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Abstract
In high recall retrieval tasks, human experts review a large pool of documents with 
the goal of satisfying an information need. Documents are prioritized for review 
through an active learning policy, and the process is usually referred to as Technol-
ogy-Assisted Review (TAR). TAR tasks also aim to stop the review process once the 
target recall is achieved to minimize the annotation cost. In this paper, we introduce 
a new stopping rule called SALR

�
 (SLD for Active Learning), a modified version of 

the Saerens–Latinne–Decaestecker algorithm (SLD) that has been adapted for use in 
active learning. Experiments show that our algorithm stops the review well ahead of 
the current state-of-the-art methods, while providing the same guarantees of achiev-
ing the target recall.

Keywords Active learning · Technology-assisted review · TAR  · e-Discovery · 
Systematic review

1 Introduction

In high recall retrieval tasks, the goal is to find all (or almost all) the documents 
which are relevant to a given information need, from an unlabelled set of docu-
ments (often called the pool P). Examples of these tasks are e-discovery, systematic 
reviews in empirical medicine, and online content moderation.
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In these scenarios, the simplest strategy to guarantee a high recall target is to have 
in-domain human experts reviewing the whole pool of documents, that is, labelling 
each document as either relevant or non-relevant. When working with large collec-
tions, however, this operation becomes incredibly expensive, both in terms of time 
and costs: indeed, the number of data items that can be annotated are usually limited 
by either the availability of the reviewer, or the money one is willing to invest in the 
process (the annotation budget).

Given some time/cost budget, annotating a random sample of the data is a subop-
timal approach: the reviewing process is usually aided by one of the many machine 
learning techniques which go under the name of “Active Learning” (AL, Dasgupta 
and Hsu 2008; Huang et  al. 2014; Lewis and Gale 1994). AL methods adopt a 
human-in-the-loop model, in which the human expert labels items selected by an 
automatic classifier. The classifier is then updated, exploiting the additional knowl-
edge coming from new labels, in an iterative process. In the high-recall scenarios 
mentioned earlier, the human-in-the-loop annotation workflow is usually referred 
to as Technology-Assisted Review (TAR, Cormack et al. 2010; Grossman and Cor-
mack 2011; Kanoulas et al. 2019).

One of the most challenging issues in TAR applications is the so-called “when-
to-stop” problem: that is, we need to choose when to stop the AL process, in order to 
jointly minimize the annotation effort and satisfy the information need, e.g., a target 
recall value. Recently, IR literature has proposed many stopping methods (Cormack 
and Grossman 2016; Li and Kanoulas 2020; Oard et al. 2018; Yang et al. 2021a): 
the when-to-stop issue is usually tackled by either changing the sampling policy of 
the AL algorithm (see Sect. 2.1), by crafting task-specific heuristics, and/or by esti-
mating the currently achieved recall. In this paper, we focus on the latter approach, 
and propose a new technique based on the Saerens–Latinne–Decaestecker (SLD) 
algorithm (Saerens et al. 2002), adapting it to the AL workflow typically leveraged 
in TAR processes.

The paper is structured as follows: Sect. 2 describes the related work; we then 
analyze the shortcomings of the SLD algorithms when used “as-is” in AL scenarios 
(Sect. 3); we then propose a solution to this problem, our own method in Sect. 4. 
Experiments and results are discussed in Sects. 5 and 6. Section 7 concludes.

2  Background and related work

2.1  Active learning: relevance sampling

AL algorithms prioritize the annotation of certain data items over others. Two of 
the most well-known AL techniques, still used to this day, were presented in 1994 
by Lewis and Gale (1994): Active Learning via Relevance Sampling (ALvRS) and 
Active Learning via Uncertainty Sampling (ALvUS).

Algorithm 2.1 shows the typical structure of an AL process with a stopping rule. 
Given a data pool of unlabelled documents P, the reviewer annotates a “seed” set 
of documents S ⊂ P that defines the initial training set L. An iterative procedure is 
then started, in which L is used to train a classifier � , which is then exploited by an 
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AL policy pol to select the next set of documents to be presented to the reviewer. In 
ALvRS, � is used to rank the documents in (P ⧵ L) in decreasing order of their pos-
terior probability of relevance Pr(⊕|x) . The reviewer is asked to annotate the b doc-
uments for which Pr(⊕|x) is highest (with b the batch size), which, once annotated, 
are added to the training set L. The classifier is retrained on the new training set and 
the process repeats until a stopping condition is met, e.g., the annotation budget is 
exhausted or a target recall is reached. ALvRS is most-effective and has been mostly 
used when we are interested in finding all the items relevant to a given information 
need, as quickly as possible.

The ALvUS policy is a variation of ALvRS, where documents are ranked in 
ascending order of |Pr(⊕|x) − 0.5| , i.e., we top-rank the documents which the clas-
sifier is most uncertain about. ALvUS can be useful when we want to build a high-
quality training set to later train a machine learning model on it, and has not been 
employed as often as ALvRS in TAR applications. While many other AL techniques 
have been proposed over the years  (Dasgupta and Hsu 2008; Huang et  al. 2014; 
Konyushkova et al. 2017), in this work we focus especially on ALvRS, and in par-
ticular on its variant called Continuous Active Learning (CAL), proposed by Cor-
mack and Grossman (2015), which is specifically tailored to TAR applications.

Both ALvRS and ALvUS policies suffer from what is called sampling bias (Das-
gupta and Hsu 2008; Krishnan et al. 2021), i.e. the fact that, due to the document 
selection policy, the sample of annotated items L is not representative of P, nor of 
the unlabelled set U (see Sect. 3 for a more thorough explanation and analysis). In 
order to investigate how and when a classifier is affected by this bias, Esuli et  al. 
(2022) have introduced a policy called Rand(pol). The Rand(pol) policy is an oracle 
policy, i.e., it requires knowing the true labels of all documents in the pool. It is thus 
a synthetic policy designed to investigate the issue of sampling bias of a given AL 
policy pol.

Rand(pol) observes the prevalences of labels in the L set produced by pol and 
produces its own LRand set which exhibits the same prevalences, but using a random 
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document selection policy. The idea is that substituting the selection policy of pol 
with random sampling keeps the content of elements in LRand unbiased with respect 
to P, while using the same prevalences produced by pol. The comparison of results 
produced by pol and Rand(pol) is thus a way to understand whether and how much 
sampling bias is affecting the decisions of a pol-based classifier: being a controlled 
random sampling, the Rand(pol) policy should produce a “sampling bias free” 
dataset.

2.2  TAR tasks and workflows

TAR processes usually operate in a “needle in a haystack” scenario, i.e. the number 
of relevant items is just a tiny fraction of the whole collection of documents. Three 
of the main TAR real-world applications are: e-discovery, in the legal domain; the 
production of systematic reviews in empirical medicine, and online content modera-
tion. In this work, we focus on the first two tasks.

2.2.1  TAR for e‑discovery

E-discovery is an important aspect of the civil litigation in many (but not only) com-
mon law countries: in e-discovery a large pool of documents P need to be reviewed 
in order to find all items “responsive” (i.e., relevant) to the litigation matter. The 
documents labelled as responsive are “produced” by the defendant party, and dis-
closed to the other party in the civil litigation. However, the former party holds the 
right to keep some of these documents “hidden”, putting them in a private log only 
available to the jury: this is only allowed if the “logged” documents are deemed to 
contain “privileged” information (e.g., intellectual property). Making different mis-
classification errors (i.e., producing a document which contains privileged informa-
tion) can bring about different costs for the defendant party, based on the severity 
of the error committed. It is worth noticing, however, that there are only few works 
which really take e-discovery costs into consideration (Oard et al. 2018; Yang et al. 
2021b).

In e-discovery, the review usually happens in two stages: (i) documents are first 
reviewed by responsiveness (i.e., relevancy) by a team of junior reviewers; (ii) the 
documents judged as responsive are then passed on to a second team of senior 
reviewers (with an hourly rate several times higher than the junior team’s), which 
mainly re-review the documents by privilege.1 As it can be inferred, annotating doc-
uments by privilege is usually a much more costly and delicate operation than anno-
tating by responsiveness (Oard et al. 2018).

1 Notice, however, that this procedure may be conducted in another order, with different teams of 
reviewers, and in many other configurations. See, for instance, Yang et al. (2021b).
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2.2.2  TAR for systematic reviews

In empirical medicine, a systematic review discusses (ideally) all medical litera-
ture relevant to a given research question. The production of a systematic review 
is usually carried out by one or more physicians and can span even years (Michel-
son and Reuter 2019; Shemilt et al. 2016). A systematic review usually collects 
a large pool of documents P by issuing a boolean query on a (medical literature) 
search engine. Then, similarly to e-discovery, systematic reviews are conducted 
in two stages: (i) a first one, where doctors review document abstracts to deter-
mine their relevance and (ii) a second one, where documents which passed the 
first phase are reviewed in their entirety.

The production of systematic reviews has recently attracted the interest of the 
IR community  (Callaghan and Müller-Hansen 2020; O’Mara-Eves et  al. 2015; 
Lease et al. 2016; Wang et al. 2022), which has focused on several aspects of the 
process, from improving the query formulation issued to search engines, to find-
ing the optimal stopping criterion, reducing the annotation costs (and the time 
spent on a systematic review).

2.2.3  One‑phase TAR and two‑phase TAR workflows

TAR workflows can usually be divided in “one-phase” and “two-phase” 
approaches (Yang et al. 2021a), where: 

1. In one-phase TAR workflows, we assume that there is a single review process that 
is stopped when some condition is met. Relevance sampling is usually the pre-
ferred AL technique, since the aim is to annotate the highest number of relevant 
items in the shortest amount of time possible;

2. In two-phase TAR workflows, a review team annotates a sample of the data 
pool, on which a classifier is trained and later used to help a second review team 
complete the process. The two review teams may and usually have different per-
document costs.

Note that the number of phases is not related to how many stages are required by 
the specific task: both approaches work with multi-stage review (see also Yang 
et al. (2021b) on when either of the two workflows might be preferred).

This paper focuses on one-phase TAR workflows, although the new method we 
propose might as well be used in two-phase workflows. This choice is in line with 
the recent literature, which has mostly focused on one-phase reviews  (Cormack 
and Grossman 2016, 2020; Li and Kanoulas 2020; Yang et al. 2021a) [with the 
notable exception of Oard et al. (2018)].
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2.3  Stopping methods for TAR 

Finding a way to stop the AL process as soon as a target recall R is reached 
is a key aspect in lowering the cost of human review, the other being using an 
AL policy that efficiently selects relevant documents over non-relevant ones. The 
target recall is usually very high, in many cases equal or close to 100%, trans-
forming the task in a “total recall” task; other high target recalls are often seen 
in TAR applications, such as 80% or 90%  (Li and Kanoulas 2020; Yang et  al. 
2021a, b).

The scope and aim of this paper is on stopping algorithms which work inside an 
AL process without changing the sampling policy. We thus do not consider “inter-
ventional stopping rules”, e.g. Li and Kanoulas (2020). As observed in (Yang et al. 
2021a, §2), we argue that interventional methods are (i) less efficient than AL (i.e., 
they usually trade off annotation costs for a safer recall estimation) and (ii) less 
applicable in real case scenarios, where reviewers are often limited to using some 
AL methods (i.e., relevance sampling) provided by a specific software. We will now 
give an overview of the most relevant methods, which are then compared to our pro-
posal in the experiments.

2.3.1  The knee and budget method

The Knee method was first proposed by Cormack and Grossman (2016). The 
method is based on a gain curve for a one-phase TAR workflow, i.e., a plot of how 
the number of positive documents increases as more documents are reviewed, dur-
ing the AL process. The method, based on Satopaa et al. (2011), empirically finds 
“knees” in the plot, ideally stopping the process when the effort of continuing to 
review documents is not supported by the retrieval of a sufficient amount of posi-
tive documents.

The Budget method (Cormack and Grossman 2016) is a heuristic variant of the 
knee method, where the process is stopped no earlier than when at least 70% of 
the document collection has been reviewed. This follows the observation that, if 
we were to review by random sampling, we would expect to achieve a recall of 0.7 
when reviewing 70% of the collection; by using an AL technique, we expect the 
recall to be much higher. After the 70% threshold has been reached, the Budget 
method stops the review if a knee test passes (detailed in Cormack and Grossman 
(2016); Yang et al. (2021a)), and if the number of relevant items found Rel(L) is 
somewhat large, i.e.: |L| ≥ 10 P∕Rel(L) . Both methods do not allow users to specify 
a target recall.

2.3.2  The Callaghan Müller–Hansen (CMH) method

Callaghan and Müller-Hansen (2020) propose a stopping heuristic based on estimat-
ing the probability of having reached the target recall and comparing it against a 
confidence level. The CMH method consists of a first part of the process that uses 
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an AL method and a confidence level which, once reached, stops the AL process and 
starts a second part that continues reviewing using random sampling and a higher 
confidence level. Following an approach similar to Yang et al.’s (2021a) for picking 
our baselines, we will not use the random sampling part of CMH in our experi-
ments and only use its heuristic method as a stopping rule; notice, however, that the 
random sampling and the confidence level estimation which follows the heuristic 
stopping criterion is applicable to any of the other methods we explore in this paper 
(including our method presented in Sect. 4).

CMH heuristic treats batches of previously screened documents as if they 
were random samples (an assumption somewhat similar to the one we make in 
Sect.  5.1); for subsets Ai = {dNseen−1

, ..., dNseen−i
} of these documents they compute 

p = Pr(X ≤ k) , where X ∼ Hypergeometric(N,Ktar, n) : n is the size of the subsam-
ple, N is the total number of documents and Ktar = ⌊ �seen

R
− �AL + 1⌋ represents the 

minimum number of relevant documents remaining at the start of sampling. This is 
done for all sets Ai with i ∈ Nseen − 1...1 ; pmin is the value where the null-hypothesis 
(i.e., recall being below target) is lowest. The review of documents proceeds with 
AL until pmin < 1 − 𝛼 ; � is a confidence level, which is set to 95%.

2.3.3  The QuantCI method

The QuantCI method proposed by Yang et al. (2021a) leverages the classifier pre-
dictions (a logistic regression) to estimate the current recall, computes a confidence 
interval based on variance in the predictions, and stops the reviewing process when 
the lower bound of the confidence interval reaches the target recall.

More specifically, the estimated recall ̂R is computed as:

This estimate is based on modeling the relevance of a document i as the outcome of 
a Bernoulli random variable Di ∼ Bernoulli(Pr(⊕|x)) . The 95% confidence interval 
(CI) is then computed as:

The authors tested their method with and without the confidence interval (i.e., using 
the recall estimate as is, not lowering it with the confidence interval) resulting in two 
stopping techniques, called QuantCI and Quant.

(1)̂R =
�Rel(L)

�Rel(P)
=

∑�L�
x

Pr(⊕�x)
∑�P�

x
Pr(⊕�x)

(2)±2

√
1

̂Rel(P)2
Var(DL) +

̂Rel(L)2

̂Rel(P)4

(
Var(DL) + Var(DU)

)
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2.3.4  The QBCB method

The Quantile Binomial Confidence Bound (QBCB) stopping rule, proposed by 
Lewis et  al. (2021), leverages on theory of quantile estimation to define a stop-
ping rule that is a function of the target recall, a confidence value, and the size 
r of a human annotated sample of relevant documents Pr . Given these three val-
ues, QBCB returns the minimum number of relevant documents j ≤ r from Pr that 
have to be found while annotating P to have a statistical guarantee to reach the 
target recall on P within the given confidence value. The actual equation used by 
QBCB is:

where 1 − � is the confidence level. The equation is tested for increasing values of j 
until it is satisfied. This methods thus requires an initial phase of human annotation 
of documents randomly sampled from P in order to define the set Pr . A larger size 
of Pr raises this initial annotation cost, yet it produces a more accurate estimation of 
j, with a lower expected annotation cost for the main annotation phase. Experiments 
in Lewis et al. (2021) on various dataset of different difficulty and prevalence have 
different optimal values for r, which minimize the average overall annotation cost, in 
the range of 30 to 60 samples (see Lewis et al. 2021, Fig. 3), with a more accurate 
targeting of recall for larger r values.

2.3.5  The IPP method

The Inhomogeneous Poisson Process Power (IPP) was recently proposed by Sneyd 
and Stevenson (2021). The authors actually propose several stopping rules based on 
counting processes, that is, stochastic models of the number of occurrences of an event 
over time (Sneyd and Stevenson 2021, §3). In order to be applied to TAR, the authors 
treat position in a search ranking as “time”, and occurrences of relevant documents as 
“events”.

Poisson processes assume that the number of occurrences follow a Poisson distribu-
tion: if the rate at which events occur varies, the process is said to be inhomogeneous. 
Furthermore, Poisson processes have a � rate, a function representing the frequency 
with which events occur over the space (i.e., our ranking). More in details,

If we indicate with N(a, b) a random variable denoting the number of events occur-
ring in the interval (a, b], then:

(3)
j−1∑
k=0

(
r

k

)
tk(1 − t)r−k ≥ 1 − �

(4)Λ(a, b) = ∫
b

a

�(x)dx

(5)P(N(a, b) = r) =
[Λ(a, b)]r

r!
e−Λ(a,b),
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where N has a Poisson distribution with expected value Λ(a, b) . The � function is 
unknown, and the goal is to choose a suitable one for the problem at hand.

The IPP method uses a Poisson process with a power curve function as the rate func-
tion. Given a counting process such as IPP, the stopping criterion is then applied as in 
Algorithm 2 [which we report from (Sneyd and Stevenson 2021, Algorithm 1)]. 

2.4  Using the SLD algorithm in AL processes

The Saerens–Latinne–Decaestecker (SLD) algorithm  (Saerens et  al. 2002) was 
proposed as a technique to adjust a priori and a posteriori probabilities (priors and 
posteriors here after) in prior probability shift (PPS) scenarios, i.e. when the prior 
probability Pr(y) diverges between the labelled L and the unlabelled U sets (Moreno-
Torres et al. 2012). The algorithm works by iteratively and jointly updating the prior 
and posterior probabilities (see Algorithm 3).



 A. Molinari, A. Esuli

1 3

AL policies, such as relevance and uncertainty sampling, naturally tend to gener-
ate a high PPS: in particular, when PrP(⊕) is fairly low to start with (as it usually is 
in TAR applications), the AL process generates a PPS such that PrL(⊕) ≫ PrU(⊕) . 
Hence, using SLD to improve both our prevalence estimates and our posteriors 
might seem like a promising idea. However, recent works (Esuli et al. 2022; Moli-
nari et al. 2023) have shown that in this context SLD has a disastrous effect on the 
posteriors. In the next sections, we analize this behaviour (Sect. 3) and propose a 
solution (Sect. 4) that enables using SLD in AL (and hence, in TAR).
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3  An analysis of SLD shortcomings in active learning scenarios

Two recent studies (Esuli et al. 2022; Molinari et al. 2023) have shown how SLD can 
have disastrous behaviours in AL contexts, leading to an extremization of the poste-
rior probability distribution, i.e. the fact that most (if not all) posterior probabilities 
Pr(⊕|x) are dragged to either 0 or 1. Experiments from Esuli et al. (2022) show that 
when SLD is applied to Rand(pol) version of an AL policy, be it either ALvRS or 
ALvUS, the phenomenon of corruption of posteriors does not happen. The cause of 
the issue is thus to be found in the document selection policy, and in the fact that both 
ALvRS and ALvUS produce a sampling bias (Dasgupta and Hsu 2008; Krishnan et al. 
2021), which leads to a dataset shift where PrL(y) ≠ PrU(y) and PrL(x|y) ≠ PrU(x|y).

Sampling bias emerges from AL algorithms due to both the selection policy pol 
and the initial seed S. S is usually very small (in many TAR applications, it may 
consist of a single positive instance). Considering the ALvRS policy, the classi-
fier trained on S will have high confidence on documents similar to the few ones 
contained in S. As the AL process continues, the training set L will diverge from 
the underlying data distribution. A classifier trained on such a biased training set 
can hardly make sense of the whole document pool. Indeed, Dasgupta and Hsu 
(2008, §2) shows that the classifier can be overly confident in attributing the nega-
tive label to a cluster of data which actually contains several positive instances.

A visual representation of the sampling bias is shown in Fig. 1, from Molinari 
et al. (2023), which shows how the document selection is extremely focused on one 
small region of the positive instances.

When it comes to the classifier capability to estimate the prevalence of relevant doc-
uments in the unlabeled part of the pool U, this means that its estimates are going to 
be much lower than those of a classifier trained on a random and representative sample 
of the same population: we can see this in Table 1, where we compare the prevalence 
estimates of a calibrated SVM classifier trained on the ALvRS training set (at different 
sizes) and the same classifier trained on a controlled random sample of the pool, with 
same size and same positive prevalence (we call ALvRS SVM and Rand(RS) SVM, 
the two SVMs trained on the two different training sets). The estimate is the average of 
the posterior probabilities for the relevant class Pr(⊕|x) for all x ∈ U.

The last two columns of the table report the true prevalence of the positive class 
in L and U, showing the strong PPS generated by AL techniques; clearly, the shift 
is stronger if pP(⊕) is already fairly low to start with (which is usually the case in 
many TAR applications). In this scenario, the classifier usually overestimates pU(⊕) , 
given its bias on pL(⊕) prevalence, which is what we see for Rand(RS) SVM. The 
values in the table seem to indicate that the ALvRS-based estimates are better than 
the Rand(RS) ones. We argue that this is actually due to the sampling bias: the clas-
sifier is very likely underestimating the prevalence of those positive clusters it does 
not know about; the end result is that the output prevalence estimate is much lower 
than the Rand(RS) and incidentally closer to the real prevalence of U.

In order to better visualize how sampling bias affects the AL trained classifier, we 
give a visual representation of this phenomenon on a synthetic dataset:
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1. We generate an artificial dataset consisting of 10,000 data items with four clusters 
(blue, yellow, purple and pink in Fig. 2). Blue and yellow clusters are the positive 
clusters (i.e., every item in these clusters has a positive ⊕ label); purple and pink 
clusters are the negative clusters (i.e., every item in these clusters has a negative 
⊖ label). Notice that negative clusters are much more populated than positive 
ones (i.e., the overall positive prevalence is low);

2. We start the active learning process with two positive items coming from one of 
the positive clusters and 10 negative items, randomly sampled from the negative 
clusters. We then annotate 500 documents with the ALvRS policy and generate an 
analogous training set with the Rand(RS) policy. The two training sets are shown 
with “X” markers in Fig. 2a, b, for ALvRS and Rand(RS) respectively;

3. We show the estimated (and the true) proportion of positive items remaining in 
each cluster, for a Calibrated SVM trained on the ALvRS and Rand(RS) training 
sets respectively. Furthermore, we show in the title the true PU(⊕) and estimated 
prevalence ( PALvRS

U
(⊕) and PRand

U
(⊕) ) on the test set.

Fig. 1  LSA visualization of documents in the pool of an ALvRS experiment. Yellow/Blue indicates rel-
evant/non-relevant documents. Green/Red circles indicates relevant/non-relevant documents selected via 
RS. A strong sampling bias selects documents in a restricted region. See Molinari et al. (2023, Fig. 1) 
(Color figure online)

Table 1  Prevalence estimates of 
an SVM classifier trained on a 
ALvRS and Rand(RS) training 
set respectively, compared to 
true prevalences of the L and 
U sets

Size of L p̂U(⊕)

ALvRS Rand (RS) pL(⊕) pU(⊕)

2000 0.048 0.141 0.500 0.058
4000 0.065 0.158 0.709 0.040
8000 0.063 0.121 0.686 0.013
16,000 0.008 0.064 0.405 0.003
23,149 0.004 0.048 0.284 0.002
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In Fig. 2a we see how the AL process annotates a specific subregion of positive 
items. This in turn “misleads” the classifier to output a much lower prevalence 
than the Rand(RS) classifier for the clusters it has never seen during training; 
notice that, being the overall positive prevalence quite low, the prevalence esti-
mates of the AL classifier seem better than the Rand’s.

Fig. 2  ALvRS and Rand(RS) applied to synthetic data. a ALvRS training set (marked with X) and preva-
lence estimation of an SVMtrained on this training set. We report a Rand(RS) trained classifier estimatio-
nas well for completeness. The blue and yellow clusters are the “positive” clusters,whereas the pink and 
purple ones are the “negative” ones.  b The Rand(RS) policy training set (marked with X), used for the 
Rand classifierin (a).
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3.1  How is sampling bias related to SLD failures in active learning contexts?

The reason why sampling bias is a key element in our analysis lies beneath the main 
assumptions made by SLD on the posterior probability distribution of the classi-
fier: SLD reasonably assumes to be in the scenario represented by the Rand(RS) 
policy rather than the AL one. More precisely, it assumes that there is no dataset 
shift on the conditional probability Pr(x|y) between the labelled set L and U, i.e., 
that PrL(x|y) = PrU(x|y) . If this assumption holds, the trained classifier will have a 
bias on L which will “uniformly” translate (i.e., in our previous example, the bias 
is consistent for all regions of the graph) to the posterior probabilities PrU(⊕|x) on 
the unlabelled set. In a PPS scenario, this means that the classifier estimate of the 
prevalence (i.e., the average of the classifier posteriors) will be closer to L, and that 
they can be “adjusted” consistently across the whole distribution. Nonetheless, when 
using an active learning policy such as ALvRS or ALvUS, we not only generate 
prior probability shift, but we also affect the distribution of the conditional probabil-
ity Pr(x|y) , such that PrL(x|y) ≠ PrU(x|y).

Let us now focus on one of the key updates in SLD: the priors ratio (Line 13 of 
Algorithm 3), which is later multiplied by the posteriors. This is defined as:

This linear relation is represented by the red line of Fig. 3. When ̂PrU(⊕) = PrL(⊕) , 
the ratio is 1, and posteriors do not change. However, as ̂PrU(⊕) drifts further away 
from PrL(⊕) (recall that this latter quantity is constant for all iterations in SLD), the 
ratio becomes progressively smaller, resulting in a multiplication of PrU(⊕|x) by a 
number very close to 0.2 We argue this is one of the main culprits of degenerated 
outputs from SLD.

In other words, let us assume that PrL(x|y) = PrU(x|y) , and that L is then a rep-
resentative sample of U. A classifier trained and biased on L will tend to shift 
any prevalence estimate toward PrL(⊕) . When the classifier estimated ̂PrU(⊕) is 
lower (or higher) than PrL(⊕) , SLD deems the true PrU(⊕) to be even lower (or 
higher). Indeed, this works very well when the previous assumption holds, e.g., for 
Rand(pol). As a matter of fact, SLD has been a state-of-the-art technique for prior 
and posterior probabilities adjustments in PPS for 20 years. However, ALvRS and 
similar techniques generate a PrL(x|y) ≠ PrU(x|y) type of shift (as well as PPS), and, 
as a result, we cannot apply SLD update with confidence: we should rather find a 
way to apply a milder correction, when possible, or no correction at all when we 
have no way of estimating how “far” we are from the SLD assumption.

(6)
̂Pr
(s)

U
(⊕)

PrL(⊕)

2 This is the case for low prevalence scenarios, typical of TAR. The opposite case is the one with very 
high prevalence, in which the posteriors for the relevant class are all pushed to 1.
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4  Adapting the SLD algorithm to active learning

As discussed in previous section, in AL scenarios, the priors ratio defined in the SLD 
algorithm should be milder in order to avoid extreme behaviours. A simple but possibly 
effective action is to directly add a correction factor � to the priors ratio equation, so 
that:

• when � = 1 we get the original SLD algorithm;
• when � = 0 the ratio always equals 1, i.e., we do not apply any correction;
• all other intermediate values adjust the ratio, making it milder with respect to SLD 

original ratio.

We thus define a correction to the priors ratio of SLD:

the new ratio, which we call � , will then be multiplied by the posteriors at every 
SLD iteration. We show how � affects the slope of the ratio in Fig. 3. We call our 

(7)𝛿 = −

⎡⎢⎢⎣
𝜏 ⋅

⎛⎜⎜⎝
−

̂Pr
(s)

U
(y)

̂Pr
(0)

U
(y)

+ 1

⎞⎟⎟⎠
− 1

⎤⎥⎥⎦

Fig. 3  The �-based correction to the priors ratio of SLD that we propose. The value of this ratio (i.e., 
the y axis) is multiplied by the posteriors during SLD iterations. Notice that when � = 1 we get the SLD 
original ratio, whereas when � = 0 we multiply the posteriors by 1, i.e. we do not change the classifier 
posteriors
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method “ SLD for Active Learning ” or SAL
�
 for short. The complete algorithm is 

reported in Algorithm 4.

In the next section we detail how we set the value of �.
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4.1  Estimating  SALτ τ across active learning iterations

We have seen that SLD works on the output of a Rand(RS)-based classifier (Esuli 
et al. 2022). We can build our estimate of � for SAL

�
 by measuring how much the 

ALvRS classifier posteriors are more or less distributed like those of a Rand(RS) 
classifier. The more ALvRS posteriors diverge from Rand(RS) ones, the milder SLD 
correction should be, up to the point where we do not use SLD at all.

Let us consider the posteriors for the relevant class, i.e., Pr(⊕|x) : we collect 
a vector A of posteriors Pr(⊕|x) for all documents in U for the classifier trained 
on the ALvRS training set, and an analogous one R for the classifier trained on 
the Rand(RS) training set. We define � as the cosine similarity between these two 
vectors:

Since Pr(⊕|x) ≥ 0 by definition of probability, the cosine similarity is naturally 
bounded between 0 and 1, a required property of our � parameter. In other words, 
we apply the SLD update when AL posteriors are similar to posteriors for which we 
know the assumption made in SLD holds (i.e., PrL(x|y) = PrU(x|y) , see Sect. 3); we 
apply an accordingly milder correction the further the AL posteriors are from this 
assumption.

Equation (8) would be a good solution, as well as an impossible one, since the 
Rand(pol) policy requires knowledge of the labels (e.g., relevancy) for the entire 
data pool.

We thus resort to an heuristic formulation based on the evolution of the classifier 
during the iterations of the AL process.3 Given the batch of documents Bi reviewed 
at the i-th iteration, we define A

�i
 and A

�i−1
 as:

i.e., the posteriors on Bi returned by the classifiers �i and �i−1 . The � parameter is 
then defined as the cosine similarity between A

�i
 and A

�i−1 . The assumption we 
make is that:

• At early iterations, there will not likely be substantial differences between the 
two vectors (thus making the cosine similarity useless);

• However, as the active learning (AL) process progresses, this could assist us in 
obtaining an estimation of the sampling bias that impacts the classifier.

(8)� = cosine similarity(A,R) =
A ⋅R

||A|| ||R||

(9)A
𝜙i
= Pr(i)(⊕, x) = 𝜙i(x)|x ∈ Bi

(10)A
𝜙i−1

= Pr(i−1)(⊕, x) = 𝜙i−1(x)|x ∈ Bi

3 This idea of leveraging previously annotated batches is more or less similar to what Callaghan and 
Müller-Hansen (2020) proposed in their method (see also Sect. 2.3.2).
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Let us consider the ALvRS policy, in a scenario similar to the one depicted in 
Fig. 2a, that is, overall prevalence is low and we start with a small seed set: in 
the first iterations we are likely going to find many positive items; that is, when 
we compare �i and �i−1 predictions on Bi they are likely to be similar, since the 
“clusters” of data available to �i are probably the same that were available to �i−1 . 
However, as we review all the positive items in a cluster, the process is forced to 
explore items in the neighbour clusters. This is when the cosine similarity should 
be effective: by comparing the posterior distribution of �i to that of �i−1 for the 
same Bi documents, we should be able to assess the impact of the new documents 
on the classifier. Indeed, if �i accessed previously unseen clusters, the posteriors 
on Bi might radically change and, in turn, roughly give us an estimate of how 
much sampling bias was affecting �i−1 predictions.

Finally, let us consider one last issue: we said that in the first AL iterations A
�i

 
will likely be similar to A

�i−1
 , and their distance cannot be used as an indication 

of sampling bias. How can we establish when to use our method and when to 
fallback to the classifier posteriors? In lack of better solutions (which we defer to 
future works), we introduce a hyperparameter �:

• At every iteration i, we apply SAL
�
 and obtain a new set of posterior probabil-

ities PrSAL𝜏 (⊕|x) and a prevalence estimation PrSAL𝜏 (⊕) (computed as ∑X

x
PrSAL𝜏 (⊕�x)

�X� );
• We measure the Normalized Absolute Error (NAE) between the estimated 

prevalence and the true prevalence of batch Bi , where NAE(PrBi
(y), ̂Pr

SAL
𝜏

Bi
(y)) 

is defined as: 

• If NAE > 𝛼 we do not use our SAL
�
 method.

The simple intuition behind this heuristic is that when the NAE between the true 
prevalence and the prevalence estimation of SAL

�
 is too high, then the estimates 

of SAL
�
 are likely going to be poor on the rest of the pool as well.

To recap, we give below an overview of how SAL
�
 integrates into the active 

learning process (see Algorithm 5): 

1. At each iteration i we employ an active learning policy, annotating a batch Bi of 
b documents, which are added to the training set L;

2. We train a classifier �i on L;
3. At each iteration i > 1 , we compute the cosine similarity between the two vec-

tors of scores A
𝜙i
= ⟨Pr𝜙i(⊕�x) ∀ x ∈ Bi⟩ and A

𝜙i−1
= ⟨Pr𝜙i−1(⊕�x) ∀ x ∈ Bi⟩ . The 

cosine similarity will be used as the � parameter in SAL
�
 ; 

(11)NAE =

∑Y

j=1
�PrBi

(y) − ̂Pr
SAL

𝜏

Bi
(yj)�

2

�
1 −min

yj∈Y
Pr

SAL
𝜏

Bi
(yj)

�



1 3

SALτ: efficiently stopping TAR by...

(a) We obtain a new set of posterior probabilities PrSAL𝜏 (⊕|x) and a new prevalence 
estimate PrSAL𝜏 (⊕) on U, using SAL

�
 on the posteriors coming from �i−1;

4. We compute NAE between SAL
�
 prevalence estimate for Bi and the true preva-

lence of Bi . If this is lower than a threshold � , we consider SAL
�
-based probabili-

ties to be the correct ones, otherwise we fall back to �i-based probabilities. In a 
TAR process this means that we can use SAL

�
-based probabilities to estimate the 

recall and decide when to stop reviewing documents.

4.2  Mitigating  SALτ recall overestimation:  SALτ
m

As it will be clear in the results section (Sect. 6), SAL
�
 achieves significant improve-

ments with respect to the compared methods. However, SAL
�
 also tends, in some 
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cases and especially for higher recall targets, to overestimate the recall, stopping the 
TAR process too early. Leaving the study of more complex approaches to future 
work, we propose a simple way to mitigate the issue of recall overestimation by rais-
ing by a margin value the target recall given in input to the method. We call this 
variant SALm

�
 (SAL

�
 with margin m), which trades off an increment in annotation 

costs for a safer TAR process that reduces the early stops. SALm
�
 is actually SAL

�
 

with the only difference being the use of a target recall Rm determined as a function 
of the target recall R and the margin m:

The margin m ranges from 0 to 1. When m = 0 , SALm
�
= SAL

�
 ; when m = 1 , 

Rm = 1 . A low value means fully trusting SAL
�
 , a high value means accepting to 

label more documents to avoid early stops. In order to avoid adding a free parameter 
to the method we decided to set m = R , following the intuition that it is crucial to 
guarantee a given target recall R, the closer R is to 1. Equation (12) thus becomes:

We call this configuration SALR
�
 and comment upon its results in Sect. 6. We defer 

to future works the exploration of more informed methods to set m, which could 
possibly enable a more convenient trade-off between annotation costs and proper 
recall targeting.

5  Experiments

5.1  Using  SALτ to stop a TAR process

The SAL
�
 algorithm can be tested in any AL scenario where we need to improve 

priors and posteriors. In this paper, we focus on testing SAL
�
 capabilities 

for TAR: our goal is to stop the review process as soon as a target recall R is 
reached, lowering the review cost.

We test the SAL
�
 algorithm with three configurations: 

1. The SAL
�
 formulation of Algorithm 5;

2. SALR
�
 , i.e., with margin, as described in Sect. 4.2;

3. SAL
�
CI, a variant of SAL

�
 that uses the confidence interval heuristic from the 

QuantCI technique (Yang et al. 2021a).

We compare against the following well-known methods (see Sect. 2): 

1. The Knee method by Cormack and Grossman (2015);
2. The Budget method by Cormack and Grossman (2015)
3. The CHM method by Callaghan and Müller-Hansen (2020);
4. The QuantCI method by Yang et al. (2021a);

(12)Rm = R + (1 − R)m

(13)Rm = R + (1 − R)R = 2R − R2
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5. The QBCB method by Lewis et al. (2021);
6. The IPP by Sneyd and Stevenson (2021).

For all methods that require a confidence interval, we set it to 95% . The positive 
sample size r of the QBCB method (see Sect. 2.3.4) is instead set at 50, which in 
the results reported in the original paper appears to be a good trade-off between 
a low overall cost and a low variance in such cost across different samples.

5.2  The active learning workflow

We run the same active learning workflow for all tested methods. In most TAR 
applications  (Yang et  al. 2021a; Cormack and Grossman 2015), we usually have 
only a single positive document to start the active learning with, called the initial 
seed: for our experiments, we decide to seed the active learning process with an 
additional negative document randomly sampled from the document pool P; that is, 
our initial seed set S consists of a positive and a negative document, randomly sam-
pled from P.

As mentioned earlier (Sect. 2), the active learning policy we pick is CAL (Cor-
mack and Grossman 2015) (a variation of ALvRS) since this is the most common 
policy used in TAR tasks. As the batch size b, we follow (Yang et al. 2021a) and set 
it to 100. The classifier we use in all our experiments is a standard Logistic Regres-
sion, as this is also the classifier of choice in most (if not all) TAR applications. We 
test the target recalls values {0.8, 0.9, 0.95}.

5.3  Datasets

We run our experiments4 on two well-known datasets: the RCV1-v2 and the CLEF 
Technology-Assisted Reviews in Empirical Medicine (EMED) datasets (specifically, 
the dataset made available for the CLEF 2019 edition). Both datasets have been 
already used to test TAR frameworks and algorithms, e.g., the MINECORE frame-
work (Oard et al. 2018), the QuantCI stopping technique (Yang et al. 2021a) and Li 
and Kanoulas sampling methodology (Li and Kanoulas 2020). We also use a sample 
of the Jeb Bush Email collection to set SAL

�
 � hyperparameter.

All text is converted into vector representation first converting it to lowercase, 
removing English stopwords and any term occurring in more than 90% of the docu-
ments in P; vectors are weighted using tf-idf.

5.3.1  RCV1‑v2

RCV1-v2 (Lewis et al. 2004) is a publicly available collection of 804,414 news sto-
ries from the late nineties, published on the Reuters website. RCV1-v2 is a multi-
label multi-class collection, i.e., every document can be assigned to one or more 

4 The code is available at https:// github. com/ levni kmysk in/ salt.

https://github.com/levnikmyskin/salt
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classes from a set C of 103 classes. Since for our experiments we need binary classi-
fication datasets (i.e., a document can either be relevant or not), for each class c ∈ C 
we consider each document d as either belonging to c or not, thus obtaining 103 
binary datasets. In the experiments, we use a random sample of 10,000 documents, 
for efficiency and to keep RCV1 pool size close to that of CLEF.

5.3.2  CLEF EMED 2019

The CLEF EMED datasets were made publicly available5 for the TAR in EMED 
tasks ran from 2017 to 2019. The goal of the task was to assess TAR algorithms 
aimed at supporting the production of systematic reviews in empirical medicine. 
Following  (Li and Kanoulas 2020), we use the Diagnostic Test Accuracy (DTA) 
reviews part of the dataset, working with the abstract relevance assessments (i.e., 
the first phase of the review, where the physician only assesses abstracts): the dataset 
consists of 72 “Training” topics and 8 “Testing” topics.

The texts of the reviewed documents are not available for download on the 
GitHub platform: they have to be downloaded from PubMED. While an HTTP API 
is available, the full text of documents are often under a paywall: hence the choice of 
focusing on the abstract reviews only. Moreover, we have encountered several issues 
in downloading some of the abstracts and we were unable to retrieve the whole data-
set: in total we have retrieved abstracts for 60 topics (between “Training” and “Test-
ing”), downloading a collection of 264,750 documents. Since we do not need to dis-
tinguish between a training and testing phase with different topics (e.g., for transfer 
learning), we merge together the “Training” and “Testing” subcollections.6

5.3.3  Jeb Bush Email collection

The Jeb Bush’s emails collection consists of 290,099 emails sent and received by 
the former governor of Florida Jeb Bush. We used the subset published by Gross-
man et al.7: the sample consists of 9 topics, with 50,000 documents. For each docu-
ment and topic, a relevance judgment is available. We do not run experiments on 
this sample, but only use it to set the hyperparameter � (see Sect. 4.1).

5.4  Evaluation measures

We evaluate the tested methods using three measures: 

1. The Mean Square Error (MSE) between the recall at stopping Rs and the target 
recall R: 

5 https:// github. com/ CLEF- TAR/ tar.
6 We published the dataset at (Molinari 2022).
7 https:// github. com/ hical/ sample- datas et.

https://github.com/CLEF-TAR/tar
https://github.com/hical/sample-dataset
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2. The Relative Error (RE): 

3. The “idealized” cost (IC) presented by Yang et al. (2021b). This measure specifi-
cally evaluates a stopping method on its capability of saving effort and money 
when stopping the TAR process.

The first two measures are well-known and used in many different tasks in IR and 
machine learning literature, and they have been used to evaluate TAR tasks (Li and 
Kanoulas 2020; Yang et al. 2021a).

The IC metric is defined as follows: it uses a cost structure (similar to what was 
previously done in Oard et al. (2018)), a four-tuple s = (�p, �n, �p, �n) . Subscript p 
and n indicate the cost of reviewing positive (relevant) and negative (non-relevant) 
documents; � and � represents the costs of reviewing a document in a first or second 
phase: in a one-phase TAR process, this “second” phase is referred to as the failure 
penalty. That is, it would be the cost of continuing the review with an optimal sec-
ond phase, by ranking documents with the model trained in the first one.

Let Q be the minimum number of documents to review to reach the recall target 
R. Say we review batches of size b and we stop at iteration t: let Qt be the number of 
documents we reviewed before the method stopped the review. If Qt < Q , we have a 
deficit of Q − Qt positive documents; let �t be the number of documents that need be 
reviewed,8 following the ranking, to find the additional Q − Qt positive documents. 
The total cost of our review is then:

Where I[Qt < Q] is 0 if Q documents were found in the first t iterations and 1 
otherwise.

Following both Yang et al. (2021b) and Oard et al. (2018), we evaluate our results 
with three cost structures:

• a uniform cost structure, where s = (1, 1, 1, 1) , which we call Costu . This assumes 
that there is no difference between the different phases of review, and that 
reviewing positive and negative documents have the same cost (we keep this lat-
ter assumption in all our cost structures). As argued in Yang et al. (2021b, §4.1), 
this cost structure is common in many review scenarios;

• the expensive training cost structure, where s = (10, 10, 1, 1) , which we call 
Coste . This assumes that reviewing a document in the first phase is 10 times 

(14)MSE = (R − Rs)
2

(15)RE =
|R − Rs|

R

(16)
IC =𝛼pQt + 𝛼n(bt − Qt) + I[Qt < Q](𝛽p(Q − Qt)

+ 𝛽n(𝜌t − Q + Qt))

8 Note that the value of �t can be computed, at evaluation time, since we know the relevance labels of all 
documents in the pool in the experimental setting.
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more expensive than in the second phase. According to Yang et al. (2021b, §4.2) 
this is fairly common in systematic reviews in empirical medicine;

• a MINECORE-like cost structure, where s = (1, 1, 5, 5) , which we call Costm . 
This cost structure reflects MINECORE cost structure 2  (Oard et  al. 2018, 
Table 5), where we assume that reviewing in the second stage (in MINECORE 
case, it was reviewing by privilege) is 5 times as expensive as in the first stage.

Table 2  MSE and RE results on RCV1. For each target recall, bold indicates the best result, underline 
indicates the second best

All Very Low Low Medium

MSE RE MSE RE MSE RE MSE RE

Recall = 0.8
BudgetKnee 0.032 0.222 0.038 0.242 0.030 0.214 0.029 0.211
CHM 0.037 0.240 0.039 0.248 0.038 0.243 0.034 0.228
IPP 0.090 0.300 0.030 0.204 0.057 0.253 0.184 0.444
Knee 0.035 0.231 0.040 0.250 0.035 0.233 0.029 0.211
QBCB 0.022 0.174 0.038 0.243 0.014 0.145 0.013 0.135
Quant 0.039 0.248 0.040 0.250 0.040 0.249 0.038 0.243
QuantCI 0.040 0.249 0.040 0.250 0.040 0.250 0.039 0.246
SAL

�
0.025 0.167 0.040 0.200 0.021 0.173 0.014 0.129

SALR

�

0.026 0.188 0.028 0.186 0.027 0.200 0.022 0.177
SAL

�
CI 0.031 0.213 0.040 0.250 0.038 0.243 0.016 0.146

Recall = 0.9
BudgetKnee 0.007 0.087 0.009 0.104 0.006 0.079 0.005 0.077
CHM 0.009 0.108 0.010 0.111 0.010 0.109 0.009 0.103
IPP 0.107 0.242 0.008 0.089 0.066 0.190 0.248 0.446
Knee 0.008 0.095 0.010 0.111 0.008 0.096 0.005 0.077
QBCB 0.007 0.091 0.010 0.110 0.006 0.087 0.005 0.076
Quant 0.010 0.111 0.010 0.111 0.010 0.111 0.010 0.109
QuantCI 0.010 0.111 0.010 0.111 0.010 0.111 0.010 0.110
SAL

�
0.010 0.077 0.022 0.110 0.004 0.064 0.004 0.057

SALR

�

0.007 0.080 0.009 0.089 0.005 0.075 0.005 0.076
SAL

�
CI 0.009 0.104 0.010 0.111 0.010 0.111 0.008 0.090

Recall = 0.95
BudgetKnee 0.001 0.035 0.002 0.046 0.001 0.031 0.001 0.027
CHM 0.002 0.051 0.003 0.053 0.002 0.052 0.002 0.048
IPP 0.123 0.230 0.004 0.054 0.077 0.178 0.287 0.457
Knee 0.002 0.041 0.002 0.052 0.002 0.042 0.001 0.027
QBCB 0.003 0.053 0.003 0.053 0.003 0.053 0.003 0.053
Quant 0.002 0.052 0.003 0.053 0.003 0.053 0.002 0.052
QuantCI 0.002 0.053 0.003 0.053 0.003 0.053 0.002 0.053
SAL

�
0.006 0.051 0.015 0.079 0.001 0.035 0.003 0.039

SALR

�

0.002 0.039 0.002 0.047 0.001 0.036 0.001 0.033
SAL

�
CI 0.002 0.051 0.003 0.053 0.003 0.053 0.002 0.049
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6  Results

We run each of the experiments defined in the previous section 20 times, using a 
different randomly generated seed set S each time (the same random seed set for 
all methods compared); we set � = 0.3 (Sect. 4.1), as this was the best-performing 
value in a hyperparameter search conducted on the Jeb Bush dataset. Therefore, the 

Table 3  MSE and RE results on CLEF. For each target recall, bold indicates the best result, underline 
indicates the second best

All Very Low Low Medium

MSE RE MSE RE MSE RE MSE RE

Recall = 0.8
BudgetKnee 0.035 0.230 0.035 0.229 0.031 0.219 0.038 0.242
CHM 0.038 0.245 0.039 0.248 0.038 0.242 0.038 0.244
IPP 0.047 0.223 0.047 0.225 0.058 0.231 0.037 0.212
Knee 0.038 0.245 0.039 0.248 0.037 0.241 0.039 0.246
QBCB 0.027 0.198 0.032 0.216 0.022 0.177 0.027 0.199
Quant 0.039 0.247 0.040 0.249 0.039 0.248 0.038 0.244
QuantCI 0.040 0.249 0.040 0.250 0.040 0.250 0.039 0.248
SAL

�
0.027 0.174 0.034 0.174 0.017 0.146 0.029 0.201

SALR

�

0.027 0.190 0.026 0.173 0.026 0.193 0.030 0.205
SAL

�
CI 0.036 0.235 0.040 0.250 0.034 0.224 0.035 0.230

Recall = 0.9
BudgetKnee 0.008 0.094 0.008 0.093 0.006 0.084 0.009 0.104
CHM 0.010 0.109 0.010 0.111 0.010 0.109 0.010 0.108
IPP 0.041 0.137 0.037 0.135 0.061 0.159 0.025 0.119
Knee 0.009 0.106 0.010 0.109 0.009 0.103 0.009 0.107
QBCB 0.008 0.096 0.009 0.101 0.007 0.087 0.008 0.098
Quant 0.010 0.110 0.010 0.111 0.010 0.110 0.010 0.108
QuantCI 0.010 0.111 0.010 0.111 0.010 0.111 0.010 0.111
SAL

�
0.013 0.089 0.021 0.100 0.005 0.069 0.013 0.100

SALR

�

0.007 0.087 0.007 0.079 0.006 0.084 0.008 0.099
SAL

�
CI 0.010 0.110 0.010 0.111 0.010 0.109 0.010 0.111

Recall = 0.95
BudgetKnee 0.002 0.042 0.002 0.050 0.001 0.031 0.002 0.047
CHM 0.002 0.052 0.003 0.053 0.002 0.052 0.002 0.051
IPP 0.044 0.113 0.038 0.107 0.068 0.140 0.026 0.091
Knee 0.002 0.048 0.002 0.051 0.002 0.045 0.002 0.049
QBCB 0.003 0.053 0.003 0.053 0.003 0.053 0.003 0.053
Quant 0.002 0.052 0.003 0.053 0.003 0.053 0.002 0.052
QuantCI 0.003 0.053 0.003 0.053 0.003 0.053 0.003 0.053
SAL

�
0.009 0.062 0.017 0.086 0.003 0.039 0.007 0.061

SALR

�

0.002 0.047 0.004 0.057 0.001 0.035 0.002 0.048
SAL

�
CI 0.003 0.053 0.003 0.053 0.003 0.053 0.003 0.053
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reported results for a dataset represent the average evaluation measure applied to all 
generated subsets across all classes within that dataset. We also define three equal-
sized bins sorted by class prevalence (Very low, Low, and Medium) to show how the 
different methods performed with different level of imbalance between relevant and 
non-relevant documents. The average prevalence for the classes in the three bins of 
RCV1 is 0.002, 0.012, and 0.084, and for CLEF is 0.005, 0.027, and 0.117.

Tables 2 and 3 report the MSE and RE values, Tables 4 and 5 report the IC val-
ues. The most competitive models are SAL

�
 , SALR

�
 , Budget, QBCB and the IPP 

method. For the MSE and RE metrics our SAL
�
 and SALR

�
 stopping rules performs 

on par, or better, than the other state-of-the-art techniques. More in details, for lower 

Fig. 4  Box plots of actual recall reached by the methods, given a target recall: 0.8 (top), 0.90 (center), 
0.95 (bottom). Left column is RCV1, right column is CLEF
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target recalls ( R = 0.8 and R = 0.9 ) the above-mentioned methods show a compara-
ble performance, both for RCV1-v2 and CLEF datasets. When R = 0.95 , the Budget 
method performs slightly better instead.

With respect to the IC measure, SAL
�
 shows the lowest costs on average (and for 

the Very Low prevalence bin) for all proposed cost structures, closely followed by 
SALR

�
 and IPP. Notice that the IPP method, despite achieving good cost results, was 

not as performant when previously compared on the MSE and RE metrics. On the 
other hand, the QBCB method, which achieves state-of-the-art performance on MSE 
and RE, incurs very high costs due to the annotation of the pre-review random sam-
ple required by the method. Furthermore, the most relevant reduction of cost shown 
by SAL

�
 and SALR

�
 , with respect to the compared methods, is for the Very Low 

prevalence bin. This is an important result, as the “needle in a haystack” scenario is 
the most common in TAR. The Budget method has comparable costs for high target 
recall values and in higher prevalence bins.

Overall, we argue that our SALR
�
 method seems to strike the best trade-off 

between proper recall targeting (i.e., actually stopping the review at the given recall 
target) and low costs.

Indeed, as we anticipated, SAL
�
 tends to stop the TAR process too early and, as 

a result, cannot be consistently used in all scenarios despite achieving lower costs. 
This can be seen in the box plots in Fig. 4, which show at which real recall values 
the different stopping rules decided to halt the review process. The average recall 
value for SAL

�
 is always higher than the target recall, i.e. the expected value of 

recall satisfies the target recall requirement. Yet, it is evident how for higher recall 
targets, the distribution of recall values produced by SAL

�
 goes under the target not 

only for the tail of the distribution, as it happens for Budget and Knee, but also for 
a portion of the center part of the distribution. Most TAR tasks require to match the 
target recall in a much larger portion of the cases. By simply adding a margin that 
is a function of the target recall, SALR

�
 shifts the distribution of the reached recall 

values up. Its distribution is similar to the Budget method’s, with slightly increasing 
costs with respect to SAL

�
 but still lower than the other tested methods.

Finally, notice that the IPP method, despite achieving good costs in some cases 
(and good MSE/RE values in some other), cannot stop the review process at the 
right moment, often greatly overshooting the recall estimate.

To summarize, SAL
�
 enables the use of SLD in AL and TAR processes, solving 

the issues observed in Esuli et  al. (2022) and Molinari et  al. (2023). SAL
�
 brings 

consistent and substantial improvements, especially for medium/high (0.8, 0.9) tar-
get recalls; for higher targets, it tends to stop too early. SALR

�
 solves this issue with-

out a significant increase in annotation costs with respect to SAL
�
 , finding a very 

good trade-off between annotation costs and proper target recall matching. In future 
works we propose to investigate more informed methods to mitigate SAL

�
 target 

recall overestimation, as well as testing SAL
�
 and SALR

�
 with other sampling tech-

niques (e.g., Li and Kanoulas 2020).
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7  Conclusions

In this paper, we introduced a new method called SAL
�
 (and its variations SALR

�
 

and SAL
�
CI) to improve posterior probabilities and prevalence estimates in an active 

learning review process; more specifically, we tested our method as a “when-to-
stop” stopping rule for TAR tasks. SAL

�
 is a variant of the well-known SLD algo-

rithm (Saerens et al. 2002): our algorithm was designed to enable the use of SLD in 
AL and TAR processes, solving the issues observed in Esuli et al. (2022) and Moli-
nari et  al. (2023). Experiments have shown that SAL

�
 still tends to slightly over-

estimate the true recall as it gets close to 1, stopping the process too early. SALR
�
 

solves this issue, without significantly increasing the review cost compared to SAL
�
 . 

In the experiments, SALR
�
 has consistently improved over state-of-the-art methods 

by improving the estimation of prevalence and thus stopping the TAR process much 
earlier than other methods, while still achieving the target recall.

For future work, we propose to investigate more informed methods to mitigate 
the overestimation of target recall of SAL

�
 , as well as to test SAL

�
 and SALR

�
 with 

other sampling techniques (e.g., Li and Kanoulas 2020).
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