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ABSTRACT
VISIONE is a large-scale video retrieval system that integrates mul-
tiple search functionalities, including free text search, spatial color
and object search, visual and semantic similarity search, and tem-
poral search. The system leverages cutting-edge AI technology for
visual analysis and advanced indexing techniques to ensure scala-
bility. As demonstrated by its runner-up position in the 2023 Video
Browser Showdown competition, VISIONE effectively integrates
these capabilities to provide a comprehensive video retrieval solu-
tion. A system demo is available online, showcasing its capabilities
on over 2300 hours of diverse video content (V3C1+V3C2 dataset)
and 12 hours of highly redundant content (Marine dataset). The
demo can be accessed at https://visione.isti.cnr.it/.

CCS CONCEPTS
• Information systems → Information retrieval; Users and
interactive retrieval; Retrieval models and ranking; Search
engine architectures and scalability;Multimedia and multimodal
retrieval; Video search.

KEYWORDS
multimedia retrieval, video search, cross-modal search, interactive
system

1 INTRODUCTION
With the increasing diffusion of multimedia databases, there is
today, as never before, the need to analyze, organize, and index all
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the produced data so that they can be easily and efficiently retrieved.
The use of these systems is not only tailored to the organization of
wild multimedia content uploaded every second on public social-
media platforms – like Youtube or Instagram. Instead, consider large
audiovisual archives owned by national televisions and updated
daily with dozens of hours of unannotated content. Audiovisual
documents are vital for future generations to preserve and recollect
their past cultures, beliefs, and customs. The development of tools
to automatically analyze and index all these contents constitutes
a major achievement in the automatic content-based organization
and browsing of all these audiovisual archives. In this context,
Artificial Intelligence – and, in particular, Deep Learning models –
defined major milestones to automatically understand multimedia
content, extract information, and index data to be easily searchable,
increasing the accessibility of large multimedia databases.

Despite the large global research investment in video under-
standing and the joint processing of different modalities, there is a
lack of software tools that bundle all these technologies together for
large-scale video search in an interactive and user-friendly manner.
Interactivity is an important feature of search systems, where the
human searcher and the search software are entangled in the same
loop, collaborating to browse large video collections smartly. Bench-
marking competitions, such as the Video Browser Showdown (VBS)
[16] and Lifelog Search Challenge [13], are organized annually to
foster research and development of such large-scale multimedia
retrieval software (see [18, Table 1] for other examples of evaluation
campaigns with multimedia retrieval and analysis tasks). At VBS,
in particular, systems are evaluated during online search sessions
where human searchers are asked to use the system to find given
shots in the shortest possible time. These challenges demonstrate
the large and increasing research interest in the development of
large-scale interactive multimedia retrieval systems [5, 8, 15, 17, 19].

This demonstration paper presents the latest release of VI-
SIONE [1, 2, 4–6], an interactive large-scale video search system.
It recently participated in the 12th Video Browser Showdown
(VBS2023) competition, where it achieved remarkable success in
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Figure 1: User Interface. Example of results using the temporal search for two video frames, one containing a "book" and "a
woman in front of a bookshelf ", the other "a group of people who are sitting and talking". Each row in the browsing interface
corresponds to a video, and the first two columns contain the most relevant results according to our ranking model.

numerous tasks and came in second place in the overall leader-
board. This tool incorporates many content-based analysis tools
for automatically extracting knowledge from raw shots and em-
ploys mature indexing techniques to ensure scalability. It offers
several search functionalities, like searching for video shots given
specific object classes and natural language prompts. VISIONE also
provides various visual similarity techniques to browse results,
allowing users to find keyframes similar to the selected one.

VISIONE features our recently developed cross-modal retrieval
deep neural network, called ALADIN (ALign And DIstill Network)
[20]. ALADIN generates easily indexable and fixed-length features
lying in a common visual-textual space. This capability helps bridge
the gap between different modalities of digital media and user-
generated queries, allowing quick and accurate media retrieval.

A system demo and a video showcasing its capabilities are
available online at https://visione.isti.cnr.it/ and https://youtu.be/
iiecKRDv05g, respectively. The demo allows exploring and search-
ing over 2300 hours of diverse video content (V3C dataset [23]) and
12 hours of highly redundant content (Marine dataset [24]).

2 THE VISIONE SYSTEM
VISIONE provides multiple search options for users to retrieve a
specific video segment. These search functionalities include text-
based and visual-based queries, as well as the ability to search two
temporally close video frames. In particular, VISIONE supports free
text search, spatial color and object search, visual similarity search,

and semantic similarity search. We report an example of the user
interface in Figure 1 and the system design in Figure 2.

2.1 Objects and Colors
VISIONE enables video frame search by placing plaparticular object
classes and colors in a canvas, where the location of the specific
object and/or color within the frame can be specified. Furthermore,
it is also possible to constrain the maximum number of instances
of a particular object class (e.g., 4 persons and 1 dog).

To implement object-based search, we employed three separated
object detectors (VfNet [26], Mask R-CNN [14], Faster R-CNN [12])
trained respectively on the COCO, LVIS, and Open Images V4
datasets, each having its own set of classes. We mapped these
classes using a semi-automatic process to obtain a unified final set
of 1,460 classes that we organized into a hierarchy using WordNet.
The hierarchy is used to expand class labels during indexing and
query runtime. We released the final list of classes and the corre-
sponding hierarchy in [3]. For the color annotations, we employed
two chip-based color naming techniques [9, 25].

2.2 Text-to-Image and Text-to-Video Retrieval
VISIONE supports different technologies for searching videos
through natural language descriptions of a desired scene. Specifi-
cally, we employed two CLIP-basedmodels: CLIP [21] trained on the
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Figure 2: VISIONE System Architecture

LAION dataset1, and CLIP2Video [11], able to perform, respectively,
retrieval of keyframes and shots from natural language prompts.
The advantage of CLIP2Video over plain CLIP is its ability to un-
derstand the temporal dimension, which is useful when the textual
prompt includes long-lasting actions or a sequence of events.

In VISIONE, we also implemented a novel cross-modal retrieval
model called ALADIN (ALign And DIstill Network). The network,
as we described in [20], first generates high-quality scores by pre-
cisely aligning images and texts using the features from a large
pre-trained vision language transformer. Then, it uses the scores
produced by its cross-modal alignment head – very effective yet
quite computationally expensive – to train a shared embedding
space, allowing for an efficient and effective inference by perform-
ing a kNN search in this learned space. Specifically, the network
employs a learning-to-rank loss to distill the relevance scores and
train the matching head comprising a low-dimensional (768-d)
cross-modal embedding space. Empirically, we found that ALADIN
performs competitively with state-of-the-art vision-language Trans-
formers while being approximately 90 times faster during inference.
ALADIN is different from CLIP-based models, as (i) it employs a dif-
ferent training mechanism, (ii) features an entirely different visual
backbone, which extracts features from an object detector instead
of directly from pixels, and (iii) it is trained using overall a much
fewer amount of image-text pairs. In practice, we observed that
ALADIN is often complementary to CLIP since, in many cases, only
one of the two methods finds the exact keyframe in the top results.

1https://huggingface.co/laion/CLIP-ViT-L-14-laion2B-s32B-b82K

Thus, in VISIONE, we designed an algorithm for combining results
derived from ALADIN and the CLIP-based models.

2.3 Visual and Semantic Similarity
VISIONE allows users to query by example through the results
shown in the interface. It supports both visual and semantic similar-
ity searches. For visual similarity search, the user can use an image
as the query to search for video keyframes visually similar to it
(e.g., similar background, same building, etc). In semantic similarity
search, an image can be used to retrieve video keyframes or video
clips that are semantically similar to it (e.g., scenes with similar de-
scriptions). GEM features [22] are used for visual similarity search,
while CLIP2Video [11] and ALADIN [20] are used for searching
semantically similar video clips and video keyframes, respectively.

2.4 Temporal Queries
VISIONE supports temporal queries allowing the user to specify
two different queries, which we will refer to as 𝑎 and 𝑏. A temporal
quantization approach is used for searching videos that contain
one keyframe satisfying query 𝑎 and another satisfying 𝑏. The
time is divided into intervals of 𝑇 seconds (e.g., 𝑇 = 3), and the
results of both queries are independently processed to retain a single
representative result (the one with the highest score) for each time
interval and for each query. Result pairs (𝑎𝑖 , 𝑏 𝑗 ) that come from the
same video and have a temporal distance smaller than 12 seconds
are displayed to the user as results. Temporal quantization is also
utilized to present a limited number of result pairs from the same
video, where only the pair with the highest aggregated score in a
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specific time interval is considered. Figure 1 shows an example of a
temporal query.

2.5 Indexing
As shown in Figure 2, we employed two different indexes to store
and perform similarity search on the extracted visual features and
the detected objects and colors. Specifically, we employed Apache
Lucene2and FAISS3. The need for two indexes is motivated by their
different functionalities and implementations. We originally de-
cided to rely on Lucene as it is disk-based and scales very well to
billions of documents, releasing the need for strong main memory
requirements as in-memory indexes like FAISS. Lucene is commonly
used for text-based search in collections of long unstructured text
documents. However, it can be employed for data encoded in the
form of text, like quantized colors and object classes, together with
their quantized 2D coordinates in the frame, as in our case [2]. We
developed a family of techniques called Surrogate Text Representa-
tions (STRs) [7, 10] to index feature vectors extracted from neural
networks in Lucene. STRs enable dense features to be transformed
into sparse term frequencies from an appropriate codebook, pre-
serving the dot product between the obtained textual representation
and the original dense feature as much as possible.

While we found the STR approach to work well on many features
like GEM for visual similarity or ALADIN for text-based search,
CLIP-based features demonstrated some major problems with this
encoding technique. In particular, we noticed the mean cosine sim-
ilarity between the query text and the top nearest neighboring
images for the CLIP2Video (Figure 3a) and CLIP LAION (Figure 3b)
features is considerably lower than the one from ALADIN features
(Figure 3c). This may happen if element-wise products underlying
the dot-product computation have a negative sign, which implies
that there could be a lot of mixed-sign factors. This is a bad sce-
nario for the STR representation, given that the CReLU operation
at the core of the STR method zeroes out the contribution from
mixed-signed factors. Therefore, for the CLIP2Video features, the
approximated cosine similarity computed in the STR representa-
tion badly approximates the original one. For these reasons, for the
CLIP-based features, we instead relied on the FAISS index, using an
exact search and an 8-bit scalar quantization to reduce the index
size in memory4. Despite the exact search, with the in-memory
quantized index, the search over the full V3C1 + V3C2 shots takes
only a few milliseconds at a cost of much bigger memory utilization.
Although according to Figures 3a and 3b the STR representation for
image-to-image search should not have the same problems as text-
to-image search, we also relied on FAISS for the semantic similarity
search for these CLIP-based features, for ease of implementation.

3 CONCLUSIONS
In this work, we presented VISIONE, a large-scale and interactive
video search tool. Inspired by state-of-the-art techniques in cross-
modal analysis and image-video understanding, it implementsmany
user-friendly tools for searching among large video collections.

2https://lucene.apache.org/
3https://github.com/facebookresearch/faiss
4We leave the investigation of a STR technique that is suitable for indexing this type
of dense vector to future work.
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Figure 3: Distribution of cosine similarities between nearest
neighbors for different cross-modal models.

Specifically, it implements object queries by placing the desired
objects or colors in a canvas, it allows video searching by specifying
natural language descriptions of desired keyframes or shots, and it
supports temporal queries for finding consecutive specific events.

Future work on the VISIONE system should focus on unifying the
indexing methods to reduce memory requirements and accessing
dynamic knowledge bases to improve the retrieval of visual named
entities, such as famous persons or buildings. Furthermore, we plan
to increase its interactiveness by developing advanced tools for
suggesting textual query changes based on the current result set.
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