
Data Mining and Knowledge Discovery (2023) 37:1719–1778
https://doi.org/10.1007/s10618-023-00933-9

Benchmarking and survey of explanationmethods for black
box models

Francesco Bodria1 · Fosca Giannotti1 · Riccardo Guidotti3 ·
Francesca Naretto1 · Dino Pedreschi3 · Salvatore Rinzivillo2

Received: 24 November 2021 / Accepted: 10 March 2023 / Published online: 3 June 2023
© The Author(s) 2023

Abstract
The rise of sophisticated black-box machine learning models in Artificial Intelligence
systems has prompted the need for explanation methods that reveal how these models
work in an understandable way to users and decisionmakers. Unsurprisingly, the state-
of-the-art exhibits currently a plethora of explainers providing many different types of
explanations. With the aim of providing a compass for researchers and practitioners,
this paper proposes a categorization of explanation methods from the perspective of
the type of explanation they return, also considering the different input data formats.
The paper accounts for the most representative explainers to date, also discussing
similarities anddiscrepancies of returned explanations through their visual appearance.
A companionwebsite to the paper is provided as a continuous update to new explainers
as they appear. Moreover, a subset of the most robust and widely adopted explainers,
are benchmarked with respect to a repertoire of quantitative metrics.
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1 Introduction

Artificial Intelligence (AI) has become one of the most important scientific and tech-
nological areas, with a tremendous socio-economic impact in many aspects of modern
society. The impressive performance of AI systems is often reached by adopting
sophisticated Machine Learning (ML) models, whose complexity hides the logic of
their internal processes (Miller 2019). For this reason, such models are referred to as
“black-box models” (Freitas 2013; Pasquale 2015). Well-known examples of black-
boxmodels usedwithin currentAI systems include deep learningmodels and ensemble
models such as bagging and boosting (Guidotti et al. 2019c). The high performance
of such models in terms of accuracy comes together with a high degree of opaqueness
that might cause developers and users to overlook issues that the models may inherit
by training data due to different forms of hidden biases (Kurenkov 2020).

There is an inherent risk that relying on opaque models may lead to adopting
decisions that we do not fully understand or, even worse, violate ethical principles
or legal norms. These risks are particularly relevant in high-stakes decision-making
scenarios, such asmedicine, justice, finance, recruitment, access to public benefits, and
so on (Rudin 2019); the lack of transparency and trust may explain the relatively low
adoption rate of current AI-based decision support systems in the mentioned areas.
Moreover, companies that embed black-box ML models in their AI products and
applications risk incurring a potential loss of safety and trust (Chouldechova 2017).

In 2018, the European Parliament introduced in theGDPR1 a set of clauses for auto-
mated decision-making in terms of a right of explanation for all individuals to obtain
“meaningful explanations of the logic involved” when automated decision making
takes place. Also, in 2019, the High-Level Expert Group on AI presented the ethics
guidelines for trustworthy AI,2 where explainability is indicated as one of the fun-
damental requirements for trustworthiness. Today, the same principle has become a
cornerstone of the AI Act, the proposed new EU regulation establishing standardized
rules on artificial intelligence.3 Indeed, there is a widespread and increasing consensus
on the urgency of implementing appropriate explanation tools, although it represents a
scientific challenge that is still largely open.Meaningful explanations are fundamental
for debugging models, unveiling possible biases, tackling ethical issues, and fostering
trust and collaboration between humans and their AI assistants.

Unsurprisingly, as a reaction to the mentioned concerns, we have witnessed in the
last years the rise of a plethora of explanation methods for black-box models (Guidotti
et al. 2019c; Adadi and Berrada 2018; Arrieta et al. 2020; Theissler et al. 2022;
Guidotti 2022; Yuan et al. 2020b) both from academia and industries. eXplainable

1 https://ec.europa.eu/justice/smedataprotect/.
2 https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai.
3 https://digital-strategy.ec.europa.eu/en/library/proposal-regulation-laying-down-harmonised-rules-
artificial-intelligence.
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Artificial Intelligence (XAI) (Miller 2019) emerged as a broad and very active research
area, investigating methods that provide many different types of explanations, each
capturing diverse aspects of a black-box model.

The objective of this work is to provide a fresh account of the ideas and tools
of the current generation of explanation methods, or explainers, from the perspec-
tive of the different types of explanations, that such methods produce as an output.4

To this purpose, we provide a comprehensive ontology of the explanations returned,
taking into account the most popular data formats: tabular data, images, and text,
with an account also of time series and graphs. We mainly focus on the most recent
approaches of post-hoc explainers but also consider some promising intrinsic explain-
ers (“explainable-by-design” models).

While presenting the plethora of existing XAI methods, we provide more details
on solid, pioneering approaches but try to discuss also less known recent methods. In
any case, further information can be found by the reader in the companion website
of this paper, the XAI Live Survey5 that we are maintaining to keep pace with newly
emergent methods. We report extensive examples of the various explanations for each
data type, highlighting similarities and discrepancies of returned explanations through
their visual appearance. Finally, a subset of methods, selected among the most robust
and widely adopted, are benchmarked with respect to a collection of quantitative
metrics, assessing faithfulness, stability, robustness, and execution time.

The rest of the paper is organized as follows. Section2 summarizes existing sur-
veys on XAI and highlights the differences between this work and previous ones.
Section3 presents the proposed explanation-based taxonomy of explanation methods,
while Sect. 4 illustrates and formalizes existing evaluation measures typically used to
benchmark explanation methods. Sections5, 6 and 7 present the details of the most
recent and widely adopted explanation methods, together with examples and quanti-
tative comparison. Finally, Sect. 10 summarizes the crucial aspects that emerged from
the analysis of state of the art, and briefly discusses future research directions.

2 Related works

The widespread need for XAI in the last years caused an explosion of interest in the
design of explanation methods (Goebel et al. 2018). The books (Molnar 2022; Samek
et al. 2019) present in detail a restricted set of the best-known methodologies to make
general ML models interpretable (Molnar 2022) and to explain the outcomes of deep
neural networks (Samek et al. 2019).

In (Guidotti et al. 2019c), the classification is based on four categories of prob-
lems, and the explanation methods are classified according to the problem they are
able to solve. The first distinction is between explanation by design [(also named
intrinsic interpretability), and black-box explanation (also named post-hoc inter-
pretability (Adadi and Berrada 2018; Murdoch et al. 2019; Carvalho et al. 2019)]. The

4 This work extends and completes “A Survey Of Methods For Explaining Black-Box Models” appeared
in ACM Computing Surveys (CSUR), 51(5), 1–42 (Guidotti et al. 2019c).
5 https://kdd-lab.github.io/XAISurvey/.
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second distinction in (Guidotti et al. 2019c) further classifies the black-box explana-
tion problem into model explanation, outcome explanation, and black-box inspection.
Model explanation, achieved by global explainers (Craven and Shavlik 1995), aims
at explaining the whole logic of a model. Outcome explanation, achieved by local
explainers (Ribeiro et al. 2016; Lundberg and Lee 2017), understands the reasons for
a specific prediction. Finally, the aim of the black-box inspection is to retrieve a visual
representation for understanding how the black-boxworks. Another crucial distinction
highlighted in (Martens et al. 2007; Guidotti et al. 2019c; Adadi and Berrada 2018;
Došilović et al. 2018; Carvalho et al. 2019) is between model-specific and model-
agnostic explanation methods. This classification depends on whether the technique
adopted to explain can work only on a specific black-box model or can be adopted on
any black-box.

In (Gilpin et al. 2018), the focus is to propose a unified taxonomy to classify the
existing literature. The following key terms are defined: explanation, interpretability,
and explainability. Interpretability consists of describing the internals of a system in a
way that is understandable to humans. A system is called interpretable if it produces
descriptions that are simple enough for a person to understand using a vocabulary
that is meaningful to the user. An alternative classification of definitions is presented
in (Arrieta et al. 2020), with a specific taxonomy for explainers of deep learning mod-
els. The leading concept of the classification is Responsible Artificial Intelligence,
i.e., a methodology for the large-scale implementation of AI methods in real organi-
zations with fairness, model explainability, and accountability at its core. Similarly
to (Guidotti et al. 2019c), in (Arrieta et al. 2020), the term interpretability (or trans-
parency) is used to refer to a passive characteristic of a model that makes sense for
a human observer. On the other hand, explainability is an active characteristic of a
model, denoting any action taken with the intent of clarifying or detailing its internal
functions. Further taxonomies and definitions are presented in (Murdoch et al. 2019;
Carvalho et al. 2019). Another branch of the literature review focuses on the quanti-
tative and qualitative evaluation of explanation methods (Samek et al. 2019; Carvalho
et al. 2019). Also, we are recently witnessing to XAI surveys devoted to specific topics
such as XAI methods for time series classification (Theissler et al. 2022), or counter-
factual explanations (Guidotti 2022; Karimi et al. 2020b). Finally, we highlight that
the literature reviews related to explainability are focused not just on ML and AI but
also on social studies (Miller 2019; Byrne 2019), recommendation systems (Zhang and
Chen 2020), model-agents(Anjomshoae et al. 2019), and domain-specific applications
such as health and medicine (Tjoa and Guan 2019).

In this survey, we propose an alternative view w.r.t. the taxonomy introduced
in (Guidotti et al. 2019c) but starting from the data perspective. In light of the works
mentioned above, we believe that an updated systematic categorization of explanation
methods based on the type of explanation returned and their comparison is still miss-
ing in the literature and might be beneficial for end users. Indeed, users requiring an
explanation first know which data type they are dealing with, then the type of explana-
tion they can have for that data type, and finally, they can select the best XAI method
that can be used to obtain such explanation among the available ones comparing the
properties offered by the method as well as a first general evaluation.
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3 Explanation-based taxonomy

The goal of this survey is to provide the reader with a guide to map a problem set-
ting with a certain data type and black-box model to a set of compatible explanation
methods. Thus, in this section, we present a novel taxonomy of XAI methods based
on the type of explanation returned. To collect the papers presented in the following
sections, we opted for a semi-systematic literature review (Snyder 2019): (i) we con-
ducted a systematic search on Scopus using a set of XAI search terms like “explain*”
or “interpretab*” in title or abstracts; (ii) we conducted a dynamic search to uncover
additional papers in the different subfields (i.e., by collecting papers citing the once
we found with the first search); (iii) the collected papers were analyzed by the authors
based on the number of citations, venue, and availability of an open-source library.6

In particular, we focus our survey on explanations and explanation methods acting
on the three principal data types recognized in the literature: tabular data, images and
text (Guidotti et al. 2019c; Adadi and Berrada 2018; Miller 2019). For each data type,
we have distinguished different types of explanations illustrated in Fig. 1. A reader
should use Fig. 1 as follows. First, she should identify through the column header
the data type of her problem setting. After that, each row offers an alternative type of
explanation with an example. For instance, if we are interested in images, we should
look to the second column. Here we can find saliency maps and concept attribution as
image-specific explanation types. The last rows reports visualizations and examples of
prototypes and counterfactuals, i.e., instance-based explanations, which are available
independently from the data type analyzed. Finally, once the reader has selected the
desired/most-suitable explanation type on Fig. 1, she can find in the corresponding sec-
tion an overview of the most well-known and used explanation methods able to return
that kind of explanation. For the sake of completeness, other types of data, increasingly
present in literature, such as graphs (Yuan et al. 2020b) and time series (Theissler et al.
2022), have been included in a separate section. A Table appearing at the beginning
of each subsequent section summarizes the explanation methods by grouping them
accordingly to the classification illustrated in Fig. 1. Besides, in every section, we
present the meaning of each type of explanation. The acronyms reported in capital
letters in Fig. 1, in this section and in the following, are used in the remainder of the
work to quickly categorize the various explanations and explanation methods.

In the rest of this section, we recall the existing taxonomy and classification of
XAI methods present in the literature (Guidotti et al. 2019c; Adadi and Berrada 2018;

6 In particular, we adopted the following criteria. First, contributions with working implementation There
are several publications in the field of XAI, but the majority of them do not have a working implementation.
Since the goal of this survey is also to provide a quantitative comparison among different XAI methods,
the availability of an implementation is a key factor. Second, contributions with a high number of citations.
In this survey, we discuss and also present some works that do not have implementations. These works are
still considered due to the fact that they have a great number of citations (more than 150); hence, in our
opinion, they are pillars of this field. Third, XAI pillars. We also considered some works that do not have
working implementations, but they were published several years ago with a great number of citations. For
this reason, we considered them pillars of this research field, and we added them to the survey. Fourth,
works considering ethical aspects. Lastly, we considered works that tackle ethical aspects, such as privacy.
This choice is due to the fact that the GDPR and the AI Act are changing the focus of the works in XAI:
during the last few years, the concept of trustworthy AI is gaining a lot of interest, leading up to many works
that consider not only the aspect of explanation, but also fairness, privacy, and accountability.
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TABULAR IMAGE TEXT TIME SERIES GRAPHS

Feature Importance (FI)
A vector containing a value
for each feature. Each value
indicates the importance of

the feature for the
classification.

Saliency Maps (SM)
A map that highlights the

contribution of each pixel at
the prediction.

Sentence Highlighting
(SH)

A map that highlights the
contribution of each word to

the prediction.

Series Highlighting
A score for every point in
the series, which highlights

the contribution to the
prediction.

Node Highlighting
A score for every node in
the graph which highlights
the contribution of that
node to the prediction.

Rule-Based (RB)
A set of premises that the

record must satisfy in order
to meet the rule’s

consequence.
r = Education ≤
College → ≤ 50k

Concept Attribution
(CA)

Compute attribution to a
target “concept” given by
the user. For example, how
sensitive is the output (a
prediction of zebra) to a
concept (the presence of

stripes)?

Attention Based (AB)
This type of explanation
gives a matrix of scores

which reveals how the words
in the sentence are related

to each other.

Attention Based
This type of explanation

gives a matrix of scores that
reveal how the points in the

series are related to each
other.

Edge Highlighting
A score for every edge in

the graph which highlights
the contribution of edges to

the prediction.

Prototypes (PR)
The user is provided with a series of examples that characterize a class of the black box

p = Age ∈ [35, 60],
Education ∈

[College,Master] →“≥ 50k”
p = →

“cat”
p = “... not bad ...” →

“positive”

Graph Prototypes
Identifying which part of
the graph has influenced

the prediction

Counterfactuals (CF)
The user is provided with a series of examples similar to the input query but with different class prediction

q = Education ≤ College →
“≤ 50k”

c = Education ≥ Master →
“≥ 50k”

q = →“3”

c = →“8”

q = The movie is not bad
→“positive”

c = The movie is that bad
→“negative”

Fig. 1 Explanation-based taxonomy with examples divided for different data types

Fig. 2 Existing taxonomy for the classification of explanation methods

Gilpin et al. 2018; Arrieta et al. 2020; Samek et al. 2019; Carvalho et al. 2019) in order
to provide the reader a complete overview of the proposed explanation-based cate-
gorization of explanation methods. In the following, we summarize the fundamental
distinctions adopted to annotate the methods in Fig. 2:

– INtrinsically (IN) explainable methods are explainable by design methods that
return a decision, and the reasons for the decision are directly accessible because
the model is transparent.

– Post-Hoc (PH) explanation methods provides explanations for a black-box model.
– Global (G) explanation methods aim at explaining the overall logic of a black-box
model. Therefore the explanation returned is a global, complete explanation valid
for any instance;

– Local (L) explainers aim at explaining the reasons for the decision of a black-box
model for a specific instance.

– Model-Agnostic (A) explanation methods can be used to interpret any type of
black-box model;

– Model-Specific (S) explanationmethods that can be used to interpret only a specific
type of black-box model.
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Moreover, to provide the reader with a self-contained review of XAI methods,
we complete this section by reporting the definitions of explanation, interpretability,
transparency, and complexity present in the literature:

– Explanation (Arrieta et al. 2020; Guidotti et al. 2019c) is an interface between
humans and an AI decision-maker that is both comprehensible to humans and an
accurate proxy of AI. Consequently, explainability is the ability to provide a valid
explanation.

– Interpretability(Guidotti et al. 2019c), or comprehensibility (Gleicher 2016), is
the ability of stakeholders to understand relevant aspects of the modeling pro-
cess. Interpretability and comprehensibility are tied to the evaluation of the model
complexity.

– Transparency (Arrieta et al. 2020), or equivalently understandability or intelligi-
bility, is the capacity of a model to be interpretable itself. Thus, the model allows
a human to direct understand its internal mechanism and its decision process.

– Complexity (Doshi-Velez and Kim 2017) is the degree of effort required by a user
to comprehend an explanation. The complexity can consider the user background
or eventual time limitation necessary for the understanding.

Finally, the same taxonomyand categorization adopted in the survey are exploited in
a XAI Live Survey7 where the existing methods are further analyzed and continuously
updated with emergent approaches.

4 Evaluationmeasures for explanations

There is a wide debate on how to evaluate the quality of the explanation methods.
Often it is formulated as properties of the returned explanations aimed at capturing
concepts as goodness and usefulness of explanations (Guidotti et al. 2019c; Adadi and
Berrada 2018; Gilpin et al. 2018; Arrieta et al. 2020; Samek et al. 2019; Carvalho et al.
2019). In the following, we describe a selection of established methodologies for the
evaluation of explanation methods both from the quantitative and qualitative point of
view which are typically used to judge the output of XAI methods.

Quantitative evaluation focuses on the performance of the explainer and on the
goodness of the explanations returned. In the following, we present the general idea
of each metric used later on for benchmarking. Since every metric may vary in its
application depending on data type, further details are provided in the various sections.

– Fidelity aims to evaluate how good is f at mimicking b. There are different imple-
mentations of fidelity, depending on the type of explanator under analysis (Guidotti
et al. 2019a). For example, inmethodswhere there is a creation of a surrogatemodel
g to mimic b, fidelity compares the prediction of b and g on the instances used to
train g.

– Stability aims at validating if similar instances obtain similar explanations. Stability
can be evaluated through theLipschitz constant (Alvarez-Melis and Jaakkola 2018)

as Lx = max‖ex−ex ′ ‖‖x−x ′‖ ,∀x ′ ∈ Nx where x is the instance, ex the explanation and
Nx is a neighborhood of instances similar to x .

7 https://kdd-lab.github.io/XAISurvey/.
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– Deletion and Insertion (Petsiuk et al. 2018) are metrics that remove the features
that the explanation method f found important and see how the performance of b
degrades. The intuition behind deletion is that removing the “cause” will force the
black-box to change its decision. Among the deletion methods, there is the Faith-
fulness (Alvarez-Melis and Jaakkola 2018). It aims to validate if the relevance
scores indicate true importance: we expect higher importance values for attributes
that greatly influence the final prediction.8 Given a black-box model b and the
feature importance e extracted from an importance-based explanator f , the faith-
fulness method incrementally removes each of the attributes deemed important by
f . At each removal, the effect on the performance of b is evaluated. In general, a
sharp drop and a low area under the probability curve mean a good explanation.
On the other hand, the insertion metric takes a complementary approach. Typi-
cally, insertion and deletion evaluations are tailored for specific types of explainers
called Feature Importance explainers for tabular data, Saliency Maps for image
data, and Sentence Highlighting for text data.

– Monotonicity (Luss et al. 2021) can be seen as an implementation of an insertion
method: it evaluates the effect of b by incrementally adding each attribute in order
of increasing importance. In this case, we expect that the black-box performance
increases by adding more and more features, thereby resulting in monotonically
increasing model performance.

– Running Time: the time needed to produce the explanation is also an important
evaluation.

It is worth noting that, to the best of our knowledge, there are currently no objec-
tive evaluation measures that can select the best explainer. A different approach to
evaluating explainers consists in generating synthetic ground truth explanations and
comparing them with those returned by the explainers (Guidotti 2021). However, this
evaluation with synthetic explanations cannot be transferred to an objective evalua-
tion of real data because we would not need an explainer if we knew the ground truth
explanation. Qualitative evaluation is important to understand the actual usability of
explanations from the point of view of the end-user: they satisfy human curiosity, find
meanings, safety, social acceptance, and trust. In (Doshi-Velez and Kim 2017), the
evaluation criteria for the qualitative evaluation are systematized into three categories:

– Functionally-grounded metrics aim to evaluate interpretability by exploiting some
formal definitions that are used as proxies. They do not require humans for valida-
tion. The challenge is to define the proxy to employ, depending on the context. As
an example,we can validate the interpretability of amodel by showing the improve-
ments w.r.t. to another model already proven to be interpretable by human-based
experiments.

– Application-grounded evaluation methods require human experts to validate the
specific task under analysis (Williams et al. 2016; Suissa-Peleg et al. 2016). They
are usually employed in specific settings. For example, if the model is an assistant
in the decision-making process of doctors, the validation is done by the doctors.

– Human-grounded metrics evaluate the explanations through humans who are not
experts. The goal is to measure the overall understandability of the explanation in

8 An implementation of faithfulness is available in aix360 presented in Sect. 9.
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simplified tasks (Lakkaraju et al. 2016; Kim et al. 2015). This validation is most
appropriate for general testing notions of the quality of an explanation.

In this work, we do not provide a qualitative evaluation from the human point of view,
but we try to fulfill these criteria by providing the user with a visual example of what
the explanation returned by the explainer looks like. This helps the user to understand
whether the explainer produced fulfills his needs.

In the following section, besides illustrating explanationmethodswith respect to our
explanation-based taxonomy, we report a qualitative comparison of the explanations.
These examples might help the reader to understand how to interpret these explana-
tions returned by the different methods. Additionally, when possible, we benchmarked
the most widely used explanation methods on a set of datasets, and we report their
evaluation using the measures described in this section.9

5 Explanations for tabular data

In this section,we present a selection of approaches for explaining the decision systems
acting on tabular data. In particular, we present the following types of explanations
based on:Features Importance (FI, Sect. 5.1),Rule (RB, Sect. 5.2),Prototype (PR), and
Counterfactual (CF) (Sect. 5.3). Table 1 summarizes and categorizes the explainers.
The methods are sorted by the explanation type they produce. Every explanation
method is provided the author’s name, the year of publication, and the data type it can
handle. In addition, Table 1 specifies if the method is intrinsic (IN) or Post-hoc (PH), if
it provides Global explanations (G) or Local one(L), and if it is anAgnosticmethod(A)
or a model Specific one (S). Methods with code available are highlighted in blue. After
the presentation of the methods, we report the results of experiments obtained from
the application of the explainers on Logistic Regression (LG), XGBoost (XGB), and
Catboost (CAT) classifiers.10 trained on the adult and german dataset.11

5.1 Feature importance

Feature importance is one of the most popular types of explanation returned by
local explanation methods. For feature importance-based explanation methods, the
explainer assigns to each feature an importance value which represents howmuch that
particular feature was important for the prediction under analysis. Formally, given
a record x , an explainer f (·) models a feature importance explanation as a vector

9 All the experiments in the next sections are performed on a server with GPU: 1xTesla K80, compute 3.7,
having 2496 CUDA cores, 12GB GDDR5 VRAM, CPU: 1xsingle core hyperthreaded Xeon Processors
@2.3Ghz, i.e. (1 core, 2 threads) with 16 GB of RAM, or on a server: CPU: 16x Intel(R) Xeon(R) Gold
5120 CPU @ 2.20GHz (64 bits), 63 GB RAM. The code for reproducing the results is available https://
github.com/kdd-lab/XAI-Survey.
10 LG: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
XGB: https://xgboost.readthedocs.io/en/stable/python/python_intro.html CAT: https://catboost.ai/en/
docs/concepts/python-usages-examples
11 adult: https://archive.ics.uci.edu/ml/datasets/adult, german: https://archive.ics.uci.edu/ml/datasets/
statlog+(german+credit+data).
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Table 1 Summary of methods for explaining black-boxes for tabular data

Type Name Ref. Data type IN/PH G/L A/S

FI lrp Bach et al. (2015) ANY PH L A

lime Ribeiro et al. (2016) ANY PH L A

shap Lundberg and Lee (2017) ANY PH G/L A

maple Plumb et al. (2018) TAB PH/IN L A

ebm Nori et al. (2019) TAB IN G/L A

nam Agarwal et al. (2021) TAB IN L S

ciu Anjomshoae et al. (2020) TAB PH L A

eem Chowdhury et al. (2022) TAB PH G A

dalex Lipovetsky (2022) ANY PH G/L A

RB trepan Craven and Shavlik (1995) TAB PH G S

msft Chipman et al. (1998) TAB PH G S

cmm Domingos (1998) TAB PH G S

dectext Boz (2002) TAB PH G S

sta Zhou and Hooker (2016) TAB PH G S

scalable- brl Yang et al. (2017) TAB IN G/L A

lore Guidotti et al. (2019a) TAB PH L A

rulematrix Ming et al. (2019) TAB PH G/L A

anchor Ribeiro et al. (2018) ANY PH G/L A

glocalx Setzu et al. (2019) TAB PH G/L A

skoperule Friedman and Popescu (2008) TAB PH G/L A

PR ps Bien and Tibshirani (2011) TAB IN G/L S

mmd- critic Kim et al. (2016) ANY IN G S

protodash Gurumoorthy et al. (2019) ANY IN G A

tsp Tan et al. (2020) TAB PH L S

CF cem Dhurandhar et al. (2018) ANY PH L S

cfx Albini et al. (2020) TAB PH L S

dice Mothilal et al. (2020) TAB PH L A

c- chave Pawelczyk et al. (2020) TAB PH L A

face Poyiadzi et al. (2020) ANY PH L A

Ares Ley et al. (2022) TAB PH G A

The methods are sorted by explanation type: Features Importance (FI), Rule-Based (RB), Counterfactuals
(CF), Prototypes (PR), and Decision Tree (DT). For everymethod, there is a data type on which it is possible
to apply it: only on tabular (TAB) or any data (ANY). If it is an Intrinsic Model (IN) or a Post-Hoc one
(PH), a local method (L) or a global one (G), and finally, if it is model-agnostic (A) or model-specific (S)

e = {e1, e2, . . . , em}, in which the value ei ∈ e is the importance of the i th feature for
the decision made by the black-box model b(x). For understanding the contribution of
each feature, the sign and themagnitude of each value ei are considered.W.r.t. the sign,
if ei < 0, it means that the feature contributes negatively to the outcome y; otherwise,
if ei > 0, the feature contributes positively. The magnitude, instead, represents how
great the contribution of the feature is to the final prediction y. In particular, the greater
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the value of |ei |, the greater its contribution. Hence, when ei = 0, it means that the
i th feature is showing no contribution to the output decision. An example of a feature
based explanation is e = {age = 0.8, income = 0.0, education = −0.2}, y = deny.
In this case, age is the most important feature for the decision deny, income is not
affecting the outcome, and education has a small negative contribution.

LIME, Local Interpretable Model-agnostic Explanations (Ribeiro et al. 2016), is a
localmodel-agnostic explainer that returns explanations as feature importance vectors.
The main idea of lime is that the explanation may be derived locally from records gen-
erated randomly in the neighborhood of the instance that has to be explained. The key
factor is that it samples instances both in the vicinity of x (which have a high weight)
and far away from x (low weight), exploiting πx , a proximity measure able to capture
the locality. We denote b as the black-box and x as the instance we want to explain.
To learn the local behavior of b, lime draws samples weighted by πx . It samples these
instances around x by drawing nonzero elements of x uniformly at random. This gives
to lime a perturbed sample of instances {z ∈ R

d} to fed to the model b and obtain b(z).
They are then used to train the explanation model g(·): a sparse linear model on the
perturbed samples. The local feature importance explanation consists of the weights
of the linear model. A number of papers focus on overcoming the limitations of lime,
providing several variants of it. dlime (Zafar and Khan 2019) is a deterministic ver-
sion in which the neighbors are selected from the training data by an agglomerative
hierarchical clustering. ilime (ElShawi et al. 2019) randomly generates the synthetic
neighborhood using weighted instances. alime (Shankaranarayana and Runje 2019)
runs the random data generation only once at “training time”. kl- lime (Peltola
2018) adopts a Kullback–Leibler divergence to explain Bayesian predictive models.
qlime (Bramhall et al. 2020) also consider nonlinear relationships using a quadratic
approximation. As presented in the following, lime can also be used on other data
types. In Fig. 3 (upper part) are reported examples of lime12 explanations relative to
our experimentation on adult (a/b) and german (c/d).13 We predicted the same
record using LG and CAT, and then we explained it. Interestingly, for adult (plots
a/b), lime considers a similar set of features as important (even if with different values
of importance) for the twomodels: on 6 features, only one differs. A different scenario
is obtained applying lime on german (plots c/d): different features are considered
important by the two classifiers. However, the confidence of the prediction between
the two classifiers is quite different: both of them predict the output correctly, but CAT
has a higher value, suggesting that this could be the cause of differences between the
two explanations.

SHAP, SHapley Additive exPlanations (Lundberg and Lee 2017), is a local model-
agnostic explanation method computing features importance by means of Shapley
values,14 a concept from cooperative game theory. The explanations returned by shap
are additive feature attributions and respect the following definition: g(z′) = φ0 +∑M

i=1 φi z′i , where z′ ≈ x as a real number, z′ ∈ [0, 1], φi ∈ R are effects assigned
to each feature, while M is the number of simplified input features. shap retains

12 We refer to the original version of lime.
13 For reproducibility reasons, we fixed the random seed.
14 We refer the interested reader to: https://christophm.github.io/interpretable-ml-book/shapley.html.
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Fig. 3 TOP: lime application on the same record for adult (a/b), german (c/d): a/c are the LG model
explanation and b/d the CAT model explanation. All the models correctly predicted the output class. BOT-
TOM: Force plot returned by shap explaining XGB on two records of adult: (e), labeled as class 1
(> 50K ) and, (f), labeled as class 0 (≤ 50K ). Only the features that contributed more (i.e. higher values)
to the classification are reported

three properties: (i) local accuracy, meaning that g(x)matches b(x); (ii)missingness,
which allows for features xi = 0 to have no attributed impact on the shap values; (iii)
stability, meaning that if a model changes so that the marginal contribution of a feature
value increases (or stays the same), the shap value also increases (or stays the same).
The construction of the shap values allow to employ them both locally, in which each
observation gets its own set of shap values, and globally, by exploiting collective
shap values. We highlight that shap can be realized through different explanation
models that differ in how they approximate the computation of the shap values. In
particular, there are five strategies: KernelExplainer is the model-agnostic one, while
LinearExplainer, TreeExplainer, GradientExplainer, and DeepExplainer are model-
specific. Besides, similarly to lime, shap can be used on other data types. We applied
LinearExplainer to LG, TreeExplainer to XGB, andKernelExplainer to CAT. In Fig. 3
(lower part), we report the application of shap on adult through the force plot
showing each feature contributes to push the output value away from the base value,
which is an average among the training dataset’s output values. The red features are
pushing the output value higher, while the ones in blue are pushing it lower. For each
feature, it is reported the actual value for the record under analysis. Only the features
with the highest shap values are shown in this plot. In the first force plot, the features
that are pushing the value higher are contributing more to the output value: from a base
value of 0.18, it is reached an actual output value of 0.79. In the force plot on the right,
the output value is 0.0, and Age, Relationship, andHours Per Week are contributing to
pushing it lower. Figure4 (left and center) depicts the shap values through a decision
plots: the contribution of all the features are reported in decreasing order of importance.
The line represents the feature importance for the record under analysis, and it starts
at its actual output value. In the first plot, predicted as > 50k, Occupation is the
most important feature, followed by Age and Relationship. For the second plot, Age,
Relationship, and Hours Per Week are the most important ones. shap also offers a
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Fig. 4 shap application on adult: a record labelled > 50K (top-left) and one as ≤ 50K (top-right). They
are obtained by applying the TreeExplainer on an XGB model and then the decision plot, in which all the
input features are shown. At the bottom, the application of shap to explain the outcome of a set of records
by XGB on adult. The interaction values among the features are reported

Fig. 5 Explanations of dalex for two records of adult: b(x) = 0 (≤ 50) (left), b(x) = 1 (> 50K ) (right)
to explain an XGB in the form of Shapley values (top), break down plots (bottom). y-axis is the feature
importance, x-axis is the positive/negative contribution

global interpretation of the model-driven by the local interpretations. Figure4 (right)
reports a global decision plot that represents the feature importance of 30 records of
adult.

DALEX (Lipovetsky 2022) is a local and global, post-hoc, model-agnostic expla-
nation method. dalex reveals the features importance through an implementation of
a variable attribution approach (Robnik-Šikonja and Kononenko 2008) that consists
of a decomposition of the model’s predictions in which each decomposition can be
seen as a local gradient, and it is used to identify the contribution of each attribute.
dalex also allows the calculus of shap values. In Fig. 5 are reported local explanations
returned by dalex for XGB onadult. On the left are reported two explanations for
a record classified as class > 50k, while on the right, for one classified as < 50k.
On the top, there is a visualization based on Shapley values, which highlights as most
important the feature Age (35 years old), followed by occupation. At the bottom, there
is a Breakdown plot, in which the green bars represent positive changes in the mean
predictions, while the red ones are negative changes. The plot also shows the intercept,
which is the overall mean value for the predictions. It is interesting to see that Age and
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occupation are themost important features that positively contributed to the prediction
for both plots. In contrast, Sex is positively important for Shapley values but negatively
important for the Breakdown plot. In this case, there are important differences in the
feature considered most important by the two methods: for the Shapley values, Age
and Relationship are the two most important features, while in the Breakdown plot
Hours Per Week is the most important one.

MAPLE (Plumb et al. 2018) is a local post-hoc model-agnostic explainer that
can also be used as a transparent model due to its internal structure. It combines
random forests with feature selection methods to return feature importance based
explanations. In particular, maple is based on SILO, employed for obtaining a local
training distribution based on the random forest leaves, and on DStump used to rank
the features by importance.maple considers the best k features fromDStump to solve
a weighted linear regression problem. Similarly to lime, it returns these coefficients
as features explanation.

CIU, Contextual Importance and Utility (Anjomshoae et al. 2020) is a local, post-
hoc, model-agnostic explainer based on the idea that a feature that might be important
in a context may be irrelevant in another one. ciu explains the model’s outcome based
on the contextual importance (CI) approximating the overall importance of a feature
in the current context, and on the contextual utility (CU) estimating how good the
current feature values are for a certain output class. CI and CU are calculated through
Monte Carlo simulations.

EBM, Explainable Boosting Machine (Nori et al. 2019) is an intrinsic local and
global model specific method. ebm is a variant of a Generalized Additive Model
(gam) (Hastie and Tibshirani 1990), i.e., a generalized linear model that incorporates
nonlinear forms of the predictors. For each feature, ebm uses a boosting procedure to
train the generalized linear model: it cycles over the features in a round-robin fashion
to train one feature function at a time and mitigate the effects of co-linearity. In this
way, the model learns the best set of feature functions, which can be exploited to
understand how each feature contributes to the final prediction.

NAM, Neural Additive Models (Agarwal et al. 2021) is a local model-specific
explainer defined as a variant of gam but tailored for neural networks. nam aims at
combining the performance of deep neural networks with the inherent intelligibility
of gam. nam is able to learn graphs that describe how the prediction is computed by
training multiple deep neural networks in an additive fashion such that each network
attends to a single feature.

CoFrNetsContinued Fractions Nets (Puri et al. 2021) is similar to nam, but instead
of approximating activations using neural networks, it uses continued functions. The
output of a neuron is calculated as a continuous fraction of the previous one until it
gets to the input layer. The propriety of continued fractions to represent every possible
real number allows CoFrNets to express any possible function as in Neural Networks.
On the other hand, since it is a simple fraction calculation, it is possible to compute
the contribution of each input to the final output and produce feature importance
explanations.

Features Importance-based Explainers Comparison. Feature importance-based
explanation methods provide an importance value for each feature of the record in
the input. The importance of the features is computed in different ways, depending
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on the kind of explanation methods exploited. The majority of the explainers are
post-hoc and local, even if there are examples of methods that also provide global
explanations, allowing an in-depth analysis of the overall behavior of the machine
learning model (shap, dalex and ciu). Some explainers, such as lime and all its vari-
ants, create a synthetic neighborhood set used to train a surrogate model and extract
the features’ importance from it. These methods are suitable for context in which the
explanation is online, since they are very efficient, as they use randomization tech-
niques and surrogate models that are very simple and quick to train. As a weak point,
the randomicity and the simplicity of the surrogate models may not best represent
the data space under analysis. On the other hand, explainers that do not require the
creation of a surrogate model but are based on some mathematical procedure, such as
game theory for shap, the decomposition of predictions exploiting local gradients for
dalex, or Monte Carlo simulations for ciumight require a longer computational time
w.r.t. lime-like approaches. In addition, their internal workings may be difficult to
understand, shifting the difficulty from understanding the machine learning model to
understanding how the explanation method works. Among feature importance-based
explainers, model-specific explainers, such as nam and CoFrNets, are tailored for
explaining neural networks and aim at approximating the activation functions. Over-
all, these explanation methods are fast, except for the model-agnostic variants of shap
and dalex, because they might require a greater computing time due to their differ-
ent approximations. Unfortunately, the output provided by these explainers is usually
quite difficult to understand for non-experts since there are several variables, and the
plots provided are usually non-self-explanatory. As an example, we can think of shap:
in the plots in output, each feature importance is given by the output value, the base
value, and, depending on the kind of explanator exploited, one ormore arrays of feature
importance.

Feature importance explainers, due to their complexity in the understating of the
explanation, may be better suited for domain experts who know the meaning of
the features employed, while they may be too difficult for ordinary end-users,
especially when obtaining such importance values is complex.

5.2 Rule-based explanation

Decision rules give the end-user an explanation about the reasons that lead to the final
prediction.Adecision rule r , also called factual or logic rule (Guidotti et al. 2019a), has
the form p → y, in which p is a premise, composed of a Boolean condition on feature
values, while y is the consequence of the rule. In particular, p is a conjunction of split
conditions of the form xi∈[v(l)

i , v
(u)
i ], where xi is a feature and v

(l)
i , v

(u)
i are lower and

upper bound values in the domain of xi extended with ±∞. An instance x satisfies r ,
or r covers x , if every Boolean conditions of p evaluate to true for x . If the instance x
to explain satisfies p, the rule p → y represents then a candidate explanation of the
decision g(x) = y. Moreover, if the interpretable predictor mimics the behavior of the
black-box in the neighborhood of x , we further conclude that the rule is a candidate
local explanation of b(x) = g(x) = y. We highlight that, in the context of rules, we
can also find the so-called counterfactual rules (Guidotti et al. 2019a). Counterfactual
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x1 = { Education = Bachelors,
Occupation = Prof-specialty, Sex = Male,
NativeCountry = Vietnam, Age = 35,
Workclass = 3, HoursWeek = 40,
Race = Asian-Pac-Islander,
MaritialStatus =Married-civ,
Relationship = Husband,
CapitalGain = 0,
CapitalLoss = 0}, > 50k

x2 = { Education = College,
Occupation = Sales, Sex = Male,
NativeCountry = US, Age = 19,
Workclass = 2, HoursWeek = 15,
Race = White,
MaritialStatus = Married-civ,
Relationship = Husband,
CapitalGain = 2880,
CapitalLoss = 0 }, ≤ 50k

ranchor = { EducationNum > Bachelors,
Occupation ≤ 3.00,
HoursWeek > 20,
Relationship ≤ 1.00,
34 < Age ≤ 41 } → > 50k

ranchor = {Education ≤ College,
MaritialStatus > 1.00 }
→ ≤ 50k

rlore = { Education > 5-6th, Race > 0.86,
WorkClass ≤ 3.41,
CapitalGain ≤ 20000,
CapitalLoss ≤ 1306 } → > 50k

rlore = {Education ≤ Masters,
Occupation > -0.34,
HoursWeek ≤ 40,
WorkClass ≤ 3.50
CapitalGain ≤ 10000,
Age ≤ 34} → ≤ 50k

clore = {CapitalLoss ≥ 436 } → ≤ 50k clore = {Education > Masters } → > 50k
{CapitalGain > 20000 } → > 50k
{Occupation ≤ -0.34 } → > 50k

Fig. 6 Explanations of anchor and lore for adult and XGB. xi is the input, rmethod are the rules
provided by anchor/lore, while clore are the counterfactual rules of lore

rules have the same structure as decision rules, with the only difference being that the
consequence of the rule y is different w.r.t. b(x) = y. They are important to explain
to the end-user what should be changed to obtain a different output. An example of
a rule explanation is r = {age < 40, income < 30k, education ≤ Bachelor}, y =
deny. In this case, the record {age = 18, income = 15k, education = Highschool}
satisfies the rule above. A possible counterfactual rule, instead can be: r = {income >

40k, education ≥ Bachelor}, y = allow.
ANCHOR (Ribeiro et al. 2018) is a global and local model-agnostic method that

outputs rules, called anchors, as explanations. The idea is that, for decisions on which
the anchor holds, changes in the rest of the instance’s feature values do not change
the outcome. Formally, given a record x , r is an anchor if r(x) = b(x). To obtain
the anchors, anchor perturbs the instance x , obtaining a set of synthetic records
employed to extract anchors with precision above a user-defined threshold. anchor
exploits a multi-armed bandit algorithm (Katehakis and Jr. 1987) for the synthetic
generation of the dataset and relies on a bottom-up approach and a beam search to
find the anchors. Figure6 reports some rules obtained by applying anchor to explain
XGB trained on adult. The first rule has a high precision (0.96%) but a very low
coverage (0.01%). It is interesting to note that the first rule contains Relationship and
Education Num, which are the features highlighted by most of the explainers analyzed
so far. In particular, in this case, for having a classification > 50k, the Relationship
should be husband and the Education Num at least a bachelor’s degree. Education
Num can also be found in the second rule, in which case has to be less or equal to
College, followed by the Maritial Status, which can be anything other than married
with a civilian. This rule has an even better precision (0.97%) and suitable coverage
(0.37%).
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LORE, LOcal Rule-based Explainer (Guidotti et al. 2019a), is a local model-
agnostic explainer that provides explanations in the form of rules and counterfactual
rules. lore is tailored explicitly for tabular data. It exploits a genetic algorithm to
create the neighborhood of the record to explain. Such a neighborhood produces a
more faithful and dense representation of the vicinity of x w.r.t. lime. Given a black-
box model b and an instance x , with b(x) = y, lore first generates a synthetic set Z
of neighbors through a genetic algorithm. Then, it trains a decision tree classifier g on
this set labeled with the black-box outcome b(Z). From g, it retrieves an explanation
that consists of (i) a factual decision rule, that corresponds to the path on the decision
tree followed by the instance x to reach the decision y, and (ii) a set of counterfactual
rules, which have a different classification w.r.t. y. These counterfactual rules show
the conditions that can be varied on x in order to change the output decision. In
Fig. 6, we report the factual and counterfactual rules of lore for the explanation of
the same records showed for anchor. It is interesting to note that, differently from
anchor and the other models proposed above, lore explanations focus more on the
Education Num,Occupation, Capital Gain and Capital Loss, while the features about
the relationship are not present.

RuleMatrix (Ming et al. 2019) is a model-agnostic explainer that provides both
local and global explanations specifically tailored for the visualization of the rules
extracted. Given a training dataset and a black-box, rulematrix executes a rule
induction step, in which a rule list is extracted by sampling the input data and their
predicted label by the black-box. Then, the rules extracted are filtered based on thresh-
olds of confidence and support. Finally, it outputs a visual representation of the rules.

Local rule-based explainers comparison The rule-based methods presented are all
based on creating a surrogate model from which to extract the rules. In this category,
we find anchor and rulematrix, which provide both local and global explana-
tions by relying on simple rule extraction methods. The simplicity of these methods
makes them efficient even if, as in the case of lime-like approaches, they may suffer
in terms of the goodness of explanations provided. lore is the only explainer that
provides only local explanations. Differently from the other methods, does not require
to have access to the original training data, and, due to its synthetic generation pro-
cess, provides more faithful explanations. Therefore it may be good in settings where
the black-box training dataset is unavailable, while rulematrix and anchor need
to access the training data. Rule-based explanations are considered closer to human
reasoning w.r.t. the feature importance-based explanations. In addition, they exploit
easy to understand mechanisms, allowing users of different backgrounds to under-
stand how the explanation method works, increasing trust. However, these explainers
usually require a greater running time w.r.t. the feature importance ones.

Local rule-based explainers produce logical rules which are close to human
reasoning and make them suitable for non-experts.

Global tree-based explainersOne of the most popular ways to generate explanation
rules is by extracting them from a decision tree. In particular, due to the method’s sim-
plicity and interpretability, decision trees explain black-box models’ overall behavior.
Some explanation methods acting in this setting are model-specific explainers exploit-
ing structural information of the black-box model under analysis. TREPAN (Craven
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and Shavlik 1995) is a model-specific global explainer tailored for neural networks.
Given a neural network b, trepan generates a decision tree g that approximates the
network by maximizing the gain ratio and the model fidelity. In particular, to leverage
abstraction, trepan adopts n-of-m decision rules on which only n out ofm conditions
must be satisfied in order to fire the rule. DecText is a global model-specific explainer
tailored for neural networks (Boz 2002). dectext resembles trepan with the differ-
ence that it considers four different splitting methods. Moreover, it also considers a
pruning strategy based on fidelity to reduce the final explanation tree’s size. In this
way,dectext canmaximize the fidelitywhile keeping themodel simple. Both trepan
and dectext are presented as model-specific explainers, but they can be practically
employed to explain any black-box as they do not use any internal information of neural
networks. MSFT (Chipman et al. 1998) is a global, post-hoc, model-specific explainer
for random forests that returns a decision tree. msft is based on the observation that,
even if random forests contain hundreds of different trees, they are quite similar, dif-
fering only for a few nodes. Hence, it adopts dissimilarity metrics to summarize the
random forest trees using a clustering method. Then, for each cluster, an archetype is
retrieved as an explanation. CMM, Combined Multiple Model procedure (Domingos
1998), is another global, post-hoc, model-specific explainer for tree ensembles. The
key point of cmm is the data enrichment. Given an input dataset X , cmm first modifies
it n times. On the n variants of the dataset, it learns a black-box. Random records are
generated and labeled using a bagging strategy on the black-boxes. The authors were
able to increase the size of the dataset to build the final decision tree. STA, Single
Tree Approximation (Zhou and Hooker 2016), is another global, post-hoc, model-
specific explainer tailored for random forests. In sta, the decision tree is constructed
by exploiting test hypothesis on the trees in the forest to find the best splits.

The explainers proposed are tailored for a specificmachine learningmodel: trepan
and DecText explain neural networks, while cmm and sta are tailored for random
forests andmsft is for any ensemblemethod. Among them, some explainers exploit an
enrichment of the data to improve the extraction of the tree (cmm, trepan,DecText),
while the others exploit the training dataset by applying some strategies based on
dissimilarity metrics (msft) or test hypothesis (sta). Among the different methods,
only DecText and trepan apply some strategies with the goal of maximizing the
model fidelity, even if they are tailored for small feed-forward neural networks. The
exploitation of trees to explain the global behavior of amore complexmachine learning
model have several benefits, such as fast computation and a simple process to extract
explanations based on transparent strategies. However, the trees extracted may be
very deep, making the explanation model difficult to understand even in cases of
simple datasets. Furthermore, the effectiveness of such explanations for very deep
feed forward networks has not been judged yet.

Global tree-based explainers produce a transparent model allowing the under-
standing of the general behavior of the black-box. Depending on the complexity
of the tree, the actual ease of understanding of the explanation could be affected
by this.

Global rule-based explainers In this section, we present global explainers that do
not extract decision trees as a global interpretablemodel but as lists or sets of rules. The
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majority of themethods described in the following extract rules by exploiting ensemble
methods or rule-based classifiers. The explainers considered are all agnostic. Skope-
Rules is a global, post-hoc, model-agnostic15 explainer on the rulefit (Friedman and
Popescu 2008) idea to define an ensemble method and then extract the rules from it.
skope- rules employs fast algorithms such as bagging or gradient boosting decision
trees. After extracting all the possible rules, skope- rules removes rules redundant
or too similar by a similarity threshold. Differently from rulefit, the scoring method
does not solve the L1 regularization. Instead, the weights are given depending on the
precision score of the rule. Scalable-BRL (Yang et al. 2017) is an interpretable rule-
based model that optimizes the posterior probability of a Bayesian hierarchical model
over the rule lists. The theoretical part of this approach is based on (Letham et al.
2015). GLocalX (Setzu et al. 2021) is a global model-agnostic post-hoc explainer that
adopts the local to global paradigm, i.e., to derive a global explanation by subsuming
local logical rules. GLocalX starts from an array of local explanation rules and fol-
lows a hierarchical bottom-up approach merging similar records expressing the same
conditions. This small section comprises global explanation methods that extract rules
in entirely different ways: either they exploit an ensemble method (skope- rules),
a rule-based model (scalable- BRL) or several local explanations (GLocalX). In
terms of goodness of explanations, skope- rules and scalable- BRL are tailored
for an overall explanation of the machine learning model, focusing mostly on the data
in input. GLocalX, instead, exploits local explanations and hence is able to tackle
the problem from a different point of view, merging several local explanations. The
output of these methods is a list of rules, and even if there are techniques to filter out
meaningless rules, the complexity of the explanation produced may be huge.

Global rule-based explainers produce sets of rules describing the overall behavior
of the model for each target class. Depending on the filters applied, the list of
rules extracted may be long and difficult to understand.

Rules-based explainers comparison In this section, we presented a great variety
of methods that provide logical rules as explanations exploiting different strategies.
Independently from the strategy, due to the simplicity of the rules, they are often the
preferred explanation for non-expert people. The majority of the explainers presented
in this section are based on the extraction of decision trees as surrogate models (lore,
trepan, cmm, sta, dectext, msft), or ensemble methods based on decision trees,
such as skope- rules. The remainingmethods that do not rely on decision trees extract
the rules in other ways, such as rule-based classifiers (again a surrogate model), as
in the case of anchor, scalable- brl and of rulematrix. To further increase the
comprehensibility of the explanation, some explainers correlate the explanations by
graphical visualizations, such as rulematrix, anchor, and skope- rules. Overall,
the majority of the explainers require a long computing time due to the different
enrichment of the data or the use of rule-based classifiers, which are among the longest
interpretable models to train. Hence, they may be better fitted for offline explanations.
Depending on the complexity of the machine learningmodel in input, the explanations
may be complex, such as deep trees or long lists of rules.

15 https://skope-rules.readthedocs.io/en/latest/skope_rules.html.
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Rules-based explanation methods extract rules exploiting different approaches,
whichmay require a longer timew.r.t. feature importancemethods, making them
more suitable to offline settings. However, rules-based methods are tailored for
common end-users due to their logical structure and simplicity.

5.3 Prototype-based explanations

A prototype, also called archetype or artifact, is a record highlighting the characteris-
tics which identify a group of objects belonging to the same class. Prototypes serve as
examples, i.e., the user can understand the black-box reasoning by looking at records
similar to the prototype. Thus, a prototype is a local explanation. A prototype can be
(i) a record of the training set close to the input data x , (ii) a centroid of a cluster to
which the input x belongs to, or (iii) even a synthetic record generated following an
ad-hoc process. Depending on the explanation method considered, different defini-
tions and requirements to find a prototype can be considered. MMD-CRITIC (Kim
et al. 2016) is a before the model explanation method which produces prototypes and
criticisms as explanations usingMaximumMeanDiscrepancy (MMD)measure.While
prototypes explain the dataset’s general behavior, criticisms represent records that are
not well explained by the prototypes. mmd- critic selects prototypes by measuring
the difference between the distribution of the instances and the instances in the whole
dataset. The set of instances nearer to the data distribution are called prototypes, and
the farthest are called criticisms. ProtoDash (Gurumoorthy et al. 2019) is a variant
of mmd- critic. However, differently from mmd- critic, protodash also returns
non-negative weights which indicate the importance of each prototype. PS, Prototype
Selection (ps) (Bien and Tibshirani 2011) seeks a set of prototypes that better represent
the data under analysis by solving a set cover optimization problem with constraints
on the properties of the prototypes. After that, the prototypes are employed to learn a
nearest neighbor rule classifier to be used as a model. TSP, Tree Space Prototype (Tan
et al. 2020), is a local post-hoc explainer tailored for explaining tree ensemble meth-
ods. The goal of tsp is to find prototypes for each class in the tree space of the tree
ensemble bw.r.t. a given notion of proximity between trees. Privacy-Preserving Expla-
nations(ppe) (Blanco-Justicia et al. 2020) is a local post-hoc model-agnostic explainer
that outputs prototypes and shallow trees as explanations while considering the con-
cept of privacy in explainability while producing privacy protected explanations. The
trade-off between privacy and comprehensibility is obtained through micro aggrega-
tion of the data, i.e., clustering. The clusters’ centroids are used as prototypes for the
final explanation/prediction.

The strength of prototypes is the possibility of analyzing black-box behavior by
comparison between the record under analysis and its analogs, which is a type of
reasoning widely used by humans. Moreover, they allow data analysis before and
after the black-box is applied. For this reason, in this section, we may find explanation
methods that are before the model, i.e., they explain the dataset without considering the
black-box model, such as mmd- critic, ps and protodash. On the other hand, local
post-hoc explainers, such as tsp and ppe, provide prototypes based on the decisions of
the black-boxes. Among the different methods proposed, one of the most promising
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ones is mmd- critic because it outputs both prototypes and criticisms. In this setting,
we can also find a novel application, namely ppe, which produces privacy-protected
prototypes, creating a link between two crucial ethical concepts: transparency and
privacy. Indeed, using prototypes as explanations, although it may be useful for end-
user understanding, may release sensitive information about the users in the training
set when the explanation method exploits the training dataset.

Prototype-based explanations allow the users to reason by similarity and differ-
ences. Most of the methods in this setting are tailored to explain the data in input
and not the black-box decisions.

5.4 Counterfactual-based explanations

Counterfactual explanations suggest what should be different in the input instance to
change the outcome of the black-box model (Wachter et al. 2017; Lucic et al. 2020),
i.e., they describe a dependency on the attributes that led to a particular decision.
Counterfactual explanations can be considered as prototypes’ opposite. Thus, also
counterfactuals are local explanations. In (Guidotti 2022), counterfactual explana-
tions are formalized as follows. Given a black-box model b that outputs the decision
y = b(x) for an instance x , a counterfactual explanation consists of an instance x ′
such that the decision for b on x ′ is different from y, i.e., b(x ′) �= y, and such that the
difference between x and x ′ isminimal. The different values between x and a counter-
factual x ′ reveal what should have been different in x for having a different outcome.
An ideal counterfactual is minimal because it should alter the values of the variables
as little as possible to find the closest setting under which y is returned instead of ¬y.
Concerning counterfactual explanations, there are many properties that are desired for
this kind of explanation and for the explanation methods returning them. Examples
are validity, minimality, similarity, plausibility, discriminative power, actionability,
causality, diversity, efficiency, robustness, etc. (Wachter et al. 2017; Karimi et al.
2020a; Kanamori et al. 2020). To better understand the complex context and the many
available possibilities, we refer the interested reader to (Guidotti 2022; Artelt and
Hammer 2019; Verma et al. 2020; Byrne and Johnson-Laird 2020) while we briefly
present only the most representative methods in this category. WACH (Wachter et al.
2017) is among the first paper to propose a counterfactual explainer and probably the
most famous one. The loss function minimized by (Wachter et al. 2017) is defined
as λ(b(x ′) − y′)2 + d(x, x ′) where the first term is the quadratic distance between
the desired outcome y′ and the classifier prediction on x ′, and the second term is the
distance d between x and x ′. λ balances the contribution of the first term against the
second term. The distance function d adopted is a crucial characteristic in any counter-
factual explainer. In (Wachter et al. 2017) is adopted the Manhattan distance weighted
with the inverse median absolute deviation of each feature. CEM, Contrastive Expla-
nations Method (Dhurandhar et al. 2018), is a post-hoc and model-specific explainer
tailored for neural networks. In particular, cem can return Pertinent Positives (PP),
which can be seen as prototypes and are the minimal and sufficient factors that have
to be present to obtain the output y; and Pertinent Negatives (PN), which are coun-
terfactuals factors, that should be minimally and necessarily absent. Given x , cem
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considers x1 = x + δ, where δ is a perturbation applied to x . cem is formulated
as an optimization problem over the perturbation variable δ. C-CHVAE (Pawelczyk
et al. 2020) is a local model-agnostic post-hoc explainer that accounts for plausi-
bility when generating counterfactuals. Indeed, the loss function optimized controls
that counterfactuals are not local outliers and that are close to correctly classified
observations. Moreover, this method can generate counterfactuals without requiring a
distance function for the input space at the cost of using a Variational AutoEncoder.
DICE, Diverse Counterfactual Explanations (Mothilal et al. 2020) is a model-agnostic
post-hoc explainer that solves an optimization problem with constraints to account for
plausibility and diversity evaluated through distance functions. Plausibility avoids the
generation of unfeasible counterfactuals, while diversity provides different ways of
changing the outcome class. FACE, Feasible and Actionable Counterfactual Expla-
nations (Poyiadzi et al. 2020) is a model-agnostic post-hoc explainer that focuses on
returning actionable counterfactuals, i.e., records coherent with the input data distribu-
tion. In particular, face uncovers “feasible paths” for generating counterfactuals, i.e.,
the shortest path defined via density-weighted metrics starting from the input instance.
Finally, it uses a shortest path algorithm to find all the records that satisfy the require-
ments. CFX (Albini et al. 2020) is a model-specific post-hoc explainer for Bayesian
Network Classifiers. The explanations are built from relations of influence between
variables, indicating the reasons for the classification. In particular, this method’s main
achievement is that it can find pivotal factors for the classification task that, if removed,
would lead to a different classification.

Counterfactual-based explanations are gaining attention during the past few years
due to their ability to suggest what to do to achieve a different outcome w.r.t. the
one predicted by the black-box. There are several characteristics to consider in a
counterfactual, such as plausibility, which requires the explanations to be feasible,
and actionability, so that the counterfactual can not suggest changing the values of
unfeasible variables, such as age or sex. Satisfying these characteristics is of utmost
importance because otherwise, the counterfactuals obtained may not be applicable or
understandable by the end user. For example, a counterfactual might require chang-
ing age or height, factors that cannot be changed, thus making the counterfactual
unfeasible. Among the methods proposed, c- chvae deals with the plausibility of the
counterfactuals proposed, and face tackles both the plausibility and the actionability.
The majority of the algorithms proposed solves an optimization problem based on a
distance function and some perturbation of the original data (cem, wach, c- chvae)
and only a fewmethods exploit different approaches, such as VAE, as c- chvae. Most
of the proposedmethods are local andpost-hoc,withcfx andcem specifically designed
for certain models, while the others are agnostic. Among the methods proposed, cem
is a promising solution since it provides both prototypes and counterfactuals, allowing
for an in-depth analysis, such as mmd- critic and lore.

Counterfactuals-based explanations allow the users to understand what to do
to achieve a different outcome. This kind of reasoning is close to how human
reason, hence it is becoming quite popular. To make counterfactuals as realistic
as possible, they must meet criteria such as plausibility and actionability.
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Table 2 Comparison of the fidelity and the faithfulness metrics of different explanation methods

Dataset Black-Box Fidelity Faithfulness
lime shap anchor lore lime shap

adult LG 0.979 0.613 0.989 0.984 0.099 (0.30) 0.38 (0.37)

XGB 0.977 0.877 0.978 0.982 0.030 (0.32) 0.36 (0.49)

CAT 0.96 0.777 0.988 0.989 0.077 (0.32) 0.44 (0.37)

german LG 0.984 0.910 0.730 0.983 0.23 (0.60) 0.19 (0.63)

XGB 0.999 0.821 0.802 0.982 0.16 (0.26) 0.44 (0.21)

CAT 0.979 0.670 0.620 0.981 0.34 (0.33) 0.43 (0.32)

Bold values indicate the best results
For every evaluation, we report the mean and the standard deviation over a subset of 50 test set records

5.5 Tabular data explainers quantitative comparison

We validate explanation methods working on tabular data by considering the two
metrics most widespread in the literature, i.e., fidelity and stability. We remark that we
focus our benchmarking on the subset of explanation methods that are most widely
adopted/extended in the literature and work according to different ideas to retrieve
explanations. In particular, in this section, we focus on lime, shap,16 anchor and
lore. Another limitation in the benchmarking is that even though these methods are
acting on the same data type, the explanations returned are of a different type. Thus, it is
not only possible to compare explainers providing different types of explanations. The
results of the fidelity are reported in Table 2. The fidelity values are above 90% for all
themethods highlighting that the local surrogates are good at mimicking the black-box
models. Regarding the feature importance-based models, lime shows higher values of
fidelity w.r.t. shap, especially for adult. In particular, shap has lower values for CAT
(both german and adult), suggesting that it may not be good in explaining this kind
of ensemblemodel. Concerning rule-basedmodels, the fidelity is high for both of them.
However, we notice that anchor shows lower values of fidelity for CAT-german, a
behavior which is similar to the one of shap. Besides fidelity, we compare lime and
shap also on faithfulness and monotonicity. Overall, we did not find any model to
be monotonic, and hence we do not report any results. On the other hand, the results
for the faithfulness are reported in Table 2. For adult, the faithfulness is quite low,
especially forlime. The explainerwith the highest faithfulness is shap explainingCAT.
Regarding german, instead, the values are higher, highlighting a better faithfulness
overall. However, also for this dataset, shap has a better faithfulness w.r.t. lime. In
Table 3 are reported the results obtained from the analysis on the stability: a high
value means that the explainer presents high instability, meaning that we can have
quite different explanations for similar inputs. None of the methods is remarkably
stable according to this metric. This weakness is widely shared by many explainers
independently from the data type and explanation type. Therefore, an important insight
from these experiments is to work toward the stabilization of these procedures. Table 4

16 Since shap is not training a local surrogate, we evaluate the fidelity of shap by learning a classifier on
the sum of the shap’s values.
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Table 3 Comparison on the stability metric

Dataset Black-box lime shap anchor lore

adult LG 24.37 (2.74) 1.52 (4.49) 22.36 (8.37) 21.76 (11.80)

XGB 10.16 (6.48) 2.17 (2.18) 26.53 (13.08) 30.01 (20.52)

CAT 0.35 (0.43) 0.03 (0.01) 6.51 (4.40) 27.80 (70.05)

german LG 18.87 (0.73) 19.01 (23.44) 101.07 (62.75) 622.12 (256.70)

XGB 26.08 (14.50) 38.43 (30.66) 121.40 (98.43) 725.81 (337.26)

CAT 2.49 (9.91) 15.92 (10.71) 123.79 (76.86) 756.70 (348.21)

We report the mean and the standard deviation over a subset of 30 test records

Table 4 Explanation runtimeexpressed in seconds for explainers of tabular classifiers, the standarddeviation
is shown in parentheses

Dataset Black-box lime shap dalex anchor lore skoperule

adult LG 0.1 (0.01) 0.001 (0.00) 90 (0.09) 2 (0.10) 15 (0.32) 100 (0.32)

XGB 0.1 (0.02) 0.2 (0.03) 108 (0.10) 5 (0.11) 50 (0.13) –

CAT 0.2 (0.00) 3 (0.02) 110 (0.12) 3 (0.21) 35 (0.24) –

german LG 0.007 (0.00) 0.0008 (0.00) 0.8 (0.00) 2 (0.17) 2 (0.31) 70 (0.12)

XGB 0.03 (0.01) 0.002 (0.00) 2 (0.12) 2 (0.12) 4 (0.32) –

CAT 0.03 (0.00) 0.002 (0.02) 1 (0.20) 2 (0.42) 6 (0.20) –

Bold values indicate the best results

shows the explanation runtime approximated as order of magnitude. Overall, feature
importance explanation algorithms are faster w.r.t. the rule-based ones. In particular,
shap is the most efficient, followed by lime. We remark that the computation time of
lore depends on the number of neighbors to generate exploiting a genetic algorithm
(in this case, we considered 1000 samples). anchor, instead, requires a minimum
precision as well as skoperule (we selected min precision of 0.40).

Overall, there are many explanation methods available for tabular data. As already
stated, we focused our analysis and benchmark on the most widely used. We redi-
rect the interested reader to our XAI Living Survey for more methods and details.
Depending on the final user, different kinds of explanations are better suited than oth-
ers. During the past few years, counterfactuals have witnessed great interest due to
their logical structure and the possibility of explaining what to do instead of obtaining
another prediction. In our opinion, even if rules, prototypes, and counterfactuals seem
to be the best solutions w.r.t. human readability, features importance-based explainers
are still the most widely used mainly due to the fact that they were the first proposed,
with well-maintained libraries, and that are typically faster than the others. Moreover,
regarding rules, prototypes, and counterfactuals, there are still several open questions
and challenges, such as improving the efficiency and effectiveness as well as consid-
ering the constraints of the domain in which the model is being employed.
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Table 5 Explainers for black-boxes classifying image data sorted by explanation type:Maps (SM), Concept
Attributions (CA), Counterfactuals (CF), and Prototypes (PR)

Type Name References Data type IN/PH G/L A/S

SM ε- lrp Bach et al. (2015) ANY PH L S

lime Ribeiro et al. (2016) ANY PH L A

shap Lundberg and Lee (2017) ANY PH L A

grad- cam Selvaraju et al. (2020) IMG PH L S

deeplift Shrikumar et al. (2017) ANY PH L S

smoothgrad Smilkov et al. (2017) IMG PH L S

intgrad Sundararajan et al. (2017) ANY PH L S

grad- cam++ Chattopadhay et al. (2018) IMG PH L S

rise Petsiuk et al. (2018) IMG PH L S

anchor Ribeiro et al. (2018) ANY PH L A

extreme perturbation Fong et al. (2019) IMG PH L S

xrai Kapishnikov et al. (2019) ANY PH L S

cxplain Schwab and Karlen (2019) IMG PH L S

eigen- cam Muhammad and Yeasin (2020) IMG PH L S

ablation- cam Desai and Ramaswamy (2020) IMG PH L S

score- cam Wang et al. (2020) IMG PH L S

opti- cam Zhang et al. (2023) IMG PH L S

CA tcav Kim et al. (2018) IMG PH L A

icnn Shen et al. (2021) IMG IN G S

ace Ghorbani et al. (2019) IMG PH G A

cace Goyal et al. (2019) IMG IN G A

conceptshap Yeh et al. (2020) IMG PH G A

pace Kamakshi et al. (2021) IMG PH G S

gan style Lang et al. (2021) IMG PH G A

6 Explanations for image data

In this section, we present a selection of approaches for explaining decision systems
acting on images. In particular, we distinguish the following types of explanations:
Saliency Maps (SM, Sect. 6.1, Concept Attribution (CA, Sect. 6.2), Prototypes (PR,
Sect. 6.3) and Counterfactuals (CF, Sect. 6.4). Table 5 (organized as the previous one)
summarizes and categorizes the explanation methods acting on image data. As for
the previous section, after the presentation of the methods, we report the results of
experiments for which we considered three datasets:17 mnist, cifar in its 10 class
flavor and imagenet. We selected these datasets because they are widely used as
benchmarks inML ingeneral and also in experimentingwithXAI approaches.On these
three datasets, we trained themodels most used in literature to evaluate the explanation
methods: for mnist and cifar, we trained a CNN with two convolutions and two

17 mnist: http://yann.lecun.com/exdb/mnist/, cifar: https://www.cs.toronto.edu/~kriz/cifar.html, and
imagenet: http://image-net.org/.
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Table 5 continued

Type Name References Data type IN/PH G/L A/S

CF l2x Chen et al. (2018) ANY PH L A

cem Dhurandhar et al. (2018) IMG PH L A

guided proto Looveren and Klaise (2021) IMG PH L A

abele Guidotti et al. (2020a) IMG PH L A

piece Kenny and Keane (2021) IMG PH L S

sedc Vermeire et al. (2022) IMG PH L A

ecinn Hvilshøj et al. (2021) IMG PH L A

PR mmd- critic Kim et al. (2016) ANY IN G A

influence functions Koh and Liang (2017) ANY PH L A

protopnet Chen et al. (2019) IMG IN G S

prototree Nauta et al. (2021) IMG IN G S

deformable protopnet Donnelly et al. (2022) IMG IN G S

For every method is indicated if it is possible to use it for images (IMG) only or for ANY type of data, if it
is an Intrinsic (IN) or a Post-Hoc (PH) model, Local (L) or Global (G), and if it is model-Agnostic (A) or
model-Specific (S)

linear layers, while for imagenet, we decided to use theVGG16 network (Simonyan
and Zisserman 2015).

6.1 Saliencymaps

A Saliency Map (SM) is an image in which a pixel’s brightness represents how salient
the pixel is. Formally, a SM is modeled as a matrix S, which dimensions are the
sizes of the image for which we want to explain a decision, and the values si j are the
saliency values of the pixels i j . The greater the value of si j , the bigger the saliency
of that pixel. To visualize a SM, divergent color maps are typically used with colors
ranging, for instance, from red to blue. A positive value (red) means that the pixel
i j has contributed positively to the classification, while a negative one (blue) means
that it has contributed negatively. Examples of SM are reported in Fig. 7. There are
two big families of methods for creating SMs. The first one assigns to every pixel a
saliency value. The second one segments the image into different pixel groups using a
segmentation method, and then it assigns a saliency value for each segmented group.
We underline that, from a pure interpretability perspective, SMs are the correspondent
of FI for images. Indeed, as shown in the following, data-agnostic approaches that can
be used for extracting FI explanations on tabular data can also be used for extracting
SM on images.

LIME is a local post-hoc model-agnostic explainer (already presented in Sect. 5)
that can also be used to retrieve SM for image classifiers. In particular, lime returns
segmentation-based SM where each segment is called superpixel. After the input
image segmentation, lime adopts a one-hot vector representation of the image where
the input image is a vector composed of m ones if m is the number of segments
identified. Then, it creates the synthetic neighborhood by randomly substituting the
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Fig. 7 Examples of SMs obtained with the explainers presented in Sect. 6.1 on mnist, cifar and
imagenet datasets. The first row reports the images of the datasets, while the header shows the class
predicted class from the black-box. The remaining rows report the SMs obtained

superpixels with a uniform, possibly neutral, color and by also storing the one-hot
representations. The neighborhood of synthetic images is then fed into the black-
box, and the one-hot representation of the neighborhood, together with the black-box
prediction, is used to train a sparse linear model. Finally, the coefficients of the linear
model are used as the importance of the superpixels. Examples of the explanations
returned by lime are shown in the second row of Fig. 7. A critical aspect for obtaining
a good explanation with this approach is the choice of the segmentation algorithm
and its hyper-parameters. Indeed, for small-resolution images, the segmentation in
lime does not work out of the box, resulting in the algorithm selecting all the images
as a superpixel. Recently, many research improved and extended lime for image
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classifiers18 (Shi et al. 2020; Peltola 2018; Zafar and Khan 2019; Bramhall et al.
2020).

LRP, Layer-wise Relevance Propagation (Bach et al. 2015), commonly known as
ε- lrp, is a local post-hoc model-specific explainer that is designed for images but
can be practically applied for any data type. ε- lrp was introduced for feed-forward
neural networks (Arras et al. 2017) and then adapted to different type ofmodels. ε- lrp

decomposes the prediction y backward using local redistribution rules until it assigns
a relevance score Ri to each pixel value. The simple ε- lrp rule redistributes relevance
from layer l+1 to layer l is: Ri = ∑

j
aiwi j∑
i aiwi j+ε

R j where ai is the neuron activations

at layer l, R j the relevance scores associated to the neurons at layer l+1,wi j theweight
connecting neuron i to neuron j , and ε is added to prevent division by zero. Intuitively,
this rule redistributes relevance proportionally from layer l + 1 to each neuron in l
based on the connection weights. The final explanation is the relevance of the input
layer. Figure7 shows examples of ε- lrp SM in the third row. As with all the pixel-
wise explanation methods, ε- lrp works very well on datasets with low-resolution
images like mnist, while the explanations returned for more complex images such
as those of cifar and imagenet are quite unclear and only limitedly interpretable.
In the literature, are introduced other variations of the lrp algorithm. γ -lrp favors the
effect of positive contributions over negative contributions by separating the weights
wi j into w−

i j + w+
i j and adding a multiplier to the positive ones: w−

i j + γw+
i j Another

variant of ε- lrp is spray (Lapuschkin et al. 2019), which builds a spectral clustering
on top of the local instance-based ε- lrp explanations. Similarly to (Li et al. 2019),
it starts with the ε- lrp of the input instance and finds the LRP attribution relevance
for a single input of interest x .

INTGRAD, Integrated Gradient (Sundararajan et al. 2017), similarly to ε- lrp, is
a local post-hoc model-specific data-agnostic explainer designed for images. intgrad
utilizes the gradients of a black-box providing access to the gradient, such as a neural
network, alongwith sensitivity techniques. For this reason, it can be applied only to dif-
ferentiablemodels. Formally, given b and x , and let x ′ be the baseline input,19 intgrad
constructs a path from x ′ to x and computes the gradients of points along the path. For
images, the points are taken by overlapping x on x ′ and gradually modifying the opac-
ity of x . Integrated gradients are obtained by cumulating the gradients of these points.
Formally, the integrated gradient along the i th dimension for an input x and baseline x ′
is defined as follows. Here, ∂b(x)/∂xi is the gradient of b(x) along the i th dimension.
The equation for computing the scores is: ei (x) = (xi − x ′

i )
∫ 1
α=0

∂b(x ′+α(x−x ′))
∂xi

dα.
Examples of SM produced by intgrad are in Fig. 7. They tend to have more uniform
pixels with a similar saliency than ε- lrp. As in ε- lrp, intgrad highlighted the
background when explaining the “deer” image. However, an arbitrary choice of base-
lines could cause issues. For example, a black baseline image could cause intgrad to
lower the importance of black pixels in the source image. This problem is due to the
difference between the image’s pixel and the baseline (xi − x ′

i ) present in the integral
equation. Expected Gradients (Erion et al. 2019) tries to overcome this problem by

18
dlime: https://github.com/rehmanzafar/dlime_experiments.

19 The baseline x ′ is generally chosen as a zero matrix or vector. For example, for the image domain, the
baseline is generally a black or a white image.
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averaging intgrad to different baselines. A different variation of intgrad is called
Adversarial Gradient Integration (AGI). An adversarial example of an image is the
image with a different class, most similar to the original one. AGI (Pan et al. 2021)
integrates the gradients from adversarial examples of different classes to the target
example along the curve of the steepest ascent. The contributions from the different
examples are then summed up to obtain the final SM. By not relying on the choice of
references, it is possible to reduce the sparsity of intgrad.

DEEPLIFT (Shrikumar et al. 2017), is local post-hoc model-specific explainer for
differentiable models. It computes SMs in a backward fashion, similarly to ε- lrp,
but it uses a baseline reference like intgrad. deeplift exploits the slope, instead
of the gradients, which describes how the output y = b(x) changes as the input x
differs from a baseline x ′. Like ε- lrp, an attribution value r is assigned to each unit
i of the neural network going backward from the output y. This attribution represents
the relative effect of the unit activated at the original network input x compared to
the activation at the baseline reference x ′. deeplift computes the starting values
of the last layer L by the difference between the output of the input and baseline.
Then, it uses the following recursive equation to compute the attribution values of
layer l using the attributions of layer l + 1 to obtain the values of the starting layer:

r (l)
i = ∑

j
a ji−a′

j i∑
i a ji−∑

i a
′
j i
r (l+1)
j , a ji = w

(l+1,l)
j i x (l)

i , a′
j i = w

(l+1,l)
j i x

′(l)
i where w

l+1,l
i j

are the weights of the network between the layer l and the layer l + 1, and a are the
activation values. As for intgrad, picking a baseline is not trivial and might require
domain experts. From Fig. 7, we notice that the SMs obtained with deeplift are very
similar to those obtained with ε- lrp.

SMOOTHGRAD (Smilkov et al. 2017) is a local post-hocmodel-specific explana-
tionmethod. Since SMs tend to be noisy, especially for pixel-wise SMs, smoothgrad
tries to overcome produce less noisy SM through smoothing. Usually, a SM is created
directly on the gradient of the black-box output w.r.t. the input ∂ y/∂x . smoothgrad
augments this process by smoothing the gradients with a Gaussian noise kernel. More
in detail, it takes the image x , applies Gaussian noise to it, and retrieves the SM
for every perturbed image, using the gradient. The final SM is an average of these
perturbed SMs. Formally, given a saliency method f (x) which produces a SM s, its
smoothed version f̂ can be expressed as: f̂ = 1

n

∑n
1 f (x + N (0, σ 2)) where n is

the number of samples, andN (0, σ 2) is the Gaussian noise. In (Adebayo et al. 2018,
2020), some weaknesses of smoothgrad are shown: people tend to evaluate SMs on
what they are expected to see. For example, in a bird image, we want to see the shape
of a bird. However, this does not mean that this is what the network is looking at. Fig-
ure8 highlights this problem. We obtained the SMs taking the gradient of the output
w.r.t. the input, and then we used smoothgrad. We observe that the SMs completely
changed their behavior, moving in the direction of the subject.

SHAP provides two versions that can be employed for deep networks tailored for
image classification: deep- shap and grad- shap. Therefore, even though shap is a
local post-hoc model-agnostic explainer, the deep- shap and grad- shap versions are
model-specific implementations. deep- shap is a high-speed approximation algorithm
for shap values in deep learning models that builds on a connection with deeplift.
The implementation is different from the original deeplift by using as baseline a dis-
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Fig. 8 Visual Comparison of SMs obtained by taking the gradient of the output y w.r.t. the input image x
(center) and smoothgrad (bottom). In the three images in the center, the SM changes drastically. In all
three cases, it focuses on the subject of the image, completely changing the original values. This is also true
for the seashore image on the far right

Fig. 9 Explanations of deep- shap on mnist (top), grad- shap on imagenet (bottom)

tribution of background samples instead of a single value and using Shapley equations
to linearise non-linear components of the black-box such as max, softmax, products,
divisions, etc. grad- shap, instead, is based on intgrad and smoothgrad (Sun-
dararajan et al. 2017; Smilkov et al. 2017). intgrad values are a bit different from
shap values and require a single reference value to integrate. As an adaptation to make
themapproximate shapvalues,grad- shap reformulates the integral as an expectation
and combines that expectation with sampling reference values from the background
dataset as in smoothgrad. Examples of explanations of deep- shap and grad- shap
are shown in Fig. 9. grad- shap produces a single SM, while deep- shap produces a
SM for each class in the input image. Even if more expensive to compute, having a
SM for each class could be useful to compare the importance of the predicted class
with different classes.

XRAI (Kapishnikov et al. 2019) is based on intgrad and inherits its properties.
Differently from intgrad, xrai first over-segments the image. It iteratively tests each
region’s importance, fusing smaller regions into larger segments based on attribution
scores. xrai follows three steps: segmentation, get attribution, and selecting regions.
The segmentation is repeated several times with different segments to reduce the
dependency on image segmentation. For attribution,xraiuses intgradwith black and
white baselines averaged. Finally, to select regions, xrai leverages the fact that, given
two regions, the one that sums to the more positive value should be more important
to the black-box. Thus, xrai starts with an empty mask and then selectively adds the
regions that yield the maximum gain in the total attributions per area. From Fig. 7,
we notice how the SMs obtained by xrai are very different from the others already
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presented. Like all segmentation methods, xrai performs best when high-resolution
images are available. However, because the segmentation is performed on the values
obtained from intgrad and not on the raw image, good results are obtained even with
low-resolution images.

GRAD-CAM (Selvaraju et al. 2020) is a local post-hoc model-specific explainer
for image data. It uses the gradient information flowing into the last convolutional
layer of a CNN to assign saliency values to each neuron for a particular decision.
Convolutional layers naturally retain spatial information in fully-connected layers,
so it assumes that the last convolutional layers have the best compromise between
high-level semantics and detailed spatial information. To create the SM, grad- cam
takes the feature maps created at the last layer of the convolutional network a. Then,
it computes the gradient of an output of a particular class yc for every feature map
activations k, i.e., ∂ yc/∂ak . This equation returns a tensor of dimensions [k, v, u]
where k is the number of features maps and u and v are the height and the width of the
image. grad- cam compute the saliency value for every feature map by pooling the
dimensions of the image. The final heatmap is calculated as a weighted sum of these
values. This results in a coarse heatmap of the same size as the convolutional feature
maps. An up-sampling technique is applied to the final result to produce a map of the
initial image dimension. From Fig. 7 is clear that this coarse grain heatmap style is
very characteristic of grad- cam. These heat maps highlight very different parts of
the image compared to other methods.

GRAD-CAM++ (Chattopadhay et al. 2018) extends grad- cam solving the
following issue. The spatial footprint in an image is essential for grad- cam’s visu-
alizations to be robust. Hence, if multiple objects have slightly different orientations
or views, different feature maps may be activated with differing spatial footprints.
The one with lesser footprints fades away in the final sum. grad- cam++ fix this
problem by taking aweighted average of the pixel-wise gradients. In particular,grad-
cam++ reformulates grad- cam by explicitly coding the structure of the weights αc

k

as: αc
k = ∑

i
∑

j w
kc
i j · ReLU

(
∂ yc/∂aki j

)
where ReLU is the Rectified Linear Unit

activation function, and wkc
i j are the weighting co-efficients for the pixel-wise gradi-

ents for class c and convolutional feature map ak . The idea is that wc
k captures the

importance of a particular activation map ak , and positive gradients are preferred to
indicate visual features that increase the output neuron’s activation rather than those
that suppress it. Besides grad- cam++, there are many variations of pixel masking
methods based on grad- cam. Score-CAM (Wang et al. 2020) gets rid of the depen-
dence on gradients by obtaining the weight of each activation map through its forward
passing score on the target class, the final result is obtained by a linear combination
of weights and activation maps. Eigen-CAM (Muhammad and Yeasin 2020) extracts
the importance scores by projecting the last convolutional layer into the first eigen-
vector extracted from the same layer. The scores produced appear more uniform and
less sparse. Ablation-CAM (Desai and Ramaswamy 2020) uses ablation analysis, i.e.,
setting activation value to zero, to determine the importance of individual feature map
units with respect to class. Extreme Perturbation (Fong et al. 2019) are regions of an
image that, for a given area, maximally affect the activation of a class in the last layer
of a neural network. As the perturbation area increases, the explainer reveals more
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of the image in order of decreasing importance. CXPlain (Schwab and Karlen 2019)
frames the task of providing explanations as a causal learning task. It trains a causal
explainer that learns to estimate to what degree certain inputs cause outputs in another
model.

RISE (Petsiuk et al. 2018) is a local post-hoc model-agnostic explainer for image
data. To produce a SM for an image x , rise generate N randommask Mi ∈ [0, 1] from
Gaussian noise. The input x is element-wise multiplied with these masks Mi , and the
result is fed to the basemodel. The SM is obtained as a linear combination of themasks
Mi with the predictions from the black-box corresponding to the respective masked
inputs. The intuition behind this is that b(x � Mi ) is high when pixels preserved by
mask Mi are essential.

Saliency maps-based explainers comparison Saliency Maps (SM) are the most
diffused explanations for images. The literature presents a multitude of explainers that
are capable of producing such a type of explanation. As seen in Fig. 7, lime can lead
to useless SM for mnist and cifar as it segments the images in superpixels big as
the whole image in some cases. On the other hand, those produced by xrai are much
more clear. lime computes the segmentation at the very beginning of the algorithm
on the raw images. Thus, for low-resolution images, segmentation algorithms are
more difficult to calibrate. xrai instead firstly compute intgrad values and then
agglomerate them using segmentation. This result seems to be much clearer, even
with very small images. In general, we observe that segmentation methods work best
for high-resolution images where the concept of the image can be easily separated.
For instance, in the SM of the “seashore” image produced by xrai is very clear how
the method selected three parts of the image: the horizon, the sea, and the promontory.
Since pixel wise-methods produce SMs in terms of single pixels, which are low-level
features, they are useful only for an expert user who wants to check the robustness
of the black-box. Overall, we deduce that SMs returned by the segmentation methods
are more human-friendly than the ones returned by pixel-wise methods.

Pixel based explainers like deep- shap, grad- shap, deeplift, intgrad, and ε-

lrp, typically return very similar results. deeplift and ε- lrp return similar results,
probably due to their similarity in the computation of the SM values. However,
deeplift is model-agnostic, while ε- lrp is model-specific, and it needs adjustments
for nonstandard neural networks. In conclusion, deeplift result to be the best com-
petitor. grad- cam, grad- cam++, and rise return SMs that could resemble those
returned by segmentation-based explainers. This is due to the fact that scores of these
explainers are computed on smaller layers with lower resolution and then interpolated
on the original data resolution. grad- cam++ produces better images than grad-

cam due to the usage of the second order derivative. Another problem with SMs is
the confirmation bias, i.e., a user can hardly realize if a SM is a good explanation or
only shows what the user wants to see (Adebayo et al. 2018). smoothgrad and most
guided methods that use the target label to alter the SM suffer from this bias, moving
the salient values from the background to the subject.

Analyzing the images by dataset: in cifarwe notice that all themethods highlight
the background of the images in particular in the “deer” class. This result is a problem
in the learning phase of the black-box and should not be referred to as problems of
the explainers. On the other hand, for imagenet, we observe very different SMs.
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For instance, for the ice hockey image in Fig. 7, the class in the dataset is “puck”, i.e.,
the hockey disk. lime highlights the ice as important, while xrai and grad- cam++

highlight the stick of the player, grad- cam highlights the fans while rise the hockey
player. Thus, for the same image, we can obtain very different explanations, further
highlighting the fragility of the SMs. Regarding the second image of imagenet (the
second from the right), we can observe that all the methods capture the same pattern. A
straw hat in the background triggered the class “shower cap” while the correct one was
“mask”. Finally, in the “seashore” of imagenet, we have an island in the sea. The
top three predicted classes are seashore (0.91), promontory (0.04), and cliff (0.01).
Half of the testedmethods like lime, smoothgrad, rise, and grad- camwere fooled
that the promontory is important to the class “seashore”. We can conclude that SMs
are very fragile when we have multiple classes in the image, even if these classes have
a very low predicted probability.

Segmentation methods are more human-understandable than pixel-wise meth-
ods. Guided propagation methods can hardly be trusted due to confirmation bias,
and therefore it is better not to adopt them.

6.2 Concept attribution

Most ML models are designed to operate on low-level features like edges and lines
in a picture that does not correspond to high-level concepts that humans can easily
understand. In (Adebayo et al. 2018; Yang and Kim 2019), the authors pointed out that
feature-based explanations applied to state-of-the-art black-boxmodels can yield non-
sensible explanations. For example, we can consider SM as low-level explanations for
images, as they assign to every pixel a saliency value. Although it is possible to look at
every pixel and infer their numerical values, thesemake little to no sense to humans:we
do not say that the 5th pixel of an image has a value of 28. On the other hand, Concept
Attribution (CA)methods quantify, for instance, how much the concepts “stripes” has
contributed to the class prediction of “zebra”. Indeed, CA-based explanation methods
construct the explanation based on human-defined concepts rather than representing
the inputs based on features and internal model (activation) states. Hence, this idea
of high-level features might be more familiar to humans, that can be more likely to
accept it (Hartmann et al. 2022; Renard et al. 2019). Formally, given a set of images
belonging to a concept [x (1), x (2), . . . , x (i)] with x (i) ∈ C , CAmethods can be thought
as a function f : (b, [x (i)]) → e which assign a score e to the concept C basing on
the predictions and the values of the black-box b on the set [x (i)].

TCAV, Testing with Concept Activation Vectors (Kim et al. 2018) is a global
post-hoc model-agnostic explainer for image classifiers that provides a quantitative
explanation of how important a concept is for the prediction. In tcav, every concept is
represented by a particular vector calledConcept Activation Vectors (CAVs) created by
interpreting an internal state of a neural network in terms of human-friendly concepts.
tcavuses directional derivatives to quantify the degree towhich auser-defined concept
is vital to a classification result. For example, how sensitive a prediction of “zebra” is to
the presence of “stripes”. tcav requires two main ingredients: (i) concept-containing
inputs and negative samples, i.e., random inputs, and (ii) pre-trained ML models on
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Fig. 10 tcav scores for three concepts: ice, Hockey player, and cheering people (fans) for the class puck
of imagenet. On the left is the query image; on the center, some samples of the image tested in tcav as
concepts, and on the right is the histogram of the scores with errors. The hockey players has been classified
as a puck, but the SMs are very different alongside methods. In the histogram on the left, it is possible to see
that the ice and the hockey players are important concepts, while the background fans are not significant

which the concepts are tested. Inputs containing concepts and random inputs are fed
into the black-box to obtain predictions that will be used by tcav to test the ability of
the machine learning model to capture a particular concept. Then, a linear classifier
is trained to distinguish the activation of the network due to concept-containing vs.
random inputs. The result of this training is concept activation vectors (CAVs). Once
CAVs are defined, the directional derivative of the class probability along CAVs can
be computed for each instance that belongs to a class. The “concept importance” for a
class is computed as a fraction of the class instances that get positively activated by the
concept containing inputs vs. random inputs. In Fig. 10, we report an example of tcav
explanation. We remark that to obtain this explanation, the user must collect concepts
like “ice”, “hockey player” and “fans”. Then tcav computes the scores unveiling
which one has more impact on the prediction.

Several extensions of tcav are present in the literature. ACE, Automated Concept-
based Explanation (Ghorbani et al. 2019), is the evolution of tcav, and it does not
require concepts in input as it can automatically discover them. A set of images from
the same class is segmented with multiple resolutions resulting in a pool of segments
all coming from the same class. Then the activation space of one bottleneck layer of a
CNN classifier is used as a similarity space. After that, similar segments are clustered
in the activation space, and, for each concept, its tcav importance score is computed
given its examples segments. ConceptSHAP (Yeh et al. 2020) is an evolution of SHAP
which tries to define an importance score for each concept discovered. conceptshap
finds the importance of each individual concept from a set of m concept vectors
Cs = {c1, c2, . . . , cm} by utilizing Shapley values. Similar to ace, conceptshap
aims at having concepts clustered to certain coherent spatial regions. CaCE, Causal
Concept Effect (Goyal et al. 2019) is another variation of tcav that looks at the causal
effect of the presence or absence of high-level concepts on the black-box prediction.
Indeed, tcav can suffer from confounding concepts that could happen if the training
data instances have multiple classes, even with a low correlation. PACE (Kamakshi
et al. 2021) is a variation of ace that introduce the use of the black-box for identifying
concepts by automatically extracting small sub-regions of the image, called concepts,
relevant to the black-box prediction. In (Shen et al. 2021) is presented ICNN, an
interpretable method to modify traditional CNNs into interpretable CNN. In an inter-
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pretable CNN, each filter in a high convolutional layer represents a specific object
part. An interpretable CNNs use the same training data as ordinary CNNs without
additional annotations of object parts or textures for supervision. The interpretable
CNN automatically assigns each filter in a high convolutional layer with an object
part during the learning process. The explicit knowledge of interpretable CNN can
help people understand their logic, i.e., what patterns are memorized by the CNN for
prediction.

Concept attribution-based explainers comparison SMs are the best known and
most widely used type of explanation. However, they are very fragile and suffer from
interpretation problems as their usage from a cognitive perspective is unclear. On the
other hand, the usage of concepts is a new approach that seeks to overcome SMs
problems by producing high-level explanations that are more understandable by the
end user. Concept-based explanations are a very recent type of explanation for images,
and they have potential improvements. It is the first step in the direction of human-like
explanations. Human-friendly concepts make it possible to build straightforward and
valuable explanations. Humans still need to map images to concepts, but it is a small
price to pay to augment human–machine interaction. Generally, concept attribution
explainers compute a score that evaluates the probability that a selected concept has
influenced the prediction. The main problem, for now, is that this concept has to
be manually selected. tcav is the most advanced algorithm. However, the concepts
need to be provided as a set of images reflecting the selected concept, e.g., a set of
ice images, a set of people, and a set of stripes. Several variations of tcav have been
introduced to automate the concept selection phase. PACE is themost advanced search
when looking for concepts concerning black-box behavior. Researchers are focusing
on finding concepts in an automated way, but for the time being, there is no explainer
to ensure finding a concept that is humanly understandable.

There is a need to build an explanation in terms of higher features called concepts
for a general audience.

6.3 Prototype-based explanations

Another valid explanation type for images is a set of prototypical images that repre-
sent a particular class. Human reasoning is often prototype-based, using representative
examples as a basis for categorization and decision-making. Similarly, prototype
explanation models use representative examples to explain and cluster data. MMD-
CRITIC (Kim et al. 2016), already presented in Sect. 5, is an interpretable approach
that can be applied to retrieve image prototypes and criticisms. In Fig. 11 is presented
an application ofmmd- critic on cifar. We can extract some interesting knowledge
from these methods. For example, from the prototype set, we can deduce that birds
usually stand on a tree or fly in the sky, while, in the criticism images, we see that
planes are all on a white background or have a different shape from the usual one
used for passengers. Influence Functions (Koh and Liang 2017) is a global post-hoc
model-agnostic explainer that tries to find the images most responsible for a given pre-
diction through influence functions. The usage of influence functions is a technique
from robust statistics to trace a model’s prediction through the learning algorithm and
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Fig. 11 Prototypes (left) and criticisms (right) returned by mmd- critic on cifar

back to its training data, thereby identifying training points most responsible for a
given prediction. Visualizing the training points most responsible for a prediction can
be useful for more in-depth insights into the black-box behavior. PROTOPNET (Chen
et al. 2019) is a global interpretable model for image data that aims at identifying
prototypical parts of images (named prototypes) and using them to implement an
interpretable classification process. A special deep learning architecture is designed
to retrieve these prototypes. The network learns a limited number of prototypical parts
from the training set and then identifies parts on the test image that look like the pro-
totypical parts. Then, it predicts based on a weighted combination of the similarity
scores between parts of the image and the learned prototypes.

Prototype-based explainers comparison Prototype explanations are not widespread
as explanations for image classifiers. The explainers presented have very different
approaches: mmd- critic use the MaximumMean Discrepancy measure to select the
prototype set, protopnet instead used part of the image as prototypes. mmd- critic
is faster than protopnet but the explanations provided are more obscure.

Explanation prototypes are not very common for images because the usefulness
of such explanations is not clear.

6.4 Counterfactual-based explanations

In parallel with prototypes, also counterfactuals are another widely adopted form of
explanation for images. In this setting, counterfactual explainers for images produce
images similar to the input image but with a different prediction from the black-
box under analysis. Therefore, also in this case, counterfactual methods are post-hoc
explainers. Similarly to SM, we can distinguish between counterfactual explainers
altering single pixels against those altering the whole image or part of it. CEM, Con-
trastive Explanation Method (cem) (Dhurandhar et al. 2018), already presented in
Sect. 5, is a local post-hoc model-specific counterfactual explainer that can also be
applied on image data. In this setting, Pertinent Positives (PP) or Pertinent Negatives
(PN) are the pixels that lead to the same or a different class w.r.t. the original instance.
To create PP’s and PN’s, feature-wise perturbation is done by keeping the pertur-
bations sparse and close to the original instance through an objective function that
contains an elastic net βL1+ L2 regularizer and also consider an auto-encoder trained
to reconstruct images of the training set. As a result, the perturbed instance lies close
to the training data manifold. In Fig. 12, we can see that very few pixels are obtained
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Fig. 12 Explanation on mnist. a cem: input on the center PN left and PP right. b guidedproto: left to
right, input, the closest counterfactuals labeled as 6, and 8. c abele: on the left the input query and on the
right the counterfactual with 8 as target class

as the counterfactual explanation on mnist. However, from a human perspective, this
approach might seem much more adversarial than useful for an explanation (Guidotti
2022). An extension of CEM to resolve this problem is presented in (Luss et al. 2021),
where the authors leverage the usage of latent features created by a generative model
to produce more trustful perturbations. L2X (Chen et al. 2018) is a local post-hoc
model-agnostic explanation method that searches for the minimal number of pixels
that change the classification. It is based on learning a function for extracting a subset
of the most informative features for each given sample using Mutual Information.
l2x adopts a variational approximation to efficiently compute the Mutual Informa-
tion and gives a value for a group of pixels called patches. If the value is positive,
a group contributed positively to the prediction. Otherwise, it contributed negatively.
Guided Prototypes, Interpretable Counterfactual Explanations Guided by Prototypes
(guidedproto) (Looveren and Klaise 2021) proposes a local post-hoc model-specific
explainer that perturbs the input image by using a loss functionL = cL pred+βL1+L2
optimized using gradient descent. The first term, cL pred , encourages the perturbed
instance to predict another class then x , while the others are regularisation terms.
In Fig. 12, we show the application of guidedproto on mnist. It is interesting to
notice that the counterfactuals unveil how easy it is to change the class with very few
pixels. However, this kind of explanation is not easily human understandable because
the few pixels modified can barely be noticed by human eyes. ABELE, Adversarial
black-box Explainer generating Latent Exemplars) (Guidotti et al. 2019b), is a local
post-hoc model-agnostic explainer that produces explanations composed of: (i) a set
of exemplars and counter-exemplar images, i.e., prototypes and counterfactuals, and
(ii) a SM. abele exploits an adversarial autoencoder (AAE) to generate the synthetic
images used in the neighborhood to train the surrogatemodel used to explain x . Indeed,
it builds a latent local decision tree that mimics the behavior of b and selects prototypes
and counterfactuals from the synthetic neighborhood exploiting the tree. Finally, the
SM is obtained by a pixel-by-pixel difference between x and the exemplars. In Fig. 12,
we report an example of the application of abele on mnist.

Counterfactual-based explainers comparisonThe goal of counterfactual explainers
is to produce examples similar to the input but with a different predicted class. They are
more intuitive than the other types of explanations because counterfactual thinking is
typical from the human cognitive point of view. There is a wide offer of counterfactual
explainers (Guidotti 2022), and it is difficult to define which counterfactual explainer
is better than the others for the image domain. If the priority is the execution time,
then cem is the fastest method. Methods such as abele and guided prototypes

create more realistic counterfactuals but require training additional models such as
autoencoders which are notoriously difficult to train (Doersch 2016).
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Fig. 13 Example of insertion (left) and deletion (right) scores performed for the SM returned by lime. The
area under the curve is 0.215 for deletion and 0.594 for insertion

Counterfactual explanations are more user-friendly than prototypes and other
forms of explanations because they highlight the changes to make to obtain the
desired prediction.

6.5 Image explainers quantitative comparison

To quantitatively investigate the performance of the SM explainers analyzed, we com-
puted the deletion and the insertion metric, presented in Sect. 4. For the computation
of the deletionmetric, we substitute with black pixels the original pixels in increasing
order of importance w.r.t. the scores given by the SM. On the other hand, for the inser-
tionmetric, we blur thewhole imagewith aGaussianKernel, and thenwe slowly insert
highly salient pixels w.r.t the SM. For every substitution, we query the black-box with
the image, and we measure the performance. The final score is obtained by taking the
area under the curve (AUC) (Hand and Till 2001) as a function of the percentage of
pixels removed/inserted. In Fig. 13, we show an example of these metrics computed
on an image of imagenet. Table 6 reports the average results of the calculation
of these metrics for a set of 100 randomly selected images for every dataset. Inde-
pendently from the explainer adopted, we notice that insertion scores decrease while
augmenting the dataset dimensions because we have higher information and more
pixels have to be inserted to increase the performance. On the other hand, the deletion
scores decrease. This might be tied to the fact that since we have more information, it
is easier to decrease the performance. The best explainers are highlighted in bold. We
notice that rise is the best approach overall, followed by intgrad, deeplift, and ε-

lrp. We notice that all these approaches are pixel-wise-based methods. Thus it seems
that this kind of evaluation can be advantageous for these explainers. On the contrary,
the segmentation-based explainers lime and xrai struggle in general and even more
when handling low-resolution images.

Table 7 shows the runtime for the image explainers experimented with. For
imagenet, we only tested SMs methods due to the increasing computational costs
of the other explainers. On the contrary, we tested tcav only on imagenet as tcav
needs to obtain different images representing different concepts, and this is difficult
to do for very simple images like the one in mnist and cifar. From the results,
we notice that grad- cam and grad- cam++ are the fastest methods, especially for
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Table 6 Insertion (top) and deletion (bottom) metrics expressed as AUC of accuracy versus percentage of
removed/inserted pixels

mnist cifar imagenet

lime 0.807 (0.14) 0.41 (0.21) 0.34 (0.25)

ε- lrp 0.976 (0.02) 0.56 (0.20) 0.28 (0.19)

intgrad 0.975 (0.03) 0.64 (0.22) 0.37 (0.23)

deeplift 0.976 (0.02) 0.57 (0.20) 0.28 (0.19)

smoothgrad 0.959 (0.03) 0.55 (0.23) 0.34 (0.26)

xrai 0.956 (0.04) 0.58 (0.21) 0.40 (0.26)

grad- cam 0.941 (0.04) 0.57 (0.20) 0.21 (0.19)

grad- cam++ 0.941 (0.04) 0.52 (0.22) 0.32 (0.26)

rise 0.978 (0.03) 0.61 (0.21) 0.50 (0.26)

lime 0.388 (0.21) 0.221 (0.19) 0.051 (0.05)

ε- lrp 0.120 (0.01) 0.127 (0.11) 0.014 (0.02)

intgrad 0.128 (0.01) 0.118 (0.07) 0.019 (0.04)

deeplift 0.120 (0.01) 0.127 (0.11) 0.014 (0.02)

smoothgrad 0.135 (0.04) 0.153 (0.13) 0.033 (0.05)

xrai 0.151 (0.04) 0.144 (0.07) 0.086 (0.11)

grad- cam 0.297 (0.20) 0.153 (0.12) 0.139 (0.12)

grad- cam++ 0.252 (0.13) 0.283 (0.24) 0.081 (0.10)

rise 0.120 (0.01) 0.124 (0.07) 0.044 (0.05)

The reported value represents the mean of the scores obtained on a subset of 100 instances of the dataset,
and the value on the parenthesis is the standard deviation

complex models like the VGG network. In general, SM pixel-wise explanations are
faster to achieve because segmentation slows down a lot, especially for high-resolution
images. CA, CF, and PR methods are very slow compared to SM. This problem hap-
pens because these methods require additional training or use some search algorithm
to return their explanations. CA, CF, and PR methods produce more useful explana-
tions, but since SMs are easier and faster to obtain, they are seen more applied in the
literature than the other methods making them more widespread.

7 Explanations for text data

For text data, we can distinguish the following types of explanations: Sentence
Highlighting (SH), described in Sect. 7.1, Attention-Based methods (AB), described
in Sect. 7.2, Other Methods, detailed in Sect. 7.4. Additional details are available
in (Danilevsky et al. 2020). Table 8 summarizes the explanationmethods acting on text
data. Text, unlike tabular and image data, does not have a regular structure. Indeed,
the variety and complexity of tasks related to text are enormous, and in literature, it is
known as Natural Language Processing (NLP) (Chowdhary 2020). In the following,
we analyze text classification in detail because, among information retrieval, machine
translation, and question answering, text classification is the main topic where XAI
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Table 8 Summary of methods for opening and explaining black-boxes for text data

Type Name References Data type IN/PH G/L A/S

SH shap Lundberg and Lee (2017) ANY PH L S

lime Ribeiro et al. (2016) ANY PH L A

deeplift Shrikumar et al. (2017) ANY PH L S

intgrad Sundararajan et al. (2017) ANY PH L S

l2x Chen et al. (2018) ANY PH L A

lionets Mollas et al. (2019) ANY PH L S

AB – Li et al. (2016) TXT PH L S

attentionmatrix Vaswani et al. (2017) TXT PH L S

exbert Hoover et al. (2019) TXT PH L S

CF sedc Martens and Provost (2014) TXT PH L A

lasts Guidotti et al. (2020b) TXT PH L S

xspells Lampridis et al. (2020) TXT PH L S

cat Chemmengath et al. (2022) TXT PH L A

polyjuice Pezeshkpour et al. (2019) TXT PH L A

Other gyc Madaan et al. (2021) TXT PH L A

quint Abujabal et al. (2017) TXT PH L S

anchor Ribeiro et al. (2018) ANY PH L A

criage Pezeshkpour et al. (2019) TXT PH L S

– Rajani et al. (2019) TXT PH L S

lasts Guidotti et al. (2020b) TXT PH L S

doctorxai Panigutti et al. (2020) ANY PH L S

methods exist in literature. Examples of usage in text classification are sentiment
analysis, topic labeling, spam, and hate detection (Aggarwal and Zhai 2012). Text
classification is the process of assigning tags or categories to text according to its
content. Using labeled examples as training data, a ML model can learn the different
associations between pieces of text and a particular output called tags. Tags can be
thought of as labels that distinguish different types of text. For sentiment analysis, it
is possible to have tags as positive, negative, or neutral. XAI techniques are generally
applied to understand which (sets of) words are the most relevant for a specific tag
assignment. We experimented on three datasets: sst, imdb, and yelp. We selected
these datasets20 because they are the most used on sentiment classification and have
different dimensions. On these datasets, we trained different black-box models. For
every explainer, we present an example of an application on one or more datasets.

20 sst: https://nlp.stanford.edu/sentiment/index.html, imdb: https://ai.stanford.edu/~amaas/data/
sentiment/, yelp: https://www.kaggle.com/yelp-dataset/yelp-dataset.
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Fig. 14 Example of sentence highlighting, on top, we have the score produced by intgrad and below we
have in order, lime, deeplift and the baseline, which consists of multiplying the input with the gradient
w.r.t. input. The sentence is taken from imdb

7.1 Sentence highlighting

As seen in Sect. 6.1, saliency-based explanations are prevalent because they present
visually perceptive explanations. Saliency Highlighting (SH) can be seen as a version
of SMs applied to text. Indeed, it practically consists of assigning to every word (or
set of words) a score based on the importance that that word (or set of words) had in
the final prediction. Formally, Sentence Highlighting (SH) is modeled as a vector s
that explains a classification y = b(x) of a black-box b on x . The dimensions of s are
the words present in the sentence x we want to explain, and the value si is the saliency
value of the word i . The greater the value of si , the greater the importance of that
word. A positive value indicates a positive contribution towards y, while a negative
one means that the word has contributed negatively. Examples of SH explanations are
reported in Fig. 14.

To obtain such an explanation, it is possible to adapt some of the SMs methods
presented in Sect. 6.1. LIME (Ribeiro et al. 2016), presented in Sect. 5, can be applied
to text with a modification to the perturbation of the original input. Given an input
sentence x , lime creates a neighborhood of sentences by replacing one or multiple
words with empty spaces. Another possible variation is to insert a stop word instead of
removing it to maintain the meaning of the sentence. INTGRAD (Sundararajan et al.
2017), presented in Sect. 6, can also be exploited to explain text classifiers. Indeed,
gradient-based methods are challenging to apply to NLP models because the vector
representing everyword is usually averaged into a single sentence vector. Since amean
operation gradient does not exist, the explainer cannot redistribute the signal back to
the original vectors. On the other hand, intgrad is immune to this problembecause the
saliency values are computed as a difference with a baseline value. intgrad computes
the saliency value of a single word as a difference from the sentence without it. For a
fair comparison, we substituted the words with spaces as done for lime and also for
intgrad. DEEPLIFT (Shrikumar et al. 2017), presented in Sect. 6, can also be applied
to text following the same principle of intgrad. For the experiments, we adopt the
same preprocessing used for lime and intgrad. L2X (Chen et al. 2018) can produce
a SH explanation for text. In particular, for text, the patches adopted are a group of
words. Finally, a baseline for text explainers is formed by gradient× input that uses
the black-box gradient of the input w.r.t to the output and multiply these value by the
input values.
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Sentence highlighting explainers comparison The SM-based explainers for images
can be applied to text withminormodifications, which is why it turns out to be themost
popular type of explanation also for textual data. As said for explanations on images
in Sect. 6, these low feature explanations are helpful to check the model’s robustness,
not to give a valuable understanding for the final inexpert user. In addition, removing
a single word from a sentence is typically not a good measure of the goodness of
an explanation since the sentence might lose its meaning. Among the methods tried,
intgrad is the fastest and most reliable due to its use of the gradients of the black-
box. deeplift also uses the gradients, but its calculation method fails and returns
an explanation very similar to the baseline, as reported in Fig. 14. lime is the only
model-agnostic method; however, NLP models tend to be very deep and are generally
gradient-based. Thus, lime results in being very slow, and its performance is clearly
inferior to gradient-based methods.

Methods that use gradients such as intgrad perform better on the textual data
since very deep ML models are usually implemented in the NLP field.

7.2 Attention-based explainers

Attention was first proposed for images in (Xu et al. 2015) to improve the model
performance. The authors managed to show through an attention layer which parts
of the image most contributed to realize the caption. Formally, the attention layer
is indeed a layer to put on top of the model that, for each word, i j of the sentence x
generates a positive weight αi j , i.e., the attentionweight. This value can be interpreted
as the probability that aword i j is in the right place to focus on producing the next word
in the caption. Attention mechanisms allow models to look over all the information
the original sentence holds and learn the context (Wu and Ong 2021; Bahdanau et al.
2015). Therefore, it has caught the interest of XAI researchers, who started using
these weights as an explanation. The explanation e of the instance x is composed
of the attention values (α), one for each feature xi . Attention is nowadays a delicate
argument, and while it is clear that it augments the performance of models, it is less
clear if it helps gain interpretability and the relationship with model outputs (Jain
and Wallace 2019). Attention Based Heatmap (Li et al. 2016) is a local, intrinsic,
model-specific explainer based on the attention mechanism. It produces a heatmap
explanation similar to the one used for SMs by using the weights of the black-box. It
can only be applied to attention-based methods, such as BERT, in which the weights
αi j of the attention layers are used as a score for every word in the sentence. The
higher the score, the more important the word; therefore, the redder the heatmap.
Attention Matrix (Cheng et al. 2016) looks at the dependencies between words for
producing explanations. It is a self-attentionmethod, sometimes called intra-attention.
attention matrix relates different positions of a single sequence to compute its
internal representation. The attention of a sentence x composed of N words can be
understood as an N × N matrix, where each row and columns represent a word in
the input sentence. The values of the matrix are the attention values of every possible
combination of the tokens. This matrix is a representation of values pointing from each
word to every other word (Vaswani et al. 2017) (see Fig. 15). We can also visualize
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Fig. 15 Attention based heatmap matrix generated from the method presented in (Cheng et al. 2016). The
row and the columns of the matrix correspond to the words in the sentence: “Read the book, forget the
movie!”. Each value of the matrix shows the attention weight αi j of the annotation of the i-th word w.r.t. the
j-th

Fig. 16 Attention based representation of BERT for a sentence taken from imdb using the visualization
of (Hoover et al. 2019). The greater the attention between two words, the bigger the line. Here is selected
only the attention related to the word “sucks”

this matrix with a focus on the connection between words (Hoover et al. 2019) as in
Fig. 16, where the thickness of the lines is the self-attention value between two tokens.

Attention based explainers comparisonAttention is a mechanism good for improv-
ing the performance of the model but is not usable as an explanation. As described
in (Jain and Wallace 2019), it is unclear what relationship exists between attention
weights and model outputs. Learned attention weights are frequently uncorrelated
with gradient-based measures of feature importance, and it is possible to identify very
different attention distributions that nonetheless yield equivalent predictions. There-
fore we might suggest focusing on other types of explanations for text data.

It is unclear if attention can be considered a valid explanation.We suggest focus-
ing on other types of explanations.

7.3 Prototype and counterfactual-based explainers

Counterfactual and prototype explanations are not very common explanations for text
data. The richness ofmeaning in the textual datamakes it complex to generate explana-
tions since changing even a single word can deeply alter the meaning of the sentence.
In this section, we report the main existing methods that attempt counterfactual or
prototype explanations for text data.

PROTOTEX (Das et al. 2022) is a local, intrinsic, model specific NLP classifica-
tion architecture based on prototype network (Li et al. 2018). prototex faithfully
explains model decisions based on prototype tensors. At inference time, classification
decisions are based on the distances between the input text and the prototype tensors,
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explained via the training examples most similar to the most influential prototypes.
SEDC (Martens and Provost 2014) is a local, post-hoc, model-agnostic explainer able
to provide counterfactual instances for documents. The approach proposed is based
on a best-first search with pruning. The idea is that, given the words in the document,
the algorithm tries to predict the label by removing a single word at a time: if the
prediction changes, then it is added as an explanation. Then, also the combinations of
words are considered. CAT, Contrastive Attributed explanations for Text (Chemmen-
gath et al. 2022) is a local, post-hoc, model-agnostic explainer for NLP which returns
contrastive explanations through a data twist that guarantees semantically meaningful
explanations. In particular, cat rely on a minimal perturbation approach regularized
using a BERT language model (Hoover et al. 2019) and an attribute classifier trained
on available attributes on the text. POLYJUICE (Wu et al. 2021a) is a local, post-hoc,
model-agnostic counterfactual generator that returns a set of realistic textual counter-
factuals that can be employed for explanation purposes. In particular, it accounts for
returning counterfactuals that are grammatically correct besides being minimal and
realistic. The generation makes use of a fill-in-the-blank structure to specify where
the perturbation occurs and control codes like negation, delete, insert, shuffle, etc., to
specify how it occurs. GYC, Generate Your Counterfactuals (Madaan et al. 2021), is
a local, post-hoc, model-agnostic framework to generate diverse counterfactual texts
for testing automated decision-making systems. gyc returns plausible, diverse, goal-
oriented, and effective explanations through an approach based on constraints that can
be specified to guide the generation w.r.t. custom defined class labels, name-entities,
topics, etc. Like polyjuice, also this approach is not specifically designed for XAI, but
it can be easily used for interpretability purposes. XSPELLS (Lampridis et al. 2020) is
a local, post-hoc, model-agnostic explainer returning exemplars and counterexamples
sentences. In practice, it re-implements abele for text data by using LSTM layers in
the autoencoder. Exemplars and counter-exemplars are selected using rules extracted
from the decision tree learned in the latent space.

Prototype and counterfactual explainers comparison Counterfactuals and proto-
types explanations for text are very difficult to generate. cat and sedc alter single
words to change the prediction of the model; the former is more advanced, substituting
words with an NLP model to make correct sentences. However, as seen previously,
changing a single word hardly alters the meaning of the sentence and, therefore, the
black-box prediction. gyc and polyjuice are interactive tools in which human inter-
vention is needed, so they can be used for explanation purposes. xspell is the most
automatic approach, which seems to be also the best one among the others, but it
suffers from the same limitations of abele. The only prototype explanation method
we identified for text is prototex.

Prototype and Counterfactual explanations are very difficult to generate for text
data due to the meaning of the sentences. Interactive methods such as polyjuice
and gyc are promising approaches that introduce the human cognitive process
that helps in the process of counterfactual generation.
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Table 9 Deletion (top) and insertion (bottom) metrics computed on Sentence Highlighting for different
datasets

sst imdb yelp

intgrad 0.6447 (0.21) 0.647 (0.21) 0.7595 (0.25)

lime 0.6199 (0.23) 0.648 (0.21) 0.7712 (0.25)

deeplift 0.6297 (0.23) 0.600 (0.15) 0.7565 (0.31)

gradient x input 0.6287 (0.23) 0.630 (0.16) 0.7590 (0.28)

intgrad 0.6107 (0.23) 0.616 (0.16) 0.7625 (0.33)

lime 0.6337 (0.23) 0.599 (0.17) 0.7513 (0.33)

deeplift 0.6137 (0.21) 0.645 (0.16) 0.7524 (0.30)

gradient x input 0.5852 (0.22) 0.632 (0.16) 0.7479 (0.31)

The reported value represents the mean of the scores obtained on a subset of 100 instances, and the value
on the parenthesis is the standard deviation

7.4 Other types of explainers

In this section, we report on other types of explainers that may not fit into one of
the previous sections but are nonetheless relevant to the field. ANCHOR (Ribeiro
et al. 2018), presented in Sect. 5, can be adapted to text by using as perturbation the
word UNK. It consists of perturbing a sentence by substituting words with UNK
(unknown). For example, It shows how “sucks” contributed to the negative predic-
tion of the sentence, but when coupled with “love”, the sentence prediction switches
to positive. Natural Language Explanation verbalizes explanations in natural human
language. Natural language can be generated with complex deep learning models,
e.g., by training a model with natural language explanations and coupling it with a
generative model (Rajani et al. 2019). Besides, it can also be generated using a sim-
ple template-based approach (Abujabal et al. 2017). NLP is a very complex field,
and finding a human-friendly explanation is challenging. Researchers are working in
various directions of creating explanations with high concept (Srivastava et al. 2017)
and using humans to augment these types of concept (Rajani et al. 2019), as done
for Concept Attribution. Another possible development is the use of generative text
methods to build a friendly narrative for the final user, which is not always an expert
in the field.

Explanations for classifiers acting on text data are at the very early stages com-
pared to tabular data and images.

7.5 Text explainers quantitative comparison

Similarly to what we did for images, to quantitatively investigate the performance
of the SH explainers analyzed, we computed the deletion and the insertion metric,
presented in Sect. 4. For the computation of the deletion metric, we removed words
in order of importance. In contrast, for the insertion metric, we started with an empty
text, and we added words in order of importance. For every substitution we made, we
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queried the text to the black-box, obtaining accuracy. The final score is obtained by
taking the area under the curve (AUC) (Hand andTill 2001) of accuracy as a function of
the percentage of removed words. The results are shown in Fig. 14. We notice that the
highlighted words are very different among the various methods. intgrad and lime

are the ones who return more meaningful explanations, while deeplift struggles a lot
to diversify from the baseline. We also measured the deletion/insertion and reported
the results in Table 9. For both metrics, we have very poor performance among all
the methods. However, this metric is not ideal with text since removing a single word
barely changes the meaning of the sentence. On the other hand, concerning runtime,
NLPmodels are usually very deep and large, resulting in poor performance in terms of
runtime. In particular lime is the slowest since it queries the black-box for prediction
multiple times. deeplift and intgrad are faster since they operate on the gradients
of the black-box. Finally, AB methods are instant since they only need to extract the
weights and do not need to perform any operation.

8 Explainers for other data types

As detailed in this survey, the state-of-the-art is mainly focusing on the explanation of
black-box trained on tabular data, images, and texts. However, other types of data are
largely available, and many models are built on top of them. In this section, we shortly
summarize some explainers, which are pillars for the explanations of black-boxes
trained for time series and graph classification.

8.1 Explanations for time series

Due to the tremendous amount of data generated by sensors over time, there is a
widespread diffusion of ML models working on time series (Theissler 2017). A time
series x = {t1, t2, . . . , tm} ∈ R

m×d is an ordered set ofm real-valued observations (or
time steps), with dimensionality d. We say that a time series is univariatewhen d = 1,
while when d > 1, we name x a multivariate time series. There are areas such as the
medical or financial field where temporal data is of particular importance and where
black-box ML models are applied to provide support on decision-making for various
tasks. For this reason, recently, we have been assisting with the emerging proposal for
explainability related to time series (Theissler et al. 2022).

Many explainers for time series can be categorized with the taxonomy introduced in
Sect. 3. The most important difference with the other types of data relies on the type of
explanation produced. Shapelet is the most characteristic explanation for time series
data. They are time series subsequences that are maximally representative of a class.
Shapelets are more interpretable, faster, and more accurate than k-Nearest Neighbors
(kNN) (Cover and Hart 1967), which is a traditional approach to perform time series
classification (Lee et al. 2012). As usual, SMs can be used to highlight which part
of the series has contributed the most to the classification. Finally, also the attention
methods illustrated for text in Sect. 7.2 can also be applied to time series data. In the
following, we briefly illustrate some peculiar explainers for time series classification.
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In (Geler et al. 2020), introduced a transparent by design method namedWeighted-
kNN that extends the classic majority-voting kNN by proposing weighting schemes.
By emphasizing the nearer neighbors using a weighting scheme, it is possible to
improve the kNNclassifier’s quality and stability. The nearest neighbors are considered
part of the prototypical explanation. LASTS, Local Agnostic Shapelet-based Time
Series explainer (lasts) (Guidotti et al. 2020b), is a variation of abele for time
series. As explanation lasts returns exemplars and counterexamples composed of
subseries with a shapelet-based rule. An example of a rule is: “if these shapelets are
present and these others not, then x is classified as y”. DOCTORXAI (Panigutti et al.
2020) is a local post-hoc model-specific explainer acting on sequential data in the
medical setting. In particular, it exploits a medical ontology to perturb the data and
generate neighbors. doctorxai is designed on healthcare data, but it can theoretically
be applied to every type of sequential data with an ontology. For more information on
explaining black-box models for time series, we remand the reader to the following
survey (Rojat et al. 2021; Theissler et al. 2022).

Time series explainers comparison For time series data, kNN weighting schemes
are the most common approach. Shaplet-based explanations are promising, and new
approaches using autoencoders or ontologies are being developed to improve time
series explanations.

8.2 Explanations for graphs

Graph Neural Networks (GNNs) have become increasingly popular since many real-
world data are represented as graphs, such as social networks, chemical molecules,
and financial data. A graph can be used for specific tasks like link prediction (Cai and Ji
2020) or node labeling (Calamoneri 2006). However, many advanced GNN operations
are also proposed to improve the performance of classification models, for example,
in graph convolution models (Kipf andWelling 2017). Compared with image and text
domains, the explainability of black-box models working on graphs is less explored,
but it is critical for understanding to behavior of GNN.

The types of explanations available for graphs are various. The most common
one is node relevance which derives from feature relevance methods. It consists of
assigning a value to every node of the graph that represents how much that node
has contributed to the prediction. Since graphs are composed of nodes and edges,
the same operation can be accomplished with edges. The focus of the explanation is
shifted toward the interactions between the nodes instead of the nodes themselves.
There are different ways to do this. The most common one is to backpropagate the
signal from the prediction to the input graph in lrp style. Other approaches learn a
surrogate model to assign values as done by lime. LRP (for Graphs) (Schwarzenberg
et al. 2019) extends the original LRP method for GNN. It decomposes the output
prediction score into different node importance scores. The score decomposition rule
is developed based on the hidden features andweights.GraphLIME (Huang et al. 2020)
extends the lime for GNN and studies the importance of different node features for
node classification tasks. Given a target node in the input graph, graphlime considers
its N-hop neighboring nodes and their predictions as its local neighborhood, where a
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reasonable choice of N is the number of layers in theGNNs. Then a nonlinear surrogate
model is employed to fit the local neighborhood. Finally, based on the weights of
different features in the surrogate model, it selects important features to explain the
predictions. XGNN (Yuan et al. 2020a) (eXplainable GNN) is a global, post-hoc,
model-specific explainer that proposes graph patterns as explanations to investigate
which structure in the graph maximizes a specific prediction. Specifically, they trained
a graph generator to generate small graphs, which pattern can be used to explain GNN
behavior. The graph generator uses reinforcement learning that starts from an empty
graph and, at each step, determines how to add an edge or node and form a new graph.
This graph generator is trained based on feedback from trained graph models using a
policy gradient algorithm. CF-GNNExplainer (Lucic et al. 2022) is a local, post-hoc,
model-specific explainer for GNNs. It aims at finding the minimal perturbation to the
graph such that the prediction changes. In particular, cf- gnnexplainer iteratively
removes edges from the original adjacency matrix based on a matrix sparsification
technique, keeping track of the perturbations that lead to a change in prediction and
returning the perturbation with the smallest change w.r.t. the number of edges. For
more information on explaining black-box models for graphs, we remand the reader
to the following survey (Prado-Romero et al. 2022; Yuan et al. 2020c).

GNN explainers comparison GNN models are becoming more and more com-
mon in literature (Wu et al. 2021b), and due to their similarity to neural networks,
researchers are trying to adapt existing methods to this type of black-box. graphlime
and graphlrp) are two perfect examples of that, the former adapting lime while the
latter ε- lrp. Both methods return scores for nodes, but graphlime does not output
a score for the edges features as it totally ignores the graph structure, which is more
critical for graph data. xgnn and cf- gnnexplainer are more aimed at counterfac-
tual explanations. xgnn returns more robust counterfactuals due to the reinforcement
learning policy; however, it is much slower than cf- gnnexplainer for the same
reason.

9 Explanation toolboxes

A significant number of toolboxes for ML explanation have been proposed during the
last few years. In the following, we report the most popular Python toolkits with a
brief description of the explanation models they provide.21

AIX360 (Arya et al. 2019) contains both intrinsic, post-hoc, local, and global
explainers, and it can be usedwith every kind of input dataset. Regarding local post-hoc
explanations, different methods are implemented, such as lime (Ribeiro et al. 2016),
shap (Lundberg and Lee 2017), cem (Dhurandhar et al. 2018), cem- maf (Luss et al.
2019) and protodash (Gurumoorthy et al. 2019)). Another interesting method pro-
posed in this toolkit is ted (Hind et al. 2019; Dash et al. 2018), which provides intrinsic
local explanations and provides global explanations based on rules. CaptumAI is a

21 AIX360: https://github.com/Trusted-AI/AIX360, CaptumAI: https://captum.ai/, InterpretML: https://
github.com/interpretml/interpret, Alibi https://github.com/SeldonIO/alibi, FAT-Forensics: https://github.
com/fat-forensics/fat-forensics, What-If Tool: https://github.com/pair-code/what-if-tool, Shapash: https://
github.com/MAIF/shapash.
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library built for PyTorch models. CaptumAI divides the available algorithms into
three categories: Primary Attribution, in which there are methods able to evaluate the
contribution of each input feature to the output of a model: intgrad (Sundararajan
et al. 2017), grad- shap (Lundberg and Lee 2017), deeplift (Shrikumar et al. 2017),
lime (Ribeiro et al. 2016), grad- cam (Selvaraju et al. 2020). Layer Attribution, in
which the focus is on the contribution of each neuron: e.g. grad- cam (Selvaraju et al.
2020) and layer- deeplift (Shrikumar et al. 2017). Neuron Attribution, in which
is analyzed the contribution of each input feature on the activation of a particular
hidden neuron: e.g. neuron- intgrad (Sundararajan et al. 2017), neuron- grad-
shap (Lundberg and Lee 2017). InterpretML22 (Nori et al. 2019) contains intrinsic
and post-hoc methods for Python and R. InterpretML is particularly interesting due
to the intrinsic methods it provides: Explainable Boosting Machine (ebm), Decision
Tree, and Decision Rule List. These methods offer a user-friendly visualization of the
explanations, with several local and global charts. InterpretML also contains the most
popular methods, such as lime and shap. DALEX (Lipovetsky 2022) is an R and
Python package that provides post-hoc and model-agnostic explainers that allow local
and global explanations. It is tailored for tabular data and can produce different kinds
of visualization plots. Alibi provides intrinsic and post-hocmodels. It can be used with
any type of input dataset and both for classification and regression tasks.Alibi provides
a set of counterfactual explanations, such as cem, and, interestingly, an implementa-
tion of anchor (Ribeiro et al. 2018). Regarding global explanation methods, Alibi
contains ale (Accumulated Local Effects) (Apley and Zhu 2016), which is a method
based on partial dependence plots (Guidotti et al. 2019c). FAT-Forensics takes into
account fairness, accountability and transparency. Regarding intrinsic explainability,
it provides methods to assess explainability under three perspectives: data, models,
and predictions. For accountability, it offers a set of techniques that assesses privacy,
security, and robustness. For fairness, it contains methods for bias detection. What-If
Tool is a toolkit providing a visual interface from which it is possible to play without
coding. Moreover, it can work directly with ML models built on Cloud AI Platform
(https://cloud.google.com/ai-platform). It contains a variety of approaches to get fea-
ture attribution values such as shap (Lundberg and Lee 2017), intgrad (Sundararajan
et al. 2017), and smoothgrad (Selvaraju et al. 2020). Shapash is a Python library
that aims to make machine learning interpretable and understandable by everyone. It
provides several types of interpretable visualization that display explicit labels that
everyone can understand. Shapash offers different types of interactive visualization,
from feature importance graphs to contributions ones.

10 Conclusion

In this paper, we have presented a survey of the latest advances in XAI methods,
following a categorization based on the data type and explanation type. A subset of
widely adopted explainers has been benchmarked with a quantitative and qualitative
comparison. Among those explainers, lime and shap are probably the most widely

22 https://github.com/interpretml/interpret.
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usedmethods but also among themost unstable, with limemuch less stable than shap.
Weobserved that local explainers using surrogatemodels likelime suffer froma lackof
stability due to the high level of randomness in the neighborhood generation approach.
The solid theoretical background of shap accounts for more faithful explanations. The
explanations returned by lime and shap are based on (individual) features importance,
an approach that is often hardly understandable, especially for tabular data. As a recent
trend, rule-based explanations and counterfactual explanations are gaining attention
since their logic formalization supports a deeper understanding of the model’s internal
decisions. Unfortunately, metrics to compare such types of models are still missing
in the literature. For image data, there is a very wide variety of methods that provide
explanations through different implementations of saliency maps. According to our
experiments, the best approach is the masking method introduced by rise. Gradient
methods like intgrad, ε- lrp and deeplift are very close runners-up in our ranking,
while segmentation methods like lime and xrai produce less convincing results.
Concept Attribution methods are extremely promising but also hard to validate, as
they require additional knowledge about involved concepts. Prototypes and counter-
exemplars have received increasing attention in recent years but suffer from a lack
of a validation framework and are difficult to use in specific contexts of application.
Finally, we noticed that there are very limited explanation techniques for text data.
One of the pioneers is Sentence Highlight, that, similarly to feature importance for
tabular data, gives weight to the portion of the input that contributed, positively or
negatively, to the outcome. This strategy, customized for text data, is not mature yet.

Across the different data types, different approaches tend to use similar strategies.
This is also evident if we look at the internals of these algorithms. For exam-
ple, several methods exploit the generation of a synthetic neighborhood around an
instance to reconstruct the local distribution of data around the point to investigate.
This approach is prevalent when trying to produce counterfactual images. Another
widespread approach is to use the gradients of the black-box, if available. The best
results are obtained by combining the use of the gradientswith amaskingmethodology.

In recent years the contributions in the Explainable AI area have constantly been
growing, particularly explainers for machine learning models and, to a minor extent,
novel explainable-by-designmethods. To date, limited attention is devoted to the com-
parison of the explainers proposed, mostly using measures of the intrinsic, standalone
quality of an explainer, such as the metrics considered in this paper. A more holistic
validation approach is needed, that brings the user into the picture to assess whether a
proposed explanation is meaningful to the user’s purpose and whether the interaction
with theAI system increases the user’s trust. This emerging approach requires the care-
ful design of user studies that evaluate the combined human-AI ecosystem, considering
the cognitive model of the user. As an early example along this line, a user study on
XAI-assisted clinical decision-making revealed that XAI-based advice yields higher
(expert) user trust, compared to an AI-based advise (without explanation) (Panigutti
et al. 2022). Experiments like this also typically reveal the dissatisfaction of users
with the proposed explanation interface, a crucial aspect that suggests howAI-assisted
decision-making systems should be co-designed in a synergistic process where all rel-
evant stakeholders are involved from the beginning. While some preliminary results
are emerging (Guidotti 2021; Jeyakumar et al. 2020; Hase and Bansal 2020), there
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is still a long way to go towards explainable machine learning paradigms based on
the interaction and collaboration with the user(s), so that the decision makers and
the ML model can co-evolve together, exploiting their complementary strengths and
becoming progressively more effective and trustworthy. This is ultimately a key goal
of Human-centered AI: enhancing the capacity of humans to solve hard problems and
make wise decisions. We hope that the current developments of explainable AI may
represent a basis on which the novel paradigm may eventually flourish.
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