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Abstract: Typical structures of monitoring systems (MSs) that are used in urban complex objects
(UCOs) (such as large industrial facilities, power facilities, and others) during the post-accident period
are combined with the technologies of flying sensor networks (FSNets) and flying edge networks
(FENets) (FSNets and FENets); cloud/fog computing and artificial intelligence are also developed.
An FSNets and FENets-based MS, composed of one of the Advanced Air Mobility (AAM) systems
classes, which comprise main and virtual crisis centers, fleets of flying sensors, edge nodes, and a
ground control station, is presented and discussed. Reliability and survivability models of the MS for
the UCOs, considering various operation conditions and options of redundancy, are developed and
explored. A tool to support the research on MS reliability, survivability, and the choice of parameters
is developed and described. Crucially, this paper enhances the technique for assessing systems using
the multi-parametrical deterioration of characteristics as a class of multi-state systems. Problems that
may arise when using FSNets/FENet-based AAM systems are discussed. The main research results
comprise a structural basis, a set of models, and a tool for calculating the reliability and survivability
of FSNets/FENet-based AAM systems, with various options for distributing the processing and
control resources between components, their failure rates, and degradation scenarios.

Keywords: flying sensor network; flying edge network; unmanned aerial vehicle; monitoring system;
reliability; survivability; crisis centre; multi-state system

1. Introduction and Related Works
1.1. Motivation

Developing and implementing Advanced Air Mobility (AAM) systems is essential for
contemporary mobile technology applications. The concept of AAM integrates various
types of air mobility. Using sensor networks and edge computing technologies provides
new opportunities for AAM systems. These technologies can be implemented as Flying
Sensor Networks (FSNets) and Flying Edge Networks (FENets).

FSNets are networks of unmanned aerial vehicles (UAVs) equipped with various
sensors for data acquisition and communication; these capabilities enable the networks to
exchange information. FSNets have the potential to revolutionize multiple industries by
providing a more efficient and cost-effective method for data collection and analysis.
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FENets are UAV networks equipped with computing and communication capabilities.
FENets have the potential to provide edge computing services in areas where traditional
infrastructure is not available or may be limited. This can enable the introduction of
new applications and services cost-effectively and reliably. FENets are a relatively new
technology, and their evolution is ongoing; however, we can identify several stages of their
evolution based on the current state of the technology and its expected development in the
future:

1. First Generation FENets: The first generation of FENets was focused on developing
the underlying technology for UAVs and edge computing. The primary focus was
developing the necessary hardware and software to enable UAVs to provide edge
computing services.

2. Second Generation FENets: The second generation of FENets was characterized by
developing more advanced hardware and software to support more sophisticated
edge computing services. These FENets were expected to be smaller, faster, and more
reliable than first-generation FENets.

3. Third Generation FENets: The third generation of FENets is expected to be more
autonomous and capable of performing complex tasks without human intervention.
These FENets are expected to be equipped with advanced AI and machine learning
capabilities, thus enabling them to adapt to changing conditions and make real-time
decisions.

4. Fourth Generation FENets: The fourth generation of FENets is expected to be even
more advanced, with the ability to operate in more challenging environments and per-
form more complex tasks. These FENets are expected to be equipped with advanced
sensors, communication systems, and propulsion technologies, thus enabling them to
operate in a broader range of environments.

Hence, the evolution of FENets is ongoing, and we can expect to see new technological
developments and advancements. As technology evolves, we can expect FENets to become
more capable, reliable, and widely used in various applications.

Using both FSNets and FENets as flying elements of monitoring systems (MSs) in
urban complex objects (UCOs) (such as extensive industrial facilities, power facilities, etc.)
during the post-accident period can provide several advantages:

1. Improved data collection: FSNets can collect real-time data from various sensors,
whereas FENets can process and analyze this data at the edge of the network. This can
enable more efficient and accurate decision-making.

2. Enhanced situational awareness: FSNets can provide real-time data on the envi-
ronment, whereas FENets can process and analyze this data to provide actionable
insights. This can improve situational awareness and enable faster responses to
changing conditions.

3. Increased flexibility: The combination of FSNets and FENets can provide increased
data collection, processing, and analysis flexibility. This can enable new applications
and services to be developed cost-effectively and reliably.

4. Reduced latency: FENets can provide low-latency services. At the same time, FSNets
can collect and transmit data in real-time, reduce the time it takes to respond to
changing conditions and improve overall MS performance.

5. Improved reliability: The combination of FSNets and FENets can provide an increased
level of reliability by distributing computing and communication capabilities across
a fleet of UAVs. If one UAV fails, others in the network can take over its tasks, thus
ensuring continuity of service.

It is also important to note that flying edge computing (FEC) solutions are often
combined with solutions based on flying cloud and fog computing (FCC and FFC).

This makes it necessary to conduct research related to the following:

• The classification and development of the typical structures of FSNets and FENets
for MSs for use in UCOs; these tasks require a combination of mobile (flying) sen-
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sor network, edge and cloud computing, and artificial intelligence technologies.
Such solutions can form a structural basis for developing and involving monitor-
ing AAM systems.

• The analysis of the reliability and survivability issues of these systems considers
various operation conditions, a set of centers for crisis management, and the control
of FSNets and FENets applications. An assessment of reliability and survivability
indicators is a critical task in the context of meeting operation requirements.

• The development of model-based recommendations for choosing structures and their
parameters considers features of the monitoring tasks and UCOs. This is a vital task
because many urban services and applications exist, and the choice of structure should
be well-considered.

1.2. State of the Art

Using FSNets to monitor UCOs is becoming a more popular method. In particular,
UAVs acting as flying sensors are used to perform the following tasks: air pollution
(quality) monitoring [1–4]; gas sensing [5–8]; radiation monitoring and mapping [9–13]; the
monitoring of dust particles produced by mining activities [14,15]; and the early detection
of a threat following a chemical, biological, radiological, nuclear, and explosive event [16].

Sufficient attention is paid to architectural solutions based on FCC, FEC, and FFC.
In [17], FCC, FEC, and FFC were treated as component technologies of the Internet of
Flying Things (IoFT), also known as the Internet of drones (IoD). The IoFT (IoD) is a multi-
layered architecture that comprises the advantages of Flying Ad hoc Networks (FANET)
and the Internet of Things (IoT); it is designed to manage the flying network and provide
rapid access to UAVs for controlling space, Internet resources, and cloud environments.
Next, we will analyze the leading publications that discuss using FCC, FEC, and FFC in
various contexts.

The authors of [18] propose a resource-oriented architecture designed to facilitate the
modeling of resources and the services provided by UAVs. At the same time, UAVs are
equipped with an Arduino board and onboard Wi-Fi equipment; they act as servers with cloud
resources that can be accessed via application programming interfaces. In [19], the authors
extend the capabilities of their prototype, presented in [18], by integrating an Arduino board
with humidity and air temperature sensors, thus endowing the prototype with the ability to
control these sensors through an interface using RESTful web services. The authors of [20]
present a cloud architecture designed to ensure effective interactions between UAVs and
wireless sensor networks. In this architecture, the UAV physical resource layer is separate
from the control layer, comprising software, software-defined networks, and network
function virtualization. In [21], a cloud-based platform for UAV control that allows users
and the cloud platform to interact with the UAV simultaneously is considered. Users enter
the necessary parameters, and the cloud platform, which has an Internet connection with
the ground control station (GCS), takes over the control functions of the UAV by the
user’s requirements. The authors of [22] propose a structure that allows users to access
a UAV that acts as a commercial service provider using a cloud environment. The cloud
coordinator monitors the optimal use of UAV resources and the provision of established
security requirements in this structure. It provides a means of communication between
users and UAVsmanages task allocation, and provides access to UAVs for users of different
categories. In [23], a three-level cloud architecture is considered. Terrestrial wireless sensors
represent the first level of the architecture; UAVs form the second level, and it comprises an
onboard cloud platform that receives data from the sensors and sends them to the GCS; and
the third level is the cloud control center, which is responsible for processing and analyzing
the collected data for decision making. In [24], a cloud server capable of analyzing UAV
flight data was implemented using Python; it also allows users to control and visualize
UAV remotely. The authors of [25] propose a cloud system that helps to simultaneously
control several UAVs, which can be used to collect and process data from ground sensors
by utilizing a cloud environment. In [26], the possibility of using UAVs and ground servers
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to implement cloud computing while operating a scalable network that is responsible for
collecting, processing, and delivering multimedia files to end users is considered. In [27],
the authors present a primary and general conceptual model of the Cloud-SPHERE cloud
platform. This platform can provide a secure communication channel between UAVs in the
fleet and UAVs in the ground infrastructure as it implements mechanisms for identification,
authentication, and data protection.

In [28], the features of FEC-based architecture are described; UAVs provide the nec-
essary services to users in natural disaster areas with damaged ground communication
infrastructure. This work also provides recommendations for optimizing the number and
locations of UAVs for the more effective implementation of boundary computing; this
is intended to work in the users’ interests. In [29], an architecture for a ground-air inte-
grated mobile edge network called AG630 MEN is proposed; this network comprises UAVs
as boundary network controllers, efficiently distributing computing and data storage re-
sources. The authors of [30] demonstrate a framework’s capability to utilize ground vehicles
and UAVs so that edge servers can be used to organize communication, perform necessary
calculations, and ensure storage of the required information. The results of the experiments
confirmed that the use of the developed framework provides high mobility, a high band-
width, and low latency. To guarantee a high quality of service for resource-intensive and
online applications, a hybrid model composed of cloud and edge computing processes for
UAV swarms is proposed in [31]. This model expands upon the capacity of UAV resources
by using edge servers capable of processing data with low latency. Moreover, this paper
describes an algorithm for the interactions between edge and cloud computing processes
that process and store large data in the cloud. The wireless mobile system presented in [32]
uses UAVs to offload computing tasks solved by mobile ground users. In addition, it allows
for minimal UAV energy consumption as the offloading of computations and constructing
the UAV flight path are jointly optimized. The simulation results showed that the proposed
system outperforms other reference schemes with regard to convergence. In [33], the same
authors considered the possibility of using the system developed in [32] to maximize the
speed of calculations by implementing two algorithms to optimize limit calculations for
the UAV, its energy resources, and flight trajectory. The algorithm for offloading user
tasks, which applies limit calculations to UAV servers and subsequently processes the
results at specified access points, is presented in [34]. This algorithm also makes it possible
to optimize the distribution of computing resources between the UAV and users. The
algorithm also makes it possible to optimize bandwidth allocation and the UAV flight
path. In [35], the possibility of using semi-Markov decision-making processes and deep
learning technologies was explored; reinforcements were used to maximize the bandwidth
of a UAV server that performed boundary computations in real-time for the benefit of
ground users. In [36], the authors applied game theory methods to solve the problem of
offloading calculations in flying wireless networks while simultaneously reducing UAV
energy resource consumption and task delay. Per the proposed approach, UAVs, GCSs,
and edge servers are considered players that interact with each other during the execution
of computational tasks. The task is processed on the UAV, which is offloaded to the nearest
GCS or edge server. In [37], problems related to the application of the multi-level architec-
ture of the 5G network are discussed; it was found that UAVs act as flying nodes in edge
computing. In [38], an iterative clustering algorithm with adequate coverage is proposed;
the algorithm uses coordinate and block descent methods to maximize the coverage of
UAV sensors which perform boundary calculations, subject to restrictions on the delay
time. A digital twin framework for Internet of Things (IoT) networks, wherein UAVs act
as flying mobile edge computing servers, and which support the task of offloading when
flying, is proposed in [39]. The study [40] considers a new blockchain-enabled AI paradigm
employing both wireless miners and edge computing at flying things for security requiring
heterogeneous vehicle systems to enhance the security of federated learning (FL) implemen-
tation and develop a privacy-preserving model [41] suggests a novel method for enabling
extensive AI task processing on UAVs for remote sensing applications. This method makes
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use of edge computing in UAVs. The proposed system design uses a cloud-edge hybrid
approach, comprising cloud handling data storage, manipulation, visualization, and edge-
handling AI tasks. The authors of [42] provide a well-designed AI and Multi-access Edge
Computing-enabled architecture for a UAV-assisted future network. This architecture
features a QoS-aware service provisioning capability and an effective deep reinforcement
learning (DRL) algorithm for real-time and proactive trajectory planning and optimization.

The research presented in [43] addresses the problem of using FFC in Industry 4.0.
This paper describes, in detail, the structure that UAVs use to implement FFC offloading
tasks; ground sensors perform this task and optimize the distribution of such functions
with the help of a greedy algorithm to maximize the number of tasks implemented within a
certain period. The FFC system, UAVFog [44], uses fog computing and UAV mobility, and
it allows for the storage of the required data, flexible communication, low latency for IoT
applications, Internet of Things services, brokerage services, and services based on location.
In [45], aspects of offloading tasks using UAVs in a hierarchical fog computing system are
investigated. Multiple Input Multiple Output (MIMO) technologies were used to effectively
interact with UAVs (where FFCs are implemented) and the terrestrial cloud environment
(where basic calculations are performed and results from those calculations are stored).
In [46], the authors propose an approach to integrate a fog computing system with a UAV
swarm system to perform calculations on the UAV with low latency and a high level of
reliability. In addition, the authors demonstrated the capabilities of the genetic heuristic
algorithm they developed to optimize the allocation of tasks to reduce the energy resources
of UAVs maximally. In [47], the features of FFC implementation in FANET are considered
in detail, and services that such networks can provide based on FFC are described.

Thus, the main problematic issues that are raised in literary sources that are devoted
to the application of FCC, FEC, and FFC are as follows:

• scalability, reliability, stability, and security of the proposed architectures;
• offloading tasks;
• minimization of energy consumption;
• allocation of resources;
• communication and coverage organization;
• delays during real-time operations;
• features of management of UAVs, their interaction, trajectories, and route optimization;
• information processing and storage in the cloud environment.

As a rule, the presented sources consider flying computing only in connection with
the presence of UAVs as part of the proposed architectures. However, very often, these
architectures enable the existence of components that are responsible for conducting similar
ground computing processes (GCC, GEC, GFC). Such a combination of ground and flying
computing processes makes most architectures more efficient.

It is also important to note that UAV-based monitoring systems for UCOs can be
considered multi-state systems and should be assessed in relation to their reliability and
survivability [48–50].

1.3. Objectives

This paper aims to present a structure comprising the FSNets and FENets-based
monitoring system for urban complex objects to develop its reliability/survivability models.

The objectives of the paper are as follows:

• to define the methodology of the investigation;
• to classify and describe variants of the FSNets and FENets-based system structures;
• to develop and describe the general scheme of the FSNets and FENets-based monitor-

ing system;
• to develop and explore reliability and survivability models for the monitoring system;
• to develop a tool to support research on MS reliability, survivability, and the choice

of parameters.
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The rest of the paper is structured as follows. The next section is devoted to the
methodology of the investigation, the classification, and the description of the variants of
the FSNets and FENets-based system structures; tasks that can be performed using elements
of the MS with various AI methods are also described in this section. Section 3 presents
reliability and survivability models for the MS, and the results of this investigation are given.
Section 4 describes a tool for calculating the reliability/survivability indicators of the MS.
Section 5 discusses problems that may arise when using FSNets/FENet-based monitoring
systems. Section 6 presents the main contributions of the study, briefly summarizes the
results obtained, and highlights steps for further research.

2. The Methodology and Researched Structures
2.1. Methodology, Research Questions, and Stages

The investigation’s methodology includes a research hypothesis and the main research
questions, principles, considered factors, and restrictions. The consequences of the research
and applied mathematical apparatus are also detailed in this section.

Both flying edge networks and flying sensor networks can be used to support
AAM. Flying edge networks can provide communication capabilities to air taxis and
delivery drones, thus enabling them to operate safely and efficiently in urban environ-
ments. Flying sensor networks can monitor air traffic and detect potential hazards, thus
improving safety and efficiency in air transportation systems.

The research hypothesis is that the FSNets and FENets-based AAM system, created to
monitor and serve urban objects, is a complex multi-level one with dynamically changed
parameters. These parameters describe a set of performed functions, including the structure
of the sensor share, communications, centers of control and decision-making, reliability,
and dependability-related attributes and characteristics.

Overall, the development of flying edge networks and flying sensor networks rep-
resents an exciting new frontier in air mobility, and these technologies are likely to play
an increasingly important role in the future of transportation. Such systems can be recon-
figurable, survivable, and resilient. These characteristics are significant when applying
such systems for controlling and measuring the required parameters and collecting and
processing information about UCOs in various (normal, pre-, and post-accident) conditions.
These systems can undergo controlled reconfigurations and degradations to minimize
losses and failure rates caused by failures of different structural components in conditions
wherein fast-acting external influences in the physical and information environment occur.

The following research questions are formulated and considered:
Research Question RQ1: What are the options for FSNets structures given the possible

distribution of measurement and information processing methods within the levels of the
systems, centers of decision-making, and so on? Which structure can be chosen once as a
reference to demonstrate various possibilities and properties?

Research Question RQ2: How should reliability models of the MS structure be developed
and researched to assess the influence of the characteristics of various components on
reliability indicators of the MS during the pre-accident period of the monitored UCO?

Research Question RQ3: How should the possible degradation of the MS be analyzed
and considered? How should failures concerning sensors, communication, and decision-
making centers during the post-accident period be considered and analyzed? Which rec-
ommendations can provide controlled degradation?

Research Question RQ4: Which reliability assessment and decision support tools can be
offered for various issues?

The methodology of the investigation is based on the following:

• a systematic analysis of classification attributes so that the MS can suggest a set of
structures that consider various levels of the system, applied technologies of sensors,
ground/flying fog, edge and cloud computing, and the distribution of processing
resources (stage 1);
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• the development of the generalized MS structure for reliability and survivability
research, considering component failures using the known techniques of reliability
block diagrams (RBDs) and degradation diagrams (DDs) (stage 2);

• the development of a tool to support the research on MS reliability and choice of
parameters (stage 3).

2.2. Classification and Description of Variations in Structures with Flying/Ground Sensors and
Cloud/Edge/Fog Computing

Considering the approaches of FCC, FEC, and FFC, noted in [51], let us consider the
various variations between structures when FEC, FCC, and FFC are implemented.

A variation in the structure of FCC, as shown in Figure 1, can be applied to the
decision support scenario during emergency response activities, when all end devices
(ED) ED-1, ED-2, ... ED-m can exchange information with each other. Still, they cannot
access the outside world. EDs can generally act as ground (stationary/mobile) and flying
sensors. Local services (for example, offloading tasks) are provided at the level of ground
edge computing (using ground edge nodes GEN-1, GEN-2, ... GEN-k) or at the level of
ground fog edge computing (using ground fog computing nodes GFN- 1, GFN-2, ... GFN-r).
Global services (for example, data collection, provision of security functions, application
of computing resources, and support for decision-making) are provided by the UAV fleet
comprising UAVs that act as flying cloud nodes (FCN) FCN-1, FCN-2, ... FCN-s. Such a
fleet can be regarded as a subsystem of the flying cloud computing process (SubFCC).
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The variation in the structure with FEC, as shown in Figure 2, wherein the fleet of
UAVs act as a subsystem of the flying edge computing process (SubFEC), is located near
the data sources (end devices ED-1, ED-2, ... ED-m); the variation provides the data sources
with necessary services and carries out the required calculations on the flying edge nodes
FEN-1, FEN-2, ... FEN-n. The proximity of these nodes to the data sources reduces the
delay time, improves the bandwidth, and increases the network’s service life due to the
more efficient use of the end devices’ battery resources. If the SubFEC cannot provide the
necessary service, it can be supplied via ground cloud computing (GCC).
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Regarding the variation in the structure with FFC, as shown in Figure 3, the UAV fleet
comprises UAVs that act as flying fog nodes (FFN) FFN-1, FFN-2, ... FFN-p. Such a fleet can
be regarded as a subsystem of the flying fog computing process (SubFFC). This structure
allows for the combination of wireless channels, ground cloud servers, and end devices
ED-1, ED-2, ... ED-m to ensure a higher storage capacity, calculation speed, and low latency
for the end devices.
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The MS consists of the following components:

• A main crisis center (MCC) designed to provide solutions aimed at preventing and
eliminating the consequences of accidents at the UCO, as well as forecasting the
occurrence of such accidents and assessing their impact.

• A virtual crisis center (VCC) that is formed by a group of external experts who remotely
convene with the relevant staff of the MCC to provide solutions aimed at preventing
and eliminating the consequences of accidents at the UCO.
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• A ground monitoring subsystem (SubGM) comprising EDs (sensors) responsible for
measuring critical technological process parameters or parameters that characterize
the degree of environmental pollution and the meteorological conditions.

• A fleet of UAVs (FoU) that can perform one or a combination of the following functions:
collect information from EDs (sensors), partially process this information, transmit it
to the MCC.

• A ground control station (GCS) that manages the FoU using external pilots (operators).

Considering the tasks performed by the components of the MS for UCO, the authors
suggest using certain types of flying and ground edge/cloud/fog computing methods, as
shown in Table 1.

Table 1. Proposals for using flying and ground edge/cloud/fog computing methods following the
functions of the components of the MS.

Type of Computing
Elements of the MS

MCC VCC SubGM FoU GCS

Cloud computing
flying – – – + –

ground + + + – +

Edge
computing

flying – – – + –

ground – – + – –

Fog
computing

flying – – – + –

ground – – + – –

2.3. Artificial Intelligence to Service the Monitoring System

The application of AI to network tasks has gained popularity over the past few decades.
For example, AI is widely used in the network domain because it can interact with com-
plex environments to intellectualize decision-making processes. AI methods can improve
network performance in many subdomains, such as resource allocation, network traffic pre-
diction and classification, congestion control, and routing. The elements of the MS, which
form ground/flying networks and utilize FEC, FCC, and FFC to expand their capabilities,
have to ensure a seamless connection, meet the quality of service requirements for many end
devices, and process the significant amount of data created by the physical environment.

AI methods that offer robust analysis, learning, optimization, and intelligent recogni-
tion capabilities can be integrated into elements of the MS for intelligent performance opti-
mization, the discovery of necessary monitoring information, advanced learning, structure
organization, and complex decision support for predicting the consequences of accidents at
the UCO and for responding to such accidents.

Based on the conducted analysis, a list of tasks was obtained; these tasks can be per-
formed by elements of the MS using various AI methods (Table 2). The methods used were as
follows [52]: deep learning (DL); deep supervised learning (DSL); deep reinforcement learn-
ing (DRL); fuzzy inference (FI); federated learning (FL); genetic algorithm (GA); reinforcement
learning (RL); reinforcement learning based on ant colony optimization (RL-ACO).

Table 2. Tasks that can be performed by elements of the MS using various AI methods.

Task AI
Method

Elements of the MS

MCC VCC SubGM FoU GCS

Computation
offloading

RL + + + + +

DRL + + + + +

GA + + + + +

DL + + + + +
FI + + + + +
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Table 2. Cont.

Task AI
Method

Elements of the MS

MCC VCC SubGM FoU GCS

Resource
allocation

RL + – – + +

DRL + – – + +

GA + – – + +

RL-ACO + – – + +

Decision-making
support

RL + + – – –

DRL + + – – –

GA + + – – –

DL + + – – –

FI + + – – –

FL + + – – –

Ensuring safety

RL + + + + +

DRL + + + + +

GA + + + + +

DL + + + + +

FL + + + + +

UAV path planning

RL + – – + +

DL + – – + +

FL + – – + +

The frequency with which specific AI methods are used by elements of the MS is
shown in Table 3.

Table 3. The frequency with which AI methods are used by elements of the MS.

AI Methods
(for All Tasks)

Elements of the MS
Number of AI Methods Used

MCC VCC SubGM FoU GCS

RL 5 3 2 4 4 18

DL 4 3 2 3 3 15

DRL 4 3 2 3 3 15

GA 4 3 2 3 3 15

FL 3 2 1 2 2 10

FI 2 2 1 1 1 7

RL-ACO 1 0 0 1 1 3

The table shows that RL is the most requested AI method, which was used 18 times in
the described set of structures. The DL, DRL, and GA methods are also popular and were
used 15 times. The least popular method is RL-ACO, which was only used three times and
by three elements. These results can provide a starting point for analyzing AI methods
applied to such a class of systems.

3. Reliability and Survivability Models
3.1. Stages of Assessment

The stages of assessment are as follows:
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• developing and describing a general scheme of the MS;
• defining UAVs so that they can be used as an FSen/FEN;
• developing an RBD for the MS;
• developing and exploring the reliability and survivability models of the MS;
• developing and describing a tool for calculating reliability/survivability indicators.

3.2. General Scheme of the Monitoring System

The analyzed MS is an adaptation of the MS presented in Section 2.2, and it comprises
the following elements (Figure 4):

• a fleet of flying sensors (FoFSen) that are deployed to measure the parameters charac-
terizing the degree of environmental pollution and meteorological conditions (such
sensors can be deployed instead of damaged stationary monitoring stations);

• a ground control station (GCS), which manages the UAV using external pilots (operators);
• a fleet of flying edge nodes (FoFEN) that are deployed to collect information from

flying sensors, partially process this information, and transmit it to the main crisis
center (MCC);

• a main crisis center (MCC) that is designed to provide solutions aimed at preventing
and eliminating the consequences of accidents at the UCO, as well as forecasting the
occurrence of such accidents and assessing their impact;

• a virtual crisis center (VCC) that is formed by a group of external experts who remotely
convene with the relevant staff of the MCC to work out solutions to prevent and
eliminate the consequences of accidents at the UCO.

Drones 2023, 7, x FOR PEER REVIEW 12 of 29 
 

GCS

FEN-1 FEN-n

FoFEN VCC

                                        

                    

MCC

                    

FSen-1 FSen-m
FoFSen

 
Figure 4. General scheme of the monitoring system. 

The MS under consideration functions as follows.  
In the event of an accident at the UСO, UAVs acting as flying sensors and UAVs op-

erating as flying edge nodes travel to designated places to deploy a FoFSen and FoFEN, 
respectively. After deploying the fleets, data concerning parameters characterizing the de-
gree of environmental pollution and meteorological conditions, measured via the FoFSen, 
are transmitted to the FoFEN and VCC. If required, the FoFEN partially processes the data 
(stores the results of some calculations) and sends it to the MCC. The VCC accumulates 
and stores the data in a secure private cloud of the Internet, to which a group of external 
experts has access. This group�s main task is to analyze the information, develop pro-
posals for responding to the accident, and transmit them to the MCC.  

The MCC staff are involved in decision-making processes to prevent and eliminate 
the consequences of accidents at the UCO.  

The GCS operators are assigned tasks that concern the FoFSen and FoFEN by the 
senior staff of the MCC, and they manage the fleets by the instructions of the tasks. 

The MS has the following special features: 
• the MCC allows for the possibility of partially taking over control of the UAV in case 

the GCS fails; 
• the MCC has enough authorized and qualified specialists to make decisions concern-

ing responding to an accident in the event when information is received from the 
VCC. 
Depending on the tasks to be completed, and restrictions concerning the time taken 

to be implemented, the UAVs presented in Tables 4 and 5 can be used as an FSen/FEN.  

Table 4. Parameters of fixed-wing mini-UAVs that can be used as an FSen/FEN. 

No Name Manufacturer Engine Type 
Wing Span/ 
Rotor Dia  

(m) 

Max Range 
(Km) 

Endurance 
(max, h) 

MTOW 
(Kg) 

1 Bird-Eye 650D Israel Aerospace In-
dustries 

internal combus-
tion 

4.0 150 15 30 

2 Bayraktar TB2 Baykar Makina internal combus-
tion 

12.0 150 20 650 

3 PD-1 FW VTOL Ukrspec Systems internal combus-
tion 

4.7  100 12 45 

4 PD-1 Ukrspec Systems internal combus-
tion 

3 85 10 40 

Figure 4. General scheme of the monitoring system.

The MS under consideration functions as follows.
In the event of an accident at the UCO, UAVs acting as flying sensors and UAVs

operating as flying edge nodes travel to designated places to deploy a FoFSen and FoFEN,
respectively. After deploying the fleets, data concerning parameters characterizing the
degree of environmental pollution and meteorological conditions, measured via the FoFSen,
are transmitted to the FoFEN and VCC. If required, the FoFEN partially processes the data
(stores the results of some calculations) and sends it to the MCC. The VCC accumulates
and stores the data in a secure private cloud of the Internet, to which a group of external
experts has access. This group’s main task is to analyze the information, develop proposals
for responding to the accident, and transmit them to the MCC.

The MCC staff are involved in decision-making processes to prevent and eliminate
the consequences of accidents at the UCO.

The GCS operators are assigned tasks that concern the FoFSen and FoFEN by the
senior staff of the MCC, and they manage the fleets by the instructions of the tasks.

The MS has the following special features:
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• the MCC allows for the possibility of partially taking over control of the UAV in case
the GCS fails;

• the MCC has enough authorized and qualified specialists to make decisions concerning
responding to an accident in the event when information is received from the VCC.

Depending on the tasks to be completed, and restrictions concerning the time taken to
be implemented, the UAVs presented in Tables 4 and 5 can be used as an FSen/FEN.

Table 4. Parameters of fixed-wing mini-UAVs that can be used as an FSen/FEN.

No Name Manufacturer Engine Type Wing Span/
Rotor Dia (m) Max Range (Km) Endurance

(max, h) MTOW (Kg)

1 Bird-Eye 650D Israel Aerospace Industries internal combustion 4.0 150 15 30

2 Bayraktar TB2 Baykar Makina internal combustion 12.0 150 20 650

3 PD-1 FW VTOL Ukrspec Systems internal combustion 4.7 100 12 45

4 PD-1 Ukrspec Systems internal combustion 3 85 10 40

5 Scan Eagle Boeing internal combustion 3.1 100 22 18

6 Raybird 3 Scaeton internal combustion 2.93 80 28 23

7 FT-200 FH FT Sistemas gas turbine 2.8 100 12 80

8 Camcopter
S-100 Schiebel internal combustion 3.4 200 10 200

Table 5. Parameters of rotary wing UAVs that can be used as an FSen/FEN.

No Name Manufacturer Engine Type Max Range (Km) Endurance
(max, h) MTOW (Kg)

1 DJI Matrice 300 RTK DJI electric 15 55 min 3.6

2 DJI Mavic 3 DJI electric 15 55 min 3.6

3 T-hawk FCS DARPA internal combustion 11 40 min 6.6

4 Draganfly Draganfly Drones electric 30 50 min 30.4

5 KWT-X6L-Q ALLTECH electric 50 150 min 2.5

The values of the parameters (Tables 4 and 5), such as name, manufacturers, engine
type, and quantitative parameters, were obtained based on the generalization of expert
experience and the analysis of publications [11,12,48,50,53]. These parameters form various
variants regarding UAV fleet composition, assessing reliability, analyzing degradation
options, and so on.

3.3. Reliability Models
3.3.1. Development

The evaluation of the reliability indicators of MSs is performed at the system design
stage. The relevance of the tasks concerning the calculation of the reliability of MSs is
explained by the fact that they answer the question regarding the effectiveness of the
implementation of the developed system. In our research, the reliability function was
chosen as a reliability indicator.

The used notations are as follows:
Pγ(t) is the reliability function of γ, where γ = MS, GCS, FoFSen, FoFEN, MCC, VCC;
t is the operating time;
λδ is the failure rate of δ, where δ = GCS, FSen, FEN, MCC, VCC;
m is the number of flying sensors;
n is the number of flying edge nodes;
k is the number of the main flying edge nodes.
The assumptions used are as follows:

• elements of the MS have exponential time to failure (TTF);
• during the operating time, the MS is considered to be an unrecoverable system;
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• the FoFEN has a structure of type “k-out-of-n”. The FoFEN with such a structure
consists of n flying edge nodes and remains in an operable state until (n − k + 1) flying
edge nodes have failed, where (n − k) is the number of redundant flying edge nodes.

Below is a reliability block diagram (RBD) for the MS presented in Figure 5 and an
equation for calculating the MS reliability function.

PMS(t) = PGCS(t)PFoFsen(t)PFoFEN(t)PMCC(t)PVCC(t) (1)

where PGCS(t) = e−λGCSt, PFoFSen(t) =
[
e−λFSent]m,

PFoFEN(t) = ∑n
j=k

(
n
j

)[
e−λFEN t

]j[
1 − e−λFEN t

]n−j
, PMCC(t) = e−λMCCt, PVCC(t) = e−λVCCtDrones 2023, 7, x FOR PEER REVIEW 14 of 29 
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3.3.2. Choice of Parameter Values

Input parameters for simulation were selected by considering the publications [11,12,48,50]
wherein assessments for similar systems and components were performed. Next, simulations
were performed for the corresponding functions, such as the probabilities of the system states
(operable states, non-operable states, partially operable states, and others), depending on time
and sets of values for failure rates, system configurations, etc.

Most of these parameters and their values are known when designing and deploying
systems so that calculations can be performed like ordinary probability functions.

If the interval values of these parameters are known, then calculations should be
performed following the rules of interval mathematics.

3.3.3. Simulation and Analysis

Using Equation (1), some dependencies were obtained (Figures 6–8), where initial data
are as follows: λFEN = 0.001 1/h (for Figure 6 only), λFSen = 0.0001 1/h (for Figures 7 and 8
only), λGCS = 0.001 1/h, λVCC = 0.001 1/h, λMCC = 0.001 1/h, m = 21 flying sensors, n = 9
flying edge nodes (for Figures 6 and 7 only), k = 7 main flying edge nodes.

The analysis of the dependencies obtained enabled the following conclusions to
be made:

• The increase in operating time t, from 0 to 12, led to a reduction in the values of
the reliability functions PMS(t); the values were reduced by 1.05 (from 1 to 0.95358),
1.08 (from 1 to 0.92985), and 1.1 (from 1 to 0.90671), at times of λFSen = 0.0001 1/h,
λFSen = 0.0002 1/h, and λFSen = 0.0003 1/h, respectively (Figure 6).

• The increase in operating time t, from 0 to 12, led to a reduction in the values of
the reliability functions PMS(t) : the values were reduced by 1.05 (from 1 to 0.95358),
1.05 (from 1 to 0.95069), and 1.1 (from 1 to 0.94158) at times of λFEN = 0.001 1/h,
λFEN = 0.003 1/h, and λFEN = 0.005 1/h, respectively (Figure 7).

• The utilization of more reliable (with a lower failure rate) FSen/FEN for the MS makes
it possible to increase its reliability. For example, at t = 12 h, the reduction in the
failure rate λFSen, from 0.0003 to 0.0001, led to an increase in the reliability functions
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PMS(t); the functions increased by 1.05 (from 0.90671 to 0.95358) (Figure 6). As for
FEN, at t = 12 h, the reduction in the failure rate λFEN , from 0.005 to 0.001, led to
an increase in the reliability functions PMS(t); the functions increased by 1.01 (from
0.94158 to 0.95358) (Figure 7).

• The increased number of redundant flying edge nodes also improved MS reliability.
For example, at λFEN = 0.005 1/h, this increase led to an increase in reliability
functions PMS(t); the functions increased by 1.05 (from 0.92124 to 0.96446). It is
important to note that the most significant effect was achieved by increasing the
number of redundant flying edge nodes from 1 to 2 (Figure 8).
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3.4. Models of the MS as Multi-State Systems
3.4.1. Development

The operation of the MS during the post-accident mode can be characterized by
many adverse factors affecting its performance. In this case, it is advisable to discuss
MS survivability in terms of how it can be measured using the probability of the total
performance of the MS at a given level. In other words, the MS can be considered a multi-
state system (MSS). Such a system can degrade from a fully operable state (Level 0) to a
non-operable state by traversing through some partially operable states (Levels 1, 2, . . . , f).

The degradation of the MS is possible due to the implementation of the follow-
ing mechanisms:

• in the event of a VCC/GCS failure, its functions can be partially performed by
the MCC;

• the failure of FoFSen/FoFEN occurs only after the failure of more than one αFSen/ωFEN.

The degradation levels of the MS and its failed corresponding elements are depicted
in Figure 9.

The notations used are as follows:

• α is the number of non-operable flying sensors needed for the FoFSen to transition
from a fully operable state to a partially operable state;

• β is the number of main non-operable flying edge nodes needed for the FoFEN to
transition from a fully operable state to a partially operable state;

• ω is the number of non-operable flying edge nodes required for the fleet of the flying
edge nodes to transition from a fully operable state to a partially operable state, where
ω = n − k + β;

• GCS is the GCS in the non-operable state;
• VCC is the VCC in the non-operable state;
• αFSen α flying sensors represent the non-operable state (FoFSen is in a partially

operable state FoFSen_L1);
• ωFEN ω flying edge nodes represent the non-operable state (FoFSen is in a partially

operable state FoFEN_L1);
• PMS_0 is the probability of the MS being in a fully operable state, where PMS_0 = PMS;
• PMS_iji is the probability of the MS being in a partially operable state iji, where i is the

degradation level number and ji is the state number at Level i.
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The probabilities concerning whether the MS is in a partially operable state can be
calculated using Equations (2)–(15).

PMS_11(t) = [1 − PGCS(t)]PFoFsen(t)PFoFEN(t)PMCC(t)PVCC(t) (2)

PMS_12(t) = PGCS(t)PFoFsen_L1(t)PFoFEN(t)PMCC(t)PVCC(t) (3)

where PFoFsen_L1(t) =
[
1 − e−λFSent]α[e−λFSent(t)

]m−α.

PMS_13(t) = PGCS(t)PFoFsen(t)PFoFEN_L1(t)PMCC(t)PVCC(t) (4)

where PFoFEN_L1(t) =
[
1 − e−λFEN t]n−k+β[e−λFEN t]k−β

PMS_21(t) = [1 − PGCS(t)]PFoFsen_L1(t)PFoFEN(t)PMCC(t)PVCC(t) (5)

PMS_22(t) = [1 − PGCS(t)]PFoFsen(t)PFoFEN_L1(t)PMCC(t)PVCC(t) (6)

PMS_23(t) = [1 − PGCS(t)]PFoFsen(t)PFoFEN(t)PMCC(t)[1 − PVCC(t)] (7)

PMS_24(t) = PGCS(t)PFoFsen_L1(t)PFoFEN_L1(t)PMCC(t)PVCC(t) (8)

PMS_25(t) = [1 − PGCS(t)]PFoFsen_L1(t)PFoFEN(t)PMCC(t)[1 − PVCC(t)] (9)

PMS_26(t) = PGCS(t)PFoFsen(t)PFoFEN_L1(t)PMCC(t)[1 − PVCC(t)] (10)

PMS_31(t) = [1 − PGCS(t)]PFoFsen_L1(t)PFoFEN_L1(t)PMCC(t)PVCC(t) (11)

PMS_32(t) = [1 − PGCS(t)]PFoFsen_L1(t)PFoFEN(t)PMCC(t)[1 − PVCC(t)] (12)

PMS_33(t) = [1 − PGCS(t)]PFoFsen(t)PFoFEN_L1(t)PMCC(t)[1 − PVCC(t)] (13)

PMS_34(t) = PGCS(t)PFoFsen_L1(t)PFoFEN_L1(t)PMCC(t)[1 − PVCC(t)] (14)
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PMS_41(t) = [1 − PGCS(t)]PFoFsen_L1(t)PFoFEN_L1(t)PMCC(t)[1 − PVCC(t)] (15)

3.4.2. Simulation and Analysis

For a more detailed discussion, we have chosen partially operable state 24. The interest
in this state is explained by the fact that it is characterized by the partial failures of two
flying elements of the monitoring system at once—FoFSen and FoFEN.

Using Equation (8), some dependencies were obtained (Figures 10 and 11), and the
initial data are as follows: λFEN = 0.03 1/h (for Figure 11 only), λFSen = 0.01 1/h,
λGCS = 0.0025 1/h, λVCC = 0.0075 1/h, λMCC = 0.0085 1/h, m = 6 flying sensors
(for Figure 10 only), n = 4 flying edge nodes, k = 3 flying edge nodes, α = 1 flying sensors,
β = 1 flying edge nodes.
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The analysis of the dependencies obtained enables the following conclusions to
be made:

• The increase in the operating time t, from 8 to 12, led to an increase in the probability of the
MS being in partially operable state 12 PMS12(t); the probability increased by 1.88 (from
0.00142 to 0.00268), 1.68 (from 0.00199 to 0.00335), and 1.5 (from 0.00247 to 0.00369), at times
of λFEN = 0.03 1/h, λFEN = 0.04 1/h, and λFEN = 0.05 1/h, respectively (Figure 10).

• The increase in the operating time t, from 0 to 12, led to an increase in the probability of the
MS being in partially operable state 12 PMS_12(t); the probability increased by 1.96 (from
0.00154 to 0.00302), 1.88 (from 0.00142 to 0.00268), and 1.81 (from 0.00131 to 0.00238), at
times of m = 5, m = 6, and m = 7, respectively (Figure 11).

• The utilization of more reliable (with a lower failure rate) FEN for the MS makes it pos-
sible to reduce the probability of the MS being in partially operable state 12 PMS_12(t).
For example, at t = 12 h, the reduction in the failure rate λFEN , from 0.05 to 0.03, led
to a reduction in the probability of the MS being in partially operable state 12 PMS12(t);
the probability decreased by 1.38 (from 0.00268 to 0.00369) (Figure 10).

• An increase in the number of flying sensors also decreases the probability of the MS
being in partially operable state 12 PMS_12(t). For example, at t = 12 h, this increase
led to a reduced probability of the MS being in partially operable state 12 PMS12(t); the
probability decreased by 1.27 (from 0.00302 to 0.00238) (Figure 11).

The validation of the obtained results and the models occurred during the review and
analysis of the physical nature of the quantitative values. Additionally, a sensitivity analysis
of the dependency of MS reliability indicators on input parameters can be performed;
however, these results were predicted using the functions described by Formulas (1)–(15).
The following section will discuss these results using an example of the model’s application.

4. Case study
4.1. Tool for Calculating Reliability/Survivability Indicators

To automate the processes of calculating the reliability/survivability indicators that
characterize the monitoring system under consideration and to generate the necessary
diagrams, the authors developed a tool called “Calculation of the main indicators of the
reliability and survivability of the monitoring system”.

This tool calculates the reliability and survivability indicators of the variations in MS
structures, and it illustrates the initial, intermediate, and final results of the analysis.

This version does not solve search and optimization tasks but supports decision-
making processes based on calculations.

The panel for entering the initial data and producing results is shown in Figure 12.
This panel allows the following initial data to be entered:

• the total number of flying sensors;
• the total number of flying edge nodes;
• the total number of main flying edge nodes;
• the failure rate of the ground control station (1/h);
• the failure rate of a flying sensor (1/h);
• the failure rate of a flying edge node (1/h);
• the failure rate of the main crisis center;
• the failure rate of the virtual crisis center;
• the number of non-operable flying sensors needed for the fleet of flying sensors to

transition from a fully operable state to a partially operable state;
• the number of main non-operable flying edge nodes needed for the fleet of flying edge

nodes to transition from a fully operable state to a partially operable state;
• the number of non-operable flying edge nodes needed for the fleet of flying edge

nodes to transition from a fully operable state to a partially operable state;
• the operating time (h).
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After entering the data, the result of the calculation of the MS reliability function is
immediately displayed on the panel (“The reliability function of the monitoring system”
cell, Figure).
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In addition, the panel is equipped with the following buttons (Figure 12):

• “Show the general scheme of the monitoring system” button. After clicking this button, the
user can see a window containing the general scheme of the MS.

• “Show the reliability block diagram of the monitoring system” button. After clicking on this
button, the user can see a window containing the reliability block diagram of the MS.

• “Show the degradation levels of the monitoring system and failed elements that correspond to
them” button. After clicking on this button, the user can see a window containing the
degradation levels of the MS, the failed elements that correspond with them, and the
probability of the MS being in a partially operable state iji, where i is the degradation
level number and ji is the state number at Level i.

4.2. Example of the Developed Tool Being Utilized

An example where the developed tool is utilized to determine reliability/survivability
indicators and to generate the necessary schemes and diagrams using the following initial
data, is as follows:

• the total number of flying sensors = 21;
• the total number of flying edge nodes = 10;
• the total number of main flying edge nodes = 7;
• the failure rate of the ground control station = 0.00025 1/h;
• the failure rate of a flying sensor = 0.001 1/h;
• the failure rate of a flying edge node = 0.005 1/h;
• the failure rate of the main crisis center = 0.00085 1/h;
• the failure rate of the virtual crisis center = 0.00075 1/h;
• the number of non-operable flying sensors needed for the fleet of flying sensors to

transition from a fully operable state to a partially operable state = 1 1/h;
• the number of the main non-operable flying edge nodes needed for the fleet of flying

edge nodes to transition from a fully operable state to a partially operable state = 1 1/h;
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• the number of non-operable flying edge nodes needed for the fleet of the flying edge
nodes to transition from a fully operable state to a partially operable state = 4;

• the operating time = 9 h;
• the panel after entering the initial data is shown in Figure 13.
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The result from calculating the MS reliability function is immediately displayed on
the panel (Figure 13).

By clicking on the “Show the general scheme of the monitoring system” button, we can
obtain the general scheme of the MS for the initial data used, as shown in Figure 14.
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By clicking on the “Show the reliability block diagram of the monitoring system” button, we
can obtain the reliability block diagram of the MS, as shown in Figure 15.
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Figure 15. Window with the reliability block diagram of the monitoring system.

By clicking on the “Show the degradation levels of the monitoring system and failed elements
that correspond to them” button, we can obtain the degradation levels of the MS, the failed
elements that correspond with them, and the probability of the MS being in a partially
operable state iji, where i = 0, . . . , 4 is the degradation level number and ji is the state
number at Level i, as shown in Figure 16.
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Thus, Figures 14–16 illustrate the functioning of the tool, which provides a presentation
of the variations in system structures, their models in the form of reliability block diagrams,
degradation schemes, and the results from the calculations of the probabilities of being in
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different states. The analysis of the actual results of the illustrative calculation (Figure 16)
confirms the general conclusions of the model’s study, as presented in Section 3.

5. Discussion

Despite the new opportunities for monitoring complex objects by deploying FSNets
and FENets, several problems may arise when using FSNets/FENet-based AAM systems
for monitoring and serving urban objects.

Power Consumption. In the MS, most FSen and FEN are powered by batteries and
can only remain operational for a limited period. Therefore, practical protocols and en-
ergy consumption mechanisms are essential for FSen/FEN to ensure a long service life
for the flying parts of the MS. This requires improving the hardware and software of
FSen/FEN components by integrating energy harvesting solutions or efficient routing pro-
tocols. For example, AI methods can be applied to predict the FSen/FEN residual energy
level and dissipate it by fine-tuning transmission parameters and managing bandwidth.
Extending the FSen/FEN flight time can be ensured using mobile and stationary automatic
battery replacement/charging stations on FSen/FEN routes.

Interference. Communication channels GCS-FEN/FSen, FSen-FEN, FEN-MCC, and
FEN-FCC may be broken due to interference, thus resulting in increased latency, which
may also affect the overall MS network. Therefore, solving the interference problem
becomes especially important in urban and industrial environments, wherein the number
of interconnected devices on the same frequency range is significant. AI-based solutions
can be applied in the MS to predict the signal-to-noise ratio based on the collected channel
state information.

Mobility and route planning. FSen and FEN are often required to maneuver automati-
cally without the remote intervention of an external pilot (operator) in random dynamic
IoT applications. Therefore, many intelligent methods should be considered to enable
autonomous FSen/FEN flights; this includes collision avoidance. AI algorithms are the
most viable solutions which can be used to detect obstacles and avoid collisions.

Scalability. Scalability concerns relate to resources, applications, load balancing, and
connections. For example, some mobile applications implemented on FEN require high
levels of data to be inputted to successfully provide services, despite the heterogeneity
of mobile devices and the dynamic behavior of application demands. The flying part of
the MS must have an acceptable degree of scalability regarding the number of servers
and required services. In places with adverse environmental conditions, it is difficult to
establish a reliable connection and ensure reliable communication between mobile devices
and servers.

Security. The control of, and interactions between FSen and FEN, with GCS, MCC, and
VSS, are carried out using various wireless technologies (Wi-Fi, etc.), which are open to
many security threats. It is necessary to propose and develop mechanisms that increase the
security level of the flying part of the MS. Efforts should be focused on the physical aspects
of the MS, its application, and control layers. Combining FSen/FEN with blockchain and AI
is currently a cutting-edge area of research that could predict various attacks and malware.

6. Conclusions

The main contribution of this work is the development of FSNets/FENets structures
that are embedded into AAM systems for monitoring and serving UCOs; reliability mod-
els for systems with uni- and multilevel degradation caused by failures of sensors and
edge computing flying components; and management centers. A vital research result
from this work concerns the enhancement of the technique for assessing systems with
multi-parametrical deterioration of characteristics; these systems comprise a class of multi-
state systems.

The results confirm the research hypothesis that the FSNets and FENets-based AAM
system created to monitor and serve urban objects is a complex multilevel system with
dynamically changing parameters.
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The development of various variations within the MS structures, using UAVs acting
as flying cloud/edge/fog computing subsystems, made it possible to form a set of base
solutions that adhere to the level of ground cloud/edge computing, the level of flying
cloud/edge/fog computing, and the level of flying/ground end devices; this may be
subjected to further research and selection, depending on the assigned tasks.

The analyzed variant of the FSNets/FENet-based monitoring system for the urban
complex object comprised the following: a fleet of flying sensors, a ground control station, a
fleet of flying edge nodes, a main crisis center, and a virtual crisis center. The development
and evaluation of the structure of such a system, using the proposed analytical models,
made it possible to calculate reliability and survivability indicators and apply them to form
recommendations for the selection of parameters, namely:

• number of FSen/FEN;
• redundancy scheme for FSen/FEN;
• number of redundant FSen/FEN;
• failure rate of FSen/FEN.

The analysis of variants using various AI methods makes it possible to determine
which should be used to implement various functions. To provide more detailed recommen-
dations, developing the proposed reliability models considering the reliability indicators of
AI components is necessary.

Reliability (two-state) and survivability (multi-state) models that were developed for
the MS allow:

• the reliability block diagrams for the MS, depending on the features of the FoFSen and
FoFEN structures, to be obtained;

• the reliability function of the MS and its elements to be calculated;
• the degradation levels, partially operable states, and failed elements that correspond

to the levels to be defined;
• the probability of the MS being in partially operable states to be calculated.

Using the developed modes, possibilities for improving MS reliability were assessed
using more reliable flying sensors/edge nodes and introducing additional redundant flying
sensors/edge nodes into FoFEN.

To automate the processes of calculating reliability/survivability indicators that char-
acterize the monitoring system under consideration and which generate the necessary
diagrams, the authors developed a tool called “Calculation of the main indicators of the reli-
ability and survivability of the monitoring system”. The tool tests the mathematical models
by checking the correctness of the calculation results. Reliability/survivability indicators
provide a standardized framework to assess and compare different FSNets/FENet-based
monitoring systems, thus enabling stakeholders to make informed decisions about their
use in urban settings.

Thus, the key research results comprise a structural basis, a set of models, and a tool
for calculating the reliability and survivability of FSNets/FENet-based AAM systems using
various options to process and control resource distribution between components, their
failure rates, and degradation scenarios.

It was noted that the following problems might arise when using FSNets/FENet-
based monitoring systems: power consumption, interference, mobility and route planning,
scalability, and security. Solving these problems can be addressed in future research.
An exciting and essential topic is the development of digital twins and AI support for
decision-making processes during the operation of FSNets/FENets in conditions wherein
cyberattacks and other violations occur [54,55]. Another topic concerns identifying threats
to wireless networks when attacks come from a UAV [56]. Additionally, models of MSs
as smart systems that consider cyber security issues [57] could be developed to assess the
availability and research influence of physical and information-based environments.

In urban settings, the successful implementation of digital twins and AI in FS-
Nets/FENets requires a robust infrastructure, reliable communication systems, and
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careful consideration of ethical and privacy concerns. Moreover, the concept of
FSNets/FENets-based AAM systems needs more detailed research, which consid-
ers the specifics of the urban services and various conditions in cities in potentially
dangerous areas [58–60].
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Abbreviations and Acronyms

The following abbreviations and acronyms included in the text are reported alphabetically.
Abbreviation/Acronym Meaning
AAM Advanced Air Mobility
AI artificial intelligence
DD degradation diagram
DL deep learning
DRL deep reinforcement learning
DSL deep supervised learning
ED end device
FANET Flying Ad hoc Network
FCC flying cloud computing
FCN flying cloud node
FEC flying edge computing
FEN Flying edge node
FENet Flying Edge Network
FFC flying fog computing
FFN flying fog nodes
FI fuzzy inference
FL federated learning
FoFEN fleet of flying edge nodes
FoFSen fleet of flying sensors
FoU fleet of UAVs
FSen flying sensor
FSNet Flying Sensor Network
GA genetic algorithm
GCC ground cloud computing
GCS ground control station
GEC ground edge computing
GEN ground edge node
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GFC ground fog computing
GFN ground fog node
IoD Internet of drones
IoFT Internet of Flying Things
IoT Internet of Things
MCC main crisis center
MIMO Multiple Input Multiple Output
MS monitoring system
RBD reliability block diagram
RL reinforcement learning
RL-ACO reinforcement learning based on ant colony optimization
RQ Research Question
SubFCC subsystem of flying cloud computing
SubFEC subsystem of flying edge computing
SubFFC subsystem of flying fog computing
SubGM ground monitoring subsystem
TTF time to failure
UAV unmanned aerial vehicle
UCO urban complex object
VCC virtual crisis center
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