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Abstract—Point-of-care Test (POCT) is the delivery of medical
care at or near the patient’s bedside. Primarily employed in
emergencies, where rapid diagnosis and treatment are critical,
POCT is now being used in domestic telehealth solutions, as
in the TiAssisto project, thanks to technological advances such
as the development of portable and affordable devices, high-
speed Internet connections, video conferencing, and Artificial
Intelligence (AI). Ultrasound (US) images of internal organs
and structures are valuable tools in POCT medicine since this
examination is portable, quick, and cost-effective. USs can help
diagnose different conditions, including heart problems, abdomi-
nal pain, and pneumonia. Deep learning algorithms have proven
to be highly effective in image recognition, enabling physicians to
make informed decisions on-site. This article presents a pipeline
approach providing remarkable and reliable results to handle
point-of-care ultrasound examinations, making use of methods
for: a) automating text cleaning for privacy based on an Optical
Character Recognition (OCR) algorithm; b) scrolling through the
video frames and annotating them using an ad hoc implemented
tool; c) classifying various signs in US using a state of the art
deep learning algorithm, that is an adaptive efficient method
ensembling two EfficientNet-b0 weak models; d) benchmarking
medical plausibility to address transparency and human in the
loop setting using a post hoc explanation visual explanation
method, i.e. Grad-CAM.

The involved physician’s feedback remarks that this system
can detect important signs in pulmonary US imaging. However,
the dataset is not yet the final one since the TiAssisto project is
still ongoing, with a planned conclusion in February 2024. Our
ultimate goal is not merely to develop a classification system but
to create an effective healthcare support system that can be used
beyond primary healthcare facilities.

Index Terms—Point-of-care testing Ultrasound Telemedicine
Multi-pathology Artificial Intelligence Explainable Artificial In-
telligence (XAI) Optical Character Recognition (OCR) Machine
Learning Decision Support System (DSS)
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I. INTRODUCTION

TiAssisto is a telemedicine project funded by the COVID-19
Tuscany Region call. Its main objectives include exploring and
validating the potential benefits of telemedicine in healthcare.
A crucial element of this approach is the adoption of delo-
calized point-of-care testing (POCT) to minimize unnecessary
hospital admissions.

Telemedicine projects are increasingly studying the use of
specialized examinations, such as ultrasound (US), that can
be conducted outside traditional medical facilities. Beyond
the confines of conventional medical practice, there is a
growing emphasis on integrating these examinations with
artificial intelligence (AI). This integration aims to enhance
the capabilities of healthcare professionals and provide more
effective care to their patients [1].

POCT US has achieved a fundamental role in the last years,
becoming the “fifth pillar to bedside physical examination”
[2]. Especially during the COVID-19 pandemic, its application
to lungs has been crucial in many medical settings: from
the emergency department, where it was employed for the
differential diagnoses of dyspnea, to the COVID-19 patient’s
home, where it helped to detect lung involvement. Although
USs don’t allow lung parenchyma studies due to air presence,
some artefacts appear in pathological situations. The main
pulmonary deaeration sign shown by ultrasound is the B-line,
a vertical hyperechoic artefact arising from the pleural line
that is visible when the air in the lung is replaced by water,
as in heart failure or fibrosis. Even if B-lines are not specific
signs, their features may suggest the presence of a particular
disease [3]. In heart failure, B-lines are multiple, bilateral, and
more present in dependent zones; moreover, their number is
often correlated to possible lung congestion.

On the other hand, in acute distress respiratory syndrome,
B-lines show a more irregular distribution pattern, with spared
areas and parenchymal consolidations. Pulmonary fibrosis is
also characterized by B-lines and an irregular thickened pleural
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line. When the density of lung parenchyma increases, lung
ultrasound shows consolidated areas, typical of pneumonia,
atelectasis or pulmonary contusions. Another condition that
can be detected by lung US is pleural effusion: its sonographic
features can help detect its nature. All the conditions men-
tioned above can be easily and effectively monitored through
lung US during the hospitalization and in the follow-up, given
the portability of the devices.

Many protocols have been developed to quantify lung
involvement in different pathological conditions [4]. Regarding
heart failure, an 8-scanning site scheme is recommended. The
total number of B-lines expresses the severity of congestion
[3] Concerning COVID-19, different standardized approaches
to lung ultrasound examination have been suggested [5], the
majority of them consider a scan area of the chest area
considering the possibilities of following different anatomical
reference lines. The different scan criteria generated different
score criteria, all agreeing on evaluating how many B-lines
are in the ultrasound field of view and how much space they
occupy. More filled space and more lines indicate a severe
score.

Deep learning approaches to study ultrasound signs have
risen during the pandemic [6], but their obvious benefits
opened a previously undermined branch. Deep learning ar-
chitectures have shown remarkable ability in detecting these
patterns, and so it is possible to train a customized network
to detect B-lines, also known as comet tails artefact [7].
While network robustness is pivotal in any technical study,
nowadays, AI applications in medicine should also guarantee
trustworthiness criteria [8]. Therefore, a study on methodology
granting privacy, transparency, and explainability related to
deep learning applications should be included in any project
of applied AI, especially in medicine. The proposed pipeline
involves a self-developed video annotation tool, then it adopts
an optical character recognition (OCR) algorithm to inspect
and clean the acquired ultrasounds. The collected images are
then forwarded to a state-of-the-art (SOTA) deep learning
network, a fine-tuned EfficientNet-b0 adaptive efficient ensem-
ble, able to quickly recognize any signs potentially related to
pathologies. Classification outputs are then assessed with the
Grad-CAM algorithms, to evaluate if the proper medical signs
were identified, offering a quick and effective second opinion

In the next Section II, we introduce the subject of deep
learning processing in Point-of-Care US (POCUS). This is
followed by a presentation of the materials accumulated during
the TiAssisto project, as detailed in Section III. The methods
applied to address this research inquiry are delineated in
Section IV, and the results achieved to date are outlined in
Section V. As is customary in scientific literature, the article
will end with discussions and recommendations for future
research, which are the content of Section VI.

II. RELATED WORK

POCUS can be used in conjunction with telemedicine,
allowing physicians to get real-time US images from patients
in remote locations and transmit them to an expert for their

Fig. 1. Annotated ultrasound in the original view and cleaned storing to
ensure privacy and improve the quality of the dataset

interpretation [9]. The feasibility of using deep learning to
assist specialists in the POCUS examination further is now
been also investigated [10]. Such a trend is more prominent
for other medical image modalities [11] (MRI and CT) but is
now transitioning to US studies [12], also based on advances
in embedded-AI and in-device machine learning. As for any
other medical domain, the lack of available data makes it
difficult to benchmark a deep learning algorithm, especially
in the framework of trustworthy AI, where data privacy is
mandatory. A major problem that can be extrapolated from the
literature is that no active trial study on the use of POCUS,
telemedicine and AI has yet concluded and shared its results
[13]. The majority of the studies employ clinical trials to check
the cost-benefit of tele-POCUS or integrated deep learning
algorithms in datasets of already concluded projects.

III. MATERIALS

The primary focus of TiAssisto is the collection of patients’
vital signs and medical examinations, particularly US videos.
The current dataset comprises lung examinations obtained
throughout the TiAssisto initiative. Particular emphasis has
been placed on those videos displaying ”comet tail” artefacts.
The context or clinical scenarios attached to each video,
presented as vignettes or brief histories, offered insight into
the severity of the illness of the subjects. This information was
used to label this data, automatically avoiding other processing
time from experts. After creating the label, images were fully
anonymized1. The current dataset features a total of 30 lung
US videos from 30 distinct subjects enrolled as patients in
TiAssisto. These videos specifically highlight the presence or
absence of signs of pulmonary disease detection; some of them
depict patients with evident pulmonary oedema, while others
display lungs with minimal or no B-lines at all. Images were
extracted by the above frame-to-frame commented videos,
obtaining the dataset of Table III. The labels were agreed upon
with the involved physician and depicted how much space
comet tails occupied in the image.

IV. METHODS

The first step of the proposed approach involves a video
annotation tool. An ad hoc implemented Java program enables
frame-to-frame video processing, allowing medical staff to



TABLE I
DISTRIBUTION OF IMAGES IN THE DATASET

Label Number of Images
0 : No B-Lines 183

1 : B-Lines in 30% FOV 754
2 : B-Lines in 50% FOV 196

3 : B-Lines in more then 50% FOV 76
Total 1209

annotate the entire dataset. All the acquired US images con-
taining text are anonymised through an inpainting method, but
only outside the line of view of US images, avoiding diagnos-
tic content alterations. The used inpainting algorithm is based
on the Keras Optical Character Recognition (OCR) module
[14]. While traditional OCR systems rely on hand-engineered
features and heuristics, deep learning-based approaches have
vastly outperformed them by automatically learning relevant
features from data [15]. Keras OCR utilizes different methods
as the recognition one. This approach identifies a series of
quadrilateral zones in the image in which text is presented,
outputting four couple of points to identify the area with text.
This detection is followed also by a recognition approach that
uses a defined dictionary to recognize letters and words in the
image; in this case, we are interested only in the detection part.
The used structure is the one of Convolutional Recurrent Neu-
ral Networks (CRNN) [16]. Convolutional Neural Networks
(CNNs), Figure 2, are commonly used for image classification
tasks. For OCR, CNNs can be used to identify, and classify,
each region of an image as a particular character or symbol,
defining the bounding boxes. Given the sequential nature of
texts, Recurrent Neural Networks, RNNs, are used to capture
the characters. In this case, it is used a bi-directional Long-
Short-Term-Memory, LSTM, architecture. When the algorithm
ends scanning the image, every bounding box is sent to a
method that evaluates the area and the position of the box and
simply covers it with a mask whose dimension and position
have already been evaluated with the same procedure.

The classification task is instead performed with a simple
EfficientNet-b0 [17]. Data augmentation was still employed
by avoiding any transformation that could alter the diagnostic
content.

1) Resizing: The first transformation resizes any input
image to a consistent dimension of 512x512 pixels.

2) Rotation: the images are subjected to a random rotation.
Specifically, each image might be rotated by up to 20
degrees in either direction.

3) Random Affine Translation: The third transformation is
a random affine transformation that moves the image
slightly in one of the four primary directions (up, down,
left, or right). However, the rotation is set to 0 degrees,
meaning the image will not be rotated during this step.
The translation is random up to a maximum of 10% of
the image’s height in the vertical direction.

4) Random Shearing: Following the translation, another
affine transformation is applied for shearing the image.
Shearing is a distortion that skews the image, introduc-

Fig. 2. OCR PIpeline implemented from Keras module

ing another form of variability. In this case, the shear is
random and can be up to 10% in any direction.

5) Random Scaling and Resizing: Next, the image under-
goes random scaling, where its size is adjusted between
80% to 120% of its current size. After this scaling
operation, the image is again resized to 512x512 pixels
to maintain a consistent size.

After the last transformation, the pixels of each image are
tensored between [0 < x < 1] and then undergo normalization.
Mean and standard deviation are calculated separately for
each of the three channels over the entire dataset. Given that
the normalization occurs in the tensor space, the values are
averaged over a pixel range of 255.

The EfficientNet and the network are then trained, using
the method described in [18]: 5 weak EfficientNet-b0 models
and then 5 ensembles inheriting the deep features of the
best two weak models are validated and tested. Although
ensemble methods provide higher classification performances,
their architecture is generally more complex than their single
counterparts. For this reason, they have been scarcely used
in the past. Our method greatly simplifies ensembling using
an adaptive efficient approach. As shown in Table II, our
ensemble method [19] remarkably improves the results of
EfficientNet-b0 weak learners. The main characteristic of
our method is the linear combination of two convolutional
blocks of already trained EfficientNets; out of the five weak
models, only the best two are used to build the new ensemble
architecture. The chosen layers are then frozen and only the



linear combination of the convolutional layer outputs is used.
This operation is the concatenation of the features extracted
by the two weak learners and their weights. At last, this new
layer is fine-tuned to solve the classification task.

A patience method of ten epochs is used to avoid overfitting
and optimize run time. The learning rate is fixed at 0.001 and
AdaBelief optimizer is used.

The last step in the methodology pipeline is the application
of Grad-CAM [20] saliency map algorithm on every image
in the dataset after it’s fed into the network. This procedure
simply evaluates the gradient which activates the classification
of the image and evaluates it over the feature maps that
contribute more to the class activation [21].

V. RESULTS

The autonomous process of anonymization of the dataset
took around 45 minutes with an average process time for each
image of 2 seconds: this delay is entirely compatible with
a point-of-care application of the process. One of the two
proposed methods, while promising, did not achieve complete
accuracy in the classification of US images as in previous
study [18]. The weak learners in Table II do not surpass the
95% benchmark in the cleaned or in the original dataset, while
the ensemble average performance is 99% with a peak of
perfect accuracies on the test set in Table III.

TABLE II
TEST, VAL, AND TRAIN ACCURACIES FOR WEAK AND ENSEMBLE

MODELS (TRUNCATED TO TWO DECIMAL PLACES)

Run Weak Ensemble
Test Val Train Test Val Train

1 0.92 0.89 1.00 1.00 0.99 0.99
2 0.91 0.90 1.00 1.00 0.99 0.99
3 0.91 0.90 1.00 1.00 0.99 0.99
4 0.91 0.90 1.00 0.99 1.00 0.99
5 0.91 0.90 1.00 0.99 0.99 0.99

TABLE III
CLASSIFICATION REPORT OF THE BEST ENSEMBLE

Class Precision Recall F1-Score Support
0 1.0 1.0 1.0 19

1-3 1.0 1.0 1.0 76
4-5 1.0 1.0 1.0 20
6-8 1.0 1.0 1.0 7

Accuracy 1.0 122
Macro avg 1.0 1.0 1.0 122

Weighted avg 1.0 1.0 1.0 122

There is not enough evidence to see if there is any benefit
in training the cleaned image set against the original one.
Images are processed with the Grad-CAM approach and then
commented on by a team of physicians with a range of
expertise between average and expert.

Overall, the physicians were satisfied with the first version
of the classification system, agreeing with a significant portion
of the explanations provided by the system.

In particular, the system was able to catch meaningful
anatomical detail in the classes annotated by label 1 and

Fig. 3. The system seems to correctly detect the B-Line and almost segment
it.

Fig. 4. The system seems to correctly detect the two B-Lines and almost
segment it.

label 3, Figures 3 and 4. While it seems to struggle in the
identification of the label 2. This thesis is supported by the
classification report from the test set in which we can see the
poor classification performance on the same label, Figure 5.

VI. DISCUSSION/ FUTURE WORK

The volume of US images collected during the project
suggests a potential for further data acquisition. The TiAssisto
welfare initiative encompasses a diverse group and is not
exclusively focused on individuals with illnesses. While it
doesn’t readily provide a comprehensive medical database
for benchmarking future studies, synergizing with data from
related endeavours can furnish ample material. The proposed

Fig. 5. The system is not able to correctly detect the two B-Line on the left
side of the images, Label 2, being outperformed by physicians.



Fig. 6. The displayed ultrasound result is classified as a label 3 image, which
should contain over 50% of comet line in the ultrasound line of view, while,
after the GradCAM explainability inspection from physicians, no comet tail
was detected. It seems anyway that the system is trying to classify the image
as a label 0, i.e. no comet tail.

approach seems to be eligible to be applied in a POCUS
telemedicine study. The reason for using EfficienNET archi-
tecture is vastly summarized by the literature. The network
inverted bottleneck block, coupled with the compound scaling
approach, defines the focal point of this architecture’s effi-
ciency. Notably, this configuration ensures that the network
operates with optimal parameters at all times, minimizing
computational overhead without compromising performance.
The structure adeptly captures a diverse range of features from
images, extracting both intricate details and broader patterns
[22]. The proposed system’s biggest downfall seems to be
partly attributable to the dataset’s status, which is still in the
development stage and is still not heavily commented on.
Nevertheless, the training algorithm provided some examples
of robustness toward this error. As in Figure 6 labelled as 3,
upon evaluation, the system appears to detect no evidence of
comet tails, as observed by the attending physician, likely a
case of incorrect human or automatic annotation.

The performance of the proposed ensemble architecture is
in line with previous studies [18], [22]. Regarding Table II,
comparable values are found for the not anonymised dataset.
These highlight different aspects. Among them, the MBblock
of EfficientNet seems to correctly extract the patterns of the
US test without considering texts in case of the presence of
a visible separation between image and text. Nothing can be
said for images in which the text covers the field of view,
since, in this situation, the deletion and reconstruction alter
the diagnostic content of the test. Moreover, in many cases,
ensembles are viable alternatives. Still, this approach allows
the use of reduced training and computing capabilities. This
ensembling method employs two already trained networks
and fine-tunes a new final layer on the same task, achieving
minimality, efficiency and adaptability requirements, since it
uses the least number of parameters and uses an architecture

trainable by gradient descent (linear combination layer) and
therefore optimisable. The result in Table II highlights an
improvement in classification since performance consistently
rises in train, testing and validation among five different seeds.
Even if Table III shows significant results, a limit is that
support images are few, and further tests are needed using a
larger dataset. To this aim, the sonographers of the project
are annotating new ultrasounds we will use for additional
experiments.

Other studies on autonomous classification or segmentation
of medical images seem to be wrongly influenced by text
information on the image [23], but that does not seem to
be the case for our study in which the network appears not
to be influenced by text presence. Privacy is a mandatory
setting, and therefore this issue should be further investigated.
Federated learning could be a possible solution since the
possibility of running the model on a decentralized dataset
grants privacy and enables blind studies on the image status
impact on the model training. Another big improvement can
be obtained with direct video segmentation and classification
instead of a frame-by-frame approach. Vision transformer
architectures have demonstrated a remarkable capacity for
identifying temporal information in image sequences [24].
The problem with this kind of network is that it has a more
significant number of parameters. It must be investigated if it
is possible to find the proper set of hyperparameters to work
in POC situations where resources can be limited. The video
parsing and the federated learning approaches open the way
to the last major improvement and future studies in this field
which is continuous learning. Indeed, conventional models
suffer from the “catastrophic forgetting” phenomenon when
exposed to new data streams; continuous/lifelong learning
models are instead architected to learn continuously [25]:
they adapt and evolve, integrating new knowledge without
obliterating the old. We believe that in the vast and dynamic
world of healthcare, where patient demographics shift and
treatment protocols change, continuous learning has enormous
potential to improve medical deep learning algorithms.
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[5] Y. Tung-Chen, S. Ossaba-Vélez, K. S. Acosta Velásquez, M. L. Parra-
Gordo, A. Dı́ez-Tascón, T. Villén-Villegas, E. Montero-Hernández,
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