generative AI can significantly
impact and shape the roadmap for AI cybersecurity in ATS. Here is how these factors can
influence the roadmap:

1. Evolution of cybersecurity tools:

• Advanced threat detection: as cybersecurity tools evolve, they may incorporate
more advanced techniques such as behaviour-based analysis, anomaly detection,
and machine learning algorithms. This can enhance the effectiveness of threat
detection in ATS, enabling earlier detection and response to cyber threats, thus
decreasing the risk of safety violation.

• Real-time monitoring and response: advanced cybersecurity tools may provide
real-time monitoring capabilities, allowing immediate response to potential cy-
berattacks. This can enable faster incident containment and mitigation, reducing
the impact on the safety and functionality of ATS.

• Integration with AI systems: integrating cybersecurity tools with AI systems can
result in more intelligent and adaptive defence. AI algorithms can analyse vast
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amounts of data to identify patterns, detect anomalies, and respond to emerging
threats in real-time, enhancing the overall cybersecurity and, at the end of the
day, safety posture of ATS.

2. Evolution of AI as a whole:

• Improved threat intelligence: AI algorithms can analyse large datasets and iden-
tify patterns humans might overlook. This can improve threat intelligence,
allowing for more accurate identification and prediction of cyber threats in ATS,
which can influence safety.

• Advanced intrusion detection and prevention: AI-powered intrusion detection
systems can continuously learn and adapt to evolving cyber threats. They can
detect and prevent sophisticated attacks that traditional rule-based systems might
miss, bolstering the cybersecurity defences of autonomous transport systems.

• Enhanced authentication and access control: AI can facilitate advanced authenti-
cation mechanisms, such as biometrics and behavioural analysis, to strengthen
access control in autonomous transport systems. This can minimise the risk of
unauthorised access and mitigate potential cyberattacks.

3. Influence of generative AI:

• Potential cybersecurity risks: using generative AI algorithms in ATS introduces
potential cybersecurity risks. These algorithms can be vulnerable to adversarial
attacks or manipulation, leading to safety risks. The roadmap needs to account
for developing robust defences against such attacks.

• Security testing and validation: generative AI algorithms require thorough se-
curity testing and validation to ensure their integrity and attack resilience. The
roadmap should incorporate processes for testing and validating generative AI
models to identify potential vulnerabilities which can target safety threats and
address them before deployment.

• Robust AI governance: the roadmap should consider robust AI governance
frameworks that ensure the ethical, secure, and safe development, deployment,
and operation of generative AI algorithms in ATS. This provides accountability,
transparency, and continuous monitoring of AI systems to mitigate cybersecu-
rity risks.

5. Discussion

The following section elaborates on the limitations of the used XMECA-based tech-
niques in the research and the ways of further improvements towards the regulation of AI
and cybersecurity in the autonomous transport systems domain in EU, as well as consider-
ing raising threats to the environment in the context of Chemical, Biological, Radiological,
Nuclear, and Explosives (CBRNe).

5.1. Interconnection between OT and IT

OT (Operational Technology) and IT (Information Technology) are interconnected
domains in the context of functional safety and cybersecurity analysis of ATS where AI
is used. OT refers to the technology and systems used to monitor and control physical
processes and operations in the ATS, such as sensors, actuators, controllers, and other
devices. IT refers to the technology and systems used to manage and process data and
information in the system, such as servers, networks, databases, and software applications.
In the context of functional safety and cybersecurity analysis of ATS, the interconnection
of OT and IT is significant because it creates potential entry points for cyber threats that
could compromise the safety and security of the system. For example, an attacker may
use a cyberattack to compromise a server or network in the IT domain (e.g., via attacking
the AI), which could then allow them to gain access to the OT domain and compromise
the sensors or controllers that are used to monitor and control physical processes of ATS.
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Considering both the OT and IT domains, it is important to holistically integrate functional
safety and cybersecurity analysis to address this potential vulnerability.

The proposed methodology tries to cover the gap by addressing this connection
holistically, thus ensuring that the system is safe and secure and that potential cyber threats
are effectively mitigated.

To reach this goal, the methodology encompasses actions for

1. identifying and assessing the risks and vulnerabilities associated with both OT and IT
domains. This includes evaluating the potential impact of cyber threats on the safety
and reliability of the autonomous transport system.

2. implementing appropriate safety and security controls in both OT and IT domains.
This may include implementing physical, technical, and procedural safeguards to
prevent or mitigate the effects of cyber threats.

3. establishing clear communication and collaboration between OT and IT teams. This
includes sharing information about potential risks and vulnerabilities and ensuring
that safety and security controls are implemented and maintained consistently across
both domains.

4. incorporating AI into the functional safety and cybersecurity analysis process. AI can
identify potential threats and vulnerabilities in the system and develop and implement
effective safety and security controls.

5. decomposition of reasons related to cybersecurity that affect safety risks, significantly
reducing the uncertainty of system behaviour and the consequences of cyberattacks
on the vulnerability of ATSs. This is due to the possibility of careful analysis of the
chain “threat–vulnerability–attack–consequences–countermeasures” from the point
of view of safety. The accuracy of determining the effect of the use of AI, as well as
the consequences of cyberattacks on the components of ATSs, which are implemented
using AI, is increased thanks to the decomposition of the set of characteristics of AI
using a quality model.

5.2. Application of Hardware-Oriented Techniques Which Were Developed for Functional Safety
Analysis to Software-Oriented Cybersecurity Analysis

Initially developed as hardware-oriented analysis, the techniques previously described
and adopted in many research papers are methods used to ensure the safety and cyberse-
curity of complex hardware and software systems, such as ATS. These techniques were
initially developed to ensure that these systems were safe to operate and would not fail.
However, as AI-based ATS systems have become more complex and interconnected, the
need to protect them from cybersecurity threats has become increasingly important.

Fault injection testing can be mentioned among the examples of a hardware-oriented
analysis technique applied to cybersecurity. This technique intentionally introduces faults
into a system to see how it responds. In the context of cybersecurity, fault injection testing
can be used to simulate attacks and determine how a system will react to them. This can
help identify vulnerabilities in the system that attackers could exploit. Another example of
a hardware-oriented technique used for the system design to improve its cybersecurity is
redundancy. Redundancy involves adding extra components or subsystems to a system to
ensure it can continue functioning even if one or more components fail. In the context of
cybersecurity, redundancy can be used to ensure that critical systems can continue to work,
even if attackers target them.

Pros of using hardware-oriented techniques for analysis and design to improve cyber-
security are as follows:

• They have been used successfully for safety and can be adapted for cybersecurity
because of the experience and gained lessons learned during application in safety-
critical domains;

• They can be very effective at identifying vulnerabilities and threats in systems;
• They can help ensure that critical systems continue to function even if attackers

target them;
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• They can help build resilience into systems, making them more attack resistant;
• Cons of using hardware-oriented techniques for cybersecurity are as follows:
• They can be expensive and time-consuming to implement;
• They may not be effective against all types of attacks;
• They may be less effective against attacks specifically designed to bypass them;
• They may not be appropriate for all types of systems.

It is important to note that while hardware-oriented techniques used for analysis
and design can be very effective at identifying vulnerabilities and building resilience into
systems, they are not a silver bullet for cybersecurity. It is essential to use a combination of
techniques, including hardware-oriented and software-oriented approaches, to ensure the
cybersecurity of ATS.

5.3. EU Initiative on AI: Ensuring the Appropriate Safety and Liability Regulations

The emergence of AI, in particular the complex enabling ecosystem and the feature of
autonomous decision making, requires a reflection on the suitability of established rules
on safety and civil law questions on liability [44]. For instance, advanced robots and IoT
products empowered by AI may act in ways not envisaged when the system was first
implemented. Given AI’s widespread use, horizontal and inter-sectoral rules may need to
be reviewed.

The EU Strategic Framework on Health and Safety at Work 2021–2027 [45] already
addresses the intended use and foreseeable use or misuse of products when placed on the
market, e.g., Machinery Directive [46]; Radio Equipment Directive [47]; and EU’s General
Product Safety Regulation [48], which is agreed and going to be updated in the nearest
upcoming months [49], as well as other specific safety rules, among others. This has led
to developing standards and regulations in AI-enabled devices continuously adapted to
technological progress.

The further development and promotion of such safety standards and support in EU
and international standardisation organisations will help European businesses benefit from
a competitive advantage and increase overall trust (consumers, stakeholders, etc.) via a
combination of cybersecurity, safety, and SIS-based methodology. These regulations should
also cover interoperability, cross-domain, and inter-sectoral issues, which are crucial for
offering stakeholders meaningful choices and ensuring fair competition.

5.4. Application of AI-Powered Cyberattacks: CBRNe Issues

The probability of a successful cyberattack by hackers of various levels (starting from
hacktivists and finishing with groups funded by influential states that have been recognised
as terrorists or commit terrorist acts of aggression) using AI on autonomous vehicles will
highly likely lead to dramatic consequences for functional safety at the infrastructure level.
The current status of the development of AI and autonomous vehicles of various fields of
application (on-ground, maritime, aviation, and space), as well as methods of conducting a
hybrid war (including cyberwarfare and cyberterrorism), allow unnamed groups to violate
not only the functional safety of individual autonomous vehicles but also intercept them,
influencing them in such a way as to use them to damage critical infrastructure facilities.

Cyberattacks on critical infrastructure objects and facilities (e.g., oil and gas complex
facilities and pipelines, power generation and transmission facilities, fibre-optic communi-
cation and data transmission lines, heat and water supply and sewerage treatment, waste
treatment, chemical processing plants) that affect the quality of life of a large number of
civilians can entail not only a one-time deterioration in the quality of life (e.g., security,
human health, economic development) of the population in a particular territory, but they
also carry epidemiological risks of various severity and criticality levels, which were even
not faced by humanity before. In this context, the importance and necessity of considering
such attacks are rapidly growing, taking into account the aspects of CBRNe (National
Strategy for Chemical, Biological, Radiological, Nuclear, and Explosives) [50,51]. These are
types of hazards that pose a significant threat to critical infrastructure and public safety.
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AI-powered cyberattacks on CBRNe-related systems can have devastating consequences,
such as releasing toxic substances or disrupting emergency response services. AI-powered
cyberattacks on CBRNe-related systems may become more targeted and sophisticated in
the next five years. For instance, attackers may use AI-powered social engineering tactics
to trick employees or emergency responders into providing access to sensitive systems or
information. They may also use AI-powered malware or ransomware to disrupt opera-
tions or hold critical systems hostage. Investing in robust cybersecurity measures, such
as secure network design, access control, and threat detection and response, is essential
to counter these threats. It is also crucial to ensure that emergency response teams can
access reliable communication networks and information systems protected against cyber
threats. Additionally, continued research and development in AI-powered cybersecurity
technologies will be necessary to stay ahead of emerging threats, e.g., AI-powered threat
detection systems that can identify and respond to CBRNe-related cyber-informed safety
threats in real time could be critical in preventing catastrophic events.

5.5. Challenges of Security-Informed Safety Analysis of ATSs

The Security-Informed Safety Analysis of ATS presents several challenges due to the
complex nature of these systems and the criticality of ensuring their safety and security.
Here are some of the key challenges associated with such analysis for ATSs:

1. Multiple interconnected components, such as sensors, actuators, control systems, and
communication networks, are used in ATSs. It can be difficult to analyse the safety
and security implications of such complex systems since flaws or vulnerabilities in
one component might have cascading effects on the system as a whole.

2. ATSs operate in dynamic and unpredictable environments, interacting with other
transportation systems and infrastructure. Assessing the safety and security of these
systems requires considering various scenarios and potential risks associated with
different operational conditions, such as adverse weather or unexpected events.

3. As autonomous transport technology evolves rapidly, there is a lack of standardised
frameworks, guidelines, and regulations specifically addressing the safety and secu-
rity aspects of these systems. This creates challenges in conducting comprehensive
analysis, as there is no universally accepted methodology or set of criteria to evaluate
the safety and security of ATSs.

4. ATSs often involve human interaction, such as operators or maintenance person-
nel. Considering human factors, such as user behaviour, training, and response to
system failures, is essential for comprehensive analysis. However, analysing and
incorporating these factors into the analysis can be complex and requires a multidisci-
plinary approach.

Thus, addressing these challenges requires a collaborative effort involving experts
from various domains, including engineering, cybersecurity, transportation, and policymak-
ing. It is important to continuously improve and refine security-informed safety analysis
methodologies, frameworks, and regulations to ensure the safe and secure deployment of
ATSs in real-world scenarios.

6. Conclusions

The SIS-based methodology and the SISMECA technique, in combination with the
well-known FMECA technique, provide a comprehensive safety assessment of ATSs and
other safety-critical systems due to a combined analysis of the risk due to violations and
damages of physical and cyber assets. SISMECA is an example of an attribute-scalable
analysis technique, since it allows one to assess ATS characteristics under various options
of artificial intelligence applications, such as AI-powered protection against AI-powered
attacks [52].

As AI-based cybersecurity tools evolve, so do the functional safety and cybersecurity
concerns surrounding their use in attacks on ATS. Various factors, including the increasing
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complexity of ATS, the growing sophistication of cyber attackers, and the need for improved
safety and security in these systems, drive the evolving nature of these concerns.

One key concern is the potential for AI-based cybersecurity tools to be used in cy-
berattacks on ATS. While these tools can effectively detect and respond to cyber threats,
they can also be used to launch attacks. For example, an attacker could use an AI-based
cybersecurity tool to scan a system for vulnerabilities and then exploit those vulnerabil-
ities to gain unauthorised access or cause damage to the system. Another concern is the
potential impact of cyberattacks on the safety and functionality of ATS. These systems rely
on a range of sensors, processors, and controllers to operate, and a cyberattack on any
of these components could have significant safety implications. For example, an attacker
could compromise the sensors an autonomous vehicle uses, causing it to misinterpret its
surroundings and potentially cause an accident.

To address these concerns, a growing focus is on co-engineering functional safety
and cybersecurity in developing AI-based cybersecurity tools for ATS. The co-engineering
of functional safety and cybersecurity for cybersecurity assurance of AI-based ATS is an
ongoing process that involves collaboration between safety, cybersecurity, AI, and ATS
experts and integrating functional safety and security considerations throughout the entire
design and development process, ensuring that both functional safety and cybersecurity
requirements are met at every stage of the development process. It also involves monitoring
and maintaining these systems to detect and respond to potential safety hazards and
security threats. This collaboration is essential to ensure that the system is both safe and
secure and that potential cyber threats are effectively mitigated. As AI-based ATS and
cybersecurity tools used for attacks and protection continue to evolve, it is important to
continue to incorporate functional safety and cybersecurity co-engineering principles to
ensure that these tools are effective at defending against cyber threats in ATS.

The investigated approach of combining SIS-, IMECA-, and AIQM-based assessment
techniques serves several important purposes:

1. Addressing emerging challenges: The integration of AI in autonomous transport
systems introduces new challenges and risks, particularly in terms of cybersecurity. By
adopting this approach, the investigation aims to proactively address these emerging
challenges and develop methodologies and techniques that consider the application
of AI in the context of cybersecurity and safety.

2. Holistic assessment: The approach combines SIS and AIQM to provide a holistic
assessment of autonomous transport systems. It considers not only the traditional
safety considerations but also the specific implications of AI-powered attacks and
the quality attributes of AI systems. This comprehensive assessment allows for a
more accurate understanding of the risks and vulnerabilities of ATS and provides a
foundation for effective risk mitigation.

3. Transparency and traceability: The proposed SISMECA technique enhances the
transparency of assessing the consequences of cyberattacks. By integrating known
FMECA/IMECA techniques and developing an ontology model, the approach en-
ables a structured analysis of failure and intrusion modes. This transparency and
traceability facilitate a clear understanding of the risks and help identify suitable
countermeasures to mitigate those risks.

4. User-centred analysis: By investigating user stories in the maritime, aviation, and
space domains, the approach ensures a user-centred analysis of the application of AI
in the context of cybersecurity and safety. This user-centric perspective helps identify
specific challenges, requirements, and best practices that are relevant to different
domains. The insights gained from these user stories contribute to the development
of effective assessment techniques and risk mitigation strategies tailored to the needs
of different autonomous transport systems.

5. Minimising uncertainty and enhancing risk assessment: The proposed AIQM- and
SISMECA-based techniques aim to minimise uncertainty in risk assessment. By
decomposing safety and AI quality attributes and applying entropy measures, the
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approach provides a more accurate and reliable assessment of cybersecurity and safety
risks in ATS. This reduction in uncertainty enables stakeholders to make informed
decisions and allocate resources effectively to address the identified risks.

The adoption of this approach benefits various stakeholders involved in the develop-
ment, deployment, and operation of autonomous transport systems:

1. Researchers and academics: The investigation contributes to the theoretical under-
standing of integrating security, safety, and AI quality in the context of ATS. It provides
a methodological base and techniques that can be further explored and expanded
upon by researchers and academics in the field.

2. ATS developers and manufacturers: The approach offers a framework and assess-
ment techniques that help ATS developers and manufacturers identify and address
cybersecurity and safety risks associated with AI-powered attacks. By integrating
these considerations early in the design and development stages, they can enhance
the security and reliability of their systems.

3. Regulatory bodies and policymakers: The investigation provides insights and rec-
ommendations for regulatory bodies and policymakers in developing standards,
guidelines, and regulations for the cybersecurity and safety of autonomous transport
systems. It offers a structured approach to assess and evaluate the risks, ensuring that
appropriate measures are implemented to protect against AI-driven cyber threats.

4. Operators and service providers: The proposed approach helps operators and service
providers of autonomous transport systems to assess and manage cybersecurity risks
effectively. By utilising the AIQM and SISMECA-based techniques, they can enhance
the protection of their assets, minimise potential disruptions, and ensure the safe and
secure operation of their systems.

5. End-users and the public: The adoption of this approach benefits end-users and the
general public by increasing the security and safety of autonomous transport systems.
By implementing robust cybersecurity measures and considering AI quality attributes,
the risk of accidents, disruptions, and unauthorised access to sensitive information
can be minimised, thereby ensuring public trust and confidence in these systems.

In summary, the adopted approach of combining SIS- and AIQM-based assessment
techniques brings together security, safety, and AI considerations to address emerging
challenges, provide holistic assessments, enhance transparency and traceability, minimise
uncertainty, and benefit a wide range of stakeholders involved in autonomous transport systems.

While the given methodology has its merits, it is important to consider some counter-
arguments or potential limitations:

1. Complexity and implementation challenges: The proposed approach involves in-
tegrating multiple techniques, methodologies, and models. Implementing such a
comprehensive approach may be complex and require significant resources, including
expertise, time, and funding. It could pose challenges for organisations with lim-
ited capabilities or smaller budgets, potentially limiting the widespread adoption of
these techniques.

2. Difficulty in capturing evolving AI threats: The field of AI cybersecurity is rapidly
evolving, with new attack vectors and techniques constantly emerging. The proposed
approach may face challenges in keeping up with these evolving threats and ensuring
that the assessment techniques remain up to date. It may require continuous monitor-
ing and updating to effectively address the dynamic nature of AI-powered attacks.

3. Potential bias and subjectivity in assessments: The integration of AI quality attributes
and the subjective nature of assessing risks and criticality could introduce potential
bias or subjectivity in the assessment process. Different assessors or organisations
may have varying interpretations or weighting of risk factors, which could lead to
inconsistent results and decisions.

4. Trade-off between security and usability: Enhancing cybersecurity measures often
involves introducing additional layers of security controls, which can impact the
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usability and user experience of autonomous transport systems. Striking the right
balance between security and usability is crucial to ensure that the systems remain
efficient and user-friendly, and that they do not hinder their intended functionality.

5. Limited focus on emergent threats and zero-day vulnerabilities: The investigation’s
emphasis on known failure and intrusion modes may overlook emergent threats and
zero-day vulnerabilities that have not yet been identified or documented. Rapidly
evolving cyber threats require continuous monitoring and proactive measures to
identify and address new attack vectors effectively.

It is important to acknowledge and address these counterarguments and limitations
to refine and improve the proposed approach, ensuring its practicality, scalability, and
relevance in real-world applications.

Future research directions are as follows:

• enhancing models and techniques combining AIQM and SISMECA approaches, in-
cluding refinement of AI quality and various XMECA templates models to minimise
uncertainties and dependencies on expert errors;

• quantitative assessment of cybersecurity and safety evaluations entropy in the context
of attributes decomposition on the application of AIQM and SISMECA;

• completing tool-based support of AIQM&SISMECA-based techniques for different
actors (regulators, developers, operators, and customers) considering their specific
responsibility and scenarios of AI-powered protection against AI-powered attacks;

• developing multi-criteria techniques for choosing countermeasures considering secu-
rity, reliability, and safety attributes at component and system levels;

• combining the various assessment methods based on Markov and semi-Markov mod-
els to assess embedded and distributed IoT/cloud systems for ATSs [53–55].
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Abbreviation/Acronym Meaning
Acc&Pen Access and Penetration
ACR Accuracy
AIG General for AI and AIP
AIP AI Platform
AIQM AI quality model
AIS AI System
AI Artificial Intelligence
ATA Attacks on System Assets
ADT Auditability
ATS Autonomous Transport Systems
AVL Availability
CBRNe Chemical, Biological, Radiological, Nuclear, and Explosives
CMT Completeness
CMH Comprehensibility
CSIS Cybersecurity-Informed Safety
C&C Command and Control
CRT Assessment of the Criticality of Effects
DNN Deep Neural Network
Del Delivery
DEV Developer
EFS Effectiveness
EFF Effects for System Operation
ETH Ethics
EXP Explainability
Exp Exploitation
FMECA Failure Mode, Effects, and Criticality Analysis
GAN Generative Adversarial Network
GBRT Gradient Boosted Regression Trees
GCS Ground Control Station
HMI Human–Machine Interface
INR Interactivity
INP Interpretability
IDS Intrusion Detection System
IMECA Intrusion Modes, Effects, and Criticality Analysis
FNR K-Nearest Neighbour
LFL Lawfulness
LR Logistic Regression
MNT Maintainability
MASS Maritime Autonomous Surface Ship
NN Neural Network
OPR Operator
XMECA Overall designation of Modes and Effects Criticality Analysis

modifications
PRE Probability of an Event
RF Random Forest
Rec Reconnaissance
RNN Recurrent Neural Network
REG Regulator
RLB Reliability
RSL Resiliency
RBS Robustness
SFT Safety
SCR Security
SIS Security Informed Safety
SISMECA Security or Cybersecurity Informed Safety Event Modes, Effects, and

Criticality Analysis
SVE Severity of Effects
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SCC Shore Control Centre
SS Sub-Stories
SVC Support Vector Classification
SVM Support Vector Machine
STPA System-Theoretic Process Analysis
STPA-SynSS System-Theoretic Process Analysis-Based Methodology for MASS

Safety and Security Assessment
THR Threats to System Operation
TRP Transparency
TST Trustworthiness
UAV Unmanned Aerial Vehicle
USR User
VFB Verifiability
VLN Vulnerabilities of System Components and Operation Processes
UMV Unmanned Maritime Vehicle
US-ATS.A User Story for Autonomous Transport Systems from Aviation Domain
US-ATS.M User Story for Autonomous Transport Systems from Maritime Domain
US-ATS.S User Story for Autonomous Transport Systems from Satellite Domain
USB Usability
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