
Automated Derivation of Test Requirements for
Systems of Systems

Jhonatan Azevedo Gonçalves
Universidade Federal Fluminense

Niterói, Brazil
jhonatan goncalves@id.uff.br

Francesca Lonetti
ISTI–CNR
Pisa, Italy

francesca.lonetti@isti.cnr.it

Vânia de Oliveira Neves
Universidade Federal Fluminense

Niterói, Brazil
vania@ic.uff.br

Abstract—Testing of Systems of Systems (SoS) is challenging
and improving its cost-effectiveness is a relevant research topic.
In this paper, we propose TESoS (Test Engine for Systems of
Systems), a systematic approach that selects from SoS models,
defined in mKAOS language, the functionalities to be tested and
then automatically derives a set of test requirements. TESoS
allows to classify test requirements according to unit, integration,
and system testing levels. Moreover, it helps test planning by
providing the tester with automated facilities for supporting the
unit testing of constituent systems and computing the percentage
of test requirements that are satisfied with a given test suite.
We illustrate the TESoS application on an SoS case study in the
educational domain.

Index Terms—Systems of Systems, Automated Testing, Test
Requirements, mKAOS

I. INTRODUCTION

Systems of Systems (SoSs) are today developed in many
application domains for dealing with the increasing complexity
and the dynamic evolution of modern software systems. SoSs
are composed of several systems called Constituent Systems
(CSs). CSs have their own architecture and capabilities and
are developed to meet a particular purpose. Integrating specific
CSs capabilities allows to fulfill an overall SoS mission that
goes beyond each CS’s individual capability.

The dynamic and evolving behavior of SoSs pose many
challenges to their test and evaluation [1]. Operational and
managerial independence, evolutionary development, emergent
behaviors and decentralized nature are the main characteristics
of SoSs that pose too many testing issues at the different
testing levels. Testing activities of traditional systems are
structured into three main phases: unit, integration, and system
test. The first is responsible for ensuring the functionality
of the system’s smallest unit. The second guarantees that
the integration between different units, or classes of units,
works as expected. And the last one usually acts on top of
non-functional requirements, ensuring the operation of the
integrated software as a whole [2]. Neves et al. [3] provide
a summary of SoS features and related testing issues at the
different levels of software testing, i.e., unit, integration, and
system level, also suggesting existing testing strategies that
could be adapted for SoS testing.

Among the SoS testing issues, there is a lack of SoS testing
requirements. Since an SoS is dynamically assembled to
accomplish a specific mission, it has no requirements per se. In

many cases, requirements are specified for constituent systems
but not for the SoS [1]. However, not all the functionalities
of CSs are used to fulfill the SoS mission. This makes it
difficult to define the scope of what should be tested in the
SoS and poses the need for a systematic approach to select
the functionalities of CSs to be tested and the derivation of a
set of test requirements for the SoS [3]. Our proposal goes in
this direction and aims to provide an automated approach for
test requirements derivation starting from the SoS models.

Different languages and paradigms have been adopted for
defining SoSs [4]. Such languages for SoS design are complex
and their knowledge is often not included in the tester’s
background. Among the SoS modeling languages, mKAOS [5]
is a commonly adopted mission-based language for designing
SoS architecture, allowing for the definition of the missions,
the capabilities of the constituent systems required to achieve
such missions, as well as the interactions among them [6],
[7]. However, the literature does not report specific automated
engines or approaches for deriving test requirements from
complex mission-based models, specified into mKAOS.

In this paper we provide an approach for deriving SoS
test requirements from mKAOS models. We first define a
simple strategy for identifying unit, integration, and system
test requirements of an SoS modeled into mKAOS and then
we propose TESoS (Test Engine for Systems of Systems)
that implements this strategy for automatically deriving a list
of test requirements. TESoS is able to process three types
of mKAOS models that are operational capability models,
emergent behavior models, and mission models. Through the
coverage of these models, it derives a set of test requirements
classified according to each level of software testing: unit,
integration, and system. The proposed approach represents a
valid support for the SoS testing activities, since it enables the
tester: i) to automatically identify the SoS test requirements
hiding the complexity of the SoS models defined during the
SoS design; ii) to manage a set of API (Application Program-
ming Interface) links that provide support for automated unit
testing of CSs; iii) to check what test requirements have been
satisfied. TESoS includes an open-source tool that is available
in the GitHub TESoS repository1.

1https://github.com/educationalsos/tesos



As an application example, we applied our approach to
“International Master”, i.e., an SoS in the distance learning
and educational domain belonging to EDUFYSoS [8].

The remaining of the paper is structured as follows: in the
next section, we present some background and more closely
related work. In Section III, we present an overview of TESoS
while in Section IV, we describe the architecture of the TESoS
tool and its main components. In Section V we demonstrate
the TESoS application to a case study. Finally, in Section VI
we draw conclusions, also discussing limitations and future
research directions.

II. BACKGROUND AND RELATED WORK

SoSs represent a new paradigm of complex systems that
emerge from the combination of pre-existing independent
systems (constituent systems) with the aim of accomplishing
a global collaborative mission beyond the functionalities of
the individual constituent systems [9]. SoSs are nowadays
developed in many domains, including transportation, security,
healthcare, home automation, military or emergency systems.
According to the categorization of SoSs from the US De-
partment of Defense [10], four different SoS architectures are
known: i) directed SoS, in which a central system is responsi-
ble for the fulfillment of the global purpose; ii) acknowledged
SoS, in which constituent systems retain self-control but are
coordinated by a central authority; iii) collaborative SoS, in
which there is mutual agreement on performing certain jobs
and reaching a purpose; iv) virtual SoS, in which there is
no central management authority and an explicit shared goal
among the CSs, which might not be aware they are working
for a global purpose.

Several architecture description languages, such as SosADL
[11] or SysML profiles [12] have been specifically conceived
to support automated SoS modeling and analysis. mKAOS
is a language for SoS mission modeling [5] described as a
specialization of KAOS (Keep All Objectives Satisfied) i.e., a
goal-oriented requirements engineering method [13]. mKAOS
allows to organize the mission related information in a set
of complementary models that provide a description of the
mission information independently from the implementation
details. There are six different kinds of models in mKAOS
[5], [14]: i) mission models where the leaf nodes represent
individual missions associated with the CS, and non-leaf
nodes represent global missions. Refinement links establish a
refinement relationship among missions, enabling the refining
of a specific mission into other sub-missions; ii) responsibility
models representing the assignment of specific responsibilities
tied to individual missions to constituent systems. They can
also define software agents and their responsibilities with
respect to the SoS goals; iii) object models representing
entities and events that characterize the system; iv) operational
capability models defining a set of specific operations that each
constituent system must implement to contribute to the mission
achievement. These operations can trigger events while they
can handle entities as inputs and outputs. Each constituent
system must have its own operational capability model; v)

communicational capability models that represent the connec-
tivity and the interactions among constituent systems. There
is a single communicational capability model for the whole
system; vi) emergent behavior models that define emergent
behaviors of SoSs achieved through the cooperation among
different constituent systems. The emergent behavior model
represents a composition of communicational capabilities.
mKAOS Studio [14] is an open-source tool, released as an
Eclipse plugin, for modeling missions in SoS by using the
mKAOS language and building XML files based on these
models. In the proposed approach, TESoS targets operational
capability models, emergent behavior models, and mission
models for the automatic derivation of test requirements as
we will explain in Section III.

One of the challenging core activities of SoS Systems
Engineering is to translate the SoS capabilities and goals into
SoS requirements and validate them [15]. The goal of our
approach goes in this direction. TESoS allows deriving a list
of SoS test requirements from the SoS models, supporting the
tester in the automation of the testing activities. Our approach
can be applied to the four different SoS architectures described
before, since SoS mKAOS models have been designed.

The automated identification of test requirements has been
addressed in the literature and several test strategies based
on coverage criteria have been proposed for deriving test
requirements from UML models. For instance, Nebut et al.
[16] propose an approach for deriving test objectives as a
set of instantiated use cases covering an enhanced UML use
cases model of a product in the context of software product
lines. Briand et al. [17] propose a technique for identifying
a set of paths from a UML statechart and deriving a set of
test requirements covering these paths. The idea of deriving a
set of test requirements covering all the main entities of the
model is similar in our proposal. Differently from previous
approaches, we target SoS testing and mKAOS models aiming
to generate a set of test requirements covering the main entities
of mKAOS models, i.e. all the operational capabilities, the
emergent behaviors and communication capabilities as well
as mission and sub-missions of mKAOS models.

Concerning testing of SoS, beside many challenges have
been identified at different testing levels, not much research
on SoS testing yet exists. The authors of [18] make a parallel
between the traditional testing levels and the SoS testing levels
trying to identify the significant challenges of SoS testing at
all levels. Moreover, the authors of [3] discuss how existing
test techniques can be adapted to deal with specific features
of SoS. Testing SoS at the unit level deals with the testing of
each individual constituent system independently from the SoS
in which it is involved, then traditional testing strategies can
be applied [18]. At SoS integration testing level, Luna et al.
[19] propose combinatorial testing strategies whereas Liang et
al. [20] adopt a randomization approach to design integration
test cases. Other approaches address system testing of SoSs.
For instance, Zapata et al. [21] use a control flow graph for
modeling SoS and apply a path testing technique for deriving



test cases while the authors of [22] propose an adaptive testing
framework for planning tests according to critical test events.
More recently, the work in [6] provides an approach for
modeling and testing of SoSs taking into account the variable
functionalities of CSs and their costs, leveraging software
product lines based solutions. The approach is also able to
support test planning with the derivation of test objectives and
test scenarios. Differently from previous solutions aiming to
derive test cases, the goal of our proposal is to automatically
derive test requirements from mKAOS models.

III. TESOS OVERVIEW

SoSs can be composed of several constituent systems,
which, in turn, offer several functionalities. Therefore, due to
the dynamic and complex nature of SoSs, the number of test
requirements can be huge, which makes manual testing activity
impractical. For this, we propose the TESoS approach, which
allows us to identify the functionalities of each constituent
system as well as of the overall SoS and then derive a set of
test requirements. Also, since testers may not have enough SoS
knowledge or be unfamiliar with SoS design models, TESoS
provides a useful support for identifying test requirements
in an automated way. In the following, we show the simple
strategy adopted in TESoS for identifying test requirements
(Section III-A) and then the main steps of the TESoS approach
(in Section III-B).

A. Identifying SoS test requirements from mKAOS models

TESoS derives test requirements for each level of SoS
testing: unit, integration, and system testing. To this end, it
considers the mKAOS models generated during the SoS design
phase, as explained below.

Previous studies [3] have identified that at the unit testing
level, each individual CS of the SoS should be tested. This
means that to perform the unit testing, all the operational
capabilities of a CS need to be tested. The mKAOS operational
capability model defines a set of specific operations that each
CS must implement to contribute to the fulfillment of the SoS
mission. In TESoS we derive unit test requirements for a CS
in order to cover all the operational capabilities of the mKAOS
operational capability model defined for that CS.

At the integration testing level, all the possible interactions
among all the CS which dynamically can join or leave the
SoS need to be tested. In SoSs, the interaction among CSs
occurs when emergent behavior takes place. The mKAOS
emergent behavior model defines all the cooperations among
different CSs expressed through the composition of commu-
nication capabilities. So, in TESoS we derive integration test
requirements for an SoS to cover all the emergent behaviors
and the associated communication capabilities of the mKAOS
emergent behavior model defined for that SoS.

Finally, the SoS system testing level corresponds to the
testing of the proper behavior or mission of the whole SoS. In
mKAOS, mission model represents the SoS global mission re-
fined into more sub-missions. In TESoS we derive system test

requirements for an SoS to cover the mission and submissions
of the mKAOS mission model defined for that SoS.

B. TESoS main steps

In order to derive the test requirements, it is necessary that
an SoS Engineer, who has proper knowledge about the SoS
and its CSs, designs the mission and the emergent behavior
model, as well as the operational capabilities model for each
constituent system, as illustrated in the first step of Figure 1.
The SoS design can be done using the mKAOS Studio tool.
In this tool, the mission model and the emergent behavior
model are saved in a single integrated XML file; the models
of operational capabilities of the CSs are stored in separate
XML files. TESoS can read these XML files to generate the
test requirements, as illustrated in step two of Figure 1. It
is noteworthy, however, that the inputs for generating the test
requirements in TESoS are the XML files that could have been
developed by any other tool or even created manually.

After designing the SoS, the next step is to upload the XML
files containing the models into TESoS (step two of Figure 1).
In this step, TESoS asks the SoS engineer for the URI and API
links of the CSs services used in the SoS. This information
is needed to help the tester implementing the test cases.
Considering that each constituent system can have several
functionalities and even with similar characteristics, at this
stage, the SoS engineer defines which specific functionality
s(he) considered during the design. Thus, we expect that the
test case that will be designed later by the tester would include
at least one call to these APIs.

Once the SoS is registered and configured, TESoS identifies
the test requirements and classifies them according to the
testing level, presenting them on an interactive table, as
described in step three of Figure 1. The tester will be able to
consult the generated test requirements that may guide him/her
in preparing test cases. For instance, considering an SoS unit
test requirement, TESoS will display which functionality and
its respective CS API needs to be exercised by the test case
to meet this requirement.

Once the test cases are created, the tester can check whether
or not a test requirement is satisfied, as depicted in step four of
Figure 1. In the current version of TESoS, the tester performs
this step manually. Then, TESoS shows the percentage of
covered test requirements, i.e., the number of test requirements
that have been met by the test cases with respect to the total
number of test requirements, as illustrated in step five of Figure
1.

IV. TESOS TOOL ARCHITECTURE

The TESoS approach includes the TESoS tool for the
automated generation of test requirements. This tool has
a web-based architecture that follows the widely adopted
Model/View/Controller (MVC) design pattern. The MVC pat-
tern organizes the information flow into three levels: the
Model, the View, and the Controller. Figure 2 displays the
architecture diagram of the TESoS tool, which consists of
two main independent modules: the server and the client. The



Fig. 1. TESoS Overview

Fig. 2. TESoS tool Architecture

server module hosts the Model and Controller layers, while
the client module contains the View layer.

The server module is represented by light blue color in
Figure 2. It has been implemented using Spring Boot 2, and it
is composed of three components: SoS Domain, SoSService,
and SoSController. The SoSDomain component is formed
by classes representing the system’s main entities. In this
component, a class is created for each entity-relationship
model entity. It is implemented using the Java Persistence
API (JPA) framework, representing a simple and easy solution
for database management and reliable integration with Spring
Boot [23].

The SoSService component aims to control access to the
stored data in the TESoS tool. To achieve this, we used the
Data Access Object (DAO) approach, and we were able to
define all the necessary queries of the entities. The DAO
pattern acts as an intermediary layer between the data and the
business model, contributing to encapsulating the code. In our
implementation, we created an abstract DAO class containing
the methods for the basic persistence CRUD (Create, Retrieve,
Update, Delete) operations. We then developed service classes
that correspond to the entities in TESoS tool. These services
classes extend the abstract DAO class and implement addi-
tional queries if needed.

The SoSController component is responsible for handling
user requests from the client through HTTP requests. This
component processes the request, calls the appropriate service
functions, and returns a response containing the retrieved data.

The client module is represented in Figure 2 in light red
color. It comprises the App component implemented using the
Angular framework. It is in charge of allowing user interaction
with TESoS and also providing data visualization. Specifically,
it has two main objectives: receiving and organizing the data
that are stored and processed in the server and presenting

2https://spring.io/

the test requirements. This module mainly provides Graphical
User Interfaces (GUIs) for SoS engineers and SoS testers.
The SoS engineer’s GUIs consist of web forms that enable
these engineers to provide the essential information about the
SoS, the XML files with the models, as well as the API
links of the operational capabilities of each constituent system,
as explained in Section III. These web forms also allow for
registering users and managing all SoSs registered in TESoS.
The SoS tester can also access the list of registered SoSs and
select the desired SoS to perform the test. Once the SoS is
selected, a web page with the test requirements is loaded. The
test requirements are organized according to unit, integration,
and system testing levels. Aside from the test requirements,
this GUI also provides other facilities to support the tester
job, such as the API links for unit testing and a requirements
check box useful for the computation of test requirements
coverage by a given test suite. Since TESoS is a web based
tool, aside from the parsing algorithm, the computational time
of the majority of the operations is irrelevant. Even though
we used a simple parsing algorithm that depends on the size
of the model, the wait time of the parsing is reasonable for a
web based application, even for large models.

V. APPLICATION EXAMPLE

In this section, we show the application of our approach
to an SoS case study in the educational domain that is the
“International Master” SoS belonging to EDUFYSoS [8] and
available at EDUFYSoS repository3. This SoS case study
refers to an international master’s degree offered by two
joining universities that want to provide the students with
a multicultural learning experience. The constituent systems
involved in the “International Master” are:

• Two administrative office systems responsible for manag-
ing information about courses and students from both uni-
versities joining the international master degree. Rosar-
ios4 and Sapos5 respectively implement these systems.

• A cooperative administrative office system that allows
managing the information about courses and students of
the international graduate program defined across both
universities. This system is implemented as a functional-
ity in Rosarios.

3https://github.com/edufysos/edufysos
4www.rosariosis.org
5http://gems-uff.github.io/sapos/



• The learning management system responsible for deliver-
ing online educational courses, enabling teachers to create
assignments, track student progress, and report on results.
This system is implemented by FullTeaching6.

• A calendar system that allows for time management
and provides the user with the ability to manage and
share meetings, events, and deadlines. This system is
implemented by Google Calendar7.

The first step of the proposed approach deals with the
definition of mKAOS models for the “International Master”
SoS. Specifically, the SoS engineer needs to design three
types of SoS diagrams: mission diagram, emergent behavior
diagram, and operational capability diagrams.

Figure 3 shows the “International Master” SoS mission
diagram designed into mKAOS. In the figure, the missions
are represented by blue rectangles, the refinements of the
missions are represented by yellow circles, while the orange
diamonds represent the abstract CSs. The general mission
of the “International Master” SoS is “A student with an
international master offered by two universities is able to
properly manage it”. This general mission is refined into two
sub-missions that are: “The two universities are able to offer
the international master” and “The student is able to follow
his international master”. Each of them is further refined into
other more specific sub-missions that represent the capabilities
of the associated abstract CSs.

An extract of the emergent behavior model regarding the
sub-mission “Provide the students with the ability to manage
their courses activities” of “International Master” SoS is
depicted in Figure 4. The orange rectangles represent the
emergent behaviors, while the sky blue rectangles associated
with each emergent behavior represent the communication
capabilities, i.e., the actions performed on the CSs that needed
to be tested for the achievement of the SoS mission and that
are associated with the entities (white rectangles).

Figure 5 shows the operational capability diagram of Rosar-
ioSis, the concrete CS implementing both the administrative
office system of one of the two universities and the cooperative
administrative office of “International Master” SoS. In that
diagram, blue rectangles represent a set of functionalities
offered by RosarioSis for the achievement of the SoS mission.
For the aim of simplicity, in this paper we only show the
operational capability diagram of RosarioSis. We refer to
TESoS repository 8 for the complete versions of “International
Master” SoS emergent behavior model and mission model as
well as the operational capability diagrams of the other CSs
involved in the “International Master” SoS, i.e., FullTeaching,
Google Calendar, and Sapos.

Starting from all the mKAOS models defined for the “Inter-
national Master” SoS, XML files are generated and given as
input to TESoS. TESoS is able to read these XML files and
identify all entities belonging to the mission diagram, emergent

6https://github.com/pabloFuente/full-teaching
7https://developers.google.com/calendar
8https://github.com/educationalsos/tesos

behavior diagram, and operational capability diagrams. Then,
applying the simple strategy described in Section III-A, the
TESoS tool automatically derives a set of unit, integration,
and system test requirements for “International Master” SoS.

As an example, Figure 6 depicts a screenshot with the unit
test requirements visualized by the tester. The TESoS tool also
shows the concrete CS to which each unit test requirement
refers to (second column in Figure 6). For instance, the first
seven test requirements visualized in the screenshot refer
to RosarioSis, while the last requirements refer to Google
Calendar. Moreover, the TESoS tool also shows the API link
(fourth column in Figure 6) associated with each unit test
requirement, i.e., a link to an API associated with the concrete
CS to which the unit test refers to and that allows to perform
a test action directly on the selected CS. For instance, for the
first unit test requirement “To add student” of Figure 6, the
associated API link (rosariosis/addStudent.php) allows to
directly add an event on the RosarioSis CS. The tester will
then know that (s)he must create a test case in which this
API is called, passing the appropriate parameters to create a
student in RosarioSis CS. Moreover, TESoS also allows the
tester to check and mark which are the test requirements that
have been satisfied, for instance, with an existing test suite,
as depicted in the last column of the screenshot of Figure
6. In this example, four out of nine unit test requirements
are checked, meaning that there are test cases that meet
these requirements, and therefore, the coverage percentage
calculated by TESoS is 44%. In the case of integration test
requirements, TESoS shows the list of emergent behaviors
and the associated communication capabilities extracted from
the emergent behavior model. For instance, as depicted in
Figure 7, “To provide calendar info”, “To provide classes
schedule”, and “To add new task” are the communication
capabilities associated with “To add online classes on his
calendar” emergent behavior of “International Master” SoS.
To satisfy these requirements, the tester must then create
test cases that exercise these three communication capabilities
sequentially. Finally, for the system test requirements, TESoS
shows the list of missions and sub-missions of the SoS mission
diagram (see Figure 8). As for unit test requirements, also
for integration, and system test requirements, TESoS allows
the tester to check and mark what are the test requirements
that have been satisfied, as depicted in the last column of
the screenshots of Figure 7 and Figure 8. We refer to TESoS
repository for the complete list of unit, integration and system
test requirements of the provided case study.

VI. CONCLUSIONS AND FUTURE WORK

SoSs are dynamic and evolving systems that can provide
several functionalities. As such, deriving test requirements can
become impractical if carried out manually. In this paper, we
proposed TESoS, an automated approach for identifying the
functionalities to be tested in the SoS and deriving unit, inte-
gration, and system test requirements from mKAOS diagrams,
described in XML format. By the application to a case study
in the educational domain, we demonstrated how TESoS can



Fig. 3. “International Master” SoS mission diagram

Fig. 4. “International Master” SoS emergent behavior diagram

Fig. 5. RosarioSis operational capability diagram

guide testers in defining what can be tested in SoSs, providing
useful facilities for supporting test automation.

However, TESoS has some limitations. One limitation is
that the CSs that are part of the SoS must be web systems that
communicate via APIs. Another limitation of TESoS is that it
currently only supports mKAOS models, although the TESoS
architecture is generic and independent of any formalism.
However, since TESoS parses XML files, another type of SoS
representation can be easily considered by transforming this
representation into XML files. In the future, we plan to extend
TESoS to consider other SoS representations, such as SysML
[12] and SoSADL [11], to derive test requirements.

Fig. 6. Visualization of unit test requirements

TESoS represents the first step towards automating the
derivation of test cases, but in the current version of the ap-
proach, some steps require manual or semi-automatic interven-
tion. To address this limitation, in future works we will focus
on fully automating the approach. For step four, presented
in Figure 1, for instance, we plan to develop an algorithm
that can automatically identify which test requirements are
met based on a repository of test cases. This identification
would consider, for instance, if the APIs info informed by the



Fig. 7. Visualization of integration test requirements

Fig. 8. Visualization of system test requirements

SoS engineer during the SoS design is called in the test cases
implementation. In addition, we plan to automatically generate
test scripts that satisfy the identified test requirements. Finally,
we plan to evaluate the efficiency and effectiveness of TESoS
on larger, real-world SoSs.

ACKNOWLEDGMENT

This work was partially supported by the project SERICS
(PE00000014) under the MUR National Recovery and Re-
silience Plan funded by the European Union - NextGenera-
tionEU, and the PIBIC PROPPI/UFF/CNPq Grant.

REFERENCES

[1] J. Dahmann, J. A. Lane, G. Rebovich, and R. Lowry, “Systems of
systems test and evaluation challenges,” in Proc. of SoSE, 2010, pp.
1–6.

[2] A. Bertolino, “Software testing research: Achievements, challenges,
dreams,” in FOSE. IEEE, 2007, pp. 85–103.

[3] V. de Oliveira Neves, A. Bertolino, G. De Angelis, and L. Garcés, “Do
we need new strategies for testing systems-of-systems?” in Proc. of
SESoS, 2018, pp. 29–32.

[4] C. A. Lana, M. Guessi, P. O. Antonino, D. Rombach, and E. Y. Naka-
gawa, “A systematic identification of formal and semi-formal languages
and techniques for software-intensive systems-of-systems requirements
modeling,” IEEE systems journal, vol. 13, no. 3, pp. 2201–2212, 2018.

[5] E. Silva, T. Batista, and F. Oquendo, “A mission-oriented approach for
designing system-of-systems,” in Proc. of SoSE, 2015, pp. 346–351.

[6] F. Lonetti, V. de Oliveira Neves, and A. Bertolino, “Designing and
testing systems of systems: From variability models to test cases passing
through desirability assessment,” Journal of Software: Evolution and
Process, vol. 34, no. 10, p. e2427, 2022.

[7] M. Daun, J. Brings, L. Krajinski, V. Stenkova, and T. Bandyszak, “A
GRL-compliant iStar extension for collaborative cyber-physical systems
,” Requirements Engineering, vol. 26, no. 3, pp. 325–370, 2021.

[8] A. Bertolino, G. De Angelis, F. Lonetti, V. de Oliveira Neves, and M. A.
Olivero, “Edufysos: A factory of educational system of systems case
studies,” in Proc. of SoSE. IEEE, 2020, pp. 205–210.

[9] M. W. Maier, “Architecting principles for systems-of-systems,” Systems
Engineering: The Journal of the International Council on Systems
Engineering, vol. 1, no. 4, pp. 267–284, 1998.

[10] J. S. Dahmann and K. J. Baldwin, “Understanding the current state
of us defense systems of systems and the implications for systems
engineering,” in Proc. of the 2nd Annual IEEE Systems Conference,
2008, pp. 1–7.

[11] F. Oquendo, “Formally describing the software architecture of systems-
of-systems with SosADL,” in Proc. of SoSE. IEEE, 2016, pp. 1–6.

[12] M. Mori, A. Ceccarelli, P. Lollini, B. Frömel, F. Brancati, and
A. Bondavalli, “Systems-of-systems modeling using a comprehensive
viewpoint-based sysml profile,” Journal of Software: Evolution and
Process, vol. 30, no. 3, p. e1878, 2018.

[13] A. Van Lamsweerde and E. Letier, “From object orientation to goal
orientation: A paradigm shift for requirements engineering,” in Rad-
ical Innovations of Software and Systems Engineering in the Future.
Springer, 2004, pp. 325–340.

[14] E. Silva, T. Batista, and E. Cavalcante, “A mission-oriented tool for
system-of-systems modeling,” in Proc. of SESoS, 2015, pp. 31–36.

[15] J. S. Dahmann, “Systems of systems characterization and types,” Systems
of Systems Engineering for NATO Defence Applications (STO-EN-SCI-
276), pp. 1–14, 2015.

[16] C. Nebut, F. Fleurey, Y. Le Traon, and J.-M. Jezequel, “Automatic test
generation: A use case driven approach,” IEEE Transactions on Software
Engineering, vol. 32, no. 3, pp. 140–155, 2006.

[17] L. C. Briand, Y. Labiche, and J. Cui, “Automated support for deriving
test requirements from UML statecharts,” Software & Systems Modeling,
vol. 4, pp. 399–423, 2005.

[18] A. Bertolino, F. Lonetti, and V. de Oliveira Neves, “Standing on the
shoulders of software product line research for testing systems of
systems,” in Proc. of ISSREW. IEEE, 2020, pp. 209–214.

[19] S. Luna, A. Lopes, H. Y. S. Tao, F. Zapata, and R. Pineda, “Integration,
verification, validation, test, and evaluation (IVVT&E) framework for
system of systems (SoS),” Procedia Computer Science, vol. 20, pp. 298–
305, 2013.

[20] Q. Liang and S. H. Rubin, “Randomization for testing systems of
systems,” in Proc. of International Conference on Information Reuse
& Integration. IEEE, 2009, pp. 110–114.

[21] F. Zapata, A. Akundi, R. Pineda, and E. Smith, “Basis path analysis
for testing complex system of systems,” Procedia Computer Science,
vol. 20, pp. 256–261, 2013.

[22] J. T. Hess and R. Valerdi, “Test and evaluation of a SoS using a
prescriptive and adaptive testing framework,” in Proc. of SoSE. IEEE,
2010, pp. 1–6.

[23] O. Gierke et al., “Spring Data JPA-Reference Documentation,”
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/, 2023.


