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“A person walks in a counterclockwise circle.” “The person is kneeling down on all fours to begin to crawl.”
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Figure 1: Five motions retrieved for two different queries specified by free text (CLIP as text encoder, MoT as motion encoder).

ABSTRACT
Due to recent advances in pose-estimation methods, human motion
can be extracted from a common video in the form of 3D skeleton
sequences. Despite wonderful application opportunities, effective
and efficient content-based access to large volumes of such spatio-
temporal skeleton data still remains a challenging problem. In this
paper, we propose a novel content-based text-to-motion retrieval
task, which aims at retrieving relevant motions based on a specified
natural-language textual description. To define baselines for this
uncharted task, we employ the BERT and CLIP language represen-
tations to encode the text modality and successful spatio-temporal
models to encode the motion modality. We additionally introduce
our transformer-based approach, called Motion Transformer (MoT),
which employs divided space-time attention to effectively aggre-
gate the different skeleton joints in space and time. Inspired by the
recent progress in text-to-image/video matching, we experiment
with two widely-adopted metric-learning loss functions. Finally, we
set up a common evaluation protocol by defining qualitative met-
rics for assessing the quality of the retrieved motions, targeting the
two recently-introduced KIT Motion-Language and HumanML3D
datasets. The code for reproducing our results is available here:
https://github.com/mesnico/text-to-motion-retrieval.
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1 INTRODUCTION AND RELATEDWORK
Pose-estimation methods [12] can detect 3D human-body keypoints
in a single RGB video stream. The keypoints detected in individ-
ual frames constitute a simplified spatio-temporal representation
of human motion in the form of a so-called skeleton sequence. As
indicated in [40], the analysis of such representation opens un-
precedented application potential in many domains, ranging from
virtual reality, through robotics and security, to sports and medicine.
The ever-increasing popularity of skeleton data calls for technolo-
gies able to effectively and efficiently access large volumes of such
spatio-temporal data based on its content.

Research in skeleton-data processing mainly focuses on design-
ing deep-learning architectures for classification of labeled actions
[8, 24, 33] or detection of such actions in continuous streams [32, 42].
The proposed architectures are often learned in a supervised way
based on transformers [1, 8, 9], convolutional [24], recurrent [42],
or graph-convolutional [11, 33] networks. Recently, self-supervised
methods are becoming increasingly popular as they can learn mo-
tion semantics without knowledge of labels using reconstruction-
based [39, 47] or contrastive-based learning [21, 46].

The trained architectures can serve as motion encoders that ex-
press the motion semantics by a high-dimensional feature vector
extracted from the last hidden network layer. This concept can be
transferred to the motion retrieval task to support content-based
access based on the query-by-example paradigm [5, 38, 40], which
aims at identifying the database motions that are the most similar
to a user-defined query motion. Besides balancing descriptiveness
and indexability of the motion features, the most critical issue is
to specify a convenient query motion example. The example can
be selected from available skeleton sequences [39], drawn in a
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visualization-driven graphical user interface [4], modeled by pup-
pet interfaces [31], specified as a set of logical constraints [18], or
artificially generated [10]. However, such a query example may
not ever exist, or its construction requires professional modeling
skills. This paper focuses on motion retrieval but simplifies query
specification by enabling users to formulate a query by free text.

With the current advances in cross-modal learning, especially in
the field of textual-visual processing, the trend is to learn common
multi-modal spaces [28] so that similar images can be described and
searched with textual descriptions [27]. A representative example
is the CLIP model [36], which learns an effective common space
for the visual and textual modalities. This allows the use of open
vocabularies or complex textual queries for searching images.

Our work has many analogies with the text-to-video retrieval
task [13, 22, 23, 41, 50], given that the moving skeleton also evolves
in space and time. Despite the popularity of such powerful and ver-
satile text-vision models, no effort has been made for the skeleton-
data modality. Differently from video data, the skeleton is ano-
nymized and avoids learning many common biases present in
video datasets. To the best of our knowledge, there is only one
approach [20] that relates to text-to-motion matching. However,
it uses pre-training and tackles only the classification task. A few
available datasets providing the training data for text-to-motion
retrieval – e.g., the KITMotion Language [35] and recently-released
HumanML3D [15] datasets – are primarily used for motion genera-
tion from a textual description [16, 34, 44, 47, 48], where the idea
is to align text and motion embeddings into a common space, but
never explicitly handling the text-to-motion retrieval task.

Contributions of this Paper
We tackle the above-mentioned gap by introducing a novel text-to-
motion retrieval task, which aims at searching databases of skeleton
sequences and retrieving those that are the most relevant to a de-
tailed textual query. For this task, we define evaluation metrics,
establish new qualitative baselines, and propose the first text-to-
motion retrieval approach. These initial contributions can be em-
ployed for future studies on this challenging yet unexplored task.

Specifically, one of the main paper contributions is the proposal
of a fair baseline by adopting promising (1) motion encoders already
employed as backbones in other motion-related tasks and (2) text
encoders successfully applied in natural language processing (NLP)
and text-to-image retrieval. The core of this baseline is a two-stream
pipeline where the motion and text modalities are processed by
separate encoders. The obtained representations are then projected
into the same common space, for which a metric is learned in a
similar way as in CLIP [36] or ALADIN [30] in the text-to-image
scenario. The choice of a two-stream pipeline is strategic to make
the approach scalable to large motion collections, as feature vectors
extracted from both modalities can be easily stored in off-the-shelf
indexes implementing efficient similarity search access.

Inspired by recent advances in video processing [3], we also
propose a transformer-based motion encoder – the Motion Trans-
former (MoT) – that employs divided space-time attention on skele-
ton joints. We show that MoT reaches competitive results with
respect to a state-of-the-art motion encoder, DG-STGCN [11], on
both KIT Motion Language and HumanML3D datasets.

3D skeleton sequence (motion) modality

Text modality
Common 

embedding space

“A person is walking and
making a handstand”

Motion 
encoder

(e.g., BiGRU 
or MoT)

Text 
encoder

(e.g., BERT
or CLIP)

Figure 2: Schematic illustration of the learning process of
the common space of both the text and motion modalities.

2 TEXT-TO-MOTION RETRIEVAL PIPELINE
The main idea of our approach is to rely on a two-stream pipeline,
where motion and text features are first extracted through ad-
hoc encoders and then projected into the same common space,
as schematically illustrated in Figure 2. In this section, we sketch
the whole pipeline which consists of the: (i) text encoder, (ii) motion
encoder, and (iii) loss function used to optimize the common space.

2.1 Text Encoders
Inspired by recent works in NLP, we rely on two pre-trained textual
models, namely BERT [19] and the textual encoder from CLIP [36].

BERT. We use the implementation from [14], which performed
the task of motion synthesis conditioned on a natural language
prompt. This model stacks together a BERT pre-trained module
and an LSTM model composed of two layers for aggregating the
BERT output tokens, producing the final text embedding. We take
the final hidden state of the LSTM model as our final sentence
representation. As in [14], the BERT model is fixed. At training
time, we only update the LSTM weights.

CLIP. It is a recently-introduced vision-language model trained
in a contrastive manner for projecting images and natural lan-
guage descriptions in the same common space [36]. Here, we use
the textual encoder of CLIP, which is composed of a transformer
encoder [45] with modifications introduced in [37], and employs
lower-cased byte pair encoding (BPE) representation of the text. We
then stack an affine projection to the CLIP representation, which –
similarly to the BERT+LSTM case – is the only layer to be trained.

2.2 Motion Encoders
Differently from the textual pipeline, which takes as input an un-
structured natural language sentence, the input to motion encoder
models is a vector x ∈ R𝑇× 𝐽 ×𝐷 , where 𝑇 is the time length of the
motion, 𝐽 is the number of joints of the human-body skeleton, and
𝐷 is the number of features used to encode each joint.

Bidirectional GRU. This architecture is widely adopted in time-
series processing, and an early variant that used LSTM was applied
to frame-level action detection in continuous motion data [6]. In
particular, we first increase the dimensionality of the input – which
is 𝐷 = 9 in our case – by using a two-layer feed-forward network
(FFN) before feeding it into the GRU: −→̄z ,←−̄z =

←−→
GRU(FFN(x)). Then,

we compute the final motion embedding by concatenating the rep-
resentations −→𝑧 and←−𝑧 .
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Upper-Lower GRU. To better learn semantics of different body
parts, we adopt the model in [14] to independently process the
upper and lower parts of the skeleton using two GRU layers.

DG-STGCN. This architecture [11] recently reached state-of-
the-art results inmotion classification. Their GCNmodule features a
spatial module, built of affinity matrices to capture dynamic graph-
ical structures, and a temporal module that performs temporal
aggregation using group-wise temporal convolutions. We refer the
reader to the original formulation [11] for further details.

MoT. Our proposed architecture that we built on top of the
successful transformer-based video processing network ViViT [3].
In the original implementation, which processes a sequence of
frames, the dimension 𝐽 is the number of grid-arranged rectangular
patches from each frame. In our case, instead, the spatial features
come from the joints. Instead of using as 𝐽 all individual skeleton
joints, we first aggregate them obtaining features for five different
body parts, similar to the pre-processing performed in Upper-Lower
GRU. In this way, 𝐽 = 5, which is far less than the total number of
skeleton joints. This is beneficial from a computational point of view,
and we found that this solution also reaches the best performance.

2.3 Optimization
We explore two widely-adopted metric learning loss functions,
namely the symmetric triplet loss widely used in text-to-image
[26] and the InfoNCE Loss, introduced for cross-modal matching
in [49] and employed in CLIP [36] and recent cross-modal works
[23]. We assume (m𝑖 , c𝑖 ) is the 𝑖-th motion and caption embedding
pair, 𝑆 (·, ·) is the cosine similarity, and 𝐵 is the batch size.

The symmetric triplet loss is defined as:

1
𝐵

𝐵∑︁
𝑖

max
𝑗, 𝑗≠𝑖
[𝛼+𝑆 (m𝑖 , c𝑗 )−𝑆 (m𝑖 , c𝑖 )]++max

𝑗, 𝑗≠𝑖
[𝛼+𝑆 (m𝑗 , c𝑖 )−𝑆 (m𝑖 , c𝑖 )]+

where [𝑥]+ ≡𝑚𝑎𝑥 (0, 𝑥) and 𝛼 is a fixed margin. The index 𝑗 iden-
tifies the hardest negative of the element with index 𝑖 .

Info-NCE is basically a symmetric cross-entropy loss, defined as:

− 1
𝐵

𝐵∑︁
𝑖

log
exp(𝑆 (m𝑖 , c𝑖 )/𝜏)∑𝐵
𝑗 exp(𝑆 (m𝑖 , c𝑗 )/𝜏)

+ log
exp(𝑆 (m𝑖 , c𝑖 )/𝜏)∑𝐵
𝑗 exp(𝑆 (m𝑗 , c𝑖 )/𝜏)

where 𝜏 is a temperature parameter learned during training.

3 EXPERIMENTAL EVALUATION
3.1 Metrics

Exact-search. Exact-search metrics leverage the intrinsic ground
truth available in the employed datasets, where motions come with
one (or more) textual descriptions. We can consider motions asso-
ciated with the given textual query as the exact solutions, while
all the other ones as irrelevant by default. In this context, the re-
call@k measures the percentage of queries that find the correct
result within the first k elements in the results list, while the median
and mean ranks represent the median and mean rank of the exact
result computed among all the queries.

Relevance-based. There can exist motions relevant to a certain ex-
tent to the given textual query that are not paired in the dataset. In
this context, the normalized Discounted Cumulative Gain (nDCG)
metric is widely employed. The DCG takes into consideration

the relevance a specific item has with the query, discounting it
with a logarithmic factor that depends on the rank of that item:
DCG𝑝 =

∑𝑝

𝑖=1
2rel𝑖 −1

log2 (𝑖+1)
. The nDCG normalizes DCG by its maxi-

mum theoretical value and thus returns values in the [0, 1] range.
We define the relevance similarly to previous works in image-to-
text retrieval [7, 26, 29], that use a proxy relevance between textual
descriptions, which is much easier to compute. In this work, we use
two textual relevance functions: (i) the SPICE relevance [2] – a hand-
crafted relevance that exploits graphs associated with the syntactic
parse trees of the sentences and has a certain degree of robustness
against synonyms; and (ii) the spaCy relevance obtained from the
spaCy Python tool, which implements a deep learning-powered
similarity score for pairs of texts.

3.2 Datasets and Evaluation Protocol
We employ two recently introduced datasets, HumanML3D [15]
and KIT Motion Language [35]. Both datasets carry one or more
human-written descriptions for each motion. We employ the same
pre-processing pipeline for both datasets – the one developed in the
codebase of the HumanML3D dataset [15]. We employ 𝐷 = 9 fea-
tures to represent each joint: six features encoding continuous rota-
tion representation plus three features encoding rotation-invariant
forward kinematics joint positions.

KIT Motion-Language Dataset contains 3,911 recordings of full-
body motion in the Master Motor Map form [43], along with textual
descriptions for each motion. It has a total of 6,278 annotations in
English, where each motion recording has one or more annotations
that explain the action, like "A human walks two steps forwards,
pivots 180 degrees, and walks two steps back".

HumanML3D is, in its essence, very similar to KIT Motion Lan-
guage Dataset. However, it is a more recent dataset developed by
adding textual annotations to already-existing and widely-used
motion-capture datasets – AMASS [25] and HumanAct12 [17]. It
contains 14,616 motions annotated by 44,970 textual descriptions.

The results are reported on the test set of the respective datasets
after removing possibly redundant queries. In particular, we use 938
and 8,401 textual queries to search among 734 and 4,198 motions for
the KIT and HumanML3D datasets, respectively. For HumanML3D,
these motions are obtained by splitting the originally provided ones
using the available segment annotations associating a motion sub-
sequence with the text that describes it. In this sense, HumanML3D
enables a finer retrieval, as texts are more likely to describe the
correct subsequence instead of the whole motion.

3.3 Results
We report text-to-motion retrieval results in Table 1, obtained with
the InfoNCE loss (see Section 3.3.1 for a comparison of loss func-
tions). The best results are competitively achieved by both DG-
STGCN and our transformer-based MoT. The first remarkable in-
sight is the superiority of CLIP over the BERT+LSTM on all the
metrics in both datasets. With CLIP, the effectiveness of DG-STGCN
and MoT over GRU-based methods is evident, especially on the
KIT dataset, where the mean rank is almost 30 % lower. The nDCG
metric, through the highly-semantic text-based relevance scores,
confirms the trend of the recall@k values, suggesting that the CLIP
model paired with GCNs and Transformers can both retrieve exact
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Table 1: Text-to-motion retrieval results on both the KIT Motion Language Dataset and HumanML3D Dataset. We report the
best and the second-best results with bold and underlined font, respectively.

KIT Motion Language Dataset HumanML3D Dataset
Recall@k ↑ Rank ↓ nDCG ↑ Recall@k ↑ Rank ↓ nDCG ↑

Text Model Motion Model r1 r5 r10 mean med SPICE spaCy r1 r5 r10 mean med SPICE spaCy

BERT+LSTM
BiGRU 3.7 15.2 23.8 72.3 30 0.271 0.706 2.9 11.8 19.8 253.9 55 0.250 0.768
UpperLowerGRU 3.2 15.7 25.3 90.2 34 0.263 0.697 2.4 10.5 17.7 285.7 68 0.242 0.763
DG-STGCN 6.2 24.5 38.2 40.6 17 0.339 0.740 2.0 8.4 14.4 242.0 73 0.231 0.767
MoT 5.3 21.3 32.0 51.1 20 0.318 0.723 2.5 11.2 19.4 234.5 51 0.247 0.768

CLIP
BiGRU 6.6 21.5 32.3 52.0 22 0.316 0.729 3.4 14.3 23.1 201.9 43 0.272 0.780
UpperLowerGRU 6.4 22.0 32.2 52.3 22 0.321 0.732 3.1 12.6 20.8 200.4 47 0.269 0.779
DG-STGCN 7.2 26.1 38.2 36.9 16 0.355 0.751 4.1 16.0 26.5 159.6 33 0.291 0.789
MoT 6.5 26.4 42.6 35.5 14 0.352 0.748 3.5 14.8 24.5 166.2 38 0.280 0.785
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Figure 4: Improvement of InfoNCE loss over Triplet loss.

and relevant results in earlier positions in the results list. Notably,
from an absolute perspective, all the methods reach overall low
performance on exact search, confirming the difficulty of the intro-
duced text-to-motion retrieval task. This may be due to (i) some
intrinsic limitations that are hard to eliminate – e.g., textual descrip-
tions are written by annotators by possibly looking at the original
video, which the network has no access to – or (ii) difficulties in
capturing high-level semantics in motion or text data. In Figure 1,
we report two qualitative examples of text-to-motion retrieval using
CLIP + MoT, on HumanML3D. We can notice the potential of such
natural-language-based approach to motion retrieval. Specifically,
note how the approach is sensible to asymmetries – in the first case,
where the counterclockwise adjective is specified in the query, only
the correctly-oriented motions are returned in the first positions; in
the second case, where no right or left is specified, both the original
and mirrored motions are returned (e.g., the 1st and 2nd results).

3.3.1 Ablation Study on Loss Function and Space Dimensionality. In
Figure 3, we report performance when varying the dimensionality
of the common space, for the two motion models DG-STGCN and

MoT employing the CLIP text model. We can notice how, on both
metrics in Figure 3a/3b, the effectiveness remains quite high even
for very small dimensions of the common space, with a negligible
improvement after 256 dimensions. Specifically, with only 16 di-
mensions instead of 256, the performance drops by only about 6 %
on nDCG with SPICE relevance and on average 15 % on Recall@10,
considering both motion encoders. This suggests that the intrinsic
dimensionality of the learned space is quite small, opening the way
for further studies and feature visualization in future works.

In Figure 4, we also report the remarkable performance gain
achieved by InfoNCE loss over the standard symmetric triplet loss.
We can see how the InfoNCE loss induces the best results basi-
cally in all the configurations, confirming its power even in the
under-explored text-motion joint domain. Breaking down the con-
tributions of this variation on the text and motion models in Figures
4a and 4b respectively, we notice how the best gains are achieved
by using the CLIP textual model and the MoT motion model.

4 CONCLUSIONS
In this paper, we introduced the task of text-to-motion retrieval
as an alternative to the query-by-example search, and inherently
different from the searching using a query label from a fixed pool
of labels. We employed two state-of-the-art text-encoder networks,
as well as widely adopted motion-encoder networks, for learning a
common space and producing the first baselines for this novel task.
We demonstrated that the CLIP text encoder works best also for en-
coding domain-specific natural sentences inherently different from
image-descriptive ones, and that Transformers and GCNs obtain
better motion representation than GRU-based encoders. In future
works, we plan to train the models jointly on the two datasets and
perform some cross-dataset evaluation to measure their generaliza-
tion abilities and robustness. Other improvements include the use
of video modality other than the motion and some unsupervised
pre-training methods for boosting performance.
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