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ABSTRACT

The lack of annotated medical images limits the performance of deep learning models, which usually
need large-scale labelled datasets. Few-shot learning techniques can reduce data scarcity issues
and enhance medical image analysis, especially with meta-learning. This systematic review gives
a comprehensive overview of few-shot learning in medical imaging. We searched the literature
systematically and selected 80 relevant articles published from 2018 to 2023. We clustered the
articles based on medical outcomes, such as tumour segmentation, disease classification, and image
registration; anatomical structure investigated (i.e. heart, lung, etc.); and the meta-learning method
used. For each cluster, we examined the papers’ distributions and the results provided by the state-of-
the-art. In addition, we identified a generic pipeline shared among all the studies. The review shows
that few-shot learning can overcome data scarcity in most outcomes and that meta-learning is a popular
choice to perform few-shot learning because it can adapt to new tasks with few labelled samples. In
addition, following meta-learning, supervised learning and semi-supervised learning stand out as the
predominant techniques employed to tackle few-shot learning challenges in medical imaging and also
best performing. Lastly, we observed that the primary application areas predominantly encompass
cardiac, pulmonary, and abdominal domains. This systematic review aims to inspire further research
to improve medical image analysis and patient care.

Keywords Few-shot learning ·Medical imaging · Systematic review ·

1 Introduction

1.1 Rationale

The demand for deep learning (DL) models that can generalize well and achieve high performance with limited data is
constantly increasing. Few-Shot Learning (FSL) plays a crucial role in addressing this challenge by enabling models
to learn from only a few examples, mimicking the way humans naturally learn. In contrast to the typical practice in
DL, which involves pre-training models on large datasets and fine-tuning them on specific tasks, FSL allows models to
learn effectively with minimal labelled examples. Among the most prominent models that have successfully addressed
this limitation is GPT-3 [1]. Unlike traditional models, GPT-3 does not require fine-tuning on specific tasks. Instead,
it leverages FSL during inference by being exposed, for each task, to a few demonstrations for conditioning without
updating its parameters [1]. This approach allows GPT-3 to perform various tasks with just a few examples, showcasing
the power of FSL in natural language processing.

FSL finds one of its most crucial applications in medical image analysis for several compelling reasons. Firstly, medical
datasets are often limited in size due to privacy concerns, high data acquisition costs, and the laborious process of
expert annotation. FSL enables models to achieve robust generalization with minimal labelled examples, making it
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possible to develop effective medical imaging solutions even with scarce data. Secondly, FSL alleviates the burden of
manual annotation by requiring only a few annotated examples for each new task or medical condition. This capability
streamlines the annotation process and supports clinicians in their time-consuming tasks. Moreover, FSL proves
particularly valuable for handling rare medical conditions where acquiring sufficient data for traditional DL approaches
may be impractical. Leveraging knowledge from more prevalent diseases, FSL empowers models to adapt to new and
rare cases with limited examples. Furthermore, the medical field constantly encounters new diseases, conditions, and
imaging modalities. FSL enables medical imaging models to swiftly adapt and learn from a few examples of these
novel tasks, facilitating their seamless integration into clinical practice. Finally, FSL holds potential in personalized
medicine, where models must rapidly adapt to analyze images from individual patients. With just a few examples from
each patient, FSL allows the model to tailor its analysis based on specific patient characteristics, enhancing the precision
of medical diagnoses and treatments.

While existing reviews have primarily focused on FSL in computer vision as a whole [2, 3, 4], the ones specific to FSL
in medical imaging have often focused on particular aspects such as Neural Architecture Search [5] or have examined
only a subset of published studies [6]. In contrast, we believe that a comprehensive review in the field of FSL for
medical imaging can provide a global understanding of the current state of the art (SOTA). Specifically, this review will
discuss how FSL declines in segmentation, classification, and registration tasks when used in medical image analysis.
These three applications within the FSL are all generally characterized by using a limited number of annotations in the
training phase, whether labels in the case of classification or annotations on image data in the case of segmentation and
registration. To address this challenge, some works, for example, cope with the lack of annotated data by exploiting
a large amount of unannotated data in the pre-training phase [7, 8, 9]. Others, instead, generate data artificially [10].
However, one thing that most work share consists of implementing meta-learning techniques. Indeed, meta-learning
presents one promising direction for FSL by extracting and propagating transferable knowledge from a set of tasks to
avoid overfitting [2]. Therefore, we will analyze the methods used in the FSL for medical imaging literature by paying
particular attention to whether meta-learning methods were applied. Researchers can use this as a guide in developing
new techniques and exploring uncharted territory. In conclusion, we will offer the reader an overview of the most
frequently employed approaches, aside from meta-learning, for tackling FSL in the medical imaging domain, and we
will also propose a comprehensive pipeline that encompasses all the studies we have reviewed.

1.2 Objectives

This systematic review aims to provide a comprehensive overview of the SOTA in FSL techniques applied to medical
imaging and to offer readers insight into the most valuable works in this field. Alongside the theoretical background,
we aim to collect and highlight papers that, in the authors’ opinion, make substantial and genuine contributions to
this domain. Specifically, we focus on the primary applications of DL in medical imaging, namely segmentation,
classification, and registration. The objective is to present innovative techniques that have demonstrated tangible results,
catalyzing advancements for each outcome and, specifically, in each medical application. A particular emphasis is
placed on meta-learning, as it is a common approach used to tackle FSL problems. Below, we provide a detailed
breakdown of the specific objectives of this study:

• Present a distribution of studies by outcome. The aim is to highlight the distribution of studies across
the three outcomes: segmentation, classification and registration. This analysis will provide insight into the
emphasis placed on each task in the field of FSL for medical imaging.

• Present a distribution of studies and their results based on the anatomical structures investigated. For
each outcome, we analyze the most commonly addressed tasks w.r.t. the anatomical structures investigated
and examine the average performance achieved by the SOTA methods.

• Offer an analysis of the distribution of studies and their results w.r.t. the meta-learning methods
employed. We provide a distribution analysis of the meta-learning methods used for each outcome. This
analysis will reveal which meta-learning techniques are predominantly employed and highlight cases where
meta-learning methods are not utilized. Additionally, for each meta-learning set of techniques, we present the
average performance achieved by SOTA.

• Provide distributions for training data, imaging modalities, and evaluations of robustness. Further to the
above analyses, we provide data usage information for each study, examine the most commonly used imaging
modalities and explore the model robustness assessment methods employed by the reviewed studies.

• Identify a standard pipeline among the studies. In conclusion, we identify a generic pipeline shared among
all the studies we reviewed. This pipeline illustrates the most frequently used methodologies across all studies
that aim to conduct FSL. For each study, we explicitly indicate which elements of the pipeline are adopted and
offer an indication of the prevalence of various techniques across all the reviewed studies.
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By accomplishing these objectives, our systematic review aims to offer a comprehensive and up-to-date understanding
of the current landscape of FSL in medical imaging analysis. This review will serve as a valuable resource, providing
researchers and practitioners with an overview of the SOTA techniques and approaches in FSL applied to medical
imaging. By synthesizing the existing literature and highlighting key findings, the review will facilitate progress in the
field by identifying gaps, challenges, and opportunities for future research. Furthermore, our work will aid in identifying
the best practices and effective methodologies in FSL for medical imaging tasks, enabling researchers and practitioners
to make informed decisions when designing and implementing FSL-based solutions in their work.

In the following, we explain our manuscript’s organization:

• We begin with a theoretical introduction to the concepts of FSL and meta-learning, followed by a discussion of
the key SOTA works in the field of meta-learning for FSL.

• Next, we outline the methods employed to perform the literature search, including the eligibility criteria and
the databases utilized. We also detail the key aspects examined for each work and the synthesis methods
employed.

• We present the obtained results by providing a comprehensive overview of the main characteristics of each
selected paper and reporting the analyses conducted according to the review objectives. Additionally, we
present the results of the risk of bias assessment and applicability analysis for each study and draw a synthesis
of the employed methods.

• Finally, we discuss the findings regarding each objective of the review and draw conclusions based on the
evidence presented.

2 Theoretical background

FSL has been gaining significant attention, particularly with the rise of meta-learning. Meta-learning, a.k.a. learning-
to-learn, is a powerful paradigm that empowers models to rapidly adapt and generalize to new tasks with minimal
training examples. Unlike the traditional training scheme where models are trained on data, meta-learning operates on a
higher level by training models on tasks or episodes. Thus, this form of training is often referred to as episodic training.
During training, the meta-learning model is exposed to multiple episodes, each comprising a few examples of a specific
task. As a result, the model acquires transferable knowledge and learns to identify common patterns. Consequently,
when faced with a new episode during the testing phase, the model can efficiently leverage its acquired meta-knowledge
to make accurate predictions, even with limited examples. The combination of FSL and meta-learning has shown
remarkable results, especially where data availability is limited or when handling novel tasks. Below, we provide a
more formal formulation of the meta-learning framework, as outlined in [11]. The inner algorithm (f ) solves the task
i by updating the model parameters θ to θ′i: this phase is called base learning. During the meta-learning phase, an
outer algorithm updates the model parameters θ across all the tasks according to an outer objective; the updating entity
is regulated by a meta-step hyperparameter β. As pointed out by Hospedales et al. [11], several classic algorithms,
such as hyperparameter optimization, can match this definition; however, what actually defines a modern meta-learning
algorithm is the definition of an outer objective with the simultaneous optimization of the inner algorithm w.r.t. to this
objective.

A meta-learning training procedure consists of a meta-training and a meta-testing stage. During meta-training, a set
of source tasks is sampled from the distribution of the tasks P (τ). Each source task is composed by a support (S =
{(xj , yj)}kj=1) and a query set (Q = {(x̂j , ŷj)}kj=1), which corresponds to training and validation data in a classical
training paradigm, respectively. The goal is to minimize a loss function L on the query samples conditioned to the
support set. During the meta-testing stage, several target tasks are sampled as well. In this phase, the base learner is
trained on the previously unseen tasks by exploiting the meta-knowledge learned during the meta-training phase. To
speak about FSL, the number of examples for each class within the support set should be typically less than 10. Figure
1 illustrates the meta-learning training process based on the N-way K-shot paradigm in a generic context where the
model’s task involves classifying medical images according to the depicted organ.

Meta-knowledge can manifest in various forms, such as initial parameters, optimization strategy, and learning algorithm
[11]. Accordingly, we adopt the taxonomy proposed by [2] to categorize meta-learning algorithms for FSL into three
categories: Initialization-based methods, Metric learning-based methods, and Hallucination-based methods. Figure
2 illustrates this taxonomy. In the subsequent paragraphs, we provide an overview of the most renowned algorithms
developed within each category.
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Figure 2: Meta-learning methods taxonomy.
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2.1 Initialization-based methods

Initialization-based methods refer to a class of approaches that focus on learning effective initializations for model
parameters, i.e. learning to initialize. The model learns to adjust its parameters or initialization to better adapt to each
task during the meta-training phase. The goal is to find parameter initializations that can be readily fine-tuned with
only a few examples from a new episode, facilitating rapid generalization. The following are some of the most relevant
SOTA algorithms that belong to the category of initialization-based methods in meta-learning.

2.1.1 Model-Agnostic Meta-Learning

In their paper, Finn et al. [12] present Model-Agnostic Meta-Learning (MAML), a meta-learning framework applicable
to any model trained with gradient descent. The objective of MAML is to enable the model fθ to adapt quickly to new
tasks τi by finding the model parameters most sensitive to changes in the episode. In particular, the model’s parameters
are updated to θ

′

i for a new task τi as follows:

θ
′

i = θ − α∇θLτi(fθ) (1)
where α is the step size of the gradient descent and L the loss function. The overall meta-objective is to minimize the
loss across all tasks P (τ):

min
θ

∑
τi∼P (τi)

Lτi(fθ
′

i) (2)

The model parameters are updated through stochastic gradient descent (SGD) as follows:

θ ← θ − β∇θ

∑
τi∼P (τi)

Lτi(fθ
′

i) (3)

Since computing gradients for both task and meta objectives can be computationally expensive, the authors also explored
a first-order approximation (FOMAML) that omits the second derivatives. Surprisingly, their results showed that
FOMAML performed almost as well as the original MAML. A possible explanation for this observation is that certain
ReLU neural networks are nearly linear locally, causing the second derivatives to be close to zero in practice.

2.1.2 Reptile

In their work Nichol, Achiam and Schulman [13] propose a variant of FOMAML called Reptile. Similar to MAML and
FOMAML, Reptile updates the global parameters to create task-specific parameters. However, instead of following
Equation 3, Reptile uses the following update rule for N tasks:

θ ← θ + β
1

N

N∑
i=1

(θ
′

i − θ) (4)

Here, the difference (θ
′

i − θ), instead of being updated towards θ, is treated as a gradient and can be utilized with an
adaptive algorithm like Adam for the final update. This update rule is computationally more efficient compared to the
complex second-order differentiation used in MAML. This efficiency makes Reptile easier to implement and can lead
to faster training times.

2.1.3 Optimization as Long Short-Term Memory network cell update

In their work, Ravi and Larochelle [14] propose a meta-learning approach based on Long Short-Term Memory (LSTM)
networks, aiming to learn an optimization algorithm for training another model in an FSL manner. The main idea stems
from the observation that the parameter updating law in a generic gradient descent network is similar to the update
equation of the cell state in an LSTM [15]:

ct = ft ⊙ ct−1 + it ⊙ c̃t (5)

where ft = 1, ct−1 = fθ, it = α, and c̃t = −∇θL. Exploiting this relationship, the learning rate can be formulated as
a function of the current parameter value θ, the current gradient ∇θL, the current loss L, and the previous learning rate
αt−1. By doing so, the meta-learner can effectively control the learning rate value, enabling the model to learn quickly.
During training, while iterating on the episode’s training set, the LSTM meta-learner receives the values (∇θLτi,Lτi)
from the model for each task τi. Subsequently, it generates the updated parameters θ

′

i as its output. This process is
repeated for a predefined number of steps, and at the end of these steps, the model’s parameters are evaluated on the test
set to compute the loss, which is then used for training the meta-learner.

5
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2.1.4 Optimization with Markov decision process and Reinforcement Learning

In their paper, Li and Malik [16] propose a novel approach to learning an optimization algorithm using guided policy
search through reinforcement learning in the form of a Markov decision process (MDP) [17]. The goal is to learn
an optimization algorithm, represented by a policy π, that can efficiently update the current location in an iterative
optimization process. The optimization algorithm under consideration performs updates to the current location using
a step vector computed by a generic function π of the objective function, the current location, and past locations.
Each value of π corresponds to a different optimization algorithm, so by learning π, one can effectively learn multiple
optimization algorithms. However, learning a generic function π is challenging, so the authors restrict the dependence
of π to the objective values and gradients evaluated at the present and past locations. Consequently, π can be modelled
as a function that takes the objective values and gradients along the optimizer’s trajectory and outputs the next step
vector for the optimization.

The authors observe that executing an optimization algorithm can be seen as executing a policy in an MDP, where
the current location serves as the state, the step vector as the action, and the transition probability is similar to the
location update formula (x(i) ← x(i−1) +∆x). The implemented policy corresponds to the choice of π used by the
optimization algorithm. By searching over policies, they effectively explore a range of possible first-order optimization
algorithms. To learn the policy π, they use reinforcement learning, with the speed of convergence serving as the cost
function (policies that lead to slow convergence are penalized). Since π could be stochastic in general, the authors use a
neural network to parameterize the mean of π. The current state in the MDP corresponds to the parameters of the neural
network, and the system updates these parameters (takes an action from the policy) and receives a reward based on how
the loss function changes.

2.1.5 Memory-augmented Neural Networks

In their paper, Santoro et al. [18] propose a solution to the FSL task using a differentiable version of Memory-augmented
Neural Networks (MANNs) known as Neural Turing Machines (NTMs). An NTM consists of a controller, which can
be a feed-forward network or a Long Short-Term Memory (LSTM) network, that interacts with an external memory
module through reading and writing heads. The NTM’s memory reading and writing operations are fast, making it
suitable for meta-learning and few-shot predictions. It can store information for both short-term and long-term durations,
making it capable of handling tasks with limited data. During training, the model is fed with an input while its label is
provided a one-time step later. Specifically, at time step t, the model receives the input xt and the label yt−1, the label
at the previous time step. This approach prevents the model from simply learning to map the label to the output. To
further ensure this, inputs and their corresponding labels are shuffled in each episode so that the model cannot learn the
input sequence directly. The external memory is utilized to store the input-label pairs discovered by the model during
the training process. When a previously encountered input shows up again, the corresponding label is retrieved from the
external memory, effectively making it a prediction for the current input. This retrieval process is performed using a key
kt associated with the input xt, produced by the controller and stored in a memory matrix Mt. The retrieval is done
by computing the cosine similarity between the key kt and the contents of the memory matrix Mt. Once the label is
retrieved, the error is backpropagated, and the model’s weights are updated to improve the input-label binding strategy.

2.2 Metric learning-based methods

The metric-learning-based category comprises all the algorithms that enable the model to learn to compare. The main
idea is to train the model to understand the similarity between images, allowing it to classify a new instance based on its
distance w.r.t the seen categories. Below, we report some of the most relevant SOTA metric-learning-based algorithms.

2.2.1 Siamese Neural Networks

Bromley et al. [19] first introduced Siamese Neural Networks for signature verification. In 2015, they were newly
proposed by Koch, Zemel and Salakhutdinov [20], where they exploited Convolutional Neural Networks (CNNs) to
perform one-shot image classification. A Siamese Network consists of two identical networks accepting different
inputs and having bound weights to ensure that similar images are mapped close in the feature space. As the network
undergoes training, it learns to differentiate between pairs of images that belong to the same class and those that belong
to different classes. In the inference phase, a test image is compared with one image per novel class and a similarity
score is computed. The network then assigns the highest probability to the pair with the highest score. Because the
model is trained on an extensive set of training classes, it becomes proficient at general data discrimination during the
training process.

6
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2.2.2 Triplet Networks

Triplet Networks, introduced by Hoffer et al. [21], were inspired by Siamese Networks and share the same architectural
criterion. Here, the model is composed of three identical networks, having shared parameters, which are trained by
triplets composed of anchor, positive and negative samples (positive examples belong to the same class as the anchor,
while negative belongs to a different class). The network outputs the L2 distances between the anchor and the positive
and negative examples. The objective is to classify which between the positive and negative examples belongs to the
same class as the anchor. During inference time, the model is fed with two inputs and assesses whether they belong to
the same class by applying a threshold to the distance in the embedding space.

2.2.3 Matching Networks

Matching Networks proposed by Vinyals et al. [22], differently from Siamese and Triple Networks, can work in a
multi-class way instead of in a pair-wise one. Matching Networks aim to map a support set to a classifier, which, given
a query example, can produce a probability distribution of the output according to the following equation:

P (ŷj |x̂j) =

k∑
j=1

a(x̂j , xj)yj (6)

where a acts as an attention mechanism. In the simplest implementation, a consists of computing a softmax over the
cosine distance. At each iteration, a training episode is constructed, composed of a support and a query set. Based on
the support set, the network provides the query label and the error is minimized.

2.2.4 Prototypical Networks

Prototypical Network, proposed by Snell, Swersky, and Zemel [23], compute a representation or prototype of each class
using an embedding function with trainable parameters. Given a class c, the prototypes are computed by averaging the
embeddings of the support samples belonging to each class:

pc =
1

|Sc|
∑

(xj ,yj)∈Sc

fθ(xj) (7)

Given a generic distance function d, the prototypical network provides an output distribution based on the distance
between the query embeddings and the prototypes of each class:

P (ŷj = c|x̂j) =
exp(−d(fθ(x̂j), pc))∑
c′ exp(−d(fθ(x̂j), pc′))

(8)

As for Matching Networks, training episodes are built by sampling a set of classes from the training set and choosing
two groups of examples for each class as the support and query set, respectively. While in the original paper on Matching
Networks, cosine distance was used as a distance function, here, the authors employ the negative squared Euclidean
distance (greater distances provide smaller values). As pointed out by the authors, while prototypical networks differ
from matching networks in a few-shot scenario, One-Shot Learning (OSL) makes them equivalent.

It is also possible to use this architecture for Zero-Shot Learning (ZSL). Here, instead of having training points, we
have a class meta-data vector for each class, which can be already known or learned, for example, from raw text ([24]).
Here, the prototype becomes an embedding of the meta-data vector.

2.2.5 Relation Networks

Relation Networks were introduced by Santoro et al. in their paper [25], and they were initially employed in the FSL
and ZSL domains in [26]. In contrast to Matching and Prototypical Networks, which use predefined distance functions,
a relation network is trained end-to-end, including the metric to compare support and query embeddings. This part
of the network is called relation module. In a one-shot setting, embeddings from support and query samples are first
produced and concatenated in depth through an operator Z(·, ·). Concatenated embeddings are provided to the relation
module gϕ, which outputs a scalar representing the similarity between the support and query embeddings:

r = gϕ(Z(fθ(xj), fθ(x̂j))) (9)

7
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For a generic FSL, the class feature map is calculated by summing all embedding module outputs from each sample
in the training set. The class-level feature map is then combined with the query image feature map as in the one-shot
scenario.

Relation Networks can be employed in a ZSL as well. In this case, a semantic class embedding vector is provided for
each class. Since support and query vectors belong to different modalities (attributes and images, respectively), two
embedding modules are employed. The relation module instead works as before.

2.3 Hallucination-based methods

The hallucination-based methods directly address the scarcity of data by learning to augment. These methods focus on
generating additional data to overcome the limitations of the available dataset. In the following, we describe in detail
the most prominent hallucination-based methods.

2.3.1 Hallucinating with Intra-class Analogies

Harihan and Girshick [27] propose to exploit intra-class analogies to augment the dataset when few examples are
available. Their framework employs a learner, two training and a testing phase. In the first training phase, known as
representation learning phase, the learner is fed with several base classes (Cbase), for which a lot of examples are
available for each class. The learner uses these data to set the parameters of its feature extractor. During the second
phase (low-shot phase), the learner needs to distinguish a set of classes, both base and novel ones. For the novel classes,
the learner has access only to a few examples, while for the base classes, it has access to the same dataset used for
learning the feature extractor. During the test phase, the model predicts labels from both classes. For the categories with
few examples, the idea is to hallucinate additional data using the many examples seen for the base classes to improve
the model’s performance. The goal is to learn a transformation that maps two images belonging to the same base class
(e.g., bird on grass and bird on the sky) and apply this transformation to a novel class image. To achieve this, a function
G is trained that takes the concatenated feature vectors of three examples and outputs a "hallucinated" feature vector.
As G, they exploited an MLP with three fully connected layers.

2.3.2 Classificator and Hallucinator End-to-End Model

Wang et al. [28] further deepened the previously described method by combining a generator of "hallucinated" examples,
with a meta-learning framework, by optimizing the two models jointly. The "hallucinator" G takes as input an example
x, a noise vector z and produces a hallucinated example as the output according to the hallucinator parameters θG.
During meta-testing, several hallucinated examples are computer by sampling from the initial training set Strain,
producing a new training set SG

train. The final training set Saug
train is obtained by combining the two datasets. This

dataset is then used to train the classification algorithm. During the meta-training phase, the hallucinator is trained
jointly with the classification algorithm, exploiting a meta-learning paradigm. From the set of all classes, m classes are
sampled, specifically n examples for one. The generator G is exploited to produce additional n augmented examples
to add to the training set. This new dataset is employed to train the classification algorithm. This training process is
agnostic w.r.t. specific meta-learning algorithm used.

After categorizing and describing the main meta-learning methods for FSL in the literature, the following chapter
outlines the methods used for searching, selecting, and analyzing SOTA works in the field of FSL for medical image
analysis.

3 Methods

3.1 Study Design

We conducted a systematic review in accordance with the “Preferred reporting items for systematic reviews and
meta-analyses” (PRISMA) 2020 checklist [29]. The review has five main objectives. Firstly, it aims to analyze
the distribution of studies among the three outcomes (segmentation, classification, and registration) in the field of
FSL for medical imaging. Secondly, for each outcome, it examines the most commonly addressed tasks concerning
the anatomical structures studied. Thirdly, it provides a distribution of the meta-learning methods used for both
classification, segmentation and registration tasks by shedding light on prevalent meta-learning techniques and cases
where meta-learning methods are not utilized. In addition, the review offers additional insights into the data usage,
including the most commonly used imaging modalities, and explores the techniques of model robustness assessment
employed in the reviewed studies. Finally, it offers an overview of the most commonly used methods among the selected
studies while also outlining a general pipeline for conducting FSL in the field of medical imaging.

8
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3.2 Eligilibity criteria

We established the inclusion criteria for paper selection in this systematic review based on three primary aspects:

• Implementation of FSL techniques: We selected papers that claimed to implement FSL in their work.
• Application in medical imaging domain: We considered papers that performed at least one experiment

applied to the medical imaging domain.
• Low data usage in training: We included only papers that demonstrated using a small amount of data during

training. In particular, we considered all the studies that employed a maximum of 20 training examples per
class.

In addition, during the selection process, we excluded abstracts, non-peer-reviewed papers, papers written in languages
other than English, and papers deemed to have significant theoretical errors. Furthermore, we did not include papers
dealing with few-shot domain adaptation methods (FSDA), as [30, 31, 32]. FSDA, as highlighted by Li et al. [32], FSL
focuses on adapting pre-trained models to perform well on novel tasks with limited training examples, whereas FSDA
involves adapting models across different domains. Therefore, we considered FSDA papers outside the scope of this
systematic review. By applying these inclusion and exclusion criteria, we aimed to ensure the selection of relevant
and high-quality papers that specifically addressed the application of FSL techniques in medical imaging with limited
training data.

3.3 Information sources

We searched for papers using the following databases:

• Web of science
• Scopus
• IEEE Xplore
• ACM Digital Library

To ensure comprehensive coverage and include recent studies in our analysis, we performed a two-step search, the first
on September 7, 2022, and the second on January 25, 2023. In cases where we didn’t have full access to the papers, we
took advantage of the Network Inter-Library Document Exchange (NILDE) platform, a web-based Document Delivery
service through which we requested access to the missing PDF files, enabling us to obtain the complete papers for
inclusion in our review.

3.4 Research strategies

For each of the mentioned databases, we listed the queries used in the study search in Table 1.

3.5 Selection process

During the review process, a single reviewer, examinated each record, including titles, abstracts, and any accompanying
reports obtained during the research. No machine learning algorithms were employed to aid in eliminating records or
to streamline the screening process. Additionally, no crowdsourcing or pre-screened datasets were employed for the
records screening.

3.6 Data collection process

For data collection, a single reviewer was responsible for collecting the relevant information from each report. No
automation processes was employed for the data collection process. During the review, all articles were examinated
in their original language. The selection of articles was based on the predefined eligibility criteria described above.
No software or automated tools were used to extract data from the figures or graphical representations in the articles.
Finally, the data collection process entailed a manual analysis of the articles to extract the pertinent information for the
review.

3.7 Data item

In our study, we examined three primary outcomes: segmentation, classification, and registration. All of the reviewed
studies were compatible with these three outcome domains. We did not alter or introduce any changes to the outcome
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Database Query
Web of Science (TS=("few-shot") OR TS=("low-shot") OR TS=("one-shot") OR TS=("zero-shot")) AND

(TS=("medical imag*")) AND (TS=("classif*") OR TS=("segment*") OR TS=("regist*"))
Scopus TITLE-ABS-KEY ( few-shot ) OR TITLE-ABS-KEY ( low-shot ) OR TITLE-ABS-KEY (

one-shot ) OR TITLE-ABS-KEY ( zero-shot ) AND TITLE-ABS-KEY ( medical imaging )
OR TITLE-ABS-KEY ( medical image ) OR TITLE-ABS-KEY ( medical images ) AND
TITLE-ABS-KEY ( classif* ) OR TITLE-ABS-KEY ( segment* ) OR TITLE-ABS-KEY (
regist* )

IEEE Xplore ((("Abstract":"few-shot" OR "Abstract":"low-shot" OR "Abstract":"one-shot" OR
"Abstract":"zero-shot") AND "Abstract":"medical imag*" AND ("Abstract":classification
OR "Abstract":segmentation OR "Abstract":registration) OR ("Document Title":"few-
shot" OR "Document Title":"low-shot" OR "Document Title":"one-shot" OR "Doc-
ument Title":"zero-shot") AND "Document Title":"medical imag*" AND ("Docu-
ment Title":classification OR "Document Title":segmentation OR "Document Ti-
tle":registration) OR ("Author Keywords":"few-shot" OR "Author Keywords"":"low-shot"
OR "Author Keywords"":"one-shot" OR "Author Keywords"":"zero-shot") AND "Au-
thor Keywords"":"medical imag*" AND ("Author Keywords"":classif* OR "Author Key-
words"":segment* OR "Author Keywords"":regist*)) )

ACM Digital Library "(Abstract:(""few-shot"" OR ""low-shot"" OR ""one-shot"" OR ""zero-shot"") OR
Keyword:(""few-shot"" OR ""low-shot"" OR ""one-shot"" OR ""zero-shot"") OR
Title:(""few-shot"" OR ""low-shot"" OR ""one-shot"" OR ""zero-shot"")) AND (Ab-
stract:(""medical imaging"" OR ""medical images"" OR ""medical image"") OR Ti-
tle:(""medical imaging"" OR ""medical images"" OR ""medical image"") OR Key-
word:(""medical imaging"" OR ""medical images"" OR ""medical image"")) AND (Ti-
tle:(classif* OR segment* OR regist*) OR Abstract:(classif* OR segment* OR regist*) OR
Keyword:(classif* OR segment* OR regist*))"

Table 1: Research queries employed for each database.

domains or their significance in the review. Likewise, there were no modifications made to the selection processes
within these eligible outcome domains. Beyond the three outcomes previously mentioned, we also explored data
pertaining to the utilization of FSL, OSL, and ZSL techniques, as well as their applications within the field of medical
imaging.

3.8 Assessment of bias in studies

To evaluate the potential risk of bias (ROB) or concerns regarding applicability in each study, we utilized the PROBAST
tool [33], designed for assessing the quality of diagnostic accuracy studies. For each outcome, we created a table
denoting studies with low risk or concerns using a green checkmark symbol ✓and those with high risk or concerns
using a red cross symbol ✗.

3.9 Effect measures

In the segmentation studies included in our review, we evaluated the performance using two commonly used metrics:
the Dice score and the Intersection over Union (IoU). These metrics provide quantitative measures of the overlap
between the predicted segmentation and the ground truth. For the classification outcome, we evaluated its effectiveness
through various measures. One of the metrics employed was Accuracy, which determines the proportion of correctly
classified samples. Additionally, we considered the F1-score and Recall. Moreover, we investigated the Area Under
the Receiver Operating Characteristic (AUROC) curve as a performance metric, particularly for binary classification
tasks. In the registration domain, we investigated different metrics to evaluate the effectiveness: the Dice score, the
average landmark distance (ALD), and the target registration error (TRE). These metrics were used to quantify the
performance of the models in their respective outcome domains, providing objective measures of effectiveness and
allowing for comparisons between different approaches.

3.10 Synthesis methods

In our systematic review, we structured the results of each study within dedicated tables for each outcome category,
including segmentation, classification, and registration. The tables included the following information: first author,

10
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year of publication, the algorithm or framework used, the number of training data, the best performance achieved by
the model, and whether the study utilized the meta-learning paradigm. To provide a visual summary of the results, we
used forest plots. We generated these plots by grouping the studies based on the anatomical structure investigated and
the meta-learning method employed in each outcome. We created separate forest plots for each performance metric
(accuracy, AUROC, etc.), considering, in each study, the highest performance achieved (across various experiments
and image modalities). In each forest plot, we reported the mean and the 95% confidence interval (CI) across all the
studies within the corresponding group, whether organized by organ or meta-learning algorithm. It is important to note
that we did not conduct a meta-analysis of the collected results. This is because the studies included in our review
encompassed various clinical applications, making direct comparisons between the results inappropriate. Therefore, the
forest plots served as a visual representation of the individual study findings rather than a quantitative synthesis of the
data. In conclusion, we furnished a comprehensive overview by creating a unified pipeline that encompasses all the
papers reviewed within each outcome. For each outcome, we presented a table that delineated the specific elements of
the core pipeline utilized by each study.

4 Results

4.1 Study selection

In Figure 3, we show the PRISMA diagram where we summarize the data selection flow. In total, we retrieved 314
studies and included 80 studies in the final analysis.

4.2 Studies characteristics

In this section, we present the findings resulting from our analysis of the selected research papers. Figure 4 displays the
distribution of studies across the three primary outcomes, while Figure 5 illustrates the proposed unified pipeline for the
various methods employed in performing FSL. Below, we present the results of our analysis grouped by the primary
outcome: segmentation, classification, and registration. It’s worth noting that several studies, namely [34], [35], [36],
[37], and [38], are included multiple times, as they address multiple outcomes simultaneously.

4.2.1 Segmentation

We selected 50 relevant studies, each focusing on medical segmentation as its primary task. All pertinent information
from the selected studies is provided in Table 2. In addition, we present ROB and the applicability analyses of each
study in Table 3.

11
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Figure 3: PRISMA flow diagram.
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Study
ID

Pub. ref. Algorithm/Pipeline K-shot Best performance Meta-learning
type

1
Blendowski,
Nickisch, and
Heinrich [39]

Siamese Network
+ SSL

1-shot
9-shot

Dice:
0.853 (Liver)

0.657 (Spleen)
0.663 (Kidney)
0.656 (Psoas)

None

2 Chan et al. [40]

Res2-UNeXT +
Data augmentation

with Daemons
registration algorithm

8-shot IoU:
0.943 (Cells) None

3 Chen et al. [10]

Adversarial Data
Augmentation

Framework
(Advchain)

1-shot
3-shot
11-shot

Dice:
0.844 (LV)
0.647 (RV)

0.812 (MYO)
0.572 (Prostate PZ)
0.845 (Prostate CZ)

None

4 Cui et al. [41]
MRE-Net

(Distance metric-learning +
U-net)

1-shot
7-shot

Dice:
0.781 (Spleen)
0.774 (Kidney)

0.522 (Gallbladder)
0.568 (Esophagus)
0.597 (Stomach)
0.613 (Pancreas)

0.820 (Brain, MAS)

Metric learning

5 Ding, Wangbin
et al. [42]

Registration model +
Similarity model +
Patch label fusion

20-shot Dice:
0.817 (MYO) Metric learning

6 Ding, Yu and Yang
[43]

Registration network +
Generative network +
Segmentation network

1-shot Dice:
0.851 (Brain) Hallucination

7 Farshad et al. [44] MetaMedSeg (Reptile-based
with task weighting) 15-shot

IoU:
0.683 (Heart)

0.583 (Spleen)
0.227 (Prostate PZ)
0.483 (Prostate TZ)

Initialization

8 Feng et al. [45]

Medical Prior-based
FSL Network +

Interactive Learning-based
Test Time Optimization

Algorithm

10-shot

Dice:
0.569 (Breast)
0.584 (Kidney)
0.751 (Liver)

0.675 (Stomach)

Metric learning

9 Gama, Oliveira and
dos Santos [46]

Weakly-supervised
Segmentation Learning

1-shot
5-shot
10-shot
20-shot

IoU:
0.870 (Lungs)
0.790 (Heart)

0.800 (Mandible)
0.870 (Breast)

Initialization

10 Gama et al. [47] ProtoSeg

1-shot
5-shot
10-shot
20-shot

IoU:
0.800 (Heart)

0.920% (Lungs)
0.720% (Breast)
0.400 (Mandible)

Metric learning

11 Guo, Odu and
Pedrosa [48]

Cascaded U-net +
3D augmentation

From
1-shot

to 6-shot

Dice:
0.910 (Kidney) None

Table 2: FSL studies for medical image segmentation.

14



A Systematic Review of Few-Shot Learning in Medical Imaging PREPRINT

Study
ID

Pub. ref. Algorithm/Pipeline K-shot Best performance Meta-learning
type

12 Hansen et al. [49] Anomaly detection-inspired
model + SSL

1-shot
2-shot
3-shot

Dice:
0.875 (LV-BP)

0.773 (RV)
0.624 (MYO)

0.833 (Kidney)
0.759 (Spleen)
0.808 (Liver)

Metric learning

13 He et al. [34]

Deep Complementary
Joint Model

(Segmentation model +
Pixel-wise discriminator +

Registration model)

4-shot

Dice:
0.970 (AA)
0.920 (LA)
0.950 (LV)

0.870 (MYO)
0.800 (PA)
0.800 (RA)
0.810 (RV)

None

14 He et al. [35]
Knowledge Consistency

Constraint strategy +
Space-style Sampling Program +

Mix Misalignment Regularization)

1-shot
5-shot

Dice:
0.911 (Heart, MAS)
0.872 (Brain, MAS)

Hallucination

15 Jenssen et al. [50]
Self-guided

Anomaly detection-inspired
model

1-shot

Dice:
0.840 (LV)

0.585 (MYO)
0.697 (RV)

Metric learning

16 Joyce and Kozerke
[51]

Anatomical model
+ SSL

1-shot
3-shot
10-shot

Dice:
0.630 (Heart) None

17 Khadka et al. [52] Implicit MAML +
Attention U-Net

5-shot
10-shot
20-shot

Dice:
0.833 (Skin, nevus) Initialization

18 Khaled, Han and
Ghaleb [53]

Multi-stage GAN 5-shot
10-shot

Dice:
0.940 (Brain, MAS) None

19 Khandelwal and
Yushkevich [54]

Gradient-based
meta-learning

domain generalization +
3D U-Net +
Fine-tuning

2-shot
4-shot
6-shot

Dice:
0.823 (Spine, MAS) Initialization

20 Kim et al. [55]

VGG16 +
Bidirectional gated

recurrent unit +
U-Net + Fine-tuning

5-shot

Dice:
0.905 (Spleen)
0.900 (Kidney)
0.887 (Liver)

0.771 (Bladder)

Metric learning

21 Li et al. [56]
3D U-Net) +

Prototypical learning +
Image alignment module

1-shot Dice:
0.417 (Prostate, MAS) Metric learning

22 Lu et al. [57]

Contour Transformer Network
(ResNet-50 +

Graph convolutional
network blocks)

1-shot

IoU:
0.973 (Knee)
0.948 (Lung)

0.970 (Phalanx)
0.973 (Hip)

None

Table 2: (continued).
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Study
ID

Pub. ref. Algorithm/Pipeline K-shot Best performance Meta-learning
type

23 Lu and Ye [58]
TractSeg +

Knowledge transfer
with warmup

1-shot
5-shot

Dice:
0.812

(Brain, WM)
None

24 Ma et al. [59]

Segmentation network +
Zero-shot segmentation

network +
Spatial Context

Attention module

0-shot
Dice:
0.882

(Brain, tumour)
None

25 Niu et al. [60]

Conditioner + Segmenter +
Symmetrical Supervision

Mechanism +
Transformer-based Global
Feature Alignment module

1-shot

Dice:
0.870 (LV-BP)
0.815 (Kidney)
0.738 (Spleen)
0.729 (Liver)

Metric learning

26 Ouyang et al. [7]
Self-Supervised Adaptive

Local Prototype
Pooling Network

1-shot
5-shot

Dice:
0.862 (Kidney)
0.757 (Spleen)
0.821 (Liver)
0.870 (LV)

0.721 (MYO)
0.860 (RV)

Metric learning

27 Pham et al. [61] Few-Sample-Fitting 1-shot to
20-shot

Dice:
0.990 (Femur) None

28 Pham, Dovletov
and Pauli [62]

3D U-Net +
Imitating encoder +

Prior encoder +
Joint decoder

1-shot Dice:
0.776 (Liver) None

29 Roy et al. [63]

Conditioner arm +
Segmenter arm +

Channel Squeeze &
Spatial Excitation

blocks

1-shot

Dice:
0.700 (Liver)

0.607 (Spleen)
0.464 (Kidney)
0.499 (Psoas)

None

30 Roychowdhury et
al. [36]

Echo state network +
augmented U-Net 5-shot Dice:

0.640 (Eye, IC) None

31 Rutter, Lagergren
and Flores [64]

CNN for
Boundary Optimization

1-shot
3-shot
5-shot

Dice:
0.931 (Cells) None

32 Shen et al. [65]

Large Deformation
Diffeomorphic Metric

Mapping model +
Sample transformations +

Interpolation

1-shot Dice:
0.883 (Knee) None

33 Shen et al. [66]

VGG-16 +
Poisson learning +
Spatial Consistency

Calibration

1-shot

Dice:
0.619 (Skin, MAD)

0.610 (Liver)
0.536 (Kidney)
0.529 (Spleen)

None

34 Shi et al. [37]

Joint Registration
and Segmentation

Self-training
Framework (JRSS)

5-shot

Dice:
0.795

(Brain, MAS)
0.753

(Abdomen, MAS)

None

Table 2: (continued).
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Study
ID

Pub. ref. Algorithm/Pipeline K-shot Best performance Meta-learning
type

35 Sun et al. [67]

2-branch CNN +
Spatial Squeeze
Excite module +

Global Correlation module +
Discriminative Embedding

module

1-shot

Dice:
0.495 (Liver)

0.606 (Spleen)
0.830 (Kidney)

Metric learning

36 Tang et al. [68]

Recurrent Prototypical
Networks (U-Net +

Contex Relation Encoder +
Prototypical Network)

1-shot

Dice:
0.788 (Spleen)
0.851 (Kidney)
0.819 (Liver)

Metric learning

37 Tomar et al. [69]

Generative Style Transfer
(Appearance model +

Style encoder +
Flow model +

Flow Adversarial
Autoencoder)

1-shot Dice:
0.835 (Brain, MAS) None

38 Wang et al. [70]

Label Transfer
Network

(Atlas-based
segmentation +

Forward-backward
correspondance)

1-shot Dice:
0.823 (Brain, MAS) None

39 Wang et al. [71]

Siamese model and
Individual-Difference-

Aware model (Encoders +
Forward-backward

consistency)

1-shot
5-shot

Dice:
0.862 (Brain, MAS)

0.803 (Spleen)
0.884 (Kidney)
0.916 (Liver)

0.684 (Stomach)
0.511 (Pancreas)

0.485 (Doudenum)
0.519 (Esophagus)

None

40 Wang et al. [8]

V-Net +
Init-crop +

Self-down +
Self-crop

4-shot

Dice:
0.937 (LV)
0.890 (RV)
0.872 (LA)
0.909 (RA)

0.831 (MYO)
0.943 (AO)
0.798 (PA)

None

41 Wang, Zhou and
Zheng [72]

Prototype learning +
Self-reference +

Contrastive learning
1-shot

Dice:
0.756 (Liver)

0.737 (Spleen)
0.842 (Kidney)

Metric learning

42 Wang et al. [73]
Alternating Union Network

(Image Sub-Network +
Label Sub-Network

1-shot

Dice:
0.873 (LV)

0.637 (MYO)
0.720 (RV)

None

43 Wu, Xiao and
Liang [74]

Dual Contrastive Learning +
Anatomical Auxiliary

Supervision +
Constrained Iterative

Prediction module

1-shot

Dice:
0.699 (Liver)

0.838 (Kidney)
0.749 (Spleen)

None

44 Wu et al. [75]
Self-Learning +

One-Shot
Learning

1-shot
Dice:

0.850 (Spleen)
0.930 (Liver)

None

Table 2: (continued).
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Study
ID

Pub. ref. Algorithm/Pipeline K-shot Best performance Meta-learning
type

45 Xu and
Niethammer [38]

DeepAtlas
(Semi-Supervised

Learning +
Segmentation network +

Registration network)

1-shot
5-shot
10-shot

Dice:
0.892 (Knee, MAS)

0.612 (Brain)
None

46 Yu et al. [76]
Location-Sensitive

Local Prototype
Network

1-shot

Dice:
0.793 (Liver)

0.733 (Spleen)
0.765 (Kidney)
0.524 (Psoas)

Metric learning

47 Yuan, Esteva and
Xu [77]

MetaHistoSeg
(U-Net + MAML) 8-shot

IoU:
0.326 (Cells)

0.682 (Cells nuclei)
0.557 (Gland)

0.632 (Colon, tumour)

Initialization

48 Zhao et al. [78]

Spatial and appearance
transform models +

Semi-supervised learning +
Supervised learning

1-shot Dice:
0.815 (Brain, MAS) None

49 Zhao et al. [79] Meta-hallucinator 1-shot
4-shot

Dice:
0.756 (AO)
0.751 (LA)
0.823 (LV)

0.696 (MYO)

Initialization and
Hallucination-

based

50 Zhou et al. [80]

OrganNet
(3 encoders +

Pyramid Reasoning
Modules)

1-shot

Dice:
0.891 (Spleen)
0.860 (Kidney)
0.770 (Aorta)

0.728 (Pancreas)
0.826 (Stomach)

None

Table 2: (continued).
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Risk of Bias Applicability

Study
ID

Pub. ref. Part. Pred Out. Analysis Overall Part. Pred. Out. Overall

1 Blendowski, Nickisch,
and Heinrich [39]

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2 Chan et al. [40] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

3 Chen et al. [10] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

4 Cui et al. [41] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

5 Ding, Wangbin et al. [42] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

6 Ding, Yu and Yang [43] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

7 Farshad et al. [44] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

8 Feng et al. [45] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

9 Gama, Oliveira and dos
Santos [46]

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

10 Gama et al. [47] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

11 Guo, Odu and Pedrosa
[48]

✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

12 Hansen et al. [49] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

13 He et al. [34] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

14 He et al. [35] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

15 Jenssen et al. [50] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

16 Joyce and Kozerke [51] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

17 Khadka et al. [52] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

18 Khaled, Han and Ghaleb
[53]

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 3: ROB of FSL studies for medical image segmentation.
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Risk of Bias Applicability

Study
ID

Pub. ref. Part. Pred Out. Analysis Overall Part. Pred. Out. Overall

19 Khandelwal and
Yushkevich [54]

✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

20 Kim et al. [55] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

21 Li et al. [56] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

22 Lu et al. [57] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

23 Lu and Ye [58] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

24 Ma et al. [59] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

25 Niu et al. [60] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

26 Ouyang et al. [7] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

27 Pham et al. [61] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

28 Pham, Dovletov and Pauli
[62]

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

29 Roy et al. [63] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

30 Roychowdhury et al. [36] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

31 Rutter, Lagergren and
Flores [64]

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

32 Shen et al. [65] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

33 Shen et al. [66] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

34 Shi et al. [37] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

35 Sun et al. [67] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

36 Tang et al. [68] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

37 Tomar et al. [69] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

38 Wang et al. [70] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

39 Wang et al. [71] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

40 Wang et al. [8] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

41 Wang, Zhou and Zheng
[72]

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

42 Wang et al. [73] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

43 Wu, Xiao and Liang [74] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

44 Wu et al. [75] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

45 Xu and Niethammer [38] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

46 Yu et al. [76] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

47 Yuan, Esteva and Xu [77]. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

48 Zhao et al. [78] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

49 Zhao et al. [79] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

50 Zhou et al. [80]. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 3: (continued).
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Here, we present the findings derived from our comprehensive analysis of the segmentation papers.

Medical application. The segmentation papers within the field of FSL address various anatomical structures and
regions, as well as specific lesions such as polyps or tumours. Here’s a breakdown of the papers categorized by the
anatomical structure(s) investigated. Eighteen papers (36%) focus on liver segmentation; 18 studies (36%) concentrate
on kidney segmentation; 17 papers (34%) centre around spleen segmentation; three papers (6%) pertain to psoas
segmentation; four (8%) are related to prostate segmentation; three works (6%) involve bladder segmentation; four
papers (8%) deal with breast segmentation; one paper (2%) addresses colon segmentation; six (12%) are concerned
with stomach segmentation; 12 (24%) are dedicated to brain segmentation; 14 papers (28%) revolve around heart
segmentation; three (6%) involve pancreas segmentation; three (6%) pertain to cell segmentation; two papers (4%) are
related to lung segmentation; one (2%) focuses on eye segmentation; two papers (4%) involve mandible segmentation;
one (2%) addresses duodenum segmentation; two papers (4%) deal with skin segmentation; three papers (6%) are
related to knee segmentatio; one (2%) concerns phalanx segmentation; one (2%) deals with hip segmentation; one paper
(2%) is dedicated to spine segmentation. For a visual representation of the distribution, please refer to Figure 6.

Brain

10%

Heart

34%

Kidney 13%

Liver

13%

Others

18% Spleen

13%

Figure 6: Segmentation studies grouped by the anatomical structure investigated.

Meta-learning methods. Out of the 50 studies we selected in the realm of FSL for medical image segmentation, the
distribution of their meta-learning methods is as follows: six studies (12%) leverage initialization-based methods; 14
studies (28%) utilize metric learning-based techniques; three studies (6%) employ hallucination-based methods; one
study (2%) combines both initialization-based and hallucination-based methods. The remaining 28 studies (56%) do
not incorporate meta-learning techniques. For a visual representation of the distribution, refer to Figure 7.

K-shot. Among the 50 selected papers, here is the distribution of training shot configurations: 15 studies (30%) utilize
k-shot training with k ranging from 2 to 20; 14 studies (28%) perform both OSL and FSL learning; 20 works (40%)
exclusively use 1-shot training; 1 paper (2%) employs 0-shot training.

Image modalities. In terms of the imaging modalities utilized in the selected papers, here is the distribution: 26 (52%)
used CT images; 30 papers (60%) utilized MRI; four (8%) relied on X-ray images; two (4%) involved dermoscopic
images; one paper (2%) made use of endoscopic images; one (2%) used histopathology images; two (4%) employed
microscopic images; one paper (2%) utilized OCT images.

Model evaluation. To examine the behaviour and robustness of the models, the selected studies used different evaluation
techniques as follows: 21 studies (42%) exclusively conducted ablation studies; 11 studies (22%) utilized both ablation
studies and cross-validation; five studies (10%) relied solely on cross-validation; 13 studies (26%) did not employ any
specific model evaluation technique.

Model performance grouped by organ and meta-learning method. In Figure 8 and Figure 9, we present a summary
of the model performance in forest plots, categorized by anatomical structure, w.r.t. Dice score and IoU, respectively.
Conversely, in Figure 10 and Figure 11, we depict the performance in terms of Dice and IoU, respectively, by grouping
the studies according to the employed meta-learning methods.

Overall pipeline. In Table 4, we outline which steps of the main pipeline are adopted by each segmentation study. Here
are the distributions of studies based on their utilization of pre-training, training, and data augmentation techniques:

21



A Systematic Review of Few-Shot Learning in Medical Imaging PREPRINT

No Meta-learning

55%

Metric-learning-based

26%

Initialization-based

13%
Hallucination-based

6%

Figure 7: Segmentation studies grouped by meta-learning method employed.

two out of 50 studies (4%) employed meta-learning for pre-training; two studies (4%) utilized self-supervised learning
and 13 studies (26%) relied on supervised learning. The majority, 33 out of 50 studies (66%), did not employ any
pre-training stage. For their main training stage, 20 studies (40%) utilized meta-learning methods; 12 (24%) employed
semi-supervised approaches; four studies (8%) employed self-supervised methods; 16 studies (32%) used traditional
supervised techniques; one study (2%) employed a zero-shot learning method. Finally, concerning the data augmentation
techniques, 16 studies (32%) exploited classical data augmentation techniques; five studies (10%) utilized generative
methods for data augmentation; six studies (12%) relied on registration-based augmentation. The remaining 24 out of
50 studies (48%) did not employ data augmentation.
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0.0 0.2 0.4 0.6 0.8 1.0
Dice

Stomach          0.70(0.60 to 0.82)

Spleen           0.74(0.56 to 0.90)

Spine (mas)      0.82(0.82 to 0.82)

Skin (nevus)     0.83(0.83 to 0.83)

Skin (mad)       0.62(0.62 to 0.62)

Psoas            0.56(0.50 to 0.65)

Prostate (pz)    0.57(0.57 to 0.57)

Prostate (mas)   0.42(0.42 to 0.42)

Prostate (cz)    0.84(0.84 to 0.84)

Pancreas         0.62(0.52 to 0.72)

Liver            0.78(0.54 to 0.92)

Knee (mas)       0.89(0.88 to 0.89)

Kidney           0.78(0.49 to 0.91)

Heart (rv)       0.77(0.66 to 0.88)

Heart (ra)       0.85(0.80 to 0.91)

Heart (pa)       0.80(0.80 to 0.80)

Heart (myo)      0.71(0.59 to 0.86)

Heart (mas)      0.77(0.64 to 0.90)

Heart (lv)       0.88(0.83 to 0.95)

Heart (la)       0.85(0.76 to 0.92)

Heart (aa)       0.89(0.77 to 0.97)

Gallbladder      0.52(0.52 to 0.52)

Femur            0.99(0.99 to 0.99)

Eye (ic)         0.64(0.64 to 0.64)

Esophagus        0.54(0.52 to 0.57)

Duodenum         0.48(0.48 to 0.48)

Cells            0.93(0.93 to 0.93)

Breast (tumour)  0.57(0.57 to 0.57)

Brain (wm)       0.81(0.81 to 0.81)

Brain (tumour)   0.88(0.88 to 0.88)

Brain (mas)      0.84(0.77 to 0.93)

Brain            0.85(0.85 to 0.85)

Bladder          0.77(0.77 to 0.77)

Aorta            0.77(0.77 to 0.77)

Abdomen (mas)    0.75(0.75 to 0.75)

Mean (95% CI)

Figure 8: Forest plot of segmentation studies performance based on Dice metric. Studies are grouped by the anatomical
structure investigated. AA = Ascending Aorta; IC = Intraretinal Cyst; LA = Left Atrium; LV = Left Ventricle; MAS =
Mean Across Structures; MYO = Myocardium; PA = Pulmonary Artery; PZ = Peripheral Zone; RA = Right Atrium; RV
= Right Ventricle; TZ = Transitional Zone; WM = White Matter.
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0.0 0.2 0.4 0.6 0.8 1.0
IoU

Spleen           0.58(0.58 to 0.58)

Prostate (tz)    0.48(0.48 to 0.48)

Prostate (pz)    0.23(0.23 to 0.23)

Phalanx          0.97(0.97 to 0.97)

Mandible         0.60(0.41 to 0.79)

Lung             0.91(0.87 to 0.95)

Knee (mas)       0.97(0.97 to 0.97)

Hip              0.97(0.97 to 0.97)

Heart            0.76(0.69 to 0.80)

Gland            0.56(0.56 to 0.56)

Colon (tumour)   0.63(0.63 to 0.63)

Cells            0.63(0.34 to 0.93)

Cell nuclei      0.68(0.68 to 0.68)

Breast (tumour)  0.79(0.72 to 0.87)

Mean (95% CI)

Figure 9: Forest plot of segmentation studies performance based on IoU metric. Studies are grouped by the anatomical
structure investigated. IE = Intracranial Ematoma; MAS = Mean Across Structures; PZ = Peripheral Zone; TZ =
Transitional Zone.

0.0 0.2 0.4 0.6 0.8 1.0
Dice

No meta-learning       0.84(0.63 to 0.98)

Hallucination-based    0.84(0.76 to 0.91)

Metric-learning-based  0.79(0.50 to 0.92)

Initialization-based   0.82(0.76 to 0.88)

Mean (95% CI)

Figure 10: Forest plot of segmentation studies performance based on Dice metric. Studies are grouped by the meta-
learning method employed.

0.0 0.2 0.4 0.6 0.8 1.0
IoU

No meta-learning      0.96(0.94 to 0.97)

Initialization-based  0.74(0.68 to 0.86)
Mean (95% CI)

Figure 11: Forest plot of segmentation studies performance based on IoU metric. Studies are grouped by the meta-
learning method employed.
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Study ID Pub. ref. Pre-training Training Data augmentation
1 Blendowski, Nickisch,

and Heinrich [39]
Self-supervised None None

2 Chan et al. [40] None Supervised Registration-based
3 Chen et al. [10] None Supervised Generative
4 Cui et al. [41] None Meta Classical
5 Ding, Wangbin et al. [42] None Meta Classical
6 Ding, Yu and Yang [43] None Semi-supervised

and Meta
Generative

7 Farshad et al. [44] Meta Supervised None
8 Feng et al. [45] None Meta None
9 Gama, Oliveira and dos

Santos [46]
None Meta None

10 Gama et al. [47] None Meta None
11 Guo, Odu and Pedrosa

[48]
None Supervised Classical

12 Hansen et al. [49] Supervised Self-supervised and
Meta

None

13 He et al. [34] None Supervised Registration-based
14 He et al. [35] None Meta Registration-based
15 Jenssen et al. [50] Supervised Self-supervised and

Meta
None

16 Joyce and Kozerke [51] None Self-supervised Classical
17 Khadka et al. [52] Supervised Meta None
18 Khaled, Han and Ghaleb

[53]
None Semi None

19 Khandelwal and
Yushkevich [54]

None Meta Classical

20 Kim et al. [55] Meta Meta Classical
21 Li et al. [56] None Meta Classical
22 Lu et al. [57] Supervised Semi-supervised None
23 Lu and Ye [58] Supervised Supervised None
24 Ma et al. [59] None Zero-shot None
25 Niu et al. [60] None Meta None
26 Ouyang et al. [7] Supervised Self-supervised and

Meta
None

27 Pham et al. [61] None Supervised Classical
28 Pham, Dovletov and Pauli

[62]
None Supervised None

29 Roy et al. [63] None Supervised None
30 Roychowdhury et al. [36] None Supervised Classical
31 Rutter, Lagergren and

Flores [64]
None Semi-supervised Classical

32 Shen et al. [65] None Semi-supervised Registration-based
33 Shen et al. [66] Supervised Semi-supervised None
34 Shi et al. [37] Supervised Semi-supervised Registration-based
35 Sun et al. [67] Supervised Meta None
36 Tang et al. [68] None Meta None
37 Tomar et al. [69] Self-supervised Supervised Generative
38 Wang et al. [70] None Semi-supervised None
39 Wang et al. [71] None Supervised Classical
40 Wang et al. [8] None Semi-supervised Classical
41 Wang, Zhou and Zheng

[72]
Supervised Meta None

42 Wang et al. [73] None Supervised None
43 Wu, Xiao and Liang [74] None Supervised Classical
44 Wu et al. [75] None Semi-supervised None
45 Xu and Niethammer [38] Supervised Semi-supervised Classical and

Registration-based
46 Yu et al. [76] Supervised Meta Classical
47 Yuan, Esteva and Xu [77] None Supervised and

Meta
Classical

48 Zhao et al. [78] None Semi-supervised Generative

Table 4: Main pipeline steps adopted by segmentation studies.
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Study ID Pub. ref. Pre-training Training Data augmentation
49 Zhao et al. [79] None Meta Classical and Generative
50 Zhou et al. [80] Supervised Supervised None

Table 4: (continued).

4.2.2 Classification

We identified 27 relevant studies, each focusing on medical classification as its primary task. To enhance clarity and
facilitate easy reference, we present all the relevant information from these selected studies in Table 5. In addition, we
provide information concerning ROB and the applicability of each study in Table 6.

Study
ID

Pub. ref. Algorithm/Pipeline K-shot Best performance Meta-learning
type

51 Ali et al. [81] Prototypical
network 5-shot

Accuracy:
0.906

(Endoscopic images,
MAO)

Metric learning

52 Cai, Hu, and Zheng
[82]

Prototypical
network +
Attention

module (CBAM)

20-shot Accuracy:
0.924 (Brain, MAT) Metric learning

53 Cai et al. [83]

Pre-Moco
Diagnosis Network

(Pre-training+
Contrastive learning)

1-shot
5-shot
10-shot
20-shot

Accuracy:
0.832 (Skin, MAD)
0.675 (Eye, MAD)

Metric learning

54 Cano and Cruz-Roa
[84]

Siamese
Neural Network 1-shot Accuracy:

0.908 (Breast, MAT) Metric learning

55 Chen et al. [85]
2D CNN ranking +

2D CNN classification +
Heatmap for segmentation

2-shot
AUROC:

0.883 (Breast,
LN metastases)

None

56 Chou et al. [86]
Siamese Neural Network

(Triple encoder +
Triple loss)

1-shot

Accuracy:
0.986 (Brain,
classification
into contrast

type)

None

57 Dai et al. [87]

Prior Guided Feature
Enhancement for
Few-shot Medical

Image Classification

3-shot
5-shot
10-shot

Accuracy:
0.851 (Brain, MAT)
0.960 (Skin, MAT)

0.803 (Cervix, MAT)

Metric learning

58 Huang, Huang and
Tang [88]

One-shot Anomaly
Detection Framework 1-shot

AUROC:
0.961 (Eye, MAD)

0.955 (Lung ,COVID)
None

59 Jiang et al. [89]

Autoencoder +
Metric learner +

Task learner (Transfer
learning phase +

Meta-learning phase)

1-shot
5-shot
10-shot

Accuracy:
0.762 (Cells, MAS)

0.762 (Colon, MAD)
0.506 (Lungs, MAD)

Metric learning

60 Jin et al. [90]
ViT-L/16 +
ResNet50 +

Metric-learning

1-shot
5-shot
8-shot

Accuracy:
0.346 (Lungs, MAD) Metric learning

Table 5: FSL studies for medical image classification.

26



A Systematic Review of Few-Shot Learning in Medical Imaging PREPRINT

Study
ID

Pub. ref. Algorithm/Pipeline K-shot Best performance Meta-learning
type

61 Mahapatra, Ge and
Reyes [91]

Self-Supervised
Clustering Based

Generalized Zero-shot
Learning

0-shot

Accuracy:
0.921 (Breast,

LN metastases)
0.909 (Lungs, MAD)

0.942 (Eye, DE)
0.911 (Prostate, tumour)

None

62 Maicas et al. [92]

Pre and post-hoc
diagnosis and

interpretation +
3D DenseNet

4-shot AUROC:
0,910 (Breast, tumour) Initialization

63 Mohan et al. [93] Siamese Network +
Classifier 1-shot

Accuracy:
0.930
(Lung,

COVID and
Pneumonia)

None

64 Moukheiber et al.
[94]

DeepVoro
Multi-label
ensemble

5-shot
10-shot

AUROC:
0.679 (Lung, MAD) Initialization-based

65 Naren, Zhu and
Wang [95]

8 block VGG +
MAML++

1-shot to
5-shot

Accuracy:
0.857 (Lung, COVID) Initialization

66 Ouahab,
Ben-Ahmed and

Fernandez-
Maloigne [96]

Self-attention
augmented MAML

3-shot
5-shot

Accuracy:
0.819 (Skin, MAD)

0.703 (Lungs, MAD)
AUROC:

0.843 (Skin,MAD)
0.734 (Lungs, MAD)

Initialization

67 Paul, Tang and
Summers [97]

DenseNet-121
(feature extractor) +

Autoencoder ensemble
(classificator)

5-shot

F1-score:
0.440 (Lung, MAD)

Recall:
0.490 (Lung,MAD)

None

68 Paul et al. [98]
DenseNet +

Vanilla
autoencoder )

5-shot

F1-score:
0.470 (Lungs, MAD)

AUROC:
0.647 (Lungs, MAD)

None

69 Paul et al. [99]
DenseNet +

MVSE network +
Self-training

0-shot Recall:
0.454 (Lungs, MAD) None

30 Roychowdhury et
al. [36]

Echo state network
(ParESN) +
Target label

selection algorithm
(TLSA)

5-shot Accuracy:
0.970 (Eye, IE) None

70 Singh et al. [100] MetaMed
3-shot
5-shot
10-shot

Accuracy:
0.864 (Breast, MAD)
0.843 (Skin, MAD)

0.934 (Cervix, MAT)

Initialization

71 Vetil et al. [101]
VAE +

Distribution
learning

0-shot
15-shot

AUROC:
0.789 (Pancreas) None

Table 5: (continued).
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Study
ID

Pub. ref. Algorithm/Pipeline K-shot Best performance Meta-learning
type

72 Xiao et al. [102]

CNN
feature extractor +

classification
prototype +
similarity
module +
rectified

corruption function

5-shot
10-shot

Accuracy:
0.874 (Skin, MAD) Metric learning

73 Yan et al. [103] Siamese-
Prototypical Network

1-shot
5-shot

Accuracy:
0.686 (Skin, MAD)
0.608 (Liver, MAD)
0.626 (Colon, MAD)

Metric learning

74 Yarlagadda et al.
[104]

Region proposal network +
Inception-ResNet-v2 +
Memory module with

regional maximum activation
of convolutions global

descriptors

1-shot Accuracy:
0.946 (Cells) None

75 Zhang, Cui and
Ren [105]

MAML
1-shot
3-shot
5-shot

Accuracy:
0.788 (VQA-
RAD, MAS)

0.614 (PathVQA,
MAS)

Initialization

76 Zhu et al. [106]

Query-Relative
Loss + Adaptive
Hard Margin +

Prototypical Network/
Matching Network

1-shot
5-shot

Accuracy:
0.719 (Skin, MAD) Metric learning

Table 5: (continued).

Risk of Bias Applicability

Study
ID

Pub. ref. Part. Pred Out. Analysis Overall Part. Pred. Out. Overall

51 Ali et al. [81] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

52 Cai, Hu, and Zheng [82] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

53 Cai et al. [83] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

54 Cano and Cruz-Roa [84] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

55 Chen et al. [2] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

56 Chou et al. [86] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

57 Dai et al. [87] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 6: ROB of FSL studies for medical image classification.
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Risk of Bias Applicability

Study
ID

Pub. ref. Part. Pred Out. Analysis Overall Part. Pred. Out. Overall

58 Huang, Huang and Tang
[88]

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

59 Jiang et al. [89] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

60 Jin et al. [90] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

61 Mahapatra, Ge and Reyes
[91]

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

62 Maicas et al. [92] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

63 Mohan et al. [93] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

64 Moukheiber et al. [94] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

65 Naren, Zhu and Wang
[95]

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

66 Ouahab, Ben-Ahmed and
Fernandez-Maloigne [96]

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

67 Paul, Tang and Summers
[97]

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

68 Paul et al. [98] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

69 Paul et al. [99] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

30 Roychowdhury et al. [36] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

70 Singh et al. [100] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

71 Vetil et al. [101] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

72 Xiao et al. [102] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

73 Yan et al. [103] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

74 Yarlagadda et al. [104] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

75 Zhang, Cui and Ren [105] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

76 Zhu et al. [106] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 6: (continued).

Here, we present the findings derived from our comprehensive analysis of the classification papers.

Medical application. The classification papers within the FSL domain cover a wide range of anatomical structures
and regions, as well as specific lesions. Here’s a breakdown of the number of papers categorized by the anatomical
structure(s) investigated: two out of 27 studies (7%) perform brain image classification, focusing on different types
of tumours and MRI contrast types; six studies (22%) address breast image classification, with four concentrating
on breast tumours and two on breast metastases involving nearby lymph nodes; two studies (7%) investigate cell
image classification; two studies (7%) focus on cervix image classification; three studies (11%) pertain to colon image
classification; four studies (15%) are dedicated to fundus eye image classification, with 2 investigating different diseases;
one study (4%) deals with liver disease classification; 11 studies (41%) involve lung image classification; one study
(4%) is concerned with pancreas image classification; one study (4%) classifies prostate tumour images; 7 studies
(26%) address skin image classification, covering different diseases; one study (4%) investigates esophagus image
classification; one study (4%) focuses on stomach image classification. Note that [105] is not included in this analysis
as it did not specify which anatomical structures were part of their study. For a visual representation of the distribution,
refer to Figure 12.

Meta-learning methods. In the context of classification studies employing FSL, the distribution of meta-learning
methods is as follows: six out of 27 studies (22%) utilize initialization-based methods; 10 studies (37%) opt for
metric-learning-based algorithms; the remaining 11 studies (41%) do not incorporate any meta-learning techniques. For
a visual representation of the distribution, refer to Figure 13.
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Breast

15%

Eye

10%Lung

36%

Others

18%

Skin

21%

Figure 12: Classification studies grouped by the anatomical structure investigated.

Metric-learning-based

40%

No Meta-learning

40%

Initialization-based

20%

Figure 13: Classification studies grouped by meta-learning method employed.

K-shot. Among the 27 selected studies in the classification domain using FSL, the training configurations are distributed
as follows: 13 studies (48%) employ k-shot training with k ranging from 2 to 20; six studies (22%) utilize both OSL
and FSL; one study (4%) uses both FSL and ZSL; five studies (19%) exclusively perform 1-shot training; two studies
(7%) solely employ 0-shot training.

Image modalities. In the context of classification studies within the FSL domain, the distribution of imaging modalities
is as follows: three studies out of 27 (11%) use CT images; three studies (11%) employ MRI images; seven studies
(26%) utilize dermoscopic images; 11 studies (41%) rely on X-ray images; three studies (11%) involve fundus images;
two studies (7%) make use of microscopic images; nine studies (33%) employ histopathological images; one study
(4%) utilizes endoscopy images; one study (4%) involves cytological images; one study (4%) uses OCT images.

Model evaluation. To assess the behaviour and robustness of the models in the selected studies, various evaluation
techniques were employed as follows: nine studies (33%) utilized ablation studies; one study (4%) conducted both
ablation studies and cross-validation; one study (4%) solely relied on cross-validation; two studies (7%) repeated
experiments multiple times for evaluation. The remaining 14 studies (52%) did not employ any specific model evaluation
technique.

Model performance grouped by organ and meta-learning method. In Figure 14, Figure 15, Figure 16, and Figure
17, we present a summary of the model performance in forest plots, categorized by anatomical structure, in terms of
Accuracy, AUROC, F1-score, and Recall, respectively. Conversely, in Figure 18, Figure 19, Figure 20, and Figure
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21, we depict the performance in terms of Accuracy, AUROC, F1-score, and Recall, respectively, by grouping the
studies according to the employed meta-learning methods. For each study, we have considered the highest performance
achieved (across different experiments and image modalities). In each forest plot, we provide the mean and the 95% CI
across all the studies within the corresponding group. Note that the results of [81] and [105] are not included in the
forest plot since they provide average results across different anatomical structures.

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy

Skin (mad)                                 0.82(0.69 to 0.95)

Prostate (tumour)                          0.91(0.91 to 0.91)

Lung (mad)                                 0.62(0.36 to 0.89)

Lung (covid-19)                            0.86(0.86 to 0.86)

Lung (covid-19 and pneumonia)              0.93(0.93 to 0.93)

Liver (mad)                                0.61(0.61 to 0.61)

Eye (mad)                                  0.68(0.68 to 0.68)

Eye (ic)                                   0.97(0.97 to 0.97)

Eye (dr)                                   0.94(0.94 to 0.94)

Colon (mad)                                0.69(0.63 to 0.76)

Cervix (mat)                               0.87(0.81 to 0.93)

Cells (mas)                                0.76(0.76 to 0.76)

Cells                                      0.95(0.95 to 0.95)

Breast (mat)                               0.87(0.85 to 0.91)

Breast (ln metastases)                     0.92(0.92 to 0.92)

Brain (mat)                                0.92(0.92 to 0.92)

Brain (classification into contrast type)  0.99(0.99 to 0.99)

Mean (95% CI)

Figure 14: Forest plot of classification studies performance based on Accuracy metric. Studies are grouped by the
anatomical structure investigated. DR = Diabetic Retinopathy; IC = Intraretinal Cyst; LN = Limph Nodes; MAD =
Mead Across Diseases; MAS = Mean Across Structures; MAT = Mean Across Tumours.

0.0 0.2 0.4 0.6 0.8 1.0
AUROC

Skin (mad)               0.84(0.84 to 0.84)

Pancreas                 0.79(0.79 to 0.79)

Lung (mad)               0.69(0.65 to 0.73)

Lung (covid-19)          0.95(0.95 to 0.95)

Eye (mad)                0.96(0.96 to 0.96)

Breast (tumour)          0.91(0.91 to 0.91)

Breast (ln metastases)   0.88(0.88 to 0.88)

Mean (95% CI)

Figure 15: Forest plot of classification studies performance based on AUROC metric. Studies are grouped by the
anatomical structure investigated. MAD = Mean Across Diseases.

0.0 0.2 0.4 0.6 0.8 1.0
F1-score

Lung (mad)  0.45(0.44 to 0.47)
Mean (95% CI)

Figure 16: Forest plot of classification studies performance based on F1-score metric. Studies are grouped by the
anatomical structure investigated. MAD = Mean Across Diseases.

Overall pipeline. In Table 7, we delineate which stages of the defined pipeline are employed by each study. Here are
the distributions of studies based on their utilization of pre-training, training, and data augmentation techniques: one out
of 27 studies (4%) employed a meta-learning algorithm for pre-training; 13 studies (48%) employed classical supervised
pre-training; one study (4%) used unsupervised pre-training; 12 studies (44%) did not employ any pre-training stage. For
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0.0 0.2 0.4 0.6 0.8 1.0
Recall

Lung (mad)  0.47(0.45 to 0.49)
Mean (95% CI)

Figure 17: Forest plot of classification studies performance based on Recall metric. Studies are grouped by the
anatomical structure investigated. MAD = Mean Across Diseases.

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy

No meta-learning       0.95(0.93 to 0.98)

Metric-learning-based  0.81(0.43 to 0.95)

Initialization-based   0.83(0.79 to 0.86)

Mean (95% CI)

Figure 18: Forest plot of classification studies performance based on Accuracy metric. Studies are grouped by the
meta-learning method employed.

0.0 0.2 0.4 0.6 0.8 1.0
AUROC

No meta-learning       0.84(0.69 to 0.95)

Metric-learning-based  0.79(0.79 to 0.79)

Initialization-based   0.79(0.68 to 0.90)

Mean (95% CI)

Figure 19: Forest plot of classification studies performance based on AUROC metric. Studies are grouped by the
meta-learning method employed.

0.0 0.2 0.4 0.6 0.8 1.0
F1-score

No meta-learning  0.49(0.44 to 0.54)
Mean (95% CI)

Figure 20: Forest plot of classification studies performance based on F1-score metric. Studies are grouped by the
meta-learning method employed.

their main training, fifteen studies (56%) utilized meta-learning; one study (4%) employed semi-supervised training; one
study (4%) employed self-supervised training; nine studies (33%) used traditional supervised training; two studies (7%)
employed zero-shot learning methods. Finally, concerning the data augmentation techniques, 10 out of 27 studies (37%)
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0.0 0.2 0.4 0.6 0.8 1.0
Recall

No meta-learning  0.47(0.45 to 0.49)
Mean (95% CI)

Figure 21: Forest plot of classification studies performance based on Recall metric. Studies are grouped by the
meta-learning method employed.

realied on classical data augmentation techniques; two studies (7%) utilized generative methods for data augmentation.
The remaining 15 studies did not employ data augmentation.
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Study ID Pub. ref. Pre-training Training Data augmentation
51 Ali et al. [81] Supervised Meta None
52 Cai, Hu, and Zheng [82] None Meta Classical
53 Cai et al. [83] Supervised Meta Classical
54 Cano and Cruz-Roa [84] None Meta None
55 Chen et al. [85] Unsupervised Supervised None
56 Chou et al. [86] None Supervised None
57 Dai et al. [87] Supervised Meta None
58 Huang, Huang and Tang

[88]
None Supervised Generative

59 Jiang et al. [89] Supervised Meta Classical
60 Jin et al. [90] None Meta Classical
61 Mahapatra, Ge and Reyes

[91]
Supervised Self-supervised and

Supervised
Generative

62 Maicas et al. [92] Meta Supervised None
63 Mohan et al. [93] Supervised Supervised Classical
64 Moukheiber et al. [94] Supervised Meta None
65 Naren, Zhu and Wang

[95]
None Meta None

66 Ouahab, Ben-Ahmed and
Fernandez-Maloigne [96]

Supervised Meta Classical

67 Paul, Tang and Summers
[97]

Supervised Supervised None

68 Paul et al. [99] Supervised Zero-shot and
Semi-supervised

None

69 Paul et al. [98] Supervised Supervised None
30 Roychowdhury et al. [36] None Supervised Classical
70 Singh et al. [100] None Meta Classical
71 Vétil et al. [101] None Zero-shot and

Supervised
Classical

72 Xiao et al. [102] None Meta None
73 Yan et al. [103] Supervised Meta Classical
74 Yarlagadda et al. [104] Supervised Supervised None
75 Zhang, Cui and Ren [105] None Meta None
76 Zhu et al. [106] None Meta None

Table 7: Main pipeline steps adopted by classification studies.

4.2.3 Registration

We included six relevant studies, each focusing on medical registration as its primary task. Table 8 summarizes of all
the essential information from these selected studies. In addition, we provide information concerning ROB and the
applicability of each study in Table 9.
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Study
ID

Pub. ref. Algorithm/Pipeline K-shot Best performance Meta-learning
type

77 Fechter and Baltas
[107]

U-net +
Differential spatial
transformer module

1-shot

Landmark distance:
1.49 (Lungs)

Dice:
0.860 (Heart)

None

78 Ferrante et al.
[108]

U-net +
Unsupervised

learning
1-shot

Dice:
0.920 (Heart)
0.890 (Lungs)

None

79 He et al. [109]
Perception-

Correspondence
Registration

5-shot

Dice:
0.857 (Heart, MAS)

0.867 (Cervical
vertebra, MAS)

0.800 (Brain, MAS)

None

34 Shi et al. [37]
Joint Registration
and Segmentation

Self-training Framework
5-shot

Dice:
0.759 (Brain, MAS)

0.539 (Abdomen, MAS)
None

45 Xu and
Niethammer [38]

Semi-Supervised
Learning +

Segmentation network +
Registration network

1-shot
5-shot
10-shot

Dice:
0.759 (Brain, MAS)

0.539 Abdomen (MAS)
None

80 Zhang et al. [110]

CNN +
Spatial transformer +

similarity loss +
smooth loss +

cyclic loss

1-shot TRE:
1.03 (Lung) None

Table 8: FSL studies for medical image registration.

Risk of Bias Applicability

Study
ID

Pub. ref. Part. Pred Out. Analysis Overall Part. Pred. Out. Overall

77 Fechter, Baltas [107] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

78 Ferrante et al. [108]. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

79 He et al. [109] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

34 Shi et al. [37] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

45 Xu and Niethammer [38] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

80 Zhang et al. [110] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 9: ROB of FSL studies for medical image registration.

Here, we present the findings derived from our comprehensive analysis of the registration papers.

Medical application. The selected registration papers address a range of anatomical regions. Here’s the breakdown
of the number of studiescategorized by the anatomical structure investigated: three out of 6 studies (50%) explore
brain registration; one study (17%) focuses on the registration of knee bones and cartilages; three studies (50%) delve
into heart registration; three studies (50%) concentrate on lung registration; one study (17%) pertains to abdominal
registration; one study (17%) deals with cervical vertebra registration. For a visual representation of the distribution,
refer to Figure 22.

Meta-learning methods. In the domain of registration studies, all of the selected papers (100 %) do not employ the
meta-learning paradigm. For a visual representation of the distribution of these studies according to the anatomical
structure investigated, refer to Figure 23.
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Figure 22: Registration studies grouped by the anatomical structure investigated.

No Meta-learning 100%

Figure 23: Registration studies grouped by the meta-learning method employed.

K-shot. Among the six selected studies, the distribution of training strategies is as follows: two studies (33%) solely
employ FSL; three studies (50%) exclusively investigate OSL; one study (17%) performs both FSL and OSL.

Image modalities. In the context of registration studies, the distribution of imaging modalities used among the selected
papers is as follows: four out of six studies (67%) employ CT acquisitions; five out of six studies (83%) utilize MRI
images; one out of six studies (17%) involves X-ray images.

Model evaluation. To examine the behaviour and robustness of the models in the selected registration studies various
evaluation techniques were employed as follows: two studies (33%) utilized only ablation studies; one study (17%)
used cross-validation. The remaining studies (50%) did not employ any specific model evaluation technique.

Model performance grouped by organ and meta-learning method. In Figure 24, Figure 25, and Figure 26, we
provide a summary of the model performance in forest plots, categorized by anatomical structure, in terms of Dice
score, Average Landmark Distance (ALD), and Target Registration Error (TRE), respectively. Conversely, in Figure 27,
Figure 28, and Figure 29, we depict the performance in terms of Dice score, ALD, and TRE, respectively, by grouping
the studies according to the employed meta-learning methods. For each study, we considered the highest performance
achieved (across different experiments and image modalities). In each forest plot, we provided the mean and the 95%
CI across all the studies within the corresponding group.
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Heart (rv)               0.76(0.76 to 0.76)

Heart (ra)               0.75(0.75 to 0.75)

Heart (pa)               0.71(0.71 to 0.71)

Heart (myo)              0.75(0.75 to 0.75)

Heart (mas)              0.86(0.86 to 0.86)

Heart (lv)               0.85(0.85 to 0.85)

Heart (la)               0.87(0.87 to 0.87)

Heart (aa)               0.88(0.88 to 0.88)

Heart                    0.88(0.86 to 0.92)

Cervical vertebra (mas)  0.87(0.87 to 0.87)

Brain (mas)              0.75(0.70 to 0.80)

Abdomen (mas)            0.54(0.54 to 0.54)

Mean (95% CI)

Figure 24: Forest plot of registration studies performance based on Dice metric. Studies are grouped by the anatomical
structure investigated.

0.0 0.2 0.4 0.6 0.8 1.0
ALD

Lung   1.49(1.49 to 1.49)
Mean (95% CI)

Figure 25: Forest plot of registration studies performance based on ALD metric. Studies are grouped by the anatomical
structure investigated.

0.0 0.2 0.4 0.6 0.8 1.0
TRE

Lung   1.03(1.03 to 1.03)
Mean (95% CI)

Figure 26: Forest plot of registration studies performance based on TRE metric. Studies are grouped by the anatomical
structure investigated.

0.0 0.2 0.4 0.6 0.8 1.0
Dice

No meta-learning  0.87(0.80 to 0.92)
Mean (95% CI)

Figure 27: Forest plot of registration studies performance based on Dice metric. Studies are grouped by the meta-
learning method employed.

Overall pipeline. In Table 10, we delineate which stages of the defined pipeline are employed by each study. Here are
the distributions of studies based on their utilization of pre-training, training, and data augmentation techniques: two
out of six studies (33%) employed classical supervised pre-training. The remaining four studies did not employ any
pre-training at all. Five out of six studies (83%) utilized supervised training as their primary training approach. One
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Figure 28: Forest plot of registration studies performance based on ALD metric. Studies are grouped by the meta-
learning method employed.

0.0 0.2 0.4 0.6 0.8 1.0
TRE

No meta-learning  1.03(1.03 to 1.03)
Mean (95% CI)

Figure 29: Forest plot of registration studies performance based on TRE metric. Studies are grouped by the meta-
learning method employed.

study (17%) employed unsupervised learning for the main training stage. Two out of six studies (33%) used classical
data augmentation techniques. The other four studies (67%) did not exploit data augmentation.

38



A Systematic Review of Few-Shot Learning in Medical Imaging PREPRINT

Study ID Pub. ref. Pre-training Training Data augmentation
77 Fechter, Baltas [107] None Supervised None
78 Ferrante et al. [108] None Unsupervised None
79 He et al. [109] None Supervised Classical
34 Shi et al. [37] Supervised Supervised None
45 Xu and Niethammer [38] Supervised Supervised Classical
80 Zhang et al. [110] None Supervised None

Table 10: Main pipeline steps adopted by registration studies.

5 Discussion

This review assessed 80 FSL studies applied to the field of medical imaging. We organized these studies into three
distinct categories: segmentation, classification, and registration, according to their main outcome. For each category,
we collected essential information such as the algorithm or pipeline used, the employed meta-learning methods, the
quantity of labelled data utilized during training, and the highest achieved performance. Furthermore, we summarized
the outcomes of each category, classifying them based on both the specific anatomical structures investigated and the
presence or absence of meta-learning techniques. In addition, we applied the PROBAST method to evaluate both ROB
and the applicability of each study in the context of each outcome. Finally, we defined a generic pipeline enclosing all
the techniques shared among the selected papers.

Below, we delve into the results derived from our analysis according to the objectives outlined in Sec 1.2.

Studies distribution per outcome. Figure 4 clearly illustrates the predominant focus of FSL studies in medical imaging.
Segmentation tasks are the most prominent, constituting the majority at 61%, followed by classification tasks at 32%
and registration tasks at 7%. In the following paragraphs, we provide a more detailed exploration of how these studies
are further distributed, considering both the specific anatomical structures investigated and the meta-learning methods
employed.

Studies distribution and results per anatomical structure investigated. Figure 6 provides an insightful overview of
the distribution of anatomical structures studied in segmentation tasks in medical imaging. Notably, the heart emerges
as the most extensively investigated anatomical structure, comprising 34% of the studies. Following closely are the
kidney, spleen, and liver, each accounting for 13% of the research. The brain also features significantly, representing
10% of the studies. In Figure 12, we shift our focus to the distribution of anatomical structures in classification studies.
Here, the lungs take the lead, constituting the primary focus in 36% of the research. The skin follows closely with
21%, while the breast and eye account for 15% and 10%, respectively. Lastly, Figure 22 highlights the distribution of
anatomical structures studied in registration tasks. The heart emerges as the most commonly examined organ in this
category, representing 52% of the investigations, followed by lungs and brain, accounting for 14% of the studies and the
knee for 10%. Finally, the cervical vertebra and abdomen are the main application in 5% of the studies.

Figure 8 provides valuable insights into the performance of segmentation tasks in terms of the Dice score across various
anatomical structures. Notably, femur segmentation demonstrates the highest Dice score, although it’s worth mentioning
that only one study addresses this task, making the result partially reliable. In contrast, AA and LV segmentation exhibit
consistently good average results across multiple peer studies, achieving Dice scores of 0.89 and 0.88, respectively.
The worst-performing segmentation task appears to be the prostate, with a mean Dice score of 0.42 across different
structures. Shifting our focus to IoU, Figure 9 highlights that hip, knee, and phalanx segmentation provide the best IoU
results. However, it’s important to note that these results are based on a limited number of studies, which may affect
their reliability. On the other hand, lung segmentation demonstrates a high IoU of 0.91, with a small CI, across several
studies, indicating robust and consistent performance. Conversely, prostate segmentation consistently yields lower IoU
scores, with a 0.23 IoU for the segmentation of the peripheral zone, indicating room for improvement in this specific
task.

Moving on to classification tasks, Figure 14 shows that, in terms of accuracy, the classification of brain images into
different contrast type provides the best performance, even tough must be noted that it represents a quite easy task. On
the other hand, the classification of skin lesions demonstrates providing a high mean classification accuracy (0.82)
across several studies. The worst performing case, instead, is provided by the segmentation of the liver, which yields
0.61 accuracy as a mean across different diseases. Concerning the AUROC metric, in Figure 15 the classification of eye
images achieves the highest performance, with a score of 0.96, while the worst performing, even tough computed on a
higher number of studies, is the segmentation of the lungs, which provides a 0.69 AUROC as mean across different
diseases. Finally, it is worth mentioning that a few studies investigate the classification of different lung diseases,
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utilizing the F1-score and Recall metrics. However, the results in both cases are poor, scoring below 0.5, as shown in
Figure 16 and Figure 17.

Lastly, turning our attention to the registration task in the following, we examine the key findings. In terms of the Dice
score (Figure 24), our analysis suggests that FSL registration achieves the highest result in the registration of knee
bones. However, it’s important to note that this result should be interpreted cautiously due to its reliance on a single
study. On the other hand, when it comes to the registration of whole heart images, there is a consistently high mean
Dice score of 0.88, with a small CI derived from several studies. Regarding the ALD and TRE metrics (Figure 25 and
Figure 26), it’s noteworthy that these metrics are employed only in the context of lung image registration.

Studies distribution and results per meta-learning method employed. Concerning segmentation papers, according
to Figure 7, most studies do not employ meta-learning methods for segmentation tasks, accounting for 55% of the
investigations. Among the studies that do use meta-learning methods, metric-learning-based approaches are the
most commonly utilized, constituting 26% of the selected studies, followed by initialization-based studies (13%) and
hallucination-based (6%). Shifting the focus to the classification tasks, Figure 13 reveals that 40% of the studies do
not use any meta-learning algorithm. Among the meta-learning algorithms instead, 40 % of all studies employ metric
learning-based methods, and 20% initialization-based methods. No classification study instead employ hallucination-
based methods. Finally, as for registration purposes, no study employ meta-learning methods.

Regarding the models’ performance, Figure 10 reveals that both no-meta-learning methods and hallucination-based
methods yield the highest mean Dice scores (0.84). Notably, no-meta-learning methods exhibit a wider CI, which
is expected given their application across a greater number of studies. In contrast, metric-learning-based methods,
while being the most commonly employed among all the meta-learning methods in segmentation studies, yield slightly
lower results, with a mean Dice score of 0.79 and a larger CI. For the IoU metric, as demonstrated in Figure 11,
only initialization-based methods and no-meta-learning methods utilize this metric. Remarkably, no-meta-learning
methods outperform the others significantly, delivering a notably better performance with a smaller CI. In the context
of classification tasks, as illustrated in Figure 18, it becomes evident that studies opting not to utilize meta-learning
methods consistently yield the most impressive accuracy results, coupled with a notably narrow CI. Conversely,
metric-learning-based methods exhibit notably poorer performance, with a mean accuracy of just 0.81 and a larger CI.
Regarding AUROC, as emphasized in Figure 19, the absence of meta-learning methods consistently delivers the most
remarkable performance, boasting a mean AUROC of 0.84. Interestingly, initialization-based and metric-learning-based
methods both yield a mean AUROC of 0.79 despite metric-learning techniques exhibiting a wider CI. In the context of
registration tasks, Figures 27, 28, and 29 illustrate the mean performance metrics for Dice, ALD, and TRE, respectively.
In this specific case, all the studies opted for utilising non-meta-learning methods.

Training data, imaging modalities and robustness evaluation distributions. When analyzing the training set size in
studies focused on the segmentation task, it’s worth highlighting that most of these studies, comprising 58%, incorporate
one or more labelled data samples into their training phase. A significant proportion, 40%, also utilize OSL, while only
2% employ ZSL. A similar trend is observed in classification studies, where a substantial 70% of the investigations
involve at least one labelled example during their training process, while 19% exclusively rely on OSL. In this context,
just 7% of the examined studies make use of ZSL. However, when we turn our attention to registration studies, unlike
those in segmentation and classification, mainly rely on OSL (50%). Among the remaining studies, 40% opt for FSL
with more than one labelled image in the training set, and only 17% perform ZSL.

In terms of imaging modalities, MRI data are the most commonly utilized in both segmentation and registration studies,
constituting 60% and 83% of the cases, respectively. On the other hand, when it comes to classification studies, X-ray
imaging takes the lead, being employed in 41% of all studies.

In terms of evaluating the robustness of models, it’s worth noting that 74% of the segmentation studies incorporate
some form of model robustness evaluation. This typically involves conducting ablation studies and or employing
cross-validation techniques. However, considering classification and registration studies, only half of them incorporate
robustness evaluation for the models, with ablation studies being the most common approach in these cases.

Identification of a standard pipeline. We present our comprehensive analysis of the examined studies in Figure 5,
illustrating the components of the pipelines common to each study. We summarized all the steps into three main clusters:
pre-training, training, and data augmentation. We found that pre-training is performed using four paradigms: supervised,
unsupervised, self-supervised, or meta-learning. On the other hand, the final training phase encompasses these four
methods, including semi-supervised learning and zero-shot learning approaches as well. Regarding data augmentation
techniques, we emphasized three methods that are mainly employed: classical data augmentation, which includes
geometric or image channel transformations, generative-based augmentation and registration-based augmentation. The
latter approach, notably, found extensive application in segmentation studies, where segmentation and registration
models are trained jointly.
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As anticipated, meta-learning emerged as the prevailing approach for addressing FSL tasks, particularly within
segmentation and classification studies. As well, in the realm of segmentation and classification, supervised learning is
the most commonly employed method immediately following meta-learning. It’s worth noting that the interpretation
of classic supervised learning varies based on the specific modules introduced in each study. In segmentation studies,
semi-supervised learning is also a commonly employed method involving the joint utilization of labelled and unlabeled
data. In contrast, when examining registration studies, almost all employed traditional supervised training, with only
one study opting for unsupervised training.

Concerning the application of data augmentation techniques, the predominant practice involves augmenting datasets
through standard geometric or colour channel transformations. In segmentation studies, a common approach is to
integrate a registration network, trained in conjunction with the segmentation network, to provide additional training
data—a technique not observed in classification studies, where classical data augmentation is prevalent, and only two
studies explored generative techniques. Finally, among registration studies, those incorporating data augmentation
exclusively rely on classical augmentation techniques.

Concluding statements. Our comprehensive analysis offers several valuable insights into the methods employed
for addressing FSL tasks. To begin with, although meta-learning methods are widely adopted and successful, they
are implemented in a variety of ways. Metric learning-based methods have garnered substantial attention, whereas
hallucination-based techniques have not been as extensively explored. Secondly, our analysis highlights that the heart,
abdomen, and lungs have been the primary areas of focus in FSL studies. This is likely due to the availability of
well-established benchmark datasets such as CHAOS [111], MS-CMRSeg [112], and NIH Chest X-ray [113]. However,
there exists untapped potential for researchers to delve into relatively less-explored medical applications, including
the prostate, digestive organs, and various bones. Furthermore, we observed that some studies, particularly those
in classification and registration tasks, may not conduct comprehensive model investigation analyses. This gap can
potentially lead to incomplete and unreliable performance assessments. Lastly, we noted issues related to ROB in some
studies. Many studies lack clarity in explaining how they address the FSL task, even when claiming to use reduced
amounts of labelled data. In light of these findings, we encourage future researchers in the field to consider the following
actions:

• Explore and invest in hallucination-based methods, given their promising performance potential.
• Expand the scope of medical applications investigated, especially in less-explored areas.
• Prioritize thorough model validation and comprehensive analyses to facilitate fair comparisons and the practical

implementation of FSL models in clinical settings.

In addition, our analysis underscores the prevalence of meta-learning as a commonly used approach for FSL tasks.
However, it also highlights the versatility of alternative methods, including supervised learning with innovative modules
and semi-supervised learning, which have proven effective, particularly in segmentation tasks and registration studies.
These diverse strategies, coupled with appropriate data augmentation techniques, demonstrate the adaptability of FSL
methodologies to address the challenges posed by limited data.

6 Conclusions

In our extensive systematic review, we conducted a thorough examination of the application of FSL in medical image
analysis. We categorized the selected studies based on their intended outcome domains, i.e. segmentation, classification,
and registration. Our analysis entailed a detailed investigation of these studies, focusing on the specific anatomical
structures targeted and the meta-learning methods employed. Moreover, we provided a comprehensive performance
summary by grouping the studies according to the anatomical structures studied and the chosen meta-learning techniques.
This summary included mean performance values along with a 95% CI. Additionally, we explored supplementary
aspects, such as the quantity of training data used, the imaging modalities employed, and the methods used to assess the
robustness of the models. We meticulously evaluated each study for its ROB and applicability to ensure the credibility
of the findings presented. Finally, we introduced a general pipeline that all the studies in our analysis either partially or
fully adopted.

The key findings from our systematic review are as follows. Concerning the outcome domain, segmentation tasks are
the most prominently addressed outcome in FSL applied to medical image analysis, and among the various anatomical
structures investigated, the abdomen and heart receive the most attention. In terms of the training data, most of the
studies demonstrate the effectiveness of FSL by utilizing more than one example during the training phase. Notably,
CT and X-ray imaging modalities are the most frequently employed. Regarding the robustness evaluation, our review
unveil a significant gap: indeed, a considerable number of studies, particularly those in the classification and registration
domains, lack proper robustness assessment, underscoring the need for improved evaluation practices in these areas.
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Concerning the meta-learning techniques employed, metric-learning-based approaches are the predominant choice
among meta-learning methods, despite providing poorer results w.r.t. other meta-learning and non-meta-learning
methods. Among non-meta-learning approaches, classical supervised learning with custom modules, as well as semi-
supervised learning, are commonly applied. In general, non-meta-learning methods perform better w.r.t meta-learning
ones. Finally, in terms of data augmentation, most studies address the challenge of limited data by incorporating
data augmentation techniques. Classical augmentation methods are the most widely employed for this purpose. Our
systematic review is intended to serve as a valuable resource for future researchers in the field, offering guidance on
areas of anatomical interest and methodological exploration that warrant further investigation. Our ultimate goal is to
promote the advancement and broader adoption of FSL techniques within the medical imaging domain by addressing
identified gaps, emphasizing robustness evaluation and showing an overview of the methods currently used in the SOTA.
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