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Abstract

Next-location prediction, consisting of forecasting a user’s location given
their historical trajectories, has important implications in several fields,
such as urban planning, geo-marketing, and disease spreading. Sev-
eral predictors have been proposed in the last few years to address
it, including last-generation ones based on deep learning. This paper
tests the generalization capability of these predictors on public mobil-
ity datasets, stratifying the datasets by whether the trajectories in
the test set also appear fully or partially in the training set. We
consistently discover a severe problem of trajectory overlapping in
all analyzed datasets, highlighting that predictors memorize trajecto-
ries while having limited generalization capacities. We thus propose
a methodology to rerank the outputs of the next-location predic-
tors based on spatial mobility patterns. With these techniques, we
significantly improve the predictors’ generalization capability, with a rel-
ative improvement on the accuracy up to 96.15% on the trajectories
that cannot be memorized (i.e., low overlap with the training set).

Keywords: Human Mobility; Next-Location Prediction; Deep Learning;
Generalization; Test-Train Overlap
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1 Introduction

Next-location prediction is the task of forecasting which location an individual
will visit, given their historical trajectories. It is crucial in many applications
such as travel recommendation, and optimization [1, 2], early warning of poten-
tial public emergencies [3–6], location-aware advertisements and geomarketing,
and recommendation of friends in social network platforms [7–11]. Predicting
an individual’s location is challenging as it requires capturing human mobility
patterns [12, 13] and combining heterogeneous data sources to model multiple
factors influencing human displacements (e.g., weather, transportation mode,
presence of points of interest and city events).

The striking development of Deep Learning (DL) and the availability of
large-scale mobility data has offered an unprecedented opportunity to design
powerful next-location predictors (NLs) and has driven test-set performance
on mobility data to new heights [13]. However, little work has been done
on how challenging these benchmarks are, what NLs learn, and their actual
generalization capabilities. Although some studies investigate the predictabil-
ity of human whereabouts and its relationship with the trajectories’ features
[14, 15], we know comparatively little about how the individuals’ trajectories
are distributed in mobility benchmarks, making it hard to understand and
contextualize our observed results. Recent studies in natural language process-
ing [16, 17] and computer vision [18] show that DL models excel on specific
test sets but are not solving the underlying task. In this paper, we investigate
whether it is the case for NLs too.

We perform an extensive study of the test sets of several public next-
location benchmark datasets [13] and evaluate a set of state-of-the-art
DL-based NLs on their generalization capability. We identify three levels of
generalization that an NL should exhibit: (i) known mobility, requiring no gen-
eralization beyond recognizing trajectories seen during the training phase; (ii)
fragmentary mobility, requiring generalization to novel compositions of previ-
ously observed trajectories; and (iii) novel mobility, requiring generalization
to a sequence of movements not present in the training set. It is unclear how
well state-of-the-art NLs perform on each of these three scenarios.

To address this compelling issue, we stratify mobility data by whether the
trajectories in the test set also appear fully or partially in the training set. We
quantify the overlap between trajectories with three measures accounting for
different ways of computing the percentage of locations in the test trajectories
that are also in the training trajectories.

We find that, in five next-location benchmark datasets, there is a severe
problem of trajectory overlapping between the test and training sets when
composing them randomly: ∼ 43% to 72% of test trajectories overlap at least
with 50% of the points with trajectories in the training set, and with 7%
to 14% of test sub-trajectories entirely overlap training sub-trajectories. In
other words, based on the standard way training and test sets are split in the
literature, a significant portion of the trajectories in the test sets have already
been seen during training.
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Based on these observations, we propose to evaluate NLs on stratified test
sets based on the overlap between trajectories in the training set. We find sig-
nificant variability in model performance, varying the percentage of overlap.
Indeed, we find an accuracy ≤ 5% when predicting unseen trajectories (novel
mobility) and ≥ 90% when predicting trajectories with high overlaps (known
mobility). Surprisingly, we also find that DL-based NLs perform even worse
than baseline models (e.g., Mobility Markov Chain or MMC [19]) when tested
on novel mobility. Our results are consistent across the datasets analyzed and
the NLs selected, demonstrating that current train/test splits are flawed, and
more robust methods are needed to evaluate the generalization capabilities
of NLs. We also show a way to improve next-location prediction accuracy,
especially for the novel mobility scenario, injecting mobility laws into state-of-
the-art NLs through a learning-to-rank task. In a nutshell, this paper provides
the following novel contributions:

• We show that standard train/test splits of trajectory datasets generate a
high trajectory overlap, proposing three metrics to quantify it;

• We evaluate NLs on stratified test sets and show that DL-based NLs do
not generalize well on novel mobility, being outperformed by other simpler
baselines (e.g., Mobility Markov Chains);

• We show how to improve the accuracy of DL-based NLs, especially for the
novel mobility behavior, by performing a rerank of the models’ scores based
on spatial mobility patterns;

• Based on our findings, we provide a list of recommendations to improve
datasets’ creation and models’ evaluation for next-location prediction.

2 Related Work

Model Generalization

Measuring the generalization capabilities of deep neural networks has recently
captured the attention of researchers in artificial intelligence. Lewis et al. [16]
find that, in popular Question Answering (QA) datasets, 30% of test-set ques-
tions have a near-duplicate in the training sets and that all models perform
worse on questions that cannot be memorized from training sets. Sen and
Saffari [17] show that QA models do not generalize well on unseen question-
context pairs. However, they still perform well on popular QA benchmarks
because of their high overlap between train and test data. Liu et al. [20]
go beyond the data and study the key factors that impact generalization in
QA. An essential impact in generalization is played by cascading errors from
retrieval, question pattern frequency, and entity frequency.

Predictability of Human Mobility

Several studies measure the limits of predictability of human mobility [12, 13].
Song et al. [14] analyze mobility traces of anonymized mobile phone users to
find that 93% of the movements are potentially predictable. Zhang et al. [21]
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show that, when considering the mobility context (e.g., visiting time, kind of
place visited), the upper bound of potential predictability in human mobility
increases. Other studies show that this upper bound depends on the data scale
and the processing techniques adopted [22–24]. In [15, 25], there are shreds
of evidence that the so-called explorers (e.g., individuals without a routinary
behavior) [26] are less predictable than the others. All the works discussed
suggest that models may memorize certain trajectories (e.g., routinary mobil-
ity) while not being able to generalize well on novel mobility (i.e., mobility not
observed during the training phase).

Next-Location Prediction

Most NLs are based on (gated) recurrent neural networks (RNNs). RNNs [27]
can efficiently deal with sequential data such as time series, in which val-
ues are ordered by time, or sentences in natural language, in which the order
of the words is crucial to shaping its meaning. In Spatial Temporal Recur-
rent Neural Networks (ST-RNN) [28], RNNs are augmented with time- and
space-specific transition matrices. Through linear interpolation, each RNN
layer learns an upper and lower bound for the temporal and spatial matrices,
which are then used to infer an individual’s next visited location. Long Short-
Term Memory Projection (LSTPM) [29] use sequential models to capture
long- and short-term patterns in mobility data. The authors rely on a non-
local network [30] for modeling long-term preferences and on geo-dilated RNNs
inspired to capture short-term preferences [31]. More sophisticated models
like DeepMove [32] use attention layers to capture the periodicity in mobility
data. First, past and current trajectories are sent to a multi-modal embedding
module to construct a dense representation of spatio-temporal and individual-
specific information. Next, an attention mechanism extracts mobility patterns
from historical trajectories, while a Gated Recurrent Unit (GRU) handles
current trajectories. Finally, the multi-modal embedding, GRU, and atten-
tion layer outputs are concatenated to predict the future location. Recently,
Spatio-Temporal Attention Network (STAN) [33] proposes to capture spatio-
temporal information to leverage spatial dependencies explicitly. In particular,
the authors use a multi-modal embedding layer to model historical trajecto-
ries and the GPS locations in the current trajectories. The embeddings are
then forwarded to a spatio-temporal attention mechanism that selects a set
of potential next locations. Many other works deal with spatio-temporal data
using (gated) RNNs and attention mechanisms. Some of them also deal with
the semantic meaning associated with locations. Examples of such models
are Semantics-Enriched Recurrent Model (SERM) [34], Hierarchical Spatial-
Temporal Long-Short Term Memory (HST-LSTM) [35], VANext [36], and
Flashback [37]. Other Deep Learning solutions to next-location prediction have
been discussed in a recent survey paper [13].
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3 Problem Definition

Next-location prediction is commonly defined as the problem of predicting the
next location an individual will visit given their historical movements, typically
represented as spatio-temporal trajectories [13].

Definition 1 (Trajectory) A spatio-temporal point p = (t, l) is a tuple where t
indicates a timestamp and l a geographic location. A trajectory P = p1, p2, . . . , pn
is a time-ordered sequence of n spatio-temporal points visited by an individual, who
may have several trajectories, P1, . . . , Pk, where all the locations in Pui are visited
before locations in Pi+1.

Given this definition, we formalize next-location prediction as follows:

Problem 1 (Next-location prediction) Given the current trajectory of an individual
Pk = p1, p2, . . . , pn and their historical trajectories H = P1, . . . , Pk−1, next-location
prediction is the problem of forecasting the next point pn+1 ∈ Pk.

In other terms, a next-location predictor (NL) is a function M(Pk,H) →
pn+1, which takes the current trajectory Pk, the set of u’s historical trajectories
H, and returns a spatio-temporal point pn+1 in Pk.

4 Trajectory Overlap

An NL should be able to predict an individual’s next location in three sce-
narios: (i) the NL has seen the individual’s entire current trajectory during
the training phase; (ii) it has seen the current trajectory only partially, or
it has seen a very similar trajectory of the same individual; (iii) the current
trajectory was absent from the training set. The latter scenario is essential,
as machine learning models’ ability to generalize is their capacity of making
predictions on data never seen during the training phase [38].

However, in next-location prediction, there may be a significant overlap
between trajectories in the test set and those in the training set. For example,
some test and training trajectories may belong to the same individual. Since
human mobility is routinary, an individual’s trajectories are similar to each
other [12, 39], leading to scenarios (i) and (ii) above. Given this discussion, we
investigate the extent to which the overlap between trajectories in the test and
training sets influences the model’s ability to generalize. We explore three ways
to examine overlap: Jaccard Similarity (JS), Longest Common Subsequence
(LCST), and Overlap From the End (OFE).

Jaccard Similarity (JS) measures the percentage of locations in the test
trajectories that are also in the training trajectories, regardless of the order in
which locations appear. Test trajectories with a high JS have many locations
in common with training trajectories. In contrast, test trajectories with low JS
should be less predictable as they are mainly composed of locations that are
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not in the training trajectories. Formally, we define the JS between a trajectory
R ∈ Dtest and P ∈ Dtrain as:

JS(R,P ) =
|P ∪R| − |P ∩R|

|P ∪R|

We quantify the overlap between R and the training set as the maximum JS
over all the trajectories in the training set:

max
P∈Dtrain

JS(R,P ).

JS ∈ [0, 1], where 1 indicates a full overlap (all locations in R are at least
in a trajectory in Dtrain) and 0 indicates no overlap (none of the locations in
R are in the training set).

The Longest Common SubTrajectory (LCST) is the longest subtrajectory
in common between two trajectories. Formally, given a training trajectory P =
p1, p2, . . . , pn and a test trajectory R = r1, r2, . . . , rm, we define a recursive
function f(P,R) as:

f(P,R) =


0, if i = 0 or j = 0

f(pi−1, rj−1) + 1, if i, j>0 and pi=rj

max(f(pi−1, rj), f(pi, rj−1)) if i, j>0 and pi 6=rj

where P and R indicate the length of the training and test trajectories,
respectively, and f(P,R) ∈ [0,min(P,R)]. The LCST between P and R is then:

LCST(P,R) = f(P,R)/ R.

We quantify the overlap between R and the training set as the maximum
LCST over all the trajectories in the training set:

max
P∈Dtrain

LCST(R,P ).

The Overlap From End (OFE) enforces that the common subtrajectory
is at the end of the two trajectories. Formally, given a trajectory P =
p1, p2, . . . , pn, we define P ′ = pn, . . . , p2, p1 as its reversed trajectory. We then
compute OFE(R,P ) with Algorithm 1 and quantify the overlap between R and
the training set as the maximum OFE over all the trajectories in the training
set:

max
P∈Dtrain

OFE(R,P ).

In other terms, given a trajectory in the test set, we scan all the trajectories
in the training set and we compute, for each pair (P,R), we compute, starting
from the last point the number of common points. We than convert this number
into a percentage. Finally, the OFE of P is the higher percentage found.
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Algorithm 1 OFE Computation

overlaps← dictionary()
for R′ ∈ Dtest do

overlap← 0
for P ′ ∈ Dtrain do

count← 0
for k ∈ {0, . . . ,min(P’,R’)} do

if R′[k] = P ′[k] then
count← count + 1

else if R′[k] 6= P ′[k] then Break
end if

end for
if count/ R’ > overlap then

overlap← count/ R’
end if

end for
overlaps[R′]← overlap

end for

5 Experimental Setup

5.1 Datasets

We use five public datasets widely adopted in the literature to evaluate NLs
[13] (see Table 1). Three of them (Gowalla, Foursquare New York, Foursquare
Tokyo) are collected through social networking platforms, in which mobility
traces are generated by the users’ georeferenced posts (check-ins). Conse-
quently, these mobility traces are sparse both in time and space. The other
two datasets (Taxi Porto and Taxi San Francisco) describe GPS traces from
taxis dense in space and time. In detail, Gowalla was a location-based social
network platform that, like Foursquare, allowed users to check-in at so-called
spots (venues) via a website or an app. The dataset [40] has almost six mil-
lion check-ins collected over a year and a half, from February 2009 to October
2010. Each check-in contains the user identifier, location identifier, latitude
and longitude pair, and timestamp. The dataset also contains information on
the users’ friendship network, which has around 200,000 nodes and one mil-
lion edges. Foursquare is another location-based social network platform that
allows users to check in into places. Data can be collected through the avail-
able APIs. A widely used dataset based on Foursquare is described in [41]. The
information contained are the same as Gowalla, with additional information
about the category of the venue. Piorkowski et al. [42] collected taxi trajecto-
ries in San Francisco in May 2008. Each point in a trajectory includes the taxi’s
identity, latitude, longitude, timestamp, and occupancy. Points are sampled
every 10 seconds on average. Moreira et al. [43] (ECML/PKDD Challenge)
collected taxi trajectories in Porto, Portugal. For each trajectory, we have the
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taxi’s identifier, the latitude, longitude, and timestamp showing when the trip
began. For each trajectory, data are sampled every 15 seconds. The dataset also
includes auxiliary information for each trip, such as the trip’s typology (e.g.,
sent from the central, demanded to the operator, demanded to the driver),
the stand from which the taxi left, and a phone number identification for the
passenger.

To extract trajectories from these datasets, we follow the same approach
as in [32]: first, we filter out the users with less than ten records; second, we
cut the sequence of records into several trajectories for each user based on the
time interval between two neighbor records. As in [32], we choose 72 hours as
the default interval threshold based on the practice. Finally, we remove the
users with less than five trajectories.

5.2 Models

We validate our hypothesis by testing the generalization capability of the
following state-of-the-art DL-based NLs.

• RNN [27], the building block of the majority of NLs. RNNs are commonly
adopted to model sequential data such as time series and natural language,
in which the order of the items is crucial to shaping its meaning. RNNs are
also widely used as building blocks of NLs to capture spatial and temporal
patterns in the trajectories. An RNN is made of a sequence of gates, each
one outputting a hidden state hi based on the current input xi and the
previous gate hi−1. In this work, a gate is implemented as a hyperbolic
tangent function (tanh).

• ST-RNN [28] enhances RNNs with time- and space-specific transition
matrices in this study. Each RNN layer learns an upper and lower bound for
the temporal and spatial matrices via linear interpolation. These matrices
are then used to predict where a person will go next.

• Deep Move [32] uses attention mechanisms to capture spatio-temporal
periodicity in the historical trajectories. Also, the model uses GRUs (gated
RNNs) to capture patterns in the current trajectory and relies on a multi-
modal embedding to capture individual preferences and project trajectories
in a low-dimensional space before passing them to the attention mechanisms
and GRUs.

• LSTPM [29] combines long- and short-term sequential models: long-term
patterns are modeled using a non-local network [30], short term preferences
are captured using a geographic-augmented version of the concept of dilated
RNNs [31].

• STAN explicitly captures spatio-temporal information using a multi-modal
embedding to represent the trajectories and a spatio-temporal attention
mechanism to capture patterns in the data [33]. The role of the attention
mechanisms, supported by a balanced sampler, is to rank potential next
locations.
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Users Locations Trajectories

Gowalla [40] 5300 125,771 72,593
Foursquare NYC [41] 4390 13,960 12,519
Foursquare Tokyo [41] 935 21,394 34,662
Taxi Porto [43] 500 8524 94,214
Taxi SF [42] 500 9321 103,120

Table 1 Properties of the datasets adopted in our study. We describe each dataset’s time
span, number of users, number of locations, and the number of trajectories extracted.

5.3 Training

We split the trajectories into a training set, a validation set, and a test set
for each dataset. All sets include trajectories from several users. We sort the
trajectories temporally for each user and put the first 70% in the training set,
the following 10% in the validation set, and the remaining 20% in the test set.

All models are implemented with PyTorch and are made available through
the library LibCity [44]. We follow the same configuration as [32] and use
Adam [45] as optimizer.

We ran the experiments on a machine with 126GB of memory and two
Nvidia RTX 2080Ti.

6 Testing Generalization Capability

We evaluate the performance of all models using the k-accuracy (ACC@k),
the most common evaluation metric in the literature [13]. NLs output a list of
all possible locations an individual will visit next ranked from the most to the
least likely. ACC@k indicates how many times the true location is among the
k top predicted locations. We evaluate all models using ACC@5.

We compare the DL models with Mobility Markov Chains (MMCs) [19],
in which the visited locations are the states of a Markov chain and a tran-
sition matrix represents the first-order transition probabilities between these
locations. The choice of MMCs as a baseline is justified because they cannot
generalize as they summarize the training data.

For all datasets and overlap metrics (JS, LCST, and OFE), we compute
the number of trajectories in the test set with an overlap with the training set
between 0-20%, 20-40%, 40-60%, 60-80%, and 80-100%. Figure 1 shows the
results for all the datasets analyzed.

The percentage of trajectories with a high overlap (between 80% and 100%)
varies widely with the overlap metric and the dataset. Taxi datasets have
more trajectories with a high overlap than the datasets based on check-ins,
suggesting that the overlap problem is more severe in GPS traces than in
check-ins. We also observe that JS and LCST produce similar overlaps, while
with OFE, the number of trajectories with low overlap is remarkably higher.
This is due to the severe constraints that OFE imposes by definition (e.g., the
overlap is evaluated starting only from the end of the trajectory).
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Fig. 1 Fraction of the test trajectories with an overlap of 0-20%, 20.40%, 40-60%, 60-80%,
and 80-100% with the training trajectories, for the all datasets, for the evaluation metrics
JS, LCST, and OFE.

In any case, Figure 1 highlights that a significant overlap exists between
the test and the training set, introducing a bias when evaluating NLs using
a random train-test split. Hence, we investigate to what extent this overlap
affects model performance.

Figure 2 shows the performances for all the NLs and overlap metrics.
Here, increasing the overlap induces a striking improvement in the model per-
formance for both MMC and the NLs, which have similar performance. We
present all performances in detail in the Supplementary A.

For example, for Foursquare New York and OFE, the performance of NLs
is close to 100% on a test made of trajectories with an overlap with the training
set in the range 80-100%. Results for Taxi Porto follow a similar increasing
trend, although with less striking performance.

Overall, Figure 2 shows that model performance is strongly affected by tra-
jectory test-train overlap, suggesting that NLs memorize trajectories instead
of generalizing. NLs perform well on trajectories with high overlap with the
training set but poorly on trajectories with low overlap. These results raise
the question of how to improve the accuracy of NLs for low overlap scenarios.
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Fig. 2 Results (in terms of ACC@5) for all the datasets and models. We compute the
accuracy for the three overlap metrics (JS, LCST, OFE) and for five bins of percentage of
trajectory overlap (from 0-20% to 80-100%).

7 Learning to Rank Locations Using Mobility
Laws

A possible reason why NLs perform poorly on trajectories with low overlaps
lies in the type of DL tools they rely on, i.e., RNNs: they focus on memorizing
regularities in long sequences, thus limiting NLs’ generalization capabilities.
Wrong location predictions happen when the probabilities assigned to each
potential location by the NL (i.e., the locations’ scores) are low and relatively
uniformly distributed. Our intuition is to rerank locations based on new scores
obtained, injecting human mobility laws into NLs. We select three prominent
human mobility laws [12, 13]:

• the distance law [12]: people prefer travelling short distances. Given an indi-
vidual’s trajectories P = p1, p2, . . . , pn, we compute the Haversine distance
between all the consecutive locations pi, pi+1 and consider the average of
the distances as a feature distu;
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• the visitation law [39]: the visits to a location decrease as the inverse square
of the product of their visiting frequency and travel distance. We denote as
f the number of visits to a location (by any individual) and compute how
many people visit it within a distance r. An individual’s probability to visit
location pi+1 is given by a power-law of the form pi+1(r, f) = µi/(rf)γ , with
γ = 1.6, a parameter fitted with the least squares method. We use the five
most probable locations topn, n ∈ 1 . . . 5 as an input to the reranker.

• the returner and explorer dichotomy [26]: individuals naturally split into
two profiles based on their degree of spatial exploration. We compute the

average radius of gyration rg(u) and the 2-radius of gyration r
(2)
g (u) for

each individual and compute the ratio
rg(u)
r2g(u)

using the scikit-mobility [46]

library. The profile of the user is then translated into a binary feature: 0 if
the individual is a returner and 1 if the individual is an explorer. We denote
this feature as reu.

Our approach consists in predicting the next location using a NL, and then
combining into a single scoring model, i.e., a fully connected neural network,
both the NL score for the location and the mobility laws. We trained the
network using the binary cross-entropy loss L = −

∑
i∈{0,1} yi log p(yi), where

yi is the label (i.e., 0 or 1) and p(yi) is the predicted probability.
The training dataset consists of vectors of the form

[NLi(P ), distu, top1, . . . , top5, reu]. We denote with NLi(P ) the score of the
NL for a given location i starting from a trajectory P . The label is 1 if the
location i is the individual’s next-location and 0 otherwise. This means that in
a dataset with n locations, for each trajectory we have a positive sample (e.g.,
the correct next location) and n − 1 negative samples for each trajectory. As
the number of incorrect samples is much higher than the correct ones, for each
correct location, we randomly sampled k = 20 wrong locations (e.g., locations
that are different from the actual next location the individual will visit), as
we found it to be a good trade-off between performance and dataset size.

Table 2 and Figure 3 show how the accuracy changes on the test trajecto-
ries with 0-20 overlap on all the datasets and models considered. Our reranking
leads to improved accuracy regardless of the dataset and the overlap measures
used. The bigger relative improvements are related to the trajectories with an
overlap of 0-20. Regarding check-in datasets, on Foursquare New York, the
improvement varies from +3.25% (ST-RNN) to +9.38 (LSTPM). Similarly,
on Foursquare Tokyo, the improvement varies from +5.69% (DeepMove) to
a +9.33% of improvement (STAN). In Gowalla, we have the lowest relative
improvement on DeepMove (+4.43%) and the highest on RNN (+29.09%).
Concerning taxi datasets, on Taxi Porto, the relative improvement on the aver-
age case (i.e., without stratifying the test set) varies from a +2.68% (RNN)
to +5.84% (STAN). On Taxi San Francisco, the relative improvement varies
from +2.49% (RNN) to +5.74% (DeepMove). Regarding the 0-20 stratifica-
tion, the largest relative improvement is associated with metrics JS, followed
by LCST and OFE. On Foursquare New York, the relative improvement
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with JS is up to +96.15%, with LCST being +20.39%, and with OFE being
+33.05%. Similarly, on Foursquare Tokyo, we have top relative improvements
of +82.35%, +21.78%, and +24.36% with JS, LCTS, and OFE, respectively.
Finally, Gowalla’s top relative improvements for JS, LCTS, and OFE are
+68.82%, +45.45%, and +50.03%. In general, taxi datasets are associated
with the lowest relative improvement: with JS, it is up to +7.96%, with LCST
+6.68%, and with OFE +7.05% on Taxi Porto. On the other hand, on Taxi
San Francisco, the relative improvements for JS, LCST, and OFE are +5.82%,
+9.68%, and +8.76%. The largest relative improvement is associated with the
0-20 overlap scenario. For example, the largest relative improvement on the
80-100 bin is 0.12%. In other words, our rerank strategy brings the largest
improvement in accuracy, especially where NLs are the least accurate.
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Fig. 3 Results (in terms of ACC@5) for all the datasets for the three overlap metrics (JS,
LCST, OFE) for trajectories with a 0-20%. We provide the results for all datasets and the
other overlaps in Supplementary B.
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NL + RR JS LCST OFE
RNN .233 (+9.38%) .051 (+96.15%) .158 (+19.69%) .241 (+26.17%)

ST-RNN .261 (+5,24%) .059 (+84.37%) .186 (+15.52%) .299 (+31.14%)
Deep Move .277 (+6,94%) .084 (+64.71%) .213 (+19.66) .268 (+16.01%)
LSTPM .272 (+8.36%) .072 (+56.52%) .184 (+10.84%) .271 (+18.34%)

Foursquare NYC

STAN .281 (+6.43%) .101 (+32.89%) .214 (+15.05%) .283 (+18.90%)
RNN .196 (+6.56%) .028 (+40.02%) .123 (+21.78%) .171 (+15.54%)

ST-RNN .213 (+7,58%) .057 (+67.65%) .133 (+15.64%) .194 (+24.36%)
Deep Move .223 (+5,69%) .060 (+46.34%) .142 (+19.33%) .201 (+19.64%)
LSTPM .233 (+6.88%) .074 (+57.45%) .151 (+21.77%) .236 (+34.86%)

Foursquare TKY

STAN .246 (+9.33%) .093 (+82.35%) .153 (+18.60%) .239 (+32.04%)
RNN .142 (+29.09%) .157 (+68.82%) .016 (+45.45%) .144 (+50.03%)

ST-RNN .149 (+8.76%) .143 (+28.83%) .033 (+17.86%) .127 (+19.81%)
Deep Move .165 (+4.43%) .164 (+41.38%) .041 (+13.89) .151 (+32.46%)
LSTPM .171 (+12.50%) .182 (+61.06%) .043 (+34.38%) .151 (+36.04%)

Gowalla

STAN .206 (+6.77%) .178 (+43.55%) .059 (+15.69%) .146 (+22.69%)
RNN .421 (+2.68%) .069 (+4.54%) .296 (+1.02%) .398 (+1.79%)
ST-RNN .427 (+2.64%) .077 (+5.47%) .313 (+3.98%) .418 (+5.55%)
DeepMove .466 (+5.42%) .104 (+6.12%) .341 (+3.96%) .434 (+6.11%)
LSTPM .457 (+6.52%) .095 (+6.74%) .336 (+6.32%) .419 (+5.01%)

Taxi Porto

STAN .483 (+6.62%) .111 (+7.96%) .351 (+6.68%) .440 (+7.05%)
RNN .288 (+2.49%) .193 (+4.89%) .208 (+1.46%) .276 (+5.34%)

ST-RNN .297 (+4,95%) .200 (+5.82%) .225 (+6.64%) .298 (+8.76%)
Deep Move .313 (+5,74%) .202 (+4.12%) .227 (+4.13%) .297 (+6.45%)
LSTPM .301 (+5.24%) .199 (+3.65%) .238 (+9.68%) .293 (+5.02%)

Taxi SF

STAN .330 (+5.11%) .208 (+3.48%) .233 (+4.48%) .309 (+5.79%)

Table 2 ACC@5 of all the models on all the datasets. We find a significant relative
improvement, especially on the trajectories with a 0-20 overlap. Regarding check-in datasets,
we have the greatest relative improvement on the stratification based on JS (in bold). In
taxi datasets, we have similar improvements on JS and OFE and while in Taxi Porto, we
have the best improvements on JS, on Taxi San Francisco, we reach the best improvements
on OFE. In general, the improvements in check-in datasets are higher with respect to taxi
datasets. There is not a specific model on which we have the best improvements.

8 Discussion and Recommendations

This work finds that the models’ performances are deeply affected by the level
of overlap present in the test trajectories. Based on the amount of trajectory
overlap, we identify three scenarios:

• Known Mobility: the NL sees the entire trajectory in the training phase
(overlap between 80% and 100%). Predictive performance is much higher
than the performance on a non-stratified test set (close to 100%) as the test
trajectories are almost identical to the training trajectories.

• Fragmentary Mobility: the NL sees a significant portion of the trajectory
(overlap between 20% and 80%). The majority of trajectories in the test set
lies in this scenario. There is a drop in the model performance compared to
the previous scenario, decreasing up to ∼80%.

• Novel Mobility: the NL sees a tiny or no portion of the trajectory (overlap
below 20%). A significant number of trajectories lie in this scenario. How-
ever, since NLs cannot rely on the trajectories already seen in the training
phase, these are the most difficult trajectories to predict. Indeed, the per-
formance of NLs on test sets with low overlap is considerably lower than the
performance on a non-stratified test set.
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While predicting known mobility is a simple task, inferring mobility pat-
terns for fragmentary mobility and novel mobility presents challenges (e.g.,
dealing with under-represented locations or not represented at all in the train-
ing set). From a modeling perspective, this may suggest that current models are
excellent in memorizing already seen trajectories but cannot generalize well.
Some works suggest that reranking techniques or few-short learning algorithms
may help solve this problem [47]. Also, results indicated that NLs might not be
evaluated adequately. In this sense, here we provide a set of recommendations
for the evaluation of NLs:

1. MMCs achieve performance similar to NLs. Therefore, we claim that MMCs
and other Markov chains approaches should always be used as a baseline.

2. Although NLs achieve good overall performance, they are significantly
biased due to trajectory overlap. Besides the NLs’ average performance,
researchers should report the performance for the known mobility and novel
mobility scenarios. It is indeed crucial to understand whether the improved
performance of the proposed NL is actually due to its increasing general-
ization capability or because it is memorizing better the trajectories in the
training set;

3. NLs achieve the worst performance on the 0-20 overlap bin. We can improve
the performance on this bin, hence increasing NLs’ generalization capability
with the support of well-known spatial mobility laws, which are loosely
captured by state-of-the-art NLs given their reliance on RNNs.

From other perspectives (e.g., urban planning, sustainability, and others), hav-
ing models that can generalize well is fundamentally important. First, NLs that
generalize can be used to perform better simulations and to analyze what-if
scenarios more realistically. For instance, we may be able to see how attrac-
tive a new POI in a specific place would be. We cannot solve such problems
with a model that only memorizes seen trajectories. Also, it can help urban
planners make decisions about traffic and transportation and, thus, reduce
pollution. We can also use an NL that can generalize to predict better and
understand the mobility of individuals who have never been seen in a region
(e.g., a tourist). Also, a generalized model may be geographically transferable
(e.g., trained in an area and tested on a new territory). This may represent a
significant step toward solutions to some of the United Nations’ Sustainable
Development Goals. In particular, we may use such models to run simulations
or investigate pollution, inclusion, and the design of better cities in territories
where we do not have data or have a scarcity of data.

9 Conclusions

In this work, we investigate the generalization capabilities of next-location pre-
diction datasets. We find that model performance is considerably affected by
trajectory test-train overlap, suggesting that NLs memorize training trajec-
tories rather than generalizing. We show we mitigate this issue by injecting
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mobility laws into state-of-the-art NLs, achieving relative improvement on test
sets with low overlap with the training ones. We aim to consider other mobility
laws and use more sophisticated models to rerank the results in future work.
It would also be helpful to use explainable AI techniques to understand better
the role of mobility laws and the relations between the DL modules composing
NLs.
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Appendix A NL’s performances

JC LCST OFE
0-20 20-40 40-60 60-80 80-100 0-20 20-40 40-60 60-80 80-100 0-20 20-40 40-60 60-80 80-100

Gowalla

MMC 0.129 0.108 0.119 0.323 0.526 0.776 0.013 0.182 0.398 0.644 0.837 0.099 0.211 0.546 0.783 0.874
RNN 0.110 0.093 0.109 0.321 0.498 0.764 0.011 0.173 0.385 0.631 0.824 0.096 0.209 0.532 0.777 0.871
ST-RNN 0.137 0.111 0.128 0.355 0.513 0.782 0.028 0.195 0.406 0.658 0.849 0.106 0.217 0.558 0.793 0.888
DeepMove 0.158 0.116 0.142 0.373 0.536 0.798 0.036 0.211 0.434 0.681 0.869 0.114 0.226 0.573 0.822 0.899
LSTPM 0.152 0.113 0.141 0.369 0.528 0.793 0.032 0.203 0.427 0.669 0.861 0.111 0.219 0.569 0.818 0.897
STAN 0.192 0.124 0.183 0.398 0.561 0.813 0.051 0.221 0.449 0.704 0.888 0.119 0.231 0.579 0.829 0.911

Foursquare NYC

MMC 0.245 0.045 0.214 0.518 0.730 0.889 0.102 0.336 0.653 0.858 0.987 0.230 0.529 0.778 0.885 0.988
RNN 0.213 0.026 0.186 0.472 0.643 0.740 0.132 0.271 0.504 0.528 0.869 0.191 0.610 0.712 0.926 0.988
ST-RNN 0.248 0.032 0.236 0.538 0.709 0.859 0.161 0.322 0.544 0.589 0.920 0.228 0.679 0.779 0.928 0.989
DeepMove 0.259 0.051 0.241 0.539 0.716 0.873 0.178 0.330 0.569 0.631 0.926 0.231 0.683 0.786 0.935 0.996
LSTPM 0.251 0.046 0.239 0.533 0.717 0.865 0.166 0.327 0.551 0.599 0.922 0.229 0.680 0.782 0.929 0.991
STAN 0.264 0.076 0.269 0.544 0.732 0.875 0.186 0.331 0.574 0.636 0.925 0.238 0.686 0.792 0.936 0.992

Foursquare TKY

MMC 0.216 0.043 0.172 0.450 0.691 0.856 0.096 0.243 0.428 0.634 0.718 0.199 0.360 0.691 0.716 0.991
RNN 0.183 0.020 0.153 0.390 0.609 0.783 0.101 0.205 0.381 0.593 0.692 0.148 0.464 0.703 0.737 0.892
ST-RNN 0.198 0.034 0.158 0.397 0.637 0.794 0.115 0.224 0.394 0.608 0.699 0.156 0.468 0.711 0.739 0.906
LSTPM 0.211 0.041 0.164 0.431 0.688 0.848 0.119 0.233 0.419 0.621 0.715 0.168 0.471 0.718 0.743 0.931
DeepMove 0.218 0.047 0.168 0.452 0.694 0.854 0.124 0.239 0.424 0.638 0.719 0.175 0.472 0.723 0.744 0.935
STAN 0.225 0.051 0.174 0.458 0.696 0.857 0.129 0.244 0.426 0.639 0.722 0.181 0.475 0.728 0.749 0.938

Taxi Porto

MMC 0.309 0.113 0.258 0.316 0.385 0.482 0.274 0.302 0.343 0.397 0.411 0.286 0.333 0.349 0.427 0.436
RNN 0.410 0.066 0.269 0.398 0.516 0.638 0.293 0.381 0.461 0.542 0.649 0.391 0.458 0.516 0.617 0.643
ST-RNN 0.416 0.073 0.272 0.404 0.519 0.639 0.301 0.395 0.467 0.544 0.653 0.396 0.463 0.518 0.623 0.649
DeepMove 0.442 0.098 0.296 0.419 0.528 0.651 0.328 0.417 0.486 0.561 0.672 0.409 0.467 0.532 0.637 0.684
LSTPM 0.429 0.089 0.281 0.413 0.521 0.647 0.316 0.411 0.473 0.558 0.668 0.399 0.466 0.524 0.629 0.661
STAN 0.453 0.103 0.305 0.421 0.532 0.649 0.329 0.423 0.492 0.558 0.679 0.411 0.474 0.537 0.631 0.692

Taxi SF

MMC 0.242 0.169 0.261 0.385 0.542 0.583 0.194 0.248 0.308 0.451 0.505 0.231 0.256 0.389 0.427 0.692
RNN 0.281 0.184 0.279 0.403 0.565 0.601 0.205 0.263 0.321 0.475 0.539 0.262 0.303 0.414 0.504 0.816
ST-RNN 0.283 0.189 0.284 0.411 0.568 0.607 0.211 0.274 0.329 0.486 0.549 0.274 0.315 0.429 0.521 0.834
LSTPM 0.296 0.194 0.286 0.429 0.574 0.609 0.218 0.278 0.334 0.492 0.558 0.279 0.319 0.438 0.529 0.847
DeepMove 0.286 0.192 0.287 0.414 0.571 0.609 0.217 0.277 0.332 0.489 0.551 0.279 0.318 0.435 0.527 0.841
STAN 0.314 0.201 0.295 0.433 0.581 0.614 0.223 0.281 0.349 0.498 0.573 0.293 0.326 0.443 0.532 0.850

Table A1 ACC@5 of all the models on all the datasets without a stratification (first
column) and with the train-test stratification based on overlap metric and percentage of
overlap

Appendix B NL’s performances after
re-ranking

JC LCST OFE
0-20 20-40 40-60 60-80 80-100 0-20 20-40 40-60 60-80 80-100 0-20 20-40 40-60 60-80 80-100

Gowalla

RNN 0.140 0.160 0.148 0.347 0.533 0.777 0.016 0.192 0.403 0.647 0.837 0.144 0.257 0.546 0.783 0.874
ST-RNN 0.117 0.143 0.148 0.326 0.506 0.765 0.013 0.184 0.393 0.634 0.825 0.127 0.263 0.532 0.777 0.871
DeepMove 0.145 0.164 0.156 0.371 0.521 0.783 0.033 0.204 0.415 0.661 0.850 0.151 0.265 0.558 0.793 0.888
LSTPM 0.171 0.182 0.178 0.379 0.544 0.799 0.043 0.225 0.452 0.684 0.869 0.151 0.276 0.573 0.822 0.899
STAN 0.163 0.178 0.182 0.385 0.615 0.797 0.039 0.209 0.440 0.670 0.862 0.146 0.267 0.569 0.818 0.897

Foursquare NYC

RNN 0.233 0.051 0.265 0.479 0.651 0.741 0.158 0.276 0.598 0.531 0.869 0.241 0.742 0.712 0.926 0.988
ST-RNN 0.261 0.059 0.287 0.563 0.722 0.861 0.186 0.328 0.552 0.590 0.920 0.299 0.787 0.779 0.928 0.989
DeepMove 0.277 0.084 0.300 0.571 0.724 0.875 0.213 0.358 0.593 0.633 0.927 0.268 0.766 0.786 0.935 0.996
LSTPM 0.272 0.072 0.290 0.562 0.728 0.873 0.184 0.356 0.576 0.601 0.923 0.271 0.763 0.782 0.929 0.991
STAN 0.281 0.101 0.327 0.570 0.740 0.877 0.214 0.359 0.592 0.638 0.925 0.283 0.778 0.792 0.936 0.992

Foursquare TKY

RNN 0.195 0.028 0.186 0.408 0.618 0.785 0.123 0.317 0.394 0.596 0.692 0.171 0.520 0.703 0.737 0.892
ST-RNN 0.213 0.057 0.213 0.411 0.647 0.800 0.133 0.235 0.408 0.614 0.699 0.194 0.525 0.711 0.739 0.906
LSTPM 0.223 0.060 0.208 0.452 0.698 0.856 0.142 0.246 0.437 0.622 0.715 0.200 0.540 0.718 0.743 0.931
DeepMove 0.230 0.074 0.209 0.488 0.704 0.858 0.151 0.338 0.444 0.643 0.719 0.236 0.564 0.723 0.744 0.935
STAN 0.236 0.093 0.278 0.501 0.707 0.865 0.153 0.329 0.447 0.642 0.726 0.239 0.553 0.728 0.749 0.938

Taxi Porto

RNN 0.421 0.069 0.275 0.436 0.525 0.643 0.306 0.387 0.468 0.545 0.649 0.398 0.458 0.516 0.617 0.643
ST-RNN 0.427 0.077 0.279 0.415 0.529 0.641 0.317 0.401 0.473 0.548 0.654 0.418 0.463 0.518 0.623 0.649
LSTPM 0.466 0.104 0.301 0.429 0.536 0.652 0.348 0.426 0.498 0.563 0.673 0.434 0.467 0.532 0.637 0.684
DeepMove 0.457 0.095 0.287 0.423 0.529 0.650 0.337 0.422 0.482 0.559 0.668 0.419 0.466 0.524 0.629 0.661
STAN 0.483 0.111 0.316 0.436 0.542 0.652 0.355 0.431 0.502 0.563 0.680 0.440 0.474 0.537 0.631 0.692

Taxi SF

RNN 0.288 0.193 0.285 0.422 0.571 0.604 0.208 0.271 0.327 0.477 0.539 0.276 0.303 0.414 0.504 0.816
ST-RNN 0.297 0.200 0.294 0.433 0.575 0.608 0.225 0.278 0.333 0.488 0.549 0.298 0.315 0.429 0.521 0.834
DeepMove 0.313 0.202 0.292 0.449 0.581 0.610 0.230 0.282 0.338 0.493 0.558 0.297 0.319 0.438 0.529 0.847
LSTPM 0.301 0.199 0.297 0.433 0.578 0.613 0.238 0.282 0.338 0.493 0.552 0.293 0.318 0.435 0.527 0.841
STAN 0.330 0.208 0.304 0.461 0.592 0.617 0.233 0.288 0.355 0.503 0.574 0.310 0.326 0.443 0.532 0.850

Table B2 ACC@5 of all the models after the re-ranking on all the datasets without a
stratification (first column) and with the train-test stratification based on overlap metric
and percentage of overlap
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