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Abstract. Cine Magnetic Resonance Imaging (MRI) allows for under-
standing of the heart’s function and condition in a non-invasive manner.
Undersampling of the k-space is employed to reduce the scan duration,
thus increasing patient comfort and reducing the risk of motion artefacts,
at the cost of reduced image quality. In this challenge paper, we investi-
gate the use of a convolutional recurrent neural network (CRNN) archi-
tecture to exploit temporal correlations in supervised cine cardiac MRI
reconstruction. This is combined with a single-image super-resolution re-
finement module to improve single coil reconstruction by 4.4% in struc-
tural similarity and 3.9% in normalised mean square error compared to a
plain CRNN implementation. We deploy a high-pass filter to our ℓ1 loss
to allow greater emphasis on high-frequency details which are missing
in the original data. The proposed model demonstrates considerable en-
hancements compared to the baseline case and holds promising potential
for further improving cardiac MRI reconstruction.

Keywords: Cardiac MRI Reconstruction · MRI Acceleration · MRI Re-
finement · CRNN

1 Introduction

Cardiac magnetic resonance imaging is a powerful, non-invasive tool to aid visu-
alise the heart’s chambers, valves, blood vessels and surrounding tissue. To gain
a 3D depiction of the heart, a sequential acquisition process of 2D slices is used,
with the scanning duration increasing with the number of slices and temporal
resolution desired. Thus for detailed scanning, multiple cardiac cycles must be
monitored and the duration of the MRI process can consequently exceed the
patients ability to remain steady and hold their breath. By undersampling in
the k-space data acquisition process, the scan time can be substantially reduced
* These authors contributed equally.
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at the cost of missing information that must be interpolated. Deep learning
achieves k-space reconstruction with greater prior knowledge for the regularisa-
tion term that covers the missing k-space domain, without requiring an iterative
optimisation process and hence greatly accelerating the reconstruction rate.

Various architectures have been explored for MRI reconstruction, includ-
ing convolutional neural networks (CNNs) and U-Nets [7,8,12,21], variational
networks [5] and generative adversarial networks [13,22]. Other deep learning
methods that exploit prior knowledge and extend traditional iterative methods
include the model-based deep-learning architecture [1] and deep density priors
[18]. Enhancing cine MRI through deep learning involves not only capitalising on
the spatial relationships acquired from a given dataset but also leveraging tem-
poral correlations. This has been evidenced across various model architectures
[10,13,19,25] as well as through registration-based [23] and motion-guided align-
ment [6] approaches. In [16], data sharing layers were incorporated in a cascaded
CNN, whereby adjacent time step k-space data was used to fill the unsampled
lines. In [15], recurrent connections are employed across each iteration step as
well as bidirectional convolutional recurrent units facilitating knowledge sharing
between iterations and input time frames, respectively.

Working within the confines of the challenge, we explored various architec-
tures and found the CRNN block of [15] to perform best within the given lim-
itations in memory and reconstruction time set by the organisers. This was
subsequently combined with a lightweight refinement module inspired by single-
image super-resolution approaches [3] to perform further de-noising and resolve
finer details. The rest of the paper is organised as follows: Sections 2 and 3 de-
scribes the problem, dataset, and methodology, Sect. 4 presents the results of
experiments and Sect. 5 and 6 provide discussion and conclusions, respectively.

2 Problem formulation and dataset

The objective of MRI reconstruction is to address an ill-posed inverse problem,
retrieving image information denoted as x ∈ CN from acquired undersampled
signals y ∈ CK , where K ≪ N . This procedure can be depicted using a linear
forward operator E, which defines the characteristics of the forward problem:

y = Ex+ ϵ. (1)

Eq. 1 represents the general form of MRI reconstruction. The goal of reconstruc-
tion is to minimise the difference between x and the ground truth. Therefore,
the reconstruction problem can be defined as follows:

x̃ = argmin
x∈CN

λ

2
∥Ex− y∥+ fθ(x). (2)

Here, fθ denotes a neural network for image reconstruction with trainable
parameters θ and λ controls the balance between the network and data consis-
tency.
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Data Our model is evaluated on the CMRxRecon Challenge dataset from the
26th International Conference on Medical Image Computing and Computer As-
sisted Intervention. The dataset includes both short-axis (SA) and long-axis (LA)
(two-chamber, three-chamber and four-chamber) views under acceleration rates
of 4×, 8×, 10×. The dataset was obtained following recommended protocols
and processing [20,24], more details of which can be found on the challenge web-
site [4]. The 300-patient dataset is split 120:60:120 between challenge training,
validation, and testing respectively. Only the challenge training set contained
ground truth reference data, hence this was further split 90:20:10 for training,
evaluation, and testing respectively for all models.

Data pre-processing The unpadded image size varies between widths of 132,
162, 204 & 246 and heights of 448 & 512 pixels. To maintain consistent input
size, we apply zero-padding for image sizes of 256 × 512 following the Inverse
Fourier Fast Transform, with the outputs cropped after inference.

When using the approach from [10], the computationally intensive conju-
gate gradient step was a limiting factor due to the GPU’s initial 24GB memory
constraint set by the challenge organisers. We thus chose to use the coil com-
bined data rather than the multi-coil format, which allowed use of a simpler data
consistency step, at a potential loss of accuracy without using the extra infor-
mation. Likewise, we used a single channel for the processed image instead of
using independent channels for amplitude/phase or real/imaginary components,
as adopted by [5,7,12,16].

The SA data are 3-dimensional spatially with an additional time component.
It is therefore conceivable that full 4D convolutional kernels could be used to
fully utilise spatio-temporal redundancies, but this would result in extremely
large memory requirements as discussed in [11]. Furthermore, studies such as
[19] have demonstrated that it is preferable to have a larger 2D+ t network than
a smaller 3D-input network with equivalent memory consumption. Therefore,
due to the large image size, we choose to use time-series batches of 2D depth
slices as per [15] rather than 3D + t or 4D for the long-axis images.

3 Methodology

3.1 Model exploration

The initial limitations for inference imposed by the organisers were 24GB GPU
VRAM and 4 hours for the reconstruction of the test dataset, which was later in-
creased after our initial investigations. Pre-trained models or loss functions were
not permitted. Denoising diffusion probabilistic models (DDPM) were found to
take too long in inference, whilst transformer models have been found to lead
to heavily pixelated reconstructions. Hence, more conventional approaches were
tested, building upon an existing repository6.

6 https://github.com/f78bono/deep-cine-cardiac-mri

https://github.com/f78bono/deep-cine-cardiac-mri
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We compared networks similar to the CineNet [10] and CRNN networks [15].
The number of parameters in each network were maximised such that the full
24GB VRAM memory would be used in training. A 2D U-Net is deployed to
serve as an additional baseline to compare all models to. The U-Net is trained
on a slice-by-slice basis with 3 cascades and 48 feature map channels. Weight
sharing is used when training the model, and λ is set to be learnable with an
initialisation of log(10−1). The learning rate is 3×10−4, and the Adam optimiser
is deployed to guide the training process.

3.2 Model architecture

A high-level depiction of the complete architecture of the final model is presented
in Fig. 1. The backbone of proposed architecture is based on the CRNN block
detailed in [15]. The first step in CRNN is a bidirectional convolutional recurrent
unit (BCRNN) with three convolution layers: a standard convolution between
layers, one convolution between temporal slices, and one between iterations. This
is followed by three convolutional recurrent units (CRNN) which evolve only over
iterations before a plain CNN. Finally, residual connections are employed prior
to a data consistency term, preserving the information from sampled data.

Aiming to improve performance, we include an additional BCRNN unit to
further exploit spatio-temporal dependencies, followed by a refinement module
to further denoise the output of the CRNN model and refine further details.
We deploy a very lightweight single-image super-resolution network, Bicubic++
[3], which maintains short reconstruction times. The refinement module first
learns lower resolution features to decrease computational cost and then performs
numerous convolutions to denoise the image before a final convolutional filter

Fig. 1. Final model architecture: BCRNN, CRNN, and CNN units with a data con-
sistency (DC) step from [15] for primary reconstruction. "t" and "i" denote time and
iterations, respectively. The low-cost refinement module, inspired by [3], includes down-
sampling (DS), CNN, and upsampling (US) units.
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and upscaling back to the original image size. We test the performance of the
network with end-to-end and separate learning for each module.

Loss function In the context of of image reconstruction, ℓ1 loss, ℓ2 loss and
SSIM loss are widely used to constrain models for high-quality reconstructed
images, but often disregard the complex nature of MRI data. Thus, we investigate
a range of losses using an additional loss term, denoted the ⊥-loss [17]. The ⊥-
loss adds a phase term which can be combined with ℓ1, ℓ2 or SSIM losses to
address the asymmetry in the magnitude/phase loss landscape. This operates
on the polar representation of complex numbers, rather than on two real value
channels for magnitude and phase, thus taking advantage of the fact that fully
symmetric loss functions can improve task performance [14]. For the separate
training of the CRNN and the refinement module, ⊥-losses are only utilised for
the CRNN output, with ℓ1 and SSIM loss functions deployed for the refinement
module. For the end-to-end training, ℓ1 and SSIM loss are employed to constrain
both CRNN and refinement module. We split the ℓ1 loss by introducing a high-
pass frequency filter, allowing us to emphasise the high-frequency content in our
reconstructed images to resolve finer details. We denote this as ℓ1split.

In training, losses were quantified across the entire image, whereas for the
validation leaderboard, assessment was limited to the initial 3 time frames and
the central sixth portion of the images. The competition metrics were structural
similarity index measure (SSIM), normalised mean square error (NMSE) and
peak signal-to-noise ratio (PSNR). Hence, whilst the complete reconstructed
images often surpassed SSIM values of 0.98, validation scores only reached 0.85.

3.3 Implementation details

Implementation details and our code is available at: https://github.com/vios-s/
CMRxRECON_Challenge_EDIPO

4 Results

Model choice and weight sharing Fig. 2 shows the training losses between
models, demonstrating the stronger performance of the CRNN model. The point
of convergence for the CRNN with weight-sharing and the CineNet models is
similar, but the CRNN networks start at a much lower loss value. This is despite
the non-weight-sharing model (1.1M) having over 2× more trainable parameters
than the 6-cascade CineNet model (0.5M). Between CRNN models, we see more
rapid convergence in the weight-sharing model as there are less parameters to
optimise and reduced likelihood of early overfitting. However, the lower number
of parameters leads to reduced expressive power and is outperformed by the non-
weight-sharing model with insufficient memory gains to justify its use. Using the
⊥-loss only, the weight-sharing model had SSIM of 0.683, NMSE of 0.123 and
PSNR of 23.917, performing notably worse than the non-weight-sharing model,
as presented in the next section. Fig. 3 shows the reconstruction through the
CineNet and the CRNN (with and without weight-sharing) models.

https://github.com/vios-s/CMRxRECON_Challenge_EDIPO
https://github.com/vios-s/CMRxRECON_Challenge_EDIPO
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Fig. 2. Log loss during exploratory training of modified CineNet and CRNN (with and
without weight-sharing between kernels). Note that the implementation is not identical
to the original works.

Fig. 3. Reconstruction (top) and associated error maps (bottom) for the initial network
investigation. (a) 8 × undersampled LAX input (b) fully sampled ground truth (c,d)
CineNet model (6 cascades) (e,f) CRNN model (weight-sharing between cascades) (g,h)
CRNN model (no weight-sharing).

Loss function investigation Table 1 presents the findings of investigations
of the loss functions using a low-cost CRNN model. Use of the ⊥-ℓ1 loss led to
an improvement in SSIM and PSNR compared to ℓ1 loss alone, but a slightly
higher NMSE error. Providing greater emphasis on high-frequency data using a
high-pass filter led to improved SSIM but lower NMSE and PSNR performance.
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Table 1. Performance comparisons for different loss function combinations, evaluated
on the validation data. A 48-channel 5 cascade CRNN network was used without the
refinement module. ℓ1split denotes the ℓ1 loss whereby a high-pass filter is used to
provide more focus on the high frequency content, in addition to the conventional ℓ1
loss.

Metric Loss function
⊥ ℓ1 ⊥-ℓ1 ⊥-ℓ1split ⊥-SSIM-ℓ1split

SSIM 0.712 0.741 0.752 0.753 0.739
NMSE 0.0925 0.0646 0.0655 0.0671 0.0719
PSNR 25.143 26.525 26.535 26.487 26.067

Further tuning to improve the ratio of high- to low- frequency led to better
results for the higher cascade models. Notably, combining SSIM with the ⊥-ℓ1
loss was counter-productive for all metrics and suggests that further tuning of
the weighting of each loss component is required.

Introduction of the refinement module Table 2 highlights the improve-
ments in the quality of inference made by introducing the refinement module.
Deploying the refinement as a separately trained post-processing module shows
notable benefit improving more than adding an additional cascade to the plain
CRNN. The end-to-end model results in further improvements upon separate
training, of 4.4% in structural similarity and 3.9% in normalised mean square
error relative to the plain CRNN, in spite of no longer being able to take advan-
tage of the ⊥ loss.

Table 2. Performance comparisons of various model set-ups. Sequential (separate) and
end-to-end training (combined) of the CRNN and refinement module are presented.

Cascades 6 6 6 7
Refinement module None Sequential End-to-end None

SSIM 0.768 0.792 0.802 0.765
NMSE 0.0516 0.0496 0.0454 0.0535
PSNR 27.354 27.597 27.969 27.351

Fig. 4 shows qualitatively the improvements made by the introduction of the
refinement module at full scale. The error is reduced substantially and some
finer details are resolved, though there is still scope for improvement at smaller
scales. We generally see that the model is incapable of generating details that
are completely lost in the undersampling process.

Validation results Our final tests prior to submission are presented in Table 3.
Across all models, the short-axis reconstruction performs better quantitatively
as there is more short-axis data available in training. For both views, the per-
formance reduces with increased undersampling, as more detail is lost.
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Table 3. Performance comparisons on evaluation of CMRxRecon cine cardiac MRI
coil combined validation data for different acceleration rates (AR).

AR Metric
Short-axis Long-axis

U-Net Plain Proposed U-Net Plain ProposedBaseline CRNN Baseline CRNN
SSIM 0.641 0.824 0.854 0.573 0.757 0.792

4× NMSE 0.180 0.0311 0.0277 0.188 0.0485 0.0433
PSNR 23.084 29.842 30.295 22.040 26.958 27.540
SSIM 0.637 0.796 0.829 0.574 0.723 0.763

8× NMSE 0.201 0.0428 0.0377 0.191 0.0687 0.0586
PSNR 22.603 28.364 29.002 22.234 25.588 26.370
SSIM 0.641 0.788 0.822 0.588 0.717 0.753

10× NMSE 0.210 0.0464 0.0408 0.198 0.0724 0.064
PSNR 22.429 28.030 28.644 22.065 25.343 25.965

Fig. 4. Reconstruction (top) and associated error maps (middle) for the U-Net baseline
and CRNN models. Finer details (bottom) are not resolved by the U-Net, which are
partially captured by the plain CRNN model. The refinement module subsequently
deblurs the image and provides better resolution at boundaries. (a) 10 × undersampled
SAX input (b, c) fully sampled ground truth (d, e, f) U-Net (g, h, i) 6 cascades with
combined refinement (j, k, l) 7 cascades, no refinement.
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5 Discussion

On model choice Without extensive hyperparameterisation, the CRNN ar-
chitecture demonstrated more promising performance than the CineNet, both
qualitatively and quantitatively as shown in Fig. 2 and 3. In this network, the
temporal average is subtracted from each slice and then the residuals are trans-
formed into x− t and y− t axes being passed through a 2D U-Net structure. The
2D U-Net is computationally lightweight as the CineNet was originally designed
for multi-coil radial acquisition processes, but even with an increased number of
cascades fails to resolve finer details as clearly shown in Fig. 3. The recurrent
connections exploit the temporal dependencies between slices more effectively
than by attempting to capture these relationships through transformation and
sparsification.

However, training of the plain CRNN has still resulted in lower perceptual
quality than presented in the original implementation, which may have been
further improved with more hyperparameterisation tuning. The large image size
of up to 246 × 512 proved challenging, and in our implementation limited us
to 5 cascades of 48 channels for the original 24GB inference limitation for the
CRNN network. In the original work [15], the model consisted of 10 cascades
with 64 feature channels, which operated on smaller data with a smaller GPU.

On the final model The plain CRNN implementation substantially outper-
forms the baseline 2D U-Net, which has over double the number of trainable pa-
rameters, demonstrating the importance of exploiting temporal correlations. The
reconstruction of the plain CRNN is a considerable improvement upon the 10×
undersampled input, however smaller scale details that are resolved are blurry
(e.g. Fig. 4l). The introduction of the low-cost refinement module led to better
results with further denoising as presented in Fig. 4i. This shows promise for
the implementation of lightweight single-image super-resolution models to assist
in improving cardiac cine MRI reconstruction, either combined with the main
reconstruction model or as a post-processing step. Relative to the ground truth,
we still see that finer details are being missed that have been obscured due to the
undersampling process. In [2], numerous MRI reconstruction experiments were
conducted to test current deep learning reconstruction models. They proposed
that “networks must be retrained on any subsampling patterns” for end to end
CNN networks. In our approach, we trained all the acceleration rate together to
get a stable but averaged reconstruction in a single model, subsequently resolv-
ing less finer details. The failure in generating details that have been lost, could
be better tackled by a generative model [9]. As such, performance on patient
volumes where more aliasing artefacts were present was poorer.

Therefore, to improve the proposed model, there is potential that training
exclusively for each view can improve the final details. However, our model per-
forms relatively well on the validation stage leaderboard for high acceleration
factors, where finer details are more difficult to resolve, whilst we generally per-
form worse at lower acceleration factors. This suggests that whilst our model
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failed to generate some finer details, other architectures also struggled once these
details were lost or heavily obscured. There are numerous further modules that
could have been implemented, had more time been available.

On the loss function We found that introduction of the ⊥ loss to the ℓ1 loss
improved both SSIM and PSNR, though at the expense of a slightly reduced ℓ1
value itself. Treating the weightings of the loss functions as learnable parameters
could lead to improved results in all metrics, as anticipated due to the results
presented in [17]. Likewise, the introduction of the high-pass filter loss to focus
the ℓ1 loss on higher-frequency information increases the complexity of optimisa-
tion but was beneficial after the weightings were improved, though not presented
quantitatively here.

6 Conclusions

In this challenge, we deployed a CRNN network combined with a refinement
module to perform MRI reconstruction of cardiac cine data. We train the model
for a range of acceleration factors and views using a high-pass filter to focus our
loss on high-frequency details. From the quantitative analysis of the evaluation
data and from direct viewing of the validation portion of the training data,
the refinement module provides additional image quality with improvements
of around 4% in all metrics relative to the plain CRNN implementation. As
is typically found, some finer details at smaller scales remain unresolved that
may be improved upon with further hyperparameter tuning and new modules.
Nonetheless, the improvement upon the baseline is substantial and our model
shows promise for improving cardiac MRI reconstruction.
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