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A B S T R A C T
Federated Learning (FL) is a distributed optimization method in which multiple client nodes
collaborate to train a machine learning model without sharing data with a central server.
However, communication between numerous clients and the central aggregation server to share
model parameters can cause several problems, including latency and network congestion. To
address these issues, we propose a scalable communication infrastructure based on Information-
Centric Networking built and tested on Apache Kafka®. We design an algorithm for effective
client participation in FL within the proposed architecture. The proposed architecture consists
of a two-tier communication model. In the first layer, client updates are cached at the edge
between clients and the server, while in the second layer, the server computes global model
updates by aggregating the cached models. The data stored in the intermediate nodes at the
edge enables reliable and effective data transmission and solves the problem of intermittent
connectivity of mobile nodes. While many local model updates provided by clients can result in
a more accurate global model in FL, they can also result in massive data traffic that negatively
impacts congestion at the edge. Therefore, it is necessary to avoid congestion at the edge and the
resulting transmission delays to the cloud server. For this reason, we couple a client selection
procedure based on a congestion control mechanism at the edge for the given architecture of FL.
The proposed algorithm selects a subset of clients based on their resources through a time-based
backoff system to account for the time-averaged accuracy of FL while limiting the traffic load.
Experiments show that our proposed architecture has an improvement of over 40% over the
network-centric based FL architecture, i.e., Flower. The architecture also provides scalability
and reliability in the case of mobile nodes. It also improves client resource utilization, avoids
overflow, and ensures fairness in client selection. The experiments show that the proposed
algorithm leads to the desired client selection patterns and is adaptable to changing network
environments.

1. Introduction
While 5G mobile systems are still actively deployed worldwide, the research community has already begun

investigating the latest technological developments for the next generation of 6G mobile systems [1]. It is widely
believed that 6G systems will foster a novel, pervasive concept of Artificial Intelligence (AI), leading to a hyper-
flexible architecture that integrates human-like intelligence into every component of mobile network systems [2].
The proliferation of Artificial Intelligence (AI) applications and Internet-of-Things (IoT) devices continues to drive
the evolution of mobile network systems, and 6G is anticipated to shift the paradigm of mobile communications
systems from "connected things" to "connected intelligence" [3]. In this context, one of the primary goals of 6G
mobile systems is to orchestrate communications, computation, and control as components of a holistic system to
achieve better sustainability and energy efficiency [4]. In this 6G eco-system, ubiquitous AI-based technologies and
Machine Learning (ML) are essential in optimizing the orchestration of the above components. Traditionally, ML
systems are trained by collecting the required data on a single server, but this approach raises several issues, such as
data reliability and confidentiality. In addition, centralized training of ML models with data collected from multiple
devices increases communication costs and latency. Numerous applications such as unmanned aerial systems, virtual
reality, and connected and autonomous vehicles (CAVs) have stringent latency and privacy requirements [5]. Therefore,
using centralized ML approaches to optimize these new applications is not practical. Furthermore, data security and
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user privacy are among the most critical requirements that 6G systems for smart applications and services must meet,
and the General Data Protection Regulation (GDPR) discourages the acquisition and transfer of user data [6].

Federated Learning (FL) is a new approach in which ML algorithms are trained on multiple decentralized devices,
with all data remaining on the device. In the FL process, a group or subset of clients independently trains an ML model
with their local data. These clients then exchange the parameters of the local ML models with a Model Aggregation
Server (MAS), which averages these model parameters to create a global ML model. The MAS then propagates this
global ML model to all participating clients [7]. The FL process consists of multiple rounds of communication between
client devices and the MAS. This eliminates the need for a central repository for shared data, as required by traditional
centralized ML training. Although still at an early stage of development in real-world scenarios, distributed learning
architectures inspired by FL are already seen as one of the most promising ways to achieve the goal of ubiquitous
AI in 6G systems [8]. However, implementing FL on resource-constrained client devices is difficult in real-world
scenarios because the parameters describing ML models, such as neural networks (NNs), can be as large as a billion in
many applications. Nevertheless, several FL frameworks have been proposed to develop FL-based applications, such
as TensorFlow Federated [9], FedEval [10], FedML [11], PySyft [12], and Flower [13].

These frameworks are based on a network-centric communication paradigm that requires direct communication
between clients and servers. The network-centric paradigm relies on a central server that is a single point of failure
and cannot provide reliability for ubiquitous AI applications for 6G systems [1]. Therefore, clients cannot send or
receive data to or from the server if the connection fails or the server is unavailable, especially for mobile or vehicular
nodes with limited connectivity. In contrast, a communication paradigm such as Information-Centric Network (ICN)
can ensure that information is exchanged between two endpoints (clients and server) even in the event of failures by
caching and replicating data within the network. The expected benefits of this ICN paradigm are higher efficiency, better
scalability in terms of bandwidth requirements, and higher robustness under challenging communication conditions,
such as in vehicular scenarios. It should be noted that ICN still requires a TCP/IP connection for data transmission,
although some solutions have been proposed based on other, more efficient protocols such as QUIC [14]. Therefore,
ICN is generally considered an overlay network built on ossified network-centric protocols.

Exploiting the benefits of the ICN paradigm, we design a scalable communication architecture of FL for a
vehicular scenario. This communication architecture aims to support mobile nodes where connectivity is intermittent
by providing in-network caching capabilities. We develop this communication paradigm using Apache Kafka®[15], a
distributed data streaming platform. In the FL communication paradigm, the Kafka entity called broker is configured at
the edge as a cache for model parameters from clients or for global model parameters from MAS. The model parameters
are managed at the broker as an event or message organization structure called topics. The Kafka broker, acting as an
intermediate instance, receives data from publishers (that generate the model parameters) in topics and distributes this
data to subscribers (who use the model parameters). Hence, we decouple the client nodes from the MAS and form a
many-to-many communication model between publishers and subscribers. This decoupling makes distributed systems
more flexible, scalable, and resilient to connection failures than the traditional client/server paradigm [16]. Indeed,
conventional network-centric communication architectures are tightly coupled and require clients and servers to be
active simultaneously, resulting in a fixed one-to-one architecture that is less scalable than the ICN architecture.

In the proposed ICN-based FL communication paradigm, the large number of local model parameters sent by clients
to the broker to obtain an accurate global model can lead to broker congestion. Consequently, the data queues at the
distributed edge and the resulting transmission delays to the MAS need to be considered. One of the solutions could be
to limit the number of participating clients in the federation process. Many client selection techniques were proposed
in the literature, such as in [17],[18], but these techniques are based on static clients. They do not adequately consider
client selection in dynamic vehicle scenarios. For this reason, an effective client selection algorithm (FL) needs to be
developed to support the application of FL in dynamic vehicle environments. In this context, we propose a mechanism
to select clients participating in global model updating in massive scenarios, i.e., with many potentially active clients,
to reduce broker congestion while maintaining model accuracy. This congestion control mechanism limits the number
of client updates received to avoid queue overflow. An early design of this client selection mechanism, namely FedTCS,
was presented in [19] using a time-based approach with exponentially distributed timers. In this paper, we extend the
analysis of FedTCS by giving a complete account of the selection techniques for FL clients and testing different time
distributions, such as the uniform or beta distribution. In addition, we consider clients with heterogeneous resources
and training times.

Through extensive experiments, we demonstrate the numerous benefits of the proposed infrastructure: better
scalability for FL scenarios, temporal and spatial decoupling between clients and MAS, reliability and availability of
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data while avoiding overflowing broker queues. Finally, we prove the effectiveness of our information-centric paradigm
by comparing its performance with that of a network-centric paradigm, i.e., Flower [13]. We also present a performance
analysis to demonstrate the scalability of the proposed client selection method, which uses an equal selection probability
to accommodate stragglers during the FL process while optimally matching the expected number of clients to the queue
size.

The remainder of this paper is organised as follows. Section 2 introduces recent advances in FL communication
and Apache Kafka®, and the background of FL client selection techniques. Section 3 presents the reference scenario
and the considered assumptions of the proposed architecture. Then, Section 4 describes the proposed ICN-based
FL communication architecture. Section 5 presents the client selection procedure using the architecture described
in Section 4. Then, Section 6 evaluates the performance of the proposed architecture along with the client selection
mechanism. Finally, conclusions are drawn in Section 7, including possible directions for future work.

2. Related Work
This section briefly reviews the work related to the proposed communication architecture and client selection

process. In this context, we discuss the background, related work, and communication perspective of Apache Kafka®,
a publish/subscribe model and relevant existing work on client selection in FL.
2.1. Federated Learning

Federated Learning is a distributed learning system proposed by Google [7] that trains ML models on distributed
cellular phones. The main idea was to protect user privacy by keeping all data on users’ devices and sharing only the ML
model parameters during the training process. While FL solves the privacy problem, numerous challenges arise when
using FL in real-world scenarios [20]. These issues include the communication cost required to transfer the ML model
parameters between MAS and the distributed client devices and the low computational power of the client devices. In
this work, we use the publish/subscribe communication mode (pub/sub) to reduce the communication cost of FL. The
communication cost of FL has been the subject of many studies. In [21], the NN quantization strategy for time series
prediction reduces communication costs by minimizing the size of ML model parameters exchanged between clients
and the server. In addition, a significant bottleneck in scaling distributed training also arises from the communication
load on the server caused by updating multiple clients in the FL process. Several strategies have been proposed to
solve this communication bottleneck, including compression [22], quantization [21], and efficient client selection [23].
The work in [24] meets the requirements of FL from the communication efficiency point of view by compressing both
upstream and downstream communications with Sparse Ternary Compression (STC) and optimal Golomb encoding
of ML model parameters. Their proposed method is also able to handle a large number of clients by using partial client
participation in FL. However, we take a different approach by performing FL using the pub/sub communication model,
while the other previously mentioned methods focus on a network-centric communication model. The main goal of
the proposed approach is to develop a communication-efficient FL framework that benefits static and non-static users
(mobile nodes).
2.2. Apache Kafka®

Apache Kafka®, a distributed messaging platform used for data stream processing [15]. In Apache Kafka®,
messages are created by message producers (in our case, vehicles) and stored in queues called topics at the broker,
where topic subscribers can then retrieve them. These topics are the queues where the messages are stored. Each
topic can have numerous duplicate partitions stored on different Kafka brokers. The ability to use numerous broker
instances, which gives the Kafka cluster fault-tolerance properties, is another factor that makes Kafka highly scalable
and appropriate for distributed learning systems such as FL. There is comparatively little research on ML applications
that use ICN and Kafka. Feraudo et al. have developed a pub/sub based selection mechanism for IoT devices to
participate asynchronously in the FL process [25]. In [26], the researchers developed a method for training and inferring
ML models that feed the continuous dataset directly into the ML model via the Kafka pipeline, as opposed to training
ML models with static data. The authors in [27] proposed an IoT-based optimized cache setting in the ICN for mobile
multimedia content using ML to reduce access time. They proposed a location prediction method and an intelligent
network edge caching technique to improve the user experience. In [28], the authors developed a low-latency distributed
messaging system to provide a data-centric perspective on the connected vehicles ecosystem.

In the literature, only a few works have dealt with the juxtaposition of the information-centric paradigm (pub/sub)
and the network-centric paradigm. According to the authors of [29], pub/sub models are preferable for distributed
S. Bano et al.: Preprint submitted to Elsevier Page 3 of 19
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real-time systems because they are inexpensive and easy to implement with polling techniques. The authors of
[30] compared the request-response and pub/sub models based on many criteria, including mobility, timeliness, and
adaptability. They also proposed a communication strategy that combines the two systems into a hybrid system that
is network and information-centric. In their paper [31], Eugster et al. compared the typical request-response method
with a pub/sub strategy in three dimensions, i.e., time, space, and synchronization decoupling.
2.3. Clients Selection

While the FL algorithm was originally based on a random and uniform selection of clients [7], this scheme
proved to be biased and converged to a suboptimal minima of the convergence problem. For this reason, the notion
of unbiasedness was introduced by the authors in [32]. Unbiased client sampling is used to optimize the original FL
cost function while minimizing the number of active clients per FL round. Many other client selection schemes have
also been proposed in the literature, such as in [17], where researchers attempt to solve the client selection problem
with non-homogeneous resources. In their proposed framework, the Multi-Access Edge Computing (MEC) operator
invites a randomly selected group of clients and asks them to report their available resources. The MEC operator
selects only the clients with enough resources to complete the task in the FL process. In [18], the researchers described
the client selection technique that selects only the clients that have suffered high losses in their local ML model to
speed up convergence and significantly reduce communication overhead. In [33], the authors proposed FedMCCS,
which considers clients’ resources, including CPU, memory, time, and energy, to determine whether they are capable
of participating in the FL task. FedMCCS selectively increases the number of participating clients in each FL round,
taking into account the resources of each client and their ability to effectively train and deliver the required ML model
updates. In this paper, we propose a client selection mechanism for FL that uses the pub/sub network model to select
clients during each FL round, given constraints such as network and edge resources.

3. System Model
In this section, we provide a detailed description of the reference scenario and the assumptions we made for

developing our communication infrastructure, which is suitable to achieve FL in vehicular scenarios while minimizing
the communication overhead [34]. This work has two main objectives: to develop an efficient communication
architecture for FL suitable for mobile nodes and to efficiently select clients using this communication paradigm
to reduce broker congestion. The proposed infrastructure is based on edge computing to leverage the processing
power of edge servers capable of handling distributed tasks such as FL with mobile nodes that require minimizing
communication latency with the central server [35, 36].

We use the ICN communication paradigm because it provides in-network caching capabilities and decouples clients
from the MAS, which increases robustness to connection failures. We assume each vehicle has a 5G radio and can
communicate with the edge using a pub/sub protocol. We also assume that each vehicle has the computational resources
necessary to train an NN model on local data. The MAS runs in the cloud, and the Kafka broker resides on edge. The
communication flows from the vehicles (clients), which generate updated local model parameters, to the broker, which
stores these models and provides them to the MAS, which aggregates them in the cloud, as shown in Figure 1. Once
the aggregation of the models is complete, this global NN model is stored at the edge broker, where the vehicle clients
can download it for further training.

Our infrastructure uses the Apache Kafka®broker1 to decouple the clients and the MAS. Thus, if the MAS is not
available when the vehicles send their updated local NN model parameters, the broker at the edge can store these model
parameters and make them available to the MAS. Once the federated model is available, it can be sent to the broker at the
edge for the vehicles to download as needed. Thus, the communication between MAS and the vehicles is done through
the Kafka brokers at the edge, which forms a two-hop communication path, as shown in Figure 1. Since the broker at
the edge collects model updates from clients, it can relieve MAS of much of the communication load and reduce the
delay caused by clients uploading and downloading model parameters. In this distributed architecture, we defined the
Kafka broker’s topics as data queues. Topics serve as logical channels to separate messages from vehicles to the MAS
server (uplink) and vice versa. The name of each topic is its key value, which clients use to log in to the Kafka broker.
We have defined two topics on the broker: clients_data, to which the clients publish their model parameters, and
averaged_result, where the MAS publishes the aggregated model. The entity (client or MAS) that wants to send a
model to the topic on the broker is called a producer and uses the Kafka Producer API. In contrast, the entity that wants

1https://kafka.apache.org/
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Figure 1: Overview of the proposed ICN-based FL communication architecture

to download the model from the broker uses the Kafka Consumer API. After developing the communication paradigm,

Figure 2: Overview of the client selection mechanism in FL with the control agent at the edge

we develop an efficient client selection mechanism for our infrastructure to avoid Kafka broker queue overflows and
congestion caused by massive traffic of client model parameters. Even though the global ML model accuracy increases
when many clients are involved, it is necessary to consider the edge resources on which the broker is deployed. Since
the queue size is finite, it is important to reduce the queue overflow. The queue size depends on the arrival of model
updates from clients and the departure of model updates, i.e., towards MAS. The overflow can be limited by making
the departure rate higher than the arrival rate, i.e., the ratio between the average number of arrivals and the number
of departures is less than one. In our proposed system, we assume that the departures are i.i.d., i.e., independent and
identically distributed, and depend on the channel capacity between the edge and the MAS in the cloud. However, we
can change the number of arrivals by limiting the number of participating clients in the federation process. Therefore,
client selection is crucial to avoid congestion. We solve client selection by introducing a control agent (CA) at each
edge that serves different regional clusters for the client selection process, as shown in Figure 2. CA uses ACKs (short
messages as acknowledgements) to control the flow of model parameters to and from clients. In our architecture, we
propose an activation mechanism for the CA that depends on timers, as described in the following sections. Once
selected, each vehicle client trains its model over a set of local epochs and then serves as a producer that sends its local
model parameters to the broker. Each client’s model update is split into discrete data packets before being sent to the
broker. The splitting facilitates the transmission of the models, which may even include millions of parameters in many
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cases. Note also that in the client selection algorithm, we refer to the topic defined in the Kafka broker as the "edge
queue" because topics are stored in queues over the edge.

The steps for one round of the FL process using the proposed communication paradigm are shown in Figure 3 and
are as follows:

1. The vehicular clients train their models by using local data;
2. Each client splits its updated model parameters into batches and runs the Kafka Producer API to send these

batches to the broker at the edge to be stored in the specified topic named clients_data;
3. The MAS runs the Kafka Consumer API and retrieves all models from the topics clients_data and performs

model averaging;
4. After averaging, the MAS splits the averaged model into batches and runs the Kafka Producer API to send these

batches to the broker at the edge to be stored in the specified topic named averaged_result;
5. Each client runs the Kafka Consumer API and retrieves the updated model parameters from the topic

averaged_result;
6. The steps from 1 to 5 are executed until convergence to the desired global model is achieved.

Figure 3: Steps for a round of FL in ICN-based communication architecture [37]

4. Federated Learning Communication Architecture
In this section, we evaluate the effectiveness of the proposed communication architecture for the scenario with

massively distributed vehicles in FL. For the performance analysis, we compare the method described in the previous
section, which is based on an information-centric paradigm, with another method based on the network-centric
paradigm, namely Flower [13]. Flower is a new FL framework for designing and developing FL-based solutions that
provide higher level abstractions for designing network architectures. It is one of the few frameworks that supports
execution on multiple ML frameworks, such as TensorFlow and PyTorch. The MAS in Flower interacts with clients
via Remote Procedure Call (RPC) [38]. RPC is an interaction-based method that uses a request-response protocol for
communication. When MAS selects the client for training in Flower, it sends the training and initial model parameters
to all connected clients. The client receives these parameters, calls one of the client methods to use them for training
with its local data, and sends back the updated local model parameters. All clients must be connected until the FL
process is complete. We compare the network-centric and ICN-based architectures as fairly as possible by using the
same client selection strategy and neural model parameters in both architectures during the FL process.

For our experimental setup, we use the Kafka framework version 3.0.0 running on a Jetson Xavier NX device with
a 64 GB memory card. Our experimental setup includes a broker on the edge and the MAS in the cloud. Both the
broker and the cloud run on a Jetson Xavier NX. The clients run on two PCs with the Debian operating system, the
Kafka Python API, Python 3.8, and PyTorch installed. We use one PC as a dense server to emulate many FL clients
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and the other one to emulate only one FL client that examines the network parameters used to calculate the times for a
FL round. Using two PCs, we avoid bias in the experimental results caused by the excessive computational overhead
of emulating the dense group of clients and examining the parameters.

In the FL process, each client trains its model on its local dataset. The datasets for each client are heterogeneous to
better represent the real use case where each client acquires its data randomly and independently. However, to provide
an accurate and fair comparison of the performance of the FL method based on the ICN-based architecture and the
network-based architecture, we need to guarantee that the client training time is the same on average in both cases. For
this reason, we assume that each client has the same average number of data samples. However, this assumption does
not hold for the client selection algorithm to account for the heterogeneity of the clients and their different training
times. As a dataset, we use the MNIST2 dataset, which contains a collection of 60k training samples and 10k samples
for test data. Each data sample represents a handwritten digit image of 28 x 28 pixels.

To compare the performance between the proposed information-centric architecture and the network-centric
architecture, we study the time required to complete a full round of FL for a 5G network scenario, assuming a network
bandwidth of 100 MB /s and a delay of 1 ms for the communication links, and varying the number of clients. The
5G network conditions are emulated using the NetEm tool [39]. NetEm provides functions for testing protocols by
emulating wide-area network characteristics such as packet delay, jitter, loss, and various bandwidth settings. In
real-world environments, client network speeds vary widely by region. However, for our experiments, we assume a
homogeneous upload speed based on the 5G use case in the automotive industry. The federation is achieved through
an NN model consisting of three layers: an input, a hidden, and an output layer. For all experiments, the parameters
of the model are initialized randomly. Each experiment is run five times, and performance is evaluated as an average
over these runs. Each client runs five local epochs during training using the Adam optimizer [40] with a batch size
of 128 samples and a 0.001 learning rate. The number of clients involved in the federation process varies in the set
{2, 4, 8, 16, 24, 32, 48, 56, 64}.

The results on the time required per FL round with the proposed architecture and the one based on Flower are
shown in Figure 4. The results show that Flower is performing better when only a small number of clients are

Figure 4: Time per round of FL with different number of clients for 5G use-case for Flower and ICN-based architecture

involved in the FL procedure, while with the increasing number of clients, the time for a FL round also increases.
This performance degradation is due to the flash crowd situation that occurs when clients send their models to the
MAS simultaneously, which increases the requests on the server. The results of the proposed ICN-based architecture
show comparable performance to the Flower-based architecture for a small number of clients; instead, a remarkable
performance improvement is achieved in the case of a large number of clients. With only 64 clients, we achieved almost
40% less time to complete a round FL compared to the network-centric architecture. In our architecture, where clients

2http://yann.lecun.com/exdb/mnist/
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are decoupled from the server through the use of a middleware entity, i.e., a broker at the edge, we minimize the flash
crowd effect by allowing clients to send their models regardless of MAS availability.

We also compare the characteristics of the proposed framework with the baseline framework, Flower. It is clear that
we achieve the same properties as Flower, such as scalability and ML framework agnosticism since users can perform
their FL tasks with any ML framework. It also provides client heterogeneity, as decoupling clients from MAS via a
broker supports heterogeneity, as MAS does not know anything about the type of clients connected or their origin.
Additionally, this decoupling adds another layer of security in FL. This is because performing all computations on the
device, e.g., in FL, is not sufficient to ensure privacy since the ML models transmitted to the server can be exploited
to retrieve sensitive information for privacy intrusions, and systems based on FL are obviously not compliant with
the GDPR [41]. Therefore, it is necessary to protect clients’ information. In our proposed architecture, a broker in the
middle is also helpful to ensure the anonymization of clients’ information, such as the name and location of each client
[42]. Thus, our proposed algorithm not only improves client privacy but also scales up for massive client scenarios in
FL and is suitable for both static and non-static users.

5. Federated Learning Client Selection
In this section, we analyze the proposed client selection algorithm and its performance regarding the average

number of selected clients using different timer distributions for the vehicular communication scenario considered
in this work. Then, we present the performance evaluation of the FL process achieved by the proposed ICN-based
architecture using the proposed client selection algorithm.

Client selection is critical in the FL process. While a large number of clients allows for a more accurate construction
of the global model, many clients lead to overflows when edge resources are limited. In addition, sending many model
updates to the broker leads to excessive latency, network and broker congestion. These considerations become even
more realistic with mobile client connections in a vehicular scenario. For these reasons, in this paper, we present a
client selection algorithm that aims to avoid broker congestion at the edge and improve the performance of the proposed
ICN-based communication architecture. The proposed algorithm moderates the number of randomly selected clients
publishing their models on a broker for the FL process, thus reducing broker congestion, latency, queue length, and
computational overhead. It should be noted that the implementation of the client selection algorithm requires a change
to the communication architecture presented in the previous section. More specifically, we introduce a new topic on the
Kafka broker at the edge called control. The previously defined CA uses this control topic to perform client selection
in FL.

The proposed algorithm selects the clients (vehicles) involved in the FL procedure, while controlling the broker
queue size at the edge. When selecting clients, the algorithm considers the heterogeneity of resources and the training
time required for each client. In this way, our algorithm selects the clients that are able to complete their training within
a certain threshold and with low predefined latency. Moreover, our proposed approach also selects the stragglers with
equal probability, since the stragglers are not always slow devices, but may have a large subset of the data for training
that provides a larger value for the convergence of the FL model. Therefore, we select them with equal probability. Also,
in the client selection, we can remove the assumption made in the previous section about the client’s homogeneous
local dataset.

We now introduce the basic concepts underlying the proposed timer-based client selection algorithm. We assume
that the set of all C clients is available for each round of the FL procedure. Before the start of each round of FL, MAS
sends the global model parameters and a configuration message to all clients. The configuration message contains the
following information: the current round R of FL, the time interval  from which we extract the timer values, and the
parameters that characterize the distributions of the timers, such as those of the exponential or beta distribution. After
receiving the configuration message from MAS, each client runs a backoff timer for a time ti in seconds, drawn from
a distribution with support in [0,  ]. When the timer expires, each client trains its NN model on its locally available
data and sends the updated model parameters to the broker. The client i, along with its model update, also sends to
the broker the information about the current FL -round R to which the update refers and its timer value ti in seconds.
Using these factors, the server can determine whether it needs to change the  value for the next round based on the
number of updates received. It also uses the R parameter to check if a received model update is part of the current FL
round.

After receiving model updates from the first client that has the (minimum_timer) value, CA is activated at the edge.
Then CA sends an ACK back to MAS and the clients that have subscribed to the control topic or are involved in
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the FL process. Upon receiving an ACK, MAS reads the client model parameters from the topic clients_data and
performs aggregation using the FedAvg algorithm to create the global model [7]. The MAS sends the global model
into the topic averaged_result. However, the clients receiving the ACK suppress their training and do not send their
model parameters if it has not yet completed or if their timers have not yet expired to save computational resources.
While the MAS sends the  and (�, �) for the next FL round after performing aggregation based on the expected
number of clients and the maximum possible round latency. A full round of FL consists of the above procedure. This
process is repeated until the accuracy of the overall model is achieved.

We now formalize the evaluation of the average number of selected clients E(X) assuming a given probability
distribution for the variable i using the results in [43] for groups of users. In this analysis, we define Di as the one-way
delay between each client and the MAS and Di,e as the one-way delay between each client and its respective edge. For
simplicity, we consider the homogeneous delays between the clients and the edge, and the edge to the MAS (cloud).

Let fi (ti) and fDi
(di), with i = 1,… , C , be the probability density functions (PDFs) of the statistically independent

random variables of the time interval i and the client-broker communication delays Di, respectively. The random
variables Gi = Di + i, for i = 1,… , C , denote the time between the generation of the configuration message by the
MAS and the expiration of the back-off time on the i-th client. Assuming independence of i and Di, the PDF fGi

(gi)of the random variable Gi is calculated as the convolution of fi (ti) and fDi
(di) [44]:

fGi
(gi) = ∫

∞

−∞
fi (ti)fDi

(gi − ti)dti. (1)

In the same way, the PDF of the random variable Wi,e = Gi + Di,e can be calculated, which represents the time
between sending the configuration message and receiving the ACK message from the MAS. So, the PDF of Wi,e is
given as:

fWi,e
(wi,e) = ∫

∞

−∞
fDi,e

(di,e) fGi
(wi,e − gi) dgi. (2)

Furthermore, by assuming a constant delay d between the client and the edge broker and between the edge broker and
the MAS such that Di = 2d and Di,e = d, the PDFs fDi

(di) and fDi,e
(di,e) are as follows:

fDi,e
(di,e) = � (di,e − d),

fDi
(di) = � (di − 2d).

Now we calculate the expected number of clients E(X) using the results in [45]. To do this, we define the Bernoulli
random variable Xi, which describes whether the client i sends a message with the model updates Xi = 1 or not
Xi = 0. Thus, the expected number of received model updates can be calculated as follows:

E(X) =
C
∑

i=1
E(Xi) = CP (Xi = 1), (3)

where P (Xi = 1) can be calculated considering that a client sends its model updates when it has not yet received
ACK from CA. Thus, the probability that it does not receive ACK is given as follows:

P (Xi = 1) = ∫

∞

0
fGi

(gi) (1 − FWi,e
(gi, di,e)) dgi, (4)

where FWi,e
(gi, di,e) is the cumulative distribution function of fWi,e

(gi, di,e).
The proposed analysis is valid for any timer distribution. However, we run a simulation to find E(X) for the

proposed architecture using three different distributions for the back-off timer: the uniform, beta, and exponential
distributions for clients C = 1000.
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5.1. Uniform Distribution
To select a subset of clients from a large number of clients for FL, the first timer-based technique we used is based

on a uniform distribution in which all timer values are uniformly distributed in an interval of [0,  ]. Thus, the density
of ti is given as:

fi (ti) =

{

1
 if 0 ≤ ti ≤ 
0 otherwise. (5)

The timer values extracted by each client from this uniform distribution are given by using the inverse transform
sampling [44], which provides the following equation for the timer:

ti =  u, (6)
where u is uniformly distributed over [0, 1], and  = {4d, 6d, 8d, 10d}. Thus, the expected number of clients E(X)
in the case of a uniform distribution of timers is given by Equation (3-4):

E(X) =

{

C if  ≤ 2d
2d
 C if  > 2d.

(7)

The result in Equation (7) shows that the average number of clients generally increases linearly with the number
of clients with a slope of 1. However, if  is large so that  > 2d, then E(X) increases with a slope smaller than 1.
Indeed,  ≤ 2d implies that with high probability, each client sends its model before receiving ACK. As  increases,
this probability decreases, as does the number of clients that can send their model updates. This is due to clients
receiving the ACK before completing their timer or training. The larger the  is, the larger the timer values are as well,
so only the clients with minimal timer and training time are able to send their model updates.

Figure 5: Expected number of clients E(X) with different timer choices  with uniform distributed timers

Figure 5 shows the results of the average number of selected clients for a uniformly distributed timer. Each point on
the curves is the average over 1000 simulations. The achieved simulation results are the same as those in Equation (7).
The analysis of the simulations shows that the clients that set their timer within a time interval of minimum_timer+2d
can send the model updates to the edge, where 2d is the delay of receiving the ACK from CA after receiving the model
updates from the first client with "minimum_timer". The clients whose back-off timer is longer than this length will
suppress the training. Moreover,  is the only parameter that can affect E(X). This means that we can update the 
parameter to control the queue load (broker) at the edge in FL. Using large values for  reduces broker congestion
at the edge. Conversely, decreasing  increases traffic due to model updates and consequently increases queue load.
Furthermore,  does not affect the FL rounds required to converge to the optimal global model, as shown in Section
6. Nevertheless, each round is delayed by a known factor  . Thus, there is a tradeoff between using more clients to
converge faster and using fewer clients to avoid congestion. Note that we use the terms "model parameters received at
the edge" and "number of clients received at the edge" interchangeably, as they both refer to the same thing.
S. Bano et al.: Preprint submitted to Elsevier Page 10 of 19
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(a) Exponential-distributed timers vs. � (b) E(X) with � = 10

Figure 6: Expected number of clients E(X) with different timer choices  with exponentially distributed timers

5.2. Exponential Distribution
In this section, experiments are conducted to calculate the average number of selected clients using the exponential

distribution with rate �. More precisely, the truncated exponential distribution is used [46], since the support of the
timer random variable is the finite interval [0,  ], so the probability density is given as follows:

fi (ti) =

{

�


1
e�−1e

�
 ti if 0 ≤ ti ≤ 

0 otherwise. (8)

Using inverse transform sampling, the samples for the timer ti can be generated by the equation:

ti =

�
log[(e� − 1)u + 1] (9)

where, u is uniformly distributed in [0, 1] as described before. So the expected number of clients E(X) for the truncated
exponential distribution is given as:

E(X) =

⎧

⎪

⎨

⎪

⎩

C if  ≤ 2d

e
2d
 �−1
e�−1 C − e

2d
 �

(

(

1−e−
2d
 �

1−e−�

)C

− 1

)

if  > 2d.
(10)

The results in Equation (10) show that if  ≤ 2d, all clients send their model updates. However, if we fix the time
interval  > 2d, the average number of clients is determined by the Equation (10). This Equation is composed of two
terms: The first grows linearly, while the second is negatively exponential, which reduces the first so that the average
number of clients is asymptotic as the number of clients increases. In this case, MAS must adjust the values of � and 
to reduce the expected number of clients so that the queue does not overflow at the edge. For the truncated exponential
density, we analyse E(X) for C = 1000 and by varying both  and � considering the uniform training times; the
results are shown in Figure 6(a). The Figure shows that for � ∈ [5, 10] we have an optimal number of clients, which
means that the load offered to the queue at the edge is small. However, for � > 10, the weight of the timer density
shifts towards  , which allows for a large number of model updates. For � < 5, on the other hand, the timer samples
are again in a small interval, i.e., closer to 0, which allows a large number of model parameters, but fewer than in the
last case. The experiments are repeated by fixing the value � = 10 and varying  for a different number of clients; the
results are shown in Figure 6(b). The expected number of clients E(X) is inversely proportional to  , as in the uniform
distribution case. However, in the exponential distribution case, E(X) remains almost constant even if we increase the
value of  for a large number of clients. This is because, for larger values of  , clients receive ACK before their timer
expires, causing many clients to suppress their model updates. The exponential distribution parameter � affects the
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(a) E(X) vs. � for different values of  and number of clients C = 1000 (b) E(X) vs. number of clients C for � ∼ 5, and  = {4d, 6d, 8d, 10d}

Figure 7: E(X) of selected clients for model updates given beta-distributed timers

probability of timers with values close to  , which means that the number of clients suppressing their model increases
when the considered values of  are all larger than 2d. So we can change the edge queue utilisation by adjusting the
� parameter even if the number of clients increases.
5.3. Beta Distribution

The next distribution for which we studied the client selection is the beta distribution. The beta distribution has two
parameters, � and � [47]. Given a parameter � = 1, � ≥ 1 and a support of the interval [0,  ], the probability density
function is given as:

fi (ti) =

⎧

⎪

⎨

⎪

⎩

�


(

ti


)�−1 if 0 ≤ ti ≤ 
0 otherwise.

(11)

With the help of the inverse transform sampling, the samples for the timer ti are calculated by the equation:

ti =  u
1
� , (12)

where, u is uniformly distributed in [0, 1]. The expected number of clients E(X) for the beta distribution is given
as:

E(X) =

⎧

⎪

⎨

⎪

⎩

C if  ≤ 2d
(

2d


)�
C + � C ∫

1

0

2d


t �−1i

(

1 −
(

ti −
2d


)�)C−1
dti if  > 2d .

(13)

Analyzing the result in equation (13) again, we find, as in the previous cases, that for time intervals less than or
equal to 2d all clients can send updates. Instead, for time intervals  greater than 2d, E(X) is provided by a function
where MAS can adjust the two parameters � and  to change the number of expected clients. Figure 7(a) shows the
simulation results of the expected number of selected clients when � varies. Figure 7(a) shows an optimal number of
E(X) when � = 5; this means that for the given value of � = 5, a large number of clients suppressed their model
updates. Changing the value of  has similar effects on the number of clients selected as in the previous distributions.
From the analysis of the equation (13) along with the simulation results, it can be seen that for values of � > 5, the
timer samples in the interval are closer to  , which can lead to a large number of models. For � < 5, the timer sample
values are closer to 0 in a small interval, which again increases the number of clients. In Figure 7(b), we set the optimal
value of � = 5 to examine the effects of different  intervals. It is clear that a smaller  leads to a large number of
clients while increasing  beyond a certain value does not have much impact on the number of clients.
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The results obtained in Section 5 for suppressing client updates for the considered distribution scenario indicate
that by using a parametric distribution for timer selection and keeping the interval size  , it is possible to prevent edge
queue overflow for a large number of clients by using probabilistic timers that add minimal latency to the FL round. In
addition, the results obtained with exponential and beta distributions provide a more accurate estimate of the number
of clients than the uniform distribution. As the expected number of clients is convex when the parameters � and � vary
for the exponential and beta distributions. Moreover, the exponential and beta distributions provide another parameter
that MAS can tune by considering the tradeoff between the load offered to the queue at the edge and the accuracy
of the global model. From the results, we also conclude that the exponential distribution is an appropriate choice for
sampling the timers. Indeed, the average number of clients for this distribution shows the best asymptotic behaviour
as the number of clients increases.

6. Federated Learning Performance
In this section, we evaluate the performance of the FL process for the proposed communication architecture and

client selection algorithm. As described earlier, each client performs local training and sends model parameters to
the broker. These model updates are retrieved by the MAS via broker and combined into a global NN model in each
communication round, as shown in Figure 3. However, the cost and communication overhead between participating
clients and the broker at the edge can be a major bottleneck when multiple clients are involved. In addition, storing
model updates in edge queues, as described previously, can lead to congestion in the edge infrastructure. Therefore,
there is a need to reduce the overflow of edge queues due to enormous clients. In this work, we propose to select a
small fraction of clients and send the model parameters of these selected clients to the server using a time-based backoff
method.

Experiments are performed with a set of clients C = {5, 10, 15, 20, 25, 30, 35, 40, 50}, a broker at the edge, and a
MAS in the cloud for simulation. We used the MNIST dataset to run our simulations. The learning model is based on
a three-layer NN with 200 neurons in the hidden layer, an input and output layer, a batch size of 32 samples, a learning
rate of 0.01, and 10 local epochs performed by each client before model updates are sent to the broker. In addition,
the weight assigned to each client for aggregation by MAS corresponds to the size of the dataset used by each client
for training. Also, we terminate the FL process after achieving a classification accuracy of 97% of the global model.
For client selection in FL, we chose timers with exponential distributions that perform better than uniform and beta
distributions in terms of model suppression, as evaluated in Section 5. The exponentially distributed timer has the
following parameters:  = {4, 6, 8, 10} and � = 10. We repeat each experiment 10 times to calculate the average FL
round count for the selected clients with a confidence interval of 95%.

Using the above parameters, we examine the impact of the proposed client selection algorithm on the global model
accuracy and the communication overhead and broker load. We find that limiting the number of clients that are sending
their model parameters in the FL process reduces communication costs and frees up the computational resources of
the remaining clients, allowing faster convergence in a smaller number of FL rounds.

In Figure 8 we show the variation in the number of FL rounds for different numbers of clients. Figure 8 shows the
FL rounds required to achieve 97% accuracy for different values of the  parameter and with selected FL clients. It can
be seen that the number of rounds drops rapidly from a maximum of 20 with 5 clients to 13 rounds with 50 clients to
obtain the federated model that provides the prescribed accuracy. Note that we set the desired accuracy to 97% to study
the impact of selecting a different number of clients with the proposed timer-based client selection mechanism. Also,
we considered sending the updated global model to all C clients, not just those selected during the client selection
process. The reduced number of rounds required for convergence compensates the increased communication overhead
of sending the global model to all clients. The empirical results show that our strategy increases learning effectiveness
and ensures a more consistent and fair performance for all clients. In fact, with the proposed algorithm, we achieve
convergence with only a few clients and a smaller number of FL rounds.

Clients Heterogeneity in Federated Learning: Now we analyze the impact of client heterogeneity on the client
selection algorithm. Client heterogeneity, which includes heterogeneity of systems and data, is one of the main
problems of FL. Differences in client performance, such as CPU frequency, data size, and transmission performance,
are referred to as system heterogeneity, while data heterogeneity refers to differences in the distribution of data across
clients, i.e., non-iid (non-independent and identical) data distribution [48]. Each of these conditions directly leads to
differences in training latency across clients. Besides the heterogeneity of data and devices, the other main problem
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Figure 8: Expected number E(X) of clients selected using a timer with exponential distribution when � = 10 and with
different time intervals  , and the number of FL rounds for a given number of clients

of FL is the dynamic environment in which the communication network can fail and devices can lose connectivity,
such as mobile nodes (vehicles). This is due to the fact that many of the clients involved in the system are mobile,
and this problem is exacerbated in a vehicle scenario. To overcome these problems, the communication architecture
is developed in the above section using the pub/sub paradigm. In the following, we show the numerical results that
demonstrate the resilience of the method based on the proposed FL architecture to client heterogeneity. We account
for the heterogeneity of clients by dividing them into four classes: A, B, C , and D, ordered from the fastest class A to
the slowest class D. They can be slow for two reasons: either they have a large subset of data to train the NN model,
or they consist of simpler and slower hardware. The simulations are performed considering the available resources of
the clients. In this way, the FL procedure can avoid selecting clients that are not able to complete the training and that
could interfere with the current FL rounds or lead to delayed responses. By specifying the values of  in the proposed
algorithm, we introduce a known delay in each FL round, i.e., equal to  . However, in previous scenarios, the delay
in FL was based on the slowest device in the system, which is not known in advance. Experiments are performed
separately for each of the time distributions considered in this work: uniform, exponential, and beta. The results show
that suppressing client updates while maintaining the required classification accuracy, i.e. 97%, is best achieved with
the exponential distribution.

Figures 9(a)-9(c) show the simulation results for the client selection algorithm in the case of uniformly distributed
timers. As mentioned earlier, when the client training times are homogeneous, we obtain the updates from all clients at
time  = 2, as shown in Equation (7). However, we now consider the heterogeneous client resources, which include fast
and slow devices. For this reason, it is not possible to get the updates from all clients, since the training suppression by
the slowest clients is combined with the training suppression by the timers. Moreover, the number of clients continues
to decrease as  increases, as can be seen in Figures 9(b), 9(c). This is because the clients of all classes extract larger
timer values and therefore get ACK. The ACK is generated by CA when the model parameters are received from the
client with the fastest class and a smaller timer value. This behaviour that the number of clients decreases while 
increases, holds for all timers mentioned, both for homogeneous and heterogeneous clients.

From Figures 9(a)-9(c), it can also be seen that the proposed client selection algorithm selects clients from all four
groups, which shows that the proposed selection algorithm is not affected by the heterogeneity of clients, but only by
the parameter  computed by MAS. Moreover, each timer value for each client is independent and random. So there
is a possibility that clients in classes A and B will receive a larger timer value than clients in categories C and D, and
that they will receive the ACK before their timer or training is complete. This behaviour of independent selection from
each class makes the algorithm more dynamic. Therefore, the algorithm also selects clients that train their model on a
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(a) Client selection when  = 2 (b) Client selection when  = 4 (c) Client selection when  = 6

Figure 9: Selection of clients using heterogeneous resources from four classes with uniform-distributed timers

(a) Client selection for time interval  = 2 (b) Client selection for time interval  = 4 (c) Client selection for time interval  = 6

Figure 10: Clients selection using heterogeneous resources from four classes with beta-distributed timers by setting � = 5

(a) Client selection for time interval  = 2 (b) Client selection for time interval  = 4 (c) Client selection for time interval  = 6

Figure 11: Clients selection using heterogeneous resources from four classes with exponential timers by setting � = 10

larger dataset, i.e., the clients belonging to the slower classes that place more emphasis on global model convergence
and to the clients that can provide their updates quickly, which contributes to faster convergence.

Figures 10(a)-10(c) show the simulation results for the client selection algorithm in the case of beta-distributed
timers with � = 5. The results again show that MAS selects clients from all groups along with CA. However, in
this case, clients of classes A, B and C are preferred over class D. This is because we chose the optimal value of
� = 5, which allows for better suppression of clients since all timers are nearly distributed. As a result, client selection
increasingly depends on the training times of the clients. In the case of  = 6, client selection is again more evenly
distributed between groups as the density of timers move towards  . Nevertheless, the stragglers are not completely
neglected.

Figures 11(a)-11(c) show the simulation results for the client selection algorithm in the case of exponentially
distributed timers with � = 10. The results show that MAS distributes the clients more evenly among the groups in
this case, and that we do not select only clients from one category or the fastest clients, but from all four classes. Also,
fewer clients are selected compared to the uniform and beta-distributed timers, especially for  = 4 and  = 6. The
simulation results show that the exponentially distributed timers allow the FL method to load the queue less at the
edge than in the case of the uniform and beta distributions. Thus, the properties we obtained for homogeneous training
timers with different timers also hold for the heterogeneous clients.
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Table 1
Jain fairness index for different probabilistic timers distribution and different values of 

Probability  values

Distribution 2 4 6 8 10

Uniform 0.9831 0.9828 0.9825 0.9841 0.9835
Beta 0.9564 0.8365 0.8764 0.9047 0.9133

Exponential 0.9803 0.7777 0.8791 0.9304 0.9554

We need to select clients from four different classes and to perform a fair selection among all of them in each round
of FL, such that the slowest clients can also participate in the FL process. To this end, we measure the fairness of each
group in each round of FL using Jain’s fairness index [49] as given in Equation 14:

J =
(
∑n

i=1 xi)
2

n
∑n

i=1 xi2
(14)

The Jain index is a fairness criterion that takes into account all users of the system. Because of its simplicity and
ease of understanding, the Jain index is still one of the most popular measures for comparing the fairness of allocations
in computer networks, but we used it to justify selection from different groups of clients in the FL process. The value
of J = 1 corresponds to the fairest allocation, where all users have the same benefit. In the case of FL, the value of
J = 1 corresponds to the same number of clients from each category. Therefore, the FL process must consider the
tradeoff between model accuracy and index maximization to avoid overloading the broker during client selection. We
calculated the fairness of client selection among all the proposed probabilistic timers to determine which of them is
the fairer in the client selection. Table 1 shows the results of the Jain index evaluated for the uniform, exponential and
beta-distributed timers. The results in this Table show that the uniform distributed timers provide a higher value for
J . The results also show that the fairness of the uniform distributed timers remains almost the same across different
time intervals. However, uniform distributed timers suppress fewer client updates, resulting in many model updates
being transmitted to the edge queue. The results for the exponentially distributed timers are comparable to the values
for the uniformly distributed case for  = 2. In fact, in the exponentially distributed case for  = 2, a large number of
clients from all four classes are involved in the FL process due to the backoff timer values. But as mentioned earlier,
the exponentially distributed timers provide better load balancing in the queue at the edge than the other distributions.
Moreover, for all timers, fairness decreases at  = 4 and then increases again at higher  values. In summary, our
proposed client selection algorithm gives us the best performance in terms of fairness and load offered to the queue at
the edge with the exponentially distributed timers.

7. Conclusion and Future Work
In this study, we implemented an edge-based architecture for FL adapted to communication and computation costs.

We decompose the global problem of an efficient FL system for mobile and resource-constrained devices into two
subproblems. In our solution process, we focus on a communication-efficient framework for FL, which is our first
research question, and the second is client selection in FL considering the resource-constrained edge infrastructure.
The ICN-based framework for communication-efficient FL can be used for mobile vehicle nodes because it enables
asynchronous and scalable communication. According to the simulation results, the proposed framework can provide
better FL results than a network-centric architecture and significantly reduce the time required to perform a FL round.
Another advantage of this architecture is that it reduces the load on MAS since in the ICN paradigm, a MAS serves
only a small number of brokers, which in turn distribute model updates to all vehicles in the environment. This
architecture also helps reduce latency while solving the problem of intermittent connectivity for mobile users. In
addition, decoupling clients from MAS via brokers helps address privacy challenges in FL. Therefore, we show that
the pub/sub paradigm is the most promising communication model for FL.

After defining the communication architecture, we investigated a client selection mechanism for the FL process by
considering the load on the edge queues where the edge broker caches model updates uploaded by connected clients.
The proposed client selection mechanism uses different probabilistic timers and determines the effective distribution

S. Bano et al.: Preprint submitted to Elsevier Page 16 of 19



AIoT@Edge: Scalable and Efficient Distributed Learning for Massive Scenarios

in case of device heterogeneity and different number of clients. This time-based client selection mechanism requires
very little state on each client device, requires only network data transmission support, and adapts to massive client
scenarios. We have studied probabilistic feedback timers for up to 1000 clients through experiments and analysis.
Our main results are: exponentially distributed timers provide better client update suppression than systems based on
uniform and beta-distributed timers, and reduce queue overflows. The algorithm works for both heterogeneous and
homogeneous clients and can therefore be used in almost any system, such as satellite-based networks. It also enables
to control the bandwidth for uploading model parameters by tweaking various parameters depending on the tradeoff
between the latency for each FL round and the expected number of clients. The proposed system, which dynamically
adjusts the selection frequency, reduces client participation to avoid queue overflow and improves the robustness of the
system. We also investigated the fairness of the proposed client selection algorithm based on different client categories
by considering their heterogeneity. In this way, we prove an optimal tradeoff between efficiency and fairness from
the Jain index point of view and show that our proposed algorithm ensures fairness in selecting clients from different
classes.

In the future, we will extend our test environment to include a cluster of brokers and orchestrate them at the edge,
using the Kafka APIs. We will refine the methods and details of the client selection technique by also considering the
heterogeneous delays between edge and client devices. To exploit data from unmanned aerial vehicles or remote areas,
we would also investigate how to move the nodes at the edge to a low-orbit satellite constellation to create an orbital
edge infrastructure.
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