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Abstract 

Recent advances in network science have resulted in two distinct research directions 
aimed at augmenting and enhancing representations for complex networks. The first 
direction, that of high-order modeling, aims to focus on connectivity between sets of 
nodes rather than pairs, whereas the second one, that of feature-rich augmentation, 
incorporates into a network all those elements that are driven by information which is 
external to the structure, like node properties or the flow of time. This paper proposes a 
novel toolbox, that of Attributed Stream Hypergraphs (ASHs), unifying both high-order 
and feature-rich elements for representing, mining, and analyzing complex networks. 
Applied to social network analysis, ASHs can characterize complex social phenom-
ena along topological, dynamic and attributive elements. Experiments on real-world 
face-to-face and online social media interactions highlight that ASHs can easily allow 
for the analyses, among others, of high-order groups’ homophily, nodes’ homophily 
with respect to the hyperedges in which nodes participate, and time-respecting paths 
between hyperedges.

Keywords:  High-order networks, Feature-rich networks, Attributed networks, Stream 
graphs

Introduction
Complex networks provide a lens through which to illustrate plenty of behaviors that 
characterize humans as social animals. The elements of graph theory constituted the 
most helpful toolbox to represent and analyze social networks, with the intention to 
study complex behavior by mapping any possible kind of human contact, interaction, or 
relation as pairs of edges between unit elements called nodes. Network science, founded 
on such a basis, has been able to unravel many social patterns hidden at several scales 
of human relationships. Global network structures such as rich-clubs (Colizza et  al. 
2006) and core-periphery structures (Gallagher et  al. 2021), together with meso-scale 
organizations in blocks or communities (Fortunato and Hric 2016), give an idea to the 
extent to which graphs are useful to grasp the knowledge of complex social architec-
tures. However, the intrinsic nature of graphs to map dyadic patterns does not allow 
encoding explicitly group connectivity or high-order relations, which are fundamental in 
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the social sphere. An increasing number of works recently started to address the math-
ematical tools of hypergraph theory (Aksoy et al. 2020) and simplicial complexes (Iaco-
pini et al. 2019; Battiston et al. 2020) to implement multi-body representations of social 
systems (Torres et al. 2021). Such new lines of hyper-network science aim to point out 
the importance of high-order interactions when studying the social dynamics of groups 
(Veldt et al. 2023; Sarker et al. 2023) or nodes embedded in groups rather than within 
neighborhoods built upon pairwise connections (Failla et al. 2023).

Parallel to this new interest in augmented topologies, other lines of research in net-
work science focus on representations combining the structure with the large amount of 
domain-specific elements often available from a social system, like people’s qualities or 
preferences, or with any kind of information external to the system that can be related 
to the structure, e.g., the flow of time that could affect topological changes. Mining such 
semantically augmented networks helps to unhearth many interesting social properties, 
from assortative mixing patterns based on common preferences (Newman 2003) to the 
rules hidden in the formation and evolution of groups (Palla et  al. 2007; Rossetti and 
Cazabet 2018). The term ‘feature-rich’ networks (Interdonato et al. 2019) unifies all these 
augmented implementations that aim to add external, semantic information to a com-
plex structure. Originally designed for pairwise networks, we believe that any complex 
topology could benefit from a feature-rich implementation, thus also networked repre-
sentations built upon hypergraphs and simplicial complexes.

Hence, the objective of this work is to address the analysis of high-order patterns 
together with feature-rich elements. Generalizing the feature-rich framework, we aim to 
represent and analyze complex social phenomena along the following three dimensions: 
topology, dynamic features, and node attributes. To this purpose we introduce ASH, an 
Attributed Stream-Hypernetwork implementation for representing high-order temporal 
networks with attributive information on nodes.

The rest of the work is organized as follows. Section 2 sums up the principal litera-
ture on the three main complex network contexts surrounding this work, namely the 
dynamic, the node-attributed, and the high-order representations for networks. Sec-
tion  3 introduces a formalism for the Attributed Stream-Hypergraph, our framework 
for addressing node-attributed evolving high-order topologies. Section 4 discusses our 
main results on real-world scenarios, from face-to-face contacts to user interactions on 
online platforms. Section 5 concludes the work. Finally, in the “Appendix” we introduce 
a Python library to work with Attributed Stream Hypergraphs.

Related work
In the following, we provide an overview of the main enriched/augmented network 
implementations that are addressed in the work. First, we discuss dynamic and node-
attributed network representations; then, we sum up the emerging contributions about 
high-order representations for complex systems.

Dynamics of networks. Many network data that represent human activity have an 
intrinsic dynamic nature, from e-mail exchanges (Klimt and Yang 2004) and financial 
transactions (Zhao et al. 2018), which are instantaneous forms of connections, to face-
to-face interactions, that involve a certain duration, and friendships, that are generally 
stable and persistent over time. Hence, choosing a proper representation for modeling 
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the dynamics of all these different social behaviors is not a straightforward task. Dif-
ferent temporal semantics impose different representations (Holme and Saramäki 2012; 
Rossetti and Cazabet 2018), being possible to categorize them according to the following 
properties: i) stability, e.g., when dynamic data are represented as a snapshot sequence 
from a time-window aggregation (Ribeiro et al. 2013; Chiappori and Cazabet 2021); ii) 
duration, e.g., when data are represented as interval graphs (Holme and Saramäki 2012); 
and iii) immediacy, e.g., when data are represented as a stream graph of temporal nodes 
and connections (Latapy et al. 2018). In this work, we will mainly focus on such stream 
graphs, that have been proven to extend and generalize classic centrality measures 
(Simard et al. 2021), and multi-layer structure as well (Parmentier et al. 2019). More gen-
erally, among the most interesting and cutting-edge analyses on dynamic networks, we 
can mention community detection (Rossetti and Cazabet 2018), link prediction (Diva-
karan and Mohan 2020), and mixing pattern estimation (Citraro et al. 2022), as well as 
works extending properties like reciprocity (Chowdhary et al. 2023) and structures like 
rich-clubs (Pedreschi et al. 2022) to dynamic environments.

Networks with attributes. Attributes or metadata often describe the properties of the 
nodes involved in networked data. Node attributes can be fruitfully used for improv-
ing results on classic network tasks, e.g., in community detection, where both tight con-
nectivity and label homogeneity within communities need to be guaranteed (Chunaev 
2020). Attribute-enriched implementations can support analyses on the combined struc-
tural and attributive dimensions, searching for possible relations between the properties 
of nodes and how they are likely to connect (McPherson et  al. 2001; Newman 2003). 
Node attributes can be leveraged for estimating homophily and heterogeneous mixing 
patterns (Peel et al. 2018; Rossetti et al. 2021). Other tasks oriented to machine learning 
points of view can leverage on node metadata – e.g., the distribution of values within 
the adjacent neighborhood of a target node – for node classification and link prediction 
purposes (Bhagat et al. 2011). There is also an emerging effort toward the exploration of 
global patterns of connectivity in attributed data, which still is an unexplored topic in 
the literature on feature-rich networks. Attributed backboning, for instance, is the task 
of finding the subtree of a graph that spans over the nodes with a minimized connec-
tion cost, where such cost is determined by node affinitive attributes (Guan et al. 2019). 
Similarly, a (k,r)-core structure is a subgraph that is cohesive with respect to both node 
connectivity and similarity (Zhang et al. 2017).

High-order networks. Although traditional network science mostly addressed 
pairwise network representations, many dynamics can be better thought of as high-
order representations involving relations between groups of nodes. As an emerg-
ing line of research (Battiston et  al. 2020; Joslyn et  al. 2020; Torres et  al. 2021), the 
expressive power of such high-order relations is yet largely unexplored. The inter-
est in the physics of high-order interactions is growing (Battiston et al. 2021), being 
extensively explored in the area of diffusive processes on networks, e.g., for studying 
social contagion with simplicial complexes (Iacopini et al. 2019), in time-varying set-
tings as well (Chowdhary et  al. 2021). High-order structures varying in time are an 
important and emerging trend of research (Cencetti et  al. 2021; Comrie and Klein-
berg 2021). They have been applied to study the network structure of scientific revo-
lutions (Ju et al. 2020), or the evolution of high-order linguistic networks in scientific 
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texts (Christianson et al. 2020). There is also an increasing interest in the analysis of 
high-order interactions with attributes, e.g., measures for estimating homophily in 
hypergraphs and simplicial complexes (Veldt et al. 2023; Sarker et al. 2023), or inte-
grating node attributes through annotated high-order models (Chodrow and Mel-
lor 2020). The high-order structure of static/dynamic networks is often addressed 
by investigating datasets originally designed for graph-based analysis, thus one of 
the most intriguing future challenges is the inference of statistically significant high-
order interactions from complex systems (Musciotto et al. 2021). Finally, some lines 
of works tend to be more conservative, as in the case of the s-line graph analysis for 
hypergraphs (Aksoy et  al. 2020), where the hyperedge-projection of the hypergraph 
is used to apply, for instance, graph-based centrality measures to characterize hyper-
edges rather than nodes.

Attributed Stream Hypergraphs
To study dynamic high-order social interactions, simply borrowing results from the 
existing literature is not enough. Hypergraphs and/or simplicial complex has been not 
adequately defined in the presence of evolving topologies. Moreover, individuals embed-
ded in a social system can often be characterized by multiple features — profiles that 
contextualize some of the key properties playing a role in social interactions (e.g., nation-
ality, gender, age...). In this section we introduce ASH, our Attributed Stream Hyper-
graph model, adequately defined for evolving high-order interactions with semantically 
enriched nodes.

Table 1 summarizes the list of symbols and notation used throughout the work. We 
formally define ASHs as follows:

Definition 1  (ASH) Let S = (T ,V ,W ,E, L) be a stream hypergraph, where:

Table 1  List of symbols and notation used in the article

Symbol Description

S Stream Hypergraph

T Set of time instants

t A time instant belonging to T

V Set of nodes

u A node u, belonging to V

W Set of temporal nodes

(t, u) A temporal node observed at time t, belonging to W

E Set of temporal hyperedges

N A subset of nodes

(t, N) A temporal hyperedge observed at time t, belonging to E

L Set of node attributes

l Node attribute value

l(t ,u) Attribute value of node u at time t

P Sequence of hyperedges

Tu Set of time instants where node u is present

Vt Set of nodes active at time t

D(t, u) Temporal star of u at time t
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•	 T = [A,�] is the set of discrete time instants, with A and � the initial and final 
instants, and t ∈ T  identifies a time instant belonging to T;

•	 V is the set of the nodes of the temporally flattened hypergraph, namely the set of 
all nodes appearing during the ASH’s lifespan;

•	 W ⊆ T × V  is the set of temporal nodes such that (t,u) ∈ W  identifies a node u 
observed at time t;

•	 E ⊆ T × Vn is the set of temporal hyperedges such that (t,N ) ∈ E implies that 
N ⊆ V  and ∀ui ∈ N , (t,ui) ∈ W ;

•	 L = {l1, ...lm} is the set of m node attributes such that l(t,u) with (t,u) ∈ W  and 
t ∈ T  , identifies the categorical value of the attribute l associated to u at time t.

ASHs bring together high-order interactions, temporal dynamics, and node attrib-
utes. It should be noted that other modeling frameworks can be thought of as par-
ticular instances of an ASH, where one of the three dimensions is switched off. For 
instance, given an ASH S = (T ,V ,W ,E, L) , it is possible to switch off a dimension 
that results in one of the following representations:

•	 an attributed stream graph (Citraro et al. 2022) for |N | = 2, ∀ (t,N ) ∈ E , where |N| 
identifies the number of nodes included in hyperedge (t,N ) ∈ E;

•	 a static node-attributed hypergraph (Veldt et al. 2023) for |T | = 1 (i.e., there is no 
temporal dynamics), which implies W = V  and E ⊆ Vn;

•	 a stream hypergraph (without node attributes) for L = ∅.

Inheriting from stream graphs and hypergraphs

ASHs are a conservative extension of stream graphs (Latapy et  al. 2018) and hyper-
graphs (Battiston et al. 2020; Aksoy et al. 2020), thus inheriting from such frameworks 
their peculiar concepts. For instance, ASHs inherit from stream graphs the peculiari-
ties of temporal nodes and temporal edges, since the nature of nodes and edges is ana-
lyzed with respect to the times they appear in the temporal stream. Nodes/edges can 
be thought of as temporal entities that can be present or absent at a certain time in the 
stream, so that the contribution of a node/edge is said to be equal to 1 – i.e., represented 
as a whole quantity – only if it is present all the time in the stream. With a rapid exam-
ple, the contribution of an edge uv is computed as follows: muv =

|Tuv |
|T |

 , where |Tuv| rep-
resents the number of time instants where uv is present, and |T| is the overall number 
of time instants. Naturally, the main difference with stream graphs is that, in an ASH, 
the temporal presence of an interaction is accounted for hyperedges. This aspect cap-
tures the fact that nodes/edges might not be present all the time, thus |W|, the sum 
of active nodes across all temporal instants, and |T × V | , the sum of all possible active 
nodes across all temporal instants, might differ significantly. The contribution of tempo-
ral hyperedges is computed under the same rationale, i.e., the sum of active hyperedges 
across all temporal instants over the sum of all possible active hyperedges across all tem-
poral instants. Finally, in the case when all nodes are present all the time in the stream, 
the representation is called link stream, and it is a possibility allowed for ASHs as well.
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Another key concept that can be generalized to ASHs is that of path. Paths on 
graphs have already been extended to hypergraphs within the s-analysis framework 
(Aksoy et al. 2020). This framework builds on the idea that hyperedge paths (or any 
walk, equivalently) not only have a length, i.e., the number of hyperedges crossed 
during the walk, but also a width, i.e., the cardinality of the minimum intersection 
between subsequent hyperedges. For instance, an s-walk of width 3 (3-walk, equiva-
lently) is a sequence of hyperedges where each edge intersects on at least 3 nodes 
with its predecessor (except for the hyperedge at the beginning) as well as with 
its successor (except for the hyperedge at the end). However, the dynamic nature 
of ASHs comes with the added constraint of temporal contiguity. In other words, 
in a temporal setting, each subsequent hyperedge along an s-walk must come with 
non-decreasing, adjacent time instants. This also implies that, aside from length and 
width, a temporal s-walk also has a duration, namely the number of time instants 
occurring between the beginning and the end of the walk. Hence, we define a time-
respecting s-walk as follows:

Definition 2  (Time-respecting s-walk) A time-respecting s-walk of length k, width s, 
and duration d is a sequence P = {(t0,N0), (t1,N1), . . . , (tk−1,Nk−1)} such that:

•	 P ⊆ E;
•	 (ti,Ni) ∈ E;
•	 ti ≤ ti+1 for all is, where i ∈ Z

+ ∧ i < k identifies the position of a hyperedge along 
the walk, with Z+ identifying the set of positive integers;

•	 s ∈ Z
+ ∧ s ≤ |(Ni) ∩ (Ni+1)|;

•	 d = tk−1 − t0;

By leveraging the above formulation, the notions of shortest, fastest, fastest-short-
est, shortest-fastest, and foremost time-respecting s-walks can be deduced as already 
done for stream graphs (Latapy et al. 2018), e.g., shortest paths are the ones with min-
imal length k, fastest paths are the ones with minimal duration tk − t0 , fastest-shortest 
are the fastest paths among the shortest ones, and shortest-fastest, viceversa; fore-
most paths, independently from length and duration, are the ones that reach first the 
destination.

Another concept that can be extended dynamically is that of node’s star, namely 
the set of hyperedges where the node is present. This can be limited to include only 
hyperedges that are active at a specific point in time.

Definition 3  (Temporal Star) Let u ∈ V  be a node in the ASH. The temporal star 
of u at time t is the set of temporal hyperedges that include u in t, and is denoted 
D(t,u) = {(t,N ) : (t,N ) ∈ E ∧ u ∈ N } , with N ⊆ V  and ∀ui ∈ N , (t,ui) ∈ W .

Temporal star analysis allows quantifying node-level properties of temporal high-
order structures (Comrie and Kleinberg 2021), as well as eventually extending to the 
temporal dimension concepts like hyperego-network density and overlap (Lee et  al. 
2021).
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Towards temporal mixing patterns estimation

Apart from combining the stream graph’s evolutionary nature with the hypergraph’s 
high-order structure, ASHs can integrate time-evolving node attributes, i.e., labels 
that (may) change in time. This peculiarity allows studying not only how individu-
als’ characteristics change (e.g., opinions, political leaning) but also how such changes 
relate/affect the topological structure surrounding them. As a node’s attribute values 
might vary through time, one can quantify the extent of their consistency, namely to 
what extent a node’s attribute value remains constant over time.

Definition 4  (Consistency) Let u ∈ V  be a node, and l ∈ L be an attribute such that 
l(t,u) denotes the attribute value of u at time t; let Tu identify the set of time instants 
where u is present. The Consistency of u with regards to l ranges in [0, 1] and is com-
puted as:

Said differently, consistency corresponds to the complementary of the entropy (cf. 
next Definition 6) of u’s attribute values across time.

Henceforth, we may be interested in quantifying (a) hyperedges’ homogene-
ity, which is a rising hot topic in attributed high-order analyses (Veldt et  al. 2023; 
Sarker et al. 2023), and also (b) the level of homogeneity of a target node with respect 
to the set of hyperedges it belongs. In case (a), several options are possible, e.g., as 
cleanly proposed in Veldt et al. (2023), Sarker et al. (2023) with statistically validated 
measures.

More straightforward ways to measure hyperedges’ homogeneity can consist in 
finding an aggregate value that sums up the characteristics of a hyperedge with 
respect to the labels carried by the nodes within it. For instance, a characteristic value 
can be the frequency of the most frequent class within a hyperedge. Hence, we can 
use hyperedges’ purity (Citraro and Rossetti 2020) as follows:

Definition 5  (Temporal Purity) Let (t,N ) ∈ E be a temporal hyperedge and l ∈ L be 
a node attribute. Let maxl∈L( n∈N l(t,n)) be the most frequent categorical value within 
(t, N). The temporal purity of (t, N) is the relative frequency of the most frequent value 
and ranges in [ 1

|l|
, 1] , where |l| is the cardinality of the attribute:

Similarly, another characteristic value that can be used to describe a hyperedge is 
entropy, which quantifies the degree of disorder related to the nodes’ attribute values 
within the hyperedge.

Definition 6  (Entropy) Let (t,N ) ∈ E be a temporal hyperedge and l ∈ L be a node 
attribute. Let A(t,N ),l be the set of the attribute values of l in (t, N). The entropy of (t, N) 
with respect to l ranges in [0, 1] and is computed as follows:

(1)Consistency(u, l) = 1−



−
�

t∈Tu

p(l(t,u)) log p(l(t,u))



.

(2)Purity(t,N , l) =
maxl∈L(

∑

n∈N l(t,n))

|(t,N )|
,



Page 8 of 19Failla et al. Applied Network Science            (2023) 8:31 

In case (b), our focus is on a target node u ∈ V  aiming to analyze u’s homogene-
ity with respect to its attribute value l(t,u) . We can still associate each hyperedge in 
D(t, u) with a characteristic value. The ones described so far, i.e., purity and entropy, 
result in continuous values. However, we can also characterize a hyperedge by means 
of a categorical value. Here, for instance, we describe each hyperedge in the tempo-
ral star of a target node u by means of the most frequent attribute value within the 
hyperedge, namely maxl∈L(

∑

n∈N l(t, n)) , with (t,N ) ∈ D(t,u) . Having such categori-
cal value can allow us to compute the relative frequency of such characteristic values 
with respect to the label of the target node.

Definition 7  (Star Homogeneity) Let u ∈ V  be a node with attribute value l(t,u) , l ∈ L . 
Let be D(t,  u) the temporal star of u, and maxl∈L(

∑

n∈N l(t,n)) , with (t,N ) ∈ D(t,u) 
the most frequent categorical value of a hyperedge belonging to the star of u. The star 
homogeneity of u with respect to lt,u is the relative frequency of the hyperedges in D(t, u) 
that share with u its same attribute value lt,u . It ranges in [0, 1] and is defined as follows:

Star homogeneity quantifies a node’s degree of embeddedness across all of the 
contexts/interactions it finds itself in.

Finally, consistency, purity, entropy, and star homogeneity, can be averaged to cap-
ture the global behavior of the ASH:

Note that Eq. 5 averages over the number of nodes in the ASH, as it quantifies nodes’ 
overall behavior; Eq. 6 and 7 average over the number of hyperedges as they quantify 
a property of the high-order relation; Eq. 8 averages over |Vt | , i.e., the number of nodes 
that are active at time t, as star homogeneity is relative to a specific point in time.

(3)H(t,N , l) = −

|A(t,N ),l |
∑

i

p(i) log p(i)

(4)Star Homogeneity(t,u, l) =
|{(t,N ) ∈ D(t,u) : maxl∈L(

∑

n∈N l(t,n)) = l(t,u)}|

|D(t,u)|
,

(5)Consistency(S , l) =
1

|V |

∑

u∈V

Consistency(u, l),

(6)Purity(S , l) =
1

|E|

∑

(t,N )∈E

Purity(t,N , l).

(7)H(S , l) =
1

|E|

∑

(t,N )∈E

H(t,N , l)

(8)Star Homogeneity(S , l) =
1

|Vt |

∑

u∈V

Homogeneity(t,u, l).
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Experiments
In this section we provide basic experiments to test ASH’s potentialities. We define the 
two following case studies:

•	 We provide a characterization of face-to-face interactions within the SocioPatterns 
project,1 focusing particularly on children in a primary school (Stehlé et  al. 2011), 
and medical staff and patients in a hospital ward (Vanhems et al. 2013);

•	 We build a case study on online social network discussions about political topics 
(Morini et  al. 2021) to describe aspects related to pairwise-based vs. high-order-
based representations.

We promote two different analyses coherently with the different nature/persistence of 
connectivity in face-to-face contacts and online discussions. In face-to-face interac-
tions we are more interested in analyzing temporal mixing patterns and time-respecting 
paths with different aggregation windows. In online discussions, where more stability 
can be reached in users’ intreraction, we promote a comparison between pairwise and 
high-order representations in characterizing users’ mixing patterns. The experiments 
are conducted by leveraging our Python library handling ASH-structured data,2 which is 
introduced and discussed in the “Appendix”.

High‑order temporal dynamics in face‑to‑face contacts

As mentioned, we analyze the dynamics of children in a primary school and individuals 
in a hospital ward. Some detailed information is provided as follows:

•	 Primary School (Stehlé et  al. 2011): this dataset contains face-to-face interactions 
between children during the whole school day: node metadata include children’s 
gender and class;

•	 Hospital (Vanhems et  al. 2013): this dataset contains the temporal contact data 
between medical doctors (MED), nurses and paramedics (NUR), administrative staff 
(ADM), and patients (PAT) in a short-stay geriatric unit of a University hospital. Data 
were collected for a week.

For representing the temporal higher-order structure, we leverage a similar method as 
that introduced in Cencetti et al. (2021), namely: if at time t there are n ∗ (n+ 1)/2 dyads 
between the members of a set of n nodes such that they are involved in a fully connected 
clique, such links are promoted to form a n-hyperedge. We aim to characterize the 
hypernetworks with regard to their structure, node features, and dynamics, at different 
time aggregations (1 min, 5 min, 10 min, 30 min, and 1 h).

1  www.​socio​patte​rns.​org
2  https://​github.​com/​Giuli​oRoss​etti/​ASH

http://www.sociopatterns.org
https://github.com/GiulioRossetti/ASH
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Time‑respecting paths in face‑to‑face contacts

ASHs allow to define time-respecting paths between incident hyperedges. As men-
tioned, hypergraph paths add the notion of width, broadening the interest in observing 
how much this parameter affects the length/duration of the walks. Figure 1a shows the 
distribution of the duration of shortest s-paths (for s equal to 1, 2, 3, and 4) for both pri-
mary school and hospital ward at different aggregation windows. In primary school, we 
observe heterogeneous distributions with several peaks. Conversely, larger aggregation 
windows in the hospital ward show that the majority of hyperedges tend to be reached 
distant in time, intuitively related to the fact that patients can be reached only through 
the interaction between nurse and medical staff. As expected, for s=1, we observe a 
larger number of walks, and this difference is more visible when the aggregation window 
is smaller (10 min). In primary school, larger widths (s>1) highlight a large presence of 
shortest-lived and longest-lived paths with respect to the entire distribution, whereas in 
the hospital ward, larger widths let us observe the presence of longer lasting paths than 
the ones observed with s=1.

Temporal mixing patterns in face‑to‑face contacts

ASHs allow to study high-order dynamic mixing patterns. In the Sociopatterns data-
sets we can estimate them at different temporal scales. Figure 1b describes the temporal 
trends of average star homogeneity (cf. Equation 7) for the two hypernetworks at differ-
ent aggregation windows. Clear temporal patterns emerge in the primary school data-
set, where the attribute observed is children’s gender. Children’s interactions are more 

Fig. 1  Duration of shortest s-paths (a) and temporal trends of average star homogeneity (b) for Primary 
School and Hospital Ward at different aggregation windows
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randomly mixed during lesson breaks, and no differences emerge between male and 
female behavior. In the hospital ward, nurses’ interactions are homophilic at late-night/
early morning, while MDs’ are more homophilic in the evening. The temporal aggrega-
tion windows have an impact on both datasets. In primary school, larger windows let 
more homogeneous interactions emerge. However, larger windows do not let us distin-
guish between class hours and breaks. Conversely, larger windows in the hospital ward 
let us observe that some categories are more homophilic than others, e.g., nurses, while 
patients tend to be disassortative all the time, coherently with the fact that they stay in 
different rooms (Vanhems et al. 2013) and they are visited only by nurses and medical 
staff.

Homophilic behaviors in pairwise and group political discussions on Reddit

We focus on data collected from the debate between Trump supporters and anti-Trump 
citizens during the first two and half years of Donald Trump’s presidency, covering a 
period between January 2017 and July 2019. The debates cover both controversial/polar-
izing sociopolitical issues and broader discussions within the US political ideologies, as 
follows:

•	 Gun Control: this topic is identified by collecting lists of subreddits that either sup-
port gun legalization or are against it;

•	 Minorities Discrimination: identified by considering groups that promote gender/
racial/sexual equality and groups with more conservative attitudes;

•	 Political Sphere: identified by covering different US political ideologies such as 
Republicans, Democrats, Liberals, and Populists.

Data collection, users’ ideology inference, and network construction are properly described 
in the reference paper (Morini et al. 2021), being able to identify three users’ families, pro-
trump, antitrump, and neutral classes, that we use as our categorical attribute values. Lev-
eraging the original temporal network,3 here we infer the hypergraph structure by means of 
all the maximal cliques. As in the reference analysis, Morini et al. (2021), we consider a time 
window of six months when analyzing system interactions’ dynamics. Average statistics for 
the pairwise graphs are shown in Table 2.

Analytical setting

We set a four-fold framework to analyze ideological homogeneity from different network-
based perspectives as in the following: 

Table 2  Reddit Data Network statistics (averaged across semesters)

Topic # nodes # edges # Pro-Trump # Anti-Trump # Neutral

Gun Control 4991 15298 3346 1645 –

Minorities Discrimination 5540 12605 3318 2222 –

Political Sphere 4509 7079 1280 2395 834

3  Original network data available at https://​github.​com/​virgi​iim/​EC_​Reddit_​CaseS​tudy.

https://github.com/virgiiim/EC_Reddit_CaseStudy
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	 i.	 we promote an analysis on dyadic interactions, measuring how much users are 
homogeneously embedded in their pairwise ego-networks;

	 ii.	 we shift the focus from individual users to groups, and we measure the homophily 
of such groups represented as hyperedges;

	iii.	 we come back to individual users, adopting user’s point of view by measuring how 
much a user is embedded in the hyperedges where he/she participates;

	iv.	 we introduce a time-aware analysis to track stability or variations in ideological 
homogeneity.

As a preliminary question, we aim to explore whether different behaviors emerge among 
individual users (i) and groups (ii): can high-order interactions capture patterns that are 
invisible to dyadic interactions? Then, we aim to understand the role of single users in the 
several hyperedges where they participate (iii), as a meeting point between the two previous 
issues: can high-order neighborhoods capture patterns that graph ego-networks cannot? 
Finally, the focus on interactions’ dynamics (iv) would allow us to track stable or mutable 
patterns as time goes by.

It should be noted that computations in (i) and (iii) are different from (ii). In (i) and (iii) we 
aim to measure the homogeneity of users’ contexts with respect to the political leaning of a 
specific target node. In (i), a context is represented by the set of adjacent nodes in the ego-
network of a target node, while in (iii) the context is the set of hyperedges where the target 
node participates in. We use a measure of homogeneity to estimate target nodes’ similar-
ity within nodes’ own contexts. We can use Eq. 7 for both pairwise and high-order nodes’ 
ego-network, since in the former case we compute the relative frequency of the attribute 
values among the node’s first-order neighborhood, and in the latter case we use the most 
frequent value as the characteristic values of a hyperedge. Conversely, in (ii) the focus is on 
hyperedges’ homogeneities. Thus, we use Eq. 2, which computes the relative frequency of 
the most frequent attribute value within the hyperedge.

Pairwise ego‑networks reveal both homophilic and heterophilic users’ preferences

Figure 2 outlines graph ego-networks’ homogeneities in the three topics considered. For 
computing the pairwise network homogeneity, we use the following measure:

(9)Homogeneity(t,u) =
|v ∈ Ŵ(t,u) : l(t,u) = l(t, v)|

|Ŵ(t,u)|
,

Fig. 2  KDE distributions of pairwise ego-networks’ homogeneity among the three different Reddit 
communities
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 where Ŵ(t,u) is the set of u’s adjacent nodes at time u.
Results are aggregated over the semesters. The analysis of pairwise interactions cap-

tures both homophilic and heterophilic patterns, telling us that such political discussions 
manifest heterogeneity. For instance, in Politics, protrump and neutral users show het-
erophilic behavior, while antritrump are more homogeneous. Minority is overall more 
homophilic than GunControl, where interactions seem to be also more randomly mixed.

These observations are coherent with the analyses performed on the original data 
paper (Morini et  al. 2021), where in Minority and Politics it is more likely to observe 
echo-chambers – oriented towards a protrump political leaning in Minority, and anti-
trump in Politics, while GunControl discussions are less polarized.

Hyperedges’ purity emphasizes heterogeneity

Fig. 3a shows ideological homogeneity within the hyperedges in the three topics consid-
ered, captured by purity. Results are aggregated over the semesters. The discussions in 
Minority are the purest ones, a result which is coherent to what already observed at the 
meso-scale graph-based community level in the original paper (Morini et al. 2021): Gun-
Control does not present strongly polarized communities (i.e., echo chambers) among 

Fig. 3  KDE distributions of hyperedges’ purity (a), number of pure hyperedges (b), and average purity (c) in 
function of hyperedge size among the three different Reddit communities
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different semesters (Morini et al. 2021) as well as it seems that only a bunch of contexts 
present quite perfect purity (Fig. 3a, leftmost); in Minority on average, more than half 
of total users are trapped in echo chambers (Morini et al. 2021), and hyperedge purities 
show a quite similar pattern as well, with a tendency of protrump users to form more 
homogeneous groups (Fig. 3a, center); also Politics presents high homogeneity contexts, 
where antitrump users are more likely to form homogeneous groups (Fig. 3a, rightmost). 
Moreover, we analyze these patterns with respect to the hyperedge size. Figure  3b, c 
highlight, respectively, the number (b) and the average purity (c) of pure groups in func-
tion of the group size. For instance, in Minority we observe that only protrump pure dis-
cussions involve groups with more than 7 participants, and that they are quite pure, 0.9. 
The same does not happen in GunControl, while in Politics the biggest contexts involve 
antitrump users only but with a lower purity than the one of protrump users in Minority.

Users are involved in heterogeneous debates

As can be observed in Fig.  4, the topics show diversified behaviors when the analysis 
shifts to star egos. Indeed, there is no more trace of the heterogeneous patterns observed 
in Fig.  3a. The key insight, however, relates to another type of heterogeneity in user 
debates. While engaging in relatively homogeneous contexts (Fig. 3), it seems that users 
find themselves in rather mixed collections of debates. That is to say, although homo-
philic behavior is highlighted in most debates (i.e., hyperedges), the set of contexts a 
node is involved in (i.e., its star) is generally diversified with respect to ideology/political 
leaning. This is especially true in GunControl, where protrump users appear to engage 
in a more heterogeneous set of debates than their counterparts, as opposed to what was 
noted in Fig.  3a. The same holds for Politics, which displays a peak in heterogeneous 
protrump stars while the antitrump ones show more homophilic behavior. Minority, 
instead, still shows strong homogeneity traits for both antitrump and protrump users, 
thus confirming previous observations.

Interactions’ dynamics: users’ preferences tend to be consistent in time

As far as the temporal dimension is concerned, a certain degree of consistency w.r.t. 
debates homogeneity/heterogeneity can be observed. As a matter of fact, the average 
star homogeneity outlines almost-flat trends (Fig. 5), indicating minor variations. Here, 
GunControl and Minority reveal near-constant heterogeneity/homogeneity for both 
political alignments; lastly, Politics displays only a small bump during the third semester 

Fig. 4  KDE distributions of hypergraph star ego-networks’ homogeneity among the three different Reddit 
communities
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concerning protrump and neutral users. What makes this result so interesting is the fact 
that only ∼ 11% of the nodes stay in the network for more than a semester (see Table 3), 
but still coherence is observed regardless of the continuous turnover of nodes. Such 
coherence is also confirmed by the Consistency values of the remaining nodes (Table 3, 
fourth column), which hint at a resilience to opinion change.

Discussion and conclusion
In this work, we proposed an Attributed Stream Hypergraph (ASH) representation for 
taking into account both high-order relations (Battiston et  al. 2020) and feature-rich 
information (Interdonato et al. 2019) through which to describe complex social systems. 
With ASH, social phenomena represented by means of high-order interactions can also 
be studied together with additional information that goes beyond the network struc-
ture, namely nodes’ semantics and time. We have shown how this paradigm can be used 
to analyze social interactions along the (i) structural, (ii) attributive, and (iii) temporal 
dimensions. The high-order architecture inherited by hypergraphs (i) allows to more 
realistically model social interactions which naturally occur in groups of varying sizes. 
Node metadata can be used to construct node profiles (ii), which can be used to assess 
differences and similarities in the behaviors of different classes. The temporal dimension 
(iii) can shed light on recurring patterns over time.

The novelty of ASH stands in the possibility to combine all these aspects together. 
Being interested in analyzing a wide variety of different temporal network data, we 
focused here on face-to-face contacts and discussions on online platforms. In the experi-
ments, we recognized the significance of capturing the temporal dynamics of both 
datasets, by building different case studies according to the different nature of the data 
analyzed. Face-to-face contacts, like the well-known ones from SocioPatterns, were 

Table 3  Reddit Data Network statistics (averaged across semesters)

Nodes that stay in the network for more than two semesters/timestamps; mean and std of the consistency values for such 
nodes

Topic #stay #stay_pct mean_consistency 
(stay)

std_
consistency 
(stay)

GunControl 580 0.116 0.591 0.478

Minority 735 0.132 0.715 0.441

Politics 574 0.127 0.748 0.310

Fig. 5  Average hypergraph star ego-networks’ homogeneity over time among the three different Reddit 
communities
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suitable for a broad characterization involving the enriched expressivity provided by 
our augmented representation. In particular, we observed whether different instantia-
tions of the parametrized dimensions inner in our model – like the width of hyperedges 
for computing time-respecting s-walks – could lead to different results, thus interpre-
tations. Time-respecting s-walks can allow to identify stable, densely-connected sub-
hypergraphs, and to generalize dynamic centrality scores to hypergraphs (Simard et al. 
2021). In face-to-face contacts we noticed that time-respecting s-walks and their dura-
tion can vary according to the width of hyperedges. This observation hints to carefully 
consider the importance of this parameter for further studies involving time-respecting 
paths in high-order networks, e.g., for assortative mixing studies (Citraro et al. 2022) or 
information diffusion models (Antelmi et al. 2021).

While applying the ASH framework on US-politics-bound communities on Reddit we 
observed strong homophilic behaviors among groups/hyperedges with respect to users’ 
political leaning. However, while focusing on the preferences of single nodes, namely on 
how much a target node is homogeneously embedded with respect to the representa-
tive political leaning of the groups/hyperedges it belongs to, we mostly observe a rel-
evant decrease in nodes’ homophilic behaviors. As a consequence, we observe that users 
prefer participating in contexts whose representative leaning is different than the target 
node’s own label, although hyperedges are strongly homophilic per se. When studying 
enriched high-order representations such as ASHs, an interesting point to investigate 
is the difference between ASHs and their particular instances when one of the dimen-
sions is switched off, for instance the high-order dimension. Interestingly, the previously 
described patterns are not observed when looking at the pairwise ego-networks only, 
indicating the different expressive power provided by the enriched model.

In future works, we plan to focus on the constraints that stream hypergraphs could 
eventually raise, such as the issues of under/overfitting social data or the robustness of 
the measures to missing data. Our findings highlight how different temporal aggrega-
tions and graph vs. hypergraph representations deeply affect the output of analytical 
pipelines. Thus, some of the most interesting challenges in the future will be understand-
ing the impact of different representations (e.g., graphs vs. hypergraphs), of high-order 
structure inference methods (e.g., via cliques (Cencetti et al. 2021), overlapping commu-
nities, or other statistical methods Contisciani et al. 2022), and of different measures to 
study mixing behaviors. We also plan to introduce synthetic ASH generators to be used 
in the validation of analysis results.

Lastly, we plan to update and maintain the ASH Python library, hoping it will simplify 
and make more accessible to researchers and practitioners feature-rich hypernetwork 
analysis.

Appendix: ASH: a library for Attributed Stream Hypergraphs
Despite the ever-growing interest in the analysis of high-order topologies, very few soft-
ware packages are available to work with hypernetworked data. Nonetheless, most of 
them entirely discard temporal information – restricting analyses to the static scenario 
– and lack analytical tools to study attributive dynamics. To address these issues, we 
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developed ASH, a Python library allowing to easily handle multiadic data while retaining 
temporal and attributive information. In this section, we introduce the library rationale 
and describe some of the main features.

Classes The library’s core lies in a homonymous class that offers basic functionalities 
related to hypergraph building, statistics, temporal information, and hypergraph trans-
formations. Nodes and hyperedges are assigned a unique identifier at creation (integers 
for nodes, strings for hyperedges), as well as initial and final temporal ids (both integers) 
which identify the presence of a node/hyperedge between those points in time. These 
allow to successively retrieve information about nodes and edges through time in an effi-
cient way.

Node metadata is appropriately enclosed in a separate class that represents node pro-
files. Indeed, since nodes can have multiple attributes (i.e., inherent features) as well as 
other statistics (e.g., centrality scores), it is useful to enclose them in a different struc-
ture, also to handle updates and comparisons.

(Dynamic) Hypergraph measures and trasformations The library offers a variety of 
methods to compute basic node and hyperedge statistics. Node neighborhoods, hyper-
edge distributions and such can be computed both on the flattened (i.e., static, aggre-
gated) hypergraph, or by only including hyperedges active during a specific time period. 
Dynamic network measures were generalized to hypergraphs, such as node and hyper-
edge contribution and uniformity (Latapy et  al. 2018). The package provides several 
hypergraph transformations such as bipartite projection, dual hypergraph, and s-line 
graph, as well as hypergraph decomposition to graphs via clique expansion. ASHs can 
also be sliced both structurally (i.e., induced sub-hypergraph) and/or temporally (i.e., 
hypergraph temporal slice).

Paths, distances, and centralities. ASH provides full support for the s-analysis frame-
work (Aksoy et al. 2020), which is used to generalize classic graph measures to hyper-
graphs. This allows to compute paths, distances, connected components, clustering, 
as well as several centrality measures, and extend them along the temporal dimension. 
Time-respecting s-walks can be measured both in terms of length, weight, and duration.

Attribute Analysis We provide several measures to quantify mixing behaviors on 
dynamic hypergraphs, including but not limited to those introduced in this work. These 
quantities can characterize both nodes (e.g., measures that take into account a specific 
node and its surroundings) and hyperedges (e.g., measures quantifying homophilic 
behaviors in high interactions).

Visual Analytics The ASH library includes a dedicated module to facilitate the visuali-
zation of measures, node degree distribution, hyperedge size distribution, as well as time 
series representing the structural and attributive characteristics of the ASH through 
time.

I/O Finally, input/output facilities are handled by a dedicated module. In detail, it is 
possible to read/write node profiles from/to.csv and.json files, read/write interactions 
from/to csv, and also read/write the whole ASH from/to.json files.

All in all, the library is efficient and scales well to large hypergraphs, especially consider-
ing the complexity of the underlying model and the layers of information it operates on 
(nodes, relations, temporal information, and node profiles). Such performance is primarily 
due to its mapping systems, namely a node-to-edge and node-to-star mappings, providing 
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for O(1) access to hyperedge and node stars respectively, as well as an ash-native time-
to-edge mapping that permits hyperedge lookups by temporal id. ASH is built on top of 
two core libraries, halp and DynetX, to achieve these functionalities. Most of the hyper-
graph-related functionalities build on top of the UndirectedHypergraph class from 
the halp library, providing an efficient implementation and a wide range of utilities. The 
temporal dimension is handled by DynetX, a library for dynamic network analysis that 
provides support for temporal networks, allowing modeling the evolution of networks 
over time. To date, ASH is the only comprehensive software package to efficiently handle 
hypergraph-structured data enriched with node attributes. In fact, its competitors either 
do not scale well to large hypergraphs or primarily focus on other structures (e.g., directed 
hypergraphs). Moreover, other libraries can only model static systems (i.e., there is no 
support for temporally-aware data), and lack measures and algorithms to study attribute-
dependent wiring patterns. Our library takes the best of both worlds by integrating the 
s-analysis framework with node attribute analytics, and adding temporal support on top.
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ASH(s)	� Attributed Stream Hypergraph(s)
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