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Mobility constraints in segregation 
models
Daniele Gambetta 1,2*, Giovanni Mauro 1,2,3* & Luca Pappalardo 1*

Since the development of the original Schelling model of urban segregation, several enhancements 
have been proposed, but none have considered the impact of mobility constraints on model dynamics. 
Recent studies have shown that human mobility follows specific patterns, such as a preference for 
short distances and dense locations. This paper proposes a segregation model incorporating mobility 
constraints to make agents select their location based on distance and location relevance. Our findings 
indicate that the mobility-constrained model produces lower segregation levels but takes longer to 
converge than the original Schelling model. We identified a few persistently unhappy agents from 
the minority group who cause this prolonged convergence time and lower segregation level as they 
move around the grid centre. Our study presents a more realistic representation of how agents move 
in urban areas and provides a novel and insightful approach to analyzing the impact of mobility 
constraints on segregation models. We highlight the significance of incorporating mobility constraints 
when policymakers design interventions to address urban segregation.

Understanding urban segregation, which refers to the spatial separation and concentration of different social 
groups within an urban area, is of paramount importance given its impact on various social, economic, and 
cultural facets of our  society1–4. For example, high levels of segregation lead to limited access to quality educa-
tion, healthcare, and employment opportunities for marginalized communities, exacerbating socioeconomic 
disparities and hindering social  mobility5–7. Additionally, concentrated poverty resulting from segregation strain 
public resources, contribute to higher crime rates, and foster social isolation, further impeding community 
development and  cohesion8,9. Particularly crucial is the mathematical modelling of the mechanisms underlying 
segregation dynamics, as it provides a robust tool for conducting insightful what-if analyses, understanding the 
intricacies of social inequities, facilitating integration, and promoting social  cohesion2,10. Thus, it is unsurprising 
that modelling urban segregation has attracted the attention and efforts of scientists from different  disciplines11–19.

In 1971, economist Thomas Schelling proposed an agent-based model to explain how individual actions could 
result in global phenomena, focusing on urban  segregation20–23. He observed that segregation dynamics emerge 
due to homophily among social groups across various demographic factors such as ethnicity, language, income, 
and class  affiliation23. To illustrate this idea, Schelling used a simple spatial proximity model that divided the 
population into two groups based on a homophily threshold. Agents of two colours were placed randomly on a 
two-dimensional grid, and each agent preferred to live next to people in their group. If an agent is unhappy with 
their current location, they will move to the nearest square that satisfies them. Schelling found that segregation 
emerges above a homophily threshold of 1/3, and other factors affecting segregation include the ratio of individu-
als, the homophily threshold, and individual demands.

Numerous variants and enhancements of the Schelling model have been proposed so far, modifying agents’ 
 behaviour11–13, environmental  configuration24–29, considering geographical  regions14–16, including real-world 
segregation data along with strategies to validate simulated behaviour with  observations17–19, implementing 
agent behaviours based on psychological and sociological  theories30–33, and allowing for sensitivity analysis to 
quantify outcome dependency on various parameters and initial  conditions10,34–36. Other works show how even 
milder preferences or integration policies can eventually lead to unexpected segregation  scenarios37,38, and how 
the introduction of venues can have an impact on segregation  dynamics39.

Despite these advancements, all proposed models assume that unhappy agents move randomly on the grid 
without any preference for nearby or far away locations. However, recent empirical studies have shown that 
human movement, far from being random, follows specific statistical patterns across various spatial scales, includ-
ing daily movements and  migrations40–53. These individual mobility patterns are characterized by a preference 
for short distances and relevant places over longer distances and sparse  ones40–45,48,54–57. Despite considerable 
interest in modelling and predicting human  mobility43,52, it remains unclear how mobility patterns relate to 
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segregation patterns. Recent empirical studies suggest a link between experienced income segregation and an 
individual’s tendency to explore new places and visitors from different income  groups58, but this has not been 
systematically studied in an agent-based, Schelling-like simulation framework. At the same time, although a few 
simulation studies show how restricting relocation  options25 and considering collective  factors33,59 affect segrega-
tion dynamics, these findings have not been related to mobility constraints. Thus, we still lack a comprehensive 
understanding of how mobility constraints impact segregation dynamics.

This study fills this gap by designing a segregation model that considers mobility constraints and exploring 
how they influence segregation dynamics. Drawing on the gravity law of human  mobility48,55,60–63, our model 
allows unhappy agents to select the next location to move based on distance and location relevance. Our find-
ings reveal that mobility-constrained models exhibit lower levels of segregation than the Schelling model, albeit 
with a longer convergence time, and that agents that end in the periphery are more segregated than those in the 
grid centre. We attribute these phenomena to a small group of persistently unhappy agents from the minority 
group who gravitate towards the grid centre due to the preference for nearby and relevant locations imposed by 
mobility constraints.

Mobility-constrained segregation models
In our model, agents may be of two types, moving on a bi-dimensional grid of size m = N × N . As in the origi-
nal Schelling  model20–23, an agent is happy when it is surrounded by a number of agents of the same type above 
a predetermined homophily threshold. An unhappy agent located at a cell A moves to a new cell B based on a 
probability function, p(B), which depends on two factors: the distance d(A, B) between A and B, and the relevance 
r(B) of destination B. This probability captures the gravity law of human  mobility43,47,48,52,55,60–64, positing that 
people tend to travel to nearby and relevant locations, a concept that has been supported by extensive research in 
fields ranging from transport  planning65 and spatial  economics62,66,67 to epidemic  spreading57,68–71. The distance 
between points A and B, represented by coordinates (xA, yA) and (xB, yB) , is computed as their Euclidean distance 
on the grid, d(A,B) =

√

(xA − xB)2 + (yA − yB)2 . Mathematically, we define the probability of an agent moving 
to cell B, given its current cell A, as a product of two power-law functions:

where parameter α > 0 models the tendency to move preferably to relevant places, while β captures the tendency 
to prefer ( β > 0 ) or avoid ( β < 0 ) large displacements. These two parameters govern the influence of distance 
and relevance on the simulation outcomes, encapsulating the essential factors that shape the dynamics of the 
model.

We assume a core-periphery structure to model the distribution of relevance across the grid  cells72 and use 
a radial distribution where the relevance value of each cell decreases with its distance from the grid centre C:

with κ = 2 . The results obtained with a uniformly random spatial distribution of relevance can be found in Sup-
plementary Note 1. Note that since all agents share the information about cell relevance, α = −x means being 
repelled by a cell to the same extent that α = x means being attracted to it. The case where α = 0 and β = 0 
corresponds to the original Schelling model. The model simulation ends when all agents are happy. From the 
gravity segregation model, we derive two other families of models: the distance models ( α = 0,β �= 0 ), which 
only imposes constraints on distance, and the relevance models ( α  = 0,β = 0 ), which only considers relevance. 
See Table 1 for algorithmic details about the gravity, relevance, and distance models.

We conduct a series of experiments varying the grid size ( m ∈ {25× 25, 50× 50, 75× 75} ), the ratio of 
occupied cells ( σ ∈ {50%, 70%} ), the proportion of agents in the two groups ( θ = {10/90, 30/70, 50/50} ), the 
homophily threshold ( h ∈ {10%, 30%, 50%} ), and the relocation policy (whether agents move to locations where 
they should be happy or not). Since our results are consistent across these different parameter values (see Sup-
plementary Note 2), we present the findings for a fixed set of conditions: a grid size of 50× 50 , an occupancy ratio 
of 70% , a group proportion of 30/70, and a homophily threshold of 30% . We perform 100 simulations for each 
set of parameter values, each time using a different random distribution of agents on the grid. Each simulation 
terminates when all agents are happy or after a maximum of 500 simulation steps.

We quantify the level of segregation at the end of the simulation as the average segregation level of the agents, 
S =

∑

a∈M s(a)
|M|

 , where M is the set of agents and s(a) = |ŴT (a)|
|Ŵ(a)|  , with ŴT (a) the set of neighbours of the same type 

of a and Ŵ(a) the set of neighbours of a of any type. ŴT (a) is computed as the Moore neighbourhood with range 
r = 173. We obtain analogous results when using other segregation metrics (see Supplementary Note 3).

Results
The values of parameters α and β influence how agents move on the grid when unhappy, generating different 
mobility patterns. As an example, in Fig. 1, we compare three simulations with identical initial configuration but 
different parameter values: α = β = 0 , representing the original Schelling model O; α = 0,β = −2 , a distance 
model D; α = 2,β = 0 , a relevance model R; and α = 2,β = −2 , a gravity model G. In the original Schelling 
model (O), agents move randomly throughout the grid when they are unhappy, resulting in a distribution of 
jump lengths that follows a peaked distribution, indicating the existence of a typical jump length for agents 
( dO = 16.27 , the average distance between cells on the grid). On the other hand, in the distance model (D) and 
the gravity model (G), agents prefer to move to nearby cells, resulting in a heavy-tailed distribution of jump 

(1)p(B) ∝ r(B)αd(A,B)β

(2)r(A) ∝
1

d(A,C)κ
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lengths (Fig. 1j,k) and lower average distances ( dD = 5.30 and dG = 3.10 ). In R and G, agents are directed towards 
the city centre, resulting in a lower average distance travelled ( dR = 11.60 ) than O and a centripetal tendency that 
causes the empty cells to be positioned far away from the centre of the grid (Fig. 1c,d). Indeed, in R and G, only 
4% and 7% of the cells in the centre are empty, while in D and O, 25% and 28% of cells are empty, respectively. 
An intriguing question is what impact α and β , and thus the resulting mobility patterns, have on crucial aspects 
of the simulation, such as the final segregation level, S, and model convergence time, n, defined as the number 
of simulation steps needed for all the agents to become happy.

Effects of distance on segregation dynamics. We study the impact of varying the distance exponent 
β on the final level of segregation S and the convergence time n while holding the relevance parameter constant 
( α = 0).

Figure 2a displays the relationship between n and S for β ∈ [−5, 5] . In the figure, we present only the average 
values of S and n over 100 simulations since the standard deviation is relatively small (see Supplementary Note 4). 
We find that a decrease in β (i.e., an increasing cost of relocating far away) leads to a decrease in S and a increase 
in n compared to the original Schelling model ( β = 0 ). This result means that a preference to move nearby the 
current location slows down but mitigates the segregation behaviour. For instance, for β = −5 , S is reduced by 
around 10% , and n increases by a factor of 30 compared to the original Schelling model ( β = 0 ). Conversely, 
an increase in β (lower cost of relocating far) has a negligible impact on n and marginally increases S. Indeed, 
for β = 5 , the segregation level increases only by around 1% compared to the original Schelling model, with no 
substantial change in the convergence time. As an example, Fig. 1a-d presents the final grid configurations for 
O, R, D, and G: note how D and G (with β = −2 ), which converge over a longer time, have a lower final segrega-
tion level compared to O and R.

We also observe that β influences n and S in a non-linear fashion. The dependency of n and β , can be approxi-
mated by an exponential function:

with a = 2.7, b = 1.1, c = 21 (Fig. 2b). Equation 3 enables us to estimate the number of simulation steps required 
for the model to converge based solely on the value of β , providing valuable what-if insights into the implications 
of mobility constraints on segregation dynamics. For example, if an incentive for relocating far away from the 
current location is introduced, which would result in a positive value of β (e.g., β = 5 ), Eq. (3) suggests that it 
would take approximately n = 21 simulation steps for the city to become segregated. On the other hand, if people 
are incentivised to stay nearby the current location, which would result in a negative value of β (e.g., β = −5 ), 
Eq. (3) suggests that an average of n = 256 simulation steps (more than ten times more) would be required for 
the city to become segregated.

The relationship between β and S is well-fitted by a sigmoid function:

where a = 8.5× 10−1, b = 3.2, c = 11.8, d = 1.4, k = 7.3× 10−1 have been empirically fitted (Fig. 2c). An inter-
esting finding is a tipping point in the sigmoid curve close to β = 0 (original Schelling model), which indicates 
that the influence of β on the level of segregation depends on whether it is positive or negative (Fig. 2c). When 

(3)n = a−bβ + c

(4)S =
a

d−bβ + c
+ k

Table 1.  Schema of the distance, relevance, and gravity models. Each model has three phases: Initialization, 
Simulation Step, and Termination. In the Initialization phase, the Relevance and Gravity models assign a 
core-periphery relevance to the cells inversely proportional to their distance from the centre of the grid C. The 
Distance model assigns a uniform relevance to all cells. During the Simulation Step, when an agent in cell A 
needs to relocate, the probability of choosing a cell B for relocation depends on the model being used. In the 
Distance model, this probability is proportional to the distance between cell A and cell B. In the Relevance 
model, the probability is proportional to the relevance of cell B. In the Gravity model, the probability is 
proportional to the product of the distance and the relevance of cell B. These probabilistic rules govern the 
relocation decisions of agents in the respective models, determining their movements within the grid. The 
Termination phase marks the end of the simulation when all agents are happy or a maximum of 500 simulation 
steps is reached.

Distance Relevance Gravity

Initialization

Agents randomly assigned to a group based on θ and 
placed randomly on the grid based on σ . ∀ cell A , 
relevance r(A) assigned as:

r(A) = 1
r(A) ∝ 1

d(A,C)2
 , where C is the grid’s centre and 

d(A, C) indicates the distance between A and C.

r(A) ∝ 1

d(A,C)2
 , where C is the grid’s centre and 

d(A, C) indicates the distance between A and C.

Simulation step

Unhappy agents move to an empty cell B on the grid 
with probability: P(B) = d(A,B)β P(B) = r(B)α P(B) = r(B)αd(A,B)β

Termination

When all the agents are happy, or after a maximum 
of 500 simulation steps.
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β > 0 , agents move far way over a larger pool of choices because the number of available cells increases with 
distance, leading to behaviour that closely resembles the original Schelling model (see Fig. 2a). In fact, even for 
β = 5 , the final segregation level S is only 1% higher than the original Schelling model (Fig. 2c). In contrast, when 
β < 0 , agents prefer to stay close to their current cells, causing the grid configuration to change slowly over time 
and leading to a final grid configuration that is more similar to the initial one (and therefore less segregated). For 
example, if β = −5 , the segregation level S = 0.73 , about 8% lower than the original Schelling model.

The relation between S and n is well-fitted by a power-law function:

with a = 4.6 , b = 1.5 , and c = 0.7 (Fig. 2a). As n increases, the overall level of segregation S decreases: the more 
difficult it is for the agents to find cells that meet their homophily preferences, the less segregated the final grid 

(5)S =
a

nb
+ c

Figure 1.  Segregation dynamics of mobility-constrained models. (a–d) Final grid configuration of four 
simulations of the original Schelling model O (a), a distance model D (b), a relevance model R (c), and a gravity 
model G (d), all with a grid size of 25× 25 , a cell occupancy rate of 70% , a group proportion of 30/70, and a 
homophily threshold of 30% . (e–h) The mobility trajectories of four agents, one per model. (i–l) Graphical 
representation of the distribution of jump length for each model. In O, agents move randomly throughout the 
grid when they are unhappy, resulting in a peaked distribution of jump lengths. In D and G, agents prefer to 
move to nearby cells, resulting in a heavy-tailed distribution of jump lengths. In R and G, agents are directed 
towards the city centre, resulting in a centripetal tendency that causes empty cells to be positioned far away from 
the centre and a lower average distance travelled than O. We indicate the average distance travelled by agents in 
the four models with dO , dD , dR , and dG.
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Figure 2.  Effects of distance and relevance on segregation dynamics. (a–c) Effects of β on segregation 
dynamics. (a) The average value of n and S over 100 simulations with the same β value but different 
initial grid configurations, colour-coded by the value of β . The lower β , the higher the cost of relocating 
far away, resulting in longer convergence time and reduced segregation levels compared to the original 
Schelling model. The relationship between n and S is well fitted by a power-law function S = a

nb
+ c , with 

a = 4.6, b = 1.5, c = 0.7 . (b) β vs average n over 100 simulations. The relationship follows an exponential 
distribution n = a−bβ + c , with a = 2.7, b = 1.1, c = 21.0 . The lower β ( < 0 ), the longer the simulation. 
(c) β vs average S over 100 simulations. This is well approximated by a sigmoid function S = a

d−bβ+c
+ k , 

with a = 0.9, b = 3.2, c = 11.8, d = 1.4, k = 0.7 For β < 0 , there is an exponential increase in S; β > 0 , the 
growth is moderate. (d–f) Effects of α on segregation dynamics. (d) The average value of n and S over 100 
simulations with the same value of α but different initial grid configurations, colour-coded by the value of 
α . Increasing values of α elongate n and slightly increase S. The relationship follows a power-law function 
S = a

nb
+ c , with a = −8.5, b = 2.1, c = 0.8 . (e) α vs average n over 100 simulations. The relationship 

follows an exponential distribution n = abα + c , with a = 7.1, b = 0.9, c = 19.5 . (f) α vs average S over 
100 simulations. The relationship is well approximated by a parabolic function S = aα2 + bα + c , with 
a = −0.002, b = 0.01, c = 0.8 . (g) The average S (colour) for each combination of α and β < 0 . For every value 
of α , higher β values lead to a higher S; for every β , higher α values lead to a higher S. (h) The average n (colour) 
for each combination of α and β < 0 . For every value of α , higher β values lead to a lower n; for every β , higher 
α values lead to higher n.
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is, and the more steps are required to reach an equilibrium state where all agents are happy. Conversely, if the 
agents can quickly identify desirable locations, convergence occurs rapidly with fewer steps, resulting in greater 
segregation.

Effects of relevance on segregation dynamics. We study the impact of the relevance exponent α on 
the final level of segregation S and the convergence time n by controlling for the distance parameter ( β = 0 ). We 
find that n increases exponentially with α as:

where a = 7.1 , b = 0.94 , and c = 19.5 are empirically fitted (Fig. 2e). This result suggests that agents tend to move 
closer to the opposing group when they compete for relevant cells, resulting in a more prolonged convergence 
process than the original Schelling model. For example, α = 3 corresponds to an average of 261 simulation 
steps, almost 12 times more than the needed for α = 0 (20 steps on average). On the other hand, S increases 
parabolically with α as:

where a = −0.002 , b = 0.01 , c = 0.8 empirically fitted (Fig. 2f), indicating a slightly non-linear impact of α on 
the final segregation level. When α = 3 , S = 0.81 , a mere 2.5% higher than the original Schelling model (0.79), 
indicating that the relevance parameter has only a minor effect on the final segregation level.

The relationship between n and S through the relevance exponent α can be approximated by power-law 
function:

with a = −8.5, b = 2.1, c = 0.8 (Fig. 2d). The longer it takes for the model to converge (larger n), the more seg-
regated the final grid becomes (higher S, albeit only slightly). We observe that as α increases, the difference in 
segregation levels between the periphery and centre, denoted as S diff = S periphery − S centre , also increases. This 
means that agents that end up in the periphery are more segregated than those in the centre (see Supplementary 
Note 5). This can be attributed to the centripetal force that encourages agents to move towards the centre, creat-
ing a more mixed scenario than in the periphery. Since the periphery is larger and shows a higher segregation 
level than the centre, the final grid becomes more segregated (higher S) as α increases.

Interplay of distance and relevance. Finally, we study the interplay of the relevance and distance expo-
nents on segregation dynamics. We focus on the negative values of β , which induce the most significant varia-
tions in S and n. For completeness, we provide an analysis of β > 0 in Supplementary Note 6.

Segregation is maximized in the relevance model ( β = 0 ) and minimized when β = −5 , with a minor influ-
ence of parameter α (Fig. 2g). Specifically, Sβ=0,α=3 is approximately 11% higher than Sβ=−5,α=0 . This suggests 
that when the preference for short distances is strong, the impact of relevance is relatively weak. Figure 2h shows 
that the convergence time is maximized when β is low and α is high (upper left corner). In particular, nβ=−5,α=3 
is roughly 24 times higher than nβ=0,α=0 . Distance constraints become almost irrelevant when relevant places are 
present in influencing convergence time. Overall, our results highlight the complexity of the interplay between 
β and α and their differential impacts on segregation level and convergence time.

One intriguing aspect is the identification of agents responsible for elongating convergence time in the grav-
ity models. Do all agents suffer prolonged unhappiness, or is there a specific group of agents responsible for 
the extended convergence time? Figure 3a–b illustrates the distribution of time-to-happiness, representing the 
number of simulation steps needed for agents to become happy. Our results indicate that most agents achieve 
happiness within a few steps, while a small fraction of agents, primarily from the minority group, remain unhappy 
for an extended duration. For example, as Fig. 3a shows, all agents of the majority group achieve happiness within 
17 simulation steps. In contrast, although most minority group agents attain happiness relatively quickly, some 
remain unhappy for an extended period for up to 500 simulation steps (Fig. 3b). We classify these agents as per-
sistently unhappy and denote them as set U. Specifically, we identify persistently unhappy agents as those whose 
unhappiness surpasses the 95th percentile of the distribution of time-to-happiness for all agents. For example, 
in Fig. 3c, only 9 agents out of 1750 are persistently unhappy.

We hypothesize that the combination of agents’ preferences and the distribution of relevant cells within the 
grid creates a situation where some agents may be trapped in an area that does not align with their preferences, 
resulting in persistent unhappiness. We discover that this area is a “suburbia” of the centre, i.e., an area around 
the centre between a radius of 9 and a radius of 16.6, representing 25% of the grid’s total area (see Fig. 3c). In 
detail, we compute the fraction ρ of persistently unhappy agents being located in the suburbia at a critical point 
when the centre becomes stably segregated (see Supplementary Note 7). For instance, Fig. 3c illustrates the 
grid configuration of a gravity model at this critical point: the majority of persistently unhappy agents (white 
dots) are concentrated in a confined region near the centre of the grid. Mathematically, we capture this aspect 
by defining ρ =

|Usub|
|U |

 , where |Usub| is the number of persistently unhappy agents in the suburbia at the critical 
point. Figure 3d shows that the gravity and the relevance models have a significantly higher ρ than a random 
spatial distribution of agents, with the relevance model displaying a lower probability than the gravity model. The 
distance model’s probability is instead similar to the null model. These findings suggest that persistently unhappy 
agents are located in suburbia at the critical point, and their presence can significantly prolong the simulation 

(6)n = ab·α + c

(7)S = a · α2 + b · α + c

(8)S =
a

nb
+ c
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as they cannot escape the loosely segregated situation in the centre due to their preference for relevant locations 
and short-distance moves.

Discussion
This study provides a novel and insightful approach to understanding the impact of mobility constraints on urban 
segregation dynamics. The gravity law injected in the Schelling model allows for modelling agents’ mobility pat-
terns based on the relevance of locations and the distance between them. We find that the influence of these two 
factors on segregation dynamics is significant and profoundly impacts the model outcome, both independently 
or in combination with each other. By analyzing the mobility patterns of agents in the gravity-constrained 
model, we discovered a trend in the exponential elongation of segregating times attributed to a few agents of the 

Figure 3.  Persistently unhappy agents. (a) Distribution of simulation steps required for the agents in the 
majority group to achieve happiness (100 simulations of the gravity model, α = 3,β = −3 ). All agents reach 
happiness within 17 steps. (b) Distribution of simulation steps needed for agents in the minority group to reach 
happiness. Most agents become happy in 50 steps, but a small percentage remain unhappy for up to 500 steps. 
(c) Gravity model’s grid configuration at the critical point when the centre becomes stably segregated. The 
boundaries of the suburbia are represented as two dark circles with a radius of 9 (small circle) and 16.6 (large 
circle), representing 25% of the grid’s total area. The white dots represent persistently unhappy agents who 
remain unhappy for more than the 95th percentile of simulation steps. Most of these agents are in the suburbia 
region. (d) Probability ρ of a persistently unhappy agent being in suburbia at the critical point when the centre 
becomes stably segregated. The dashed line indicates the probability of a random agent being in the area (0.25). 
The gravity and relevance models show higher probabilities than the random model, while the distance model’s 
probability is similar to the null model.
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minority group caught in a vicious loop, constantly moving among the few locations near the segregated centre. 
Moreover, the centripetal force towards the centre leads to more mixing in the centre and greater segregation 
in the periphery.

Our findings provide valuable insights into the complex dynamics of segregation, offering a valuable tool 
for understanding and simulating potential scenarios through what-if analysis. The equations that relate the 
relevance and distance parameters with the segregation level and the convergence time can be manipulated to 
explore different scenarios, such as economic incentives to encourage large-scale relocations or the relocation 
of facilities within a city. This approach can provide policymakers with a comprehensive understanding of how 
these interventions may impact segregation dynamics.

It is worth noting that, in recent years, a few studies have explored the relationship between agents’ freedom to 
move and segregation dynamics. Notably, Fagiolo et al.25 examined the consequences of agents’ restricted move-
ment to specific nodes within a network, Abella et al.33 explored the impact of agents developing attachments to 
particular places as they spent time there, and Moro et al.58 shed light on the association between experienced 
income segregation and place and social exploration. However, none of these studies has thoroughly examined, 
within a what-if analysis, the profound effects on segregation dynamics of geographic distance, location relevance, 
and their interplay. Our study addresses this gap by unveiling this impact on the segregation level and model’s 
convergence time for the first time.

While our study provides valuable insights, it has limitations and areas for further exploration. Our model’s 
reliance on simplified assumptions, including a grid-like structure with core-periphery relevance distribution and 
agents’ satisfaction based solely on neighbour tolerance, overlooks other factors contributing to overall happiness. 
Future research could incorporate more complex assumptions and consider additional factors such as socio-
economic status, housing conditions, and neighbourhood composition. For example, when making relocation 
decisions, agents could consider several attributes of origin and destination cells, such as cell centrality and the 
presence of specific  venues43,48, allowing for a more comprehensive assessment of happiness based on multiple 
factors, rather than solely relying on group homophily. In addition, there is potential for exploring alternative 
mechanisms of agent mobility. For instance, to capture individual mobility patterns more realistically, we could 
assign individual mobility networks to  agents56,74, limiting their movement to specific subsets of cells on the grid. 
Lastly, we aim to extend the analysis to a real-world dataset of relocations to assess how simulation-based results 
align with empirical observations in an actual city.

Data availability
All data generated during this study are included in this published article and its supplementary information 
files and can be found in the code repository available at https:// github. com/ dgamb it/ mobil ity_ schel ling. The 
study does not involve any human participants.

Code availability
Code availability The Python code to replicate the models and all the experiments is available at https:// github. 
com/ dgamb it/ mobil ity_ schel ling.
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