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ABSTRACT

Marine mesoscale phenomena are relevant oceanographic
processes that impact on fishery, biodiversity and climate
variation. In previous literature, their analysis has been
tackled by processing instantaneous remote sensing obser-
vations and returning a classification of the observed event.
Indeed, these phenomena occur within an extended time
range, thus an analysis including time dependence is desir-
able. Mesoscale Events Classifier (MEC) is an algorithm
devoted to the classification of marine mesoscale events in
sea surface temperature imagery. By processing time series of
satellite temperature observations MEC recognizes the con-
sidered area of interest as the domain of one out of a given
number of possible events and returns the corresponding la-
bel. Objective of this work is to discuss the performance
of the MEC pipeline in terms of its capability of correctly
capturing the nature of the observed mesoscale process. The
evaluation process exploited satellite remote sensing data
collected in front of the Portuguese coast.

Index Terms— Mesoscale events, Sea surface temperat-
ure, Image processing, Environmental monitoring, Statistical
classification, Upwelling classification

1. INTRODUCTION

Eddies, water filaments, upwelling and coastline countercur-
rents are examples of physical processes that affect marine
habitats, their biodiversity and the related human activities,
e.g. fishery. The analysis of these oceanographic patterns,
called marine mesoscale events, is important since their oc-
currence and alternation also impact on the variations of the
climate framework. Mesoscale phenomena can be observed
and studied through Sea Surface Temperature (SST) data cap-
tured by low Earth orbit satellites. Indeed, the payload im-
agery captured by missions such as Metop and Aqua features
the suitable level of detail in terms of both space and time
scales of the observed phenomena.
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Previous attempts to implement the classification of mar-
ine mesoscale processes mainly concerned the identification
and segmentation of upwelling events, usually based on the
detection of the oceanic front pattern. This goal has been
pursued following several approaches such as texture features
based clustering [1, 2], segmentation based on mathematical
morphology operators [3], gradient based boundary identific-
ation [4,5] and more recent approaches such as deep learning
based upwelling segmentation [6, 7].

MEC [8, 9] is an automatic procedure conceived to sup-
port oceanographers in the classification of a broad spectrum
of mesoscale phenomena, not limited to the upwelling cat-
egory alone. In a nutshell, MEC first subdivides an input SST
map into a grid of squares, with a pace adapted to the scale of
the sought phenomena, then it extracts for each square a num-
ber of statistical parameters describing the temperature trend
over time. Finally, based on the identification of specific spa-
tial and temporal patterns of the estimated statistics, it assigns
a mesoscale event label to each square.

A major objective of this work is the evaluation of the
MEC capability to classify mesoscale events. To the best of
the authors’ knowledge, the automatic classification of this
type of phenomena in previous literature have been based on
single instantaneous observations of the SST variable. The
novelty proposed in MEC is to take into consideration an en-
tire set of measurements captured within an extended time
interval. This approach aims at increasing the classification
robustness, thanks to the increased amount of data that en-
ables to analyse broad portions of the event life cycle. The
flip side of the coin is that the evaluation of MEC requires a
novel format of ground truth that has to be generated ad hoc.
This introduces possible issues concerning the definition of
the usual descriptors employed for the assessment of the clas-
sifier performance (i.e. true/false positives and negatives)—in
fact, a dedicated discussion on the topic is provided in the
next sections.

The paper outline is the following: Section 2 concerns a
concise description of the MEC essential features, Section 3
describes the conceptual framework adopted to evaluate the
MEC performance and presents numerical results, Section 4
concludes the paper providing final considerations about the
MEC performance and future developments.
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Fig. 1. Examples of patterns in the SST maps data.

2. MEC IN A NUTSHELL

This section provides a brief description of the processing
pipeline of MEC applied to the coastal region in the south-
west of the Iberian peninsula. The interested reader can find
a more detailed explanation in [9].

2.1. Mesoscale Patterns

Due to the geomorphological peculiarities of this region [10],
the upwelling phenomenon originating here gives rise to a
variety of patterns that can be seen in SST satellite maps. In
particular, experts identified four recurring temperature trends
associated with four types of mesoscale events, depending on
the direction taken by the upwelled water flow and the pres-
ence or absence of warm countercurrents. These events will
be called E1, E2, E3 and E4 in the remainder of this paper.
Figure 1 shows some examples of those patterns.

2.2. Satellite Data

For this work, two sources of SST data were used: the satel-
lites of the Metop programme of EUMETSAT [11] and the
satellite Aqua of NASA [12]. The data-collecting sensor is
the Advanced Very High Resolution Radiometer (AVHRR)
for Metop and the Moderate Resolution Imaging Spectrora-
diometer (MODIS) for Aqua. Both products are processed at
level L2P in accordance with the GHRSST data processing
specification and cover the entire surface of Earth. Only files
from the years 2009 to 2017 that contain data within the re-
gion

A = [35° N, 40° N]× [12° W, 6° W]

have been downloaded; moreover, since the sensor measure-
ments is often affected by atmospheric noise or other failures,
it is possible to have large portions of images without usable
data, therefore the files containing less than 15% of the ex-
pected data (estimated using the declared spatial resolution of
1 km at nadir) have been pre-emptively discarded.

2.3. Time Series Computation

The area A has been divided in a 20 × 24 regular grid of
squares ai,j , i = 0, . . . , 19, j = 0, . . . , 23, with side length
0.25°. For the classification of an image with timestamp t0,
MEC collects all the images of the dataset with timestamps
t ∈ [t0 − 15 days, t0] and computes, for each t and for each
square ai,j , the spatial average of the SST T i,j(t) at time t in
the square. This way, a set of SST time series is obtained, one
for each square ai,j :

pi,j = {(tk, T i,j(tk)) | k = 1, . . . , ni,j}.

Notice that the number ni,j of values in a series depends
not only on the number of images with timestamps in [t0 −
15 days, t0], but also on the quality of the SST data in those
images in the square ai,j .

The resolution of the grid, the amplitude of the time in-
terval and in general the values of all the parameters involved
in the MEC algorithm have been chosen after a careful ana-
lysis of the geophysical characteristics of the sought meso-
scale events (see also [8] for further details).

2.4. Features Extraction

In the next step of the MEC classification pipeline, the in-
formation of the SST trend in a square ai,j , contained in the
corresponding series pi,j , is condensed in a number of statist-
ical features. In particular, for each series pi,j the temporal
mean µi,j , the standard deviation σi,j and the linear regres-
sion coefficient θi,j are computed, where

µi,j =
1

ni,j

ni,j∑
k=1

T i,j(tk),

σi,j =

√√√√ 1

ni,j

ni,j∑
k=1

(T i,j(tk)− µi,j)2,

and θi,j is the slope of the straight line that better interpolates
the points in pi,j .



2.5. Image Classification

For each square ai,j , an array ei,j = (e1i,j , e
2
i,j , e

3
i,j , e

4
i,j) is

computed. Each eki,j ∈ [0, 1] is an index representing how
much an event of type Ek is believed to have occurred in-
side ai,j at time t0. It is computed by applying a series of
conditional rules to the features described in Section 2.4; in
particular, the scores for ai,j depend not only on the values
µi,j , σi,j and θi,j but also on the values of µ, σ and θ of the
squares in a neighbourhood of ai,j .

The final step of the MEC classification process is the
production of a heatmap highlighting the squares that are
assigned to each type of event by the following proced-
ure: given the score array ei,j , the maximum score emi,j =

max{e1i,j , e2i,j , e3i,j , e4i,j} is considered and, if emi,j ≥ 0.6 and
ai,j belongs to a zone where it is possible to have an Em-type
event, then ai,j is marked with the “Em” label; otherwise,
no label is assigned to ai,j . Figure 2 represents an example
of an SST map with the corresponding classification map as
returned by MEC.
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Fig. 2. Example of classification result. Left: SST map of
the area A on 5 October 2017 at around 21:40 UTC; the tem-
perature range is the same as Figure 1. Right: corresponding
heatmap.

3. MEC PERFORMANCE EVALUATION

In order to evaluate the MEC performance, 1175 Metop im-
ages with timestamp t within the years 2016 and 2017 have
been considered. For each image I(t), the same grid as the
one in Section 2.3 has been defined and, after a visual eval-
uation of the SST map, each square has been tagged with a
label “E1”, “E2”, “E3”, “E4”, or “no event” depending on
which type of event is recognizable in the geographical loc-
ation of the square, thus obtaining a ground truth map Igt(t)
of the same kind as the heatmap returned as classifier output
(hereafter denoted by Î(t)).

A first naive evaluation could be performed by compar-
ing, for each time t and for each event type Ei, the MEC out-
put with the ground truth in a square-by-square manner: each
square in the Ek event detection zone is considered a true pos-
itive if and only if it is marked with the k label both in Î(t)
and in Igt(t). With this convention, if TPk, FPk, FNk and
TNk are the number of true positives, false positives, false

negatives and true negatives respectively, we can define some
typical evaluation parameters (precision, recall, F-score, ac-
curacy) for each event class k in the usual way

pk =
TPk

TPk + FPk
, rk =

TPk

TPk + FNk
,

Fk =
2pkrk
pk + rk

, ak =
TPk +TNk

TPk + FNk +TNk + FPk
,

as well as their aggregated versions

p =

∑
k TPk∑

k(TPk + FPk)
, r =

∑
k TPk∑

k(TPk + FNk)
,

F =
2pr

p+ r
, a =

∑
k(TPk +TNk)∑

k(TPk + FNk +TNk + FPk)
,

obtaining the results shown in Table 1.

Table 1. Results of the direct comparison between the classi-
fier output and the ground truth.

Precision Recall F-score Accuracy

E1 0.059 0.113 0.078 0.947
E2 0.033 0.068 0.045 0.937
E3 0.151 0.163 0.157 0.867
E4 0.083 0.211 0.119 0.872
Aggregate 0.098 0.150 0.118 0.914

This method compares the classifier output, which—as
described before—is based on the analysis of the available
images in [t0 − 15 days, t0], with the ground truth image re-
lative to time t0. However, this evaluation does not consider
all the ground truth information existing in the temporal win-
dow around t0. For example, suppose that in some images in
[t0 − 15 days, t0] an event of type Ek is clearly visible in a
square ai,j , but the image I(t0) has no SST data, thus ai,j has
no label in Igt(t0). Assuming that MEC correctly identifies
the dynamic pattern of the event, it will assign the label Ek to
ai,j , so that ai,j would be a false positive with respect to the
naive evaluation.

Analogously, the naive approach does not consider the
ground truth information existing in the spatial neighbour-
hood of a given square ai,j . Within the 15 days temporal win-
dow, the dynamic evolution of a mesoscale event causes fluc-
tuations in its shape and position. This variability, intrinsic to
the oceanographic phenomenon, impacts on the final result of
the classification. In particular it may occur that a square ai,j
is classified with a label that conflicts with the corresponding
ground truth, while in the neighbourhood of ai,j ground truth
and classifier are in agreement. In this case, the evaluation
through the naive approach discussed before would entail an
increase in the amount of misclassifications.

The above presented arguments suggest that the classifier
output and the ground truth are not directly comparable. To
fix this, a different approach to the evaluation is presented: let



ℓk(t) be the number of squares in Î(t) that have been classi-
fied with the label corresponding to the k-th class. Analog-
ously ℓgtk (t) is the number of squares in Igt(t) that have been
manually tagged as belonging to class k. Let us define

Ok(t) =

{
1 if ℓk(t) > 0,
0 otherwise,

(1)

where Ok(t) = 1 means that the classifier output is inter-
preted as an Ek event in I(t).

Similarly to (1), the ground truth boolean sequence is
defined as

Ogt
k (t) =

{
1 if ∃ s ∈ [t− 15 days, t] s.t. ℓgtk (s) > 0,
0 otherwise.

These newly introduced variables allow performing a
comparison between the results of the classification and the
reference knowledge so to resolve the spatial and temporal
disparities that arise when the evaluation is performed through
the naive approach.

The performance of the classifier can then be assessed
based on the traditional true/false positives and true/false neg-
atives counting, where in this case for an event of type Ek
an image I(t) is considered positive (respectively negative)
if Ok(t) = 1 (respectively 0), and the classification is con-
sidered true (respectively false) if Ok(t) = Ogt

k (t) (respect-
ively Ok(t) ̸= Ogt

k (t)). The classifier performance according
to this new approach is presented in Table 2.

Table 2. MEC performance.
Precision Recall F-score Accuracy

E1 0.849 0.534 0.655 0.584
E2 0.474 0.291 0.360 0.505
E3 0.856 0.474 0.610 0.511
E4 0.730 0.606 0.663 0.718
Aggregate 0.753 0.481 0.587 0.579

When measured by the new evaluation approach, the clas-
sifier performance improves considerably at the expense of a
reduction in the accuracy parameter. Indeed, the large accur-
acy values reported in Table 1 are caused by the unlabelled
squares, which represent the vast majority both within the
ground truth and the classified images, leading to an excessive
amount of true negatives found by the naive approach.

4. CONCLUSIONS

Mesoscale phenomena play an essential role in defining and
shaping coastal ecosystems, and their systematic analysis has
proven to be of utter importance in the fields of maritime mon-
itoring and climate change studies.

This work concerns MEC, a classifier of mesoscale events
detected as patterns in SST data. Unlike previous similar

tools, the core of MEC is designed to extract and elaborate dy-
namic information from these data. Therefore, starting from
usually employed performance descriptors (precision, recall,
F-score, accuracy), we defined a novel evaluation procedure
that takes into account the peculiarities of this system to as-
sess the effectiveness of the classifier. The results achieved
by MEC according to this method are presented and briefly
discussed.

This work is part of a project that has received funding
from the European Union’s Horizon 2020 research and in-
novation programme under grant agreement No. 101000825
(NAUTILOS; https://www.nautilos-h2020.eu).
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