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Abstract. Modal Transition Systems (MTS) are a well-known formalism that
extend Labelled Transition Systems (LTS) with the possibility of specifying nec-
essary and permitted behaviour. Whenever two MTS are not in modal refinement
relation, it could still be the case that the set of implementations of one MTS is
included in the set of implementations of the other. The challenge of devising
an alternative notion of modal refinement that is both sound and complete with
respect to the set of implementations, without disregarding valuable implementa-
tions, remains open. In this paper, we address this challenge. We introduce a sub-
set of MTS called Non-reducible Modal Transition Systems (NMTS), together
with a novel refinement relation ⪯n for NMTS. We show that ⪯n is sound and
also complete with respect to its set of implementations. We illustrate through
examples how the additional constraints imposed by NMTS are necessary for
achieving completeness. Furthermore, we discuss a property holding for NMTS
whose implementations are non-deterministic. We show that any implementation
obtained through ⪯m but disregarded by ⪯n is violating this property.

1 Introduction

Modal Transition Systems (MTS) [13] extend Labelled Transition Systems (LTS) [9]
by distinguishing two types of transitions, meant to describe necessary and optional
behaviour in a system specification by means of transitions that must necessarily be
implemented and transitions that may optionally be implemented. MTS come with a
concept of refinement, which represents a step of the design process, namely the one
in which some optional behaviour is discarded while other optional behaviour becomes
necessary. Stepwise refinement of an MTS eventually results in an implementation,
which is an LTS in which no further refinement is possible. Refinement of MTS is
critical for enabling formal reasoning on the correctness of a system’s design and im-
plementation, by enabling gradually refining an abstract specification into a concrete
one, ensuring that each step is correct. MTS are a well-known specification theory and
significant advances have been made so far [1,10].

It is known that the (modal) refinement of MTS is not complete (cf., e.g., [12]). In
other words, there are cases in which two MTS are not in a refinement relation although
the set of implementations of one MTS is included in the set of implementations of the
other MTS (this relation is known as thorough refinement). Furthermore, while deter-
mining MTS refinement can be computed in polynomial time, determining thorough
refinement of MTS requires EXPTIME [7]. In [12], the problem of proposing an alter-
native notion of modal refinement that is both sound and complete with respect to its
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set of implementations is left open [12]. An important aspect is to argue that the con-
sidered set of implementations is also interesting from a practical point of view (i.e., no
valuable implementation is disregarded).

In this paper, we address this long-standing challenge by proposing a subset of
MTS, called Non-reducible Modal Transition Systems (NMTS) together with their al-
ternative notion of modal refinement ⪯n that is both sound and complete with respect
to its set of implementations. A fundamental insight behind NMTS is that states non-
deterministically reachable through the execution of identical sequences of actions are
related. Specifically, the outgoing transitions sharing the same action label also share
the same modality. Furthermore, when a refinement step deactivates one optional transi-
tion, this leads to the deactivation of all other transitions that share the same label from
all other related (source) states.

The contributions of this paper are:

1. we introduce NMTS, a subset of MTS. In NMTS, the transitions sharing the same
action label are constrained to also share the same modality whenever they are
reachable by the same sequence of actions;

2. we equip NMTS with an alternative notion of modal refinement, called NMTS re-
finement. The refinement of NMTS is derived from modal refinement by imposing
an additional constraint on the optional transitions of the system to be refined;

3. we provide different examples of MTS instances that fail to meet the requisites
for being either NMTS or refinements of NMTS. These examples show that the
constraints imposed by NMTS and their refinement are necessary to achive a sound
and complete refinement relation;

4. we formally prove the soundness (Theorem 2) and completeness (Theorem 3) of
NMTS refinement;

5. we introduce the non-reducible non-determinism property concerning optional, non-
deterministic actions. This non-determinism is inherent in such actions and should
be preserved in any implementation where the action remains active. All imple-
mentations accepted by the standard MTS refinement, but discarded by the NMTS
refinement, are showed to be implementations violating the non-reducible non-
determinism property.

Overview Section 2 introduces background on MTS and modal refinement. Section 3
presents Non-reducible MTS (NMTS) and their refinement, proving that NMTS refine-
ment is both sound and complete. Section 4 discusses the property of non-reducible
non-determinism, showing that the implementations discarded by NMTS refinement
but accepted by modal refinement are violating this property. Section 5 discusses the
related work, while Section 6 concludes the paper and discusses future work.

2 Background

We start by discussing some background on MTS. The standard definition of MTS
accounts for two sets of transitions, permitted (or may) transitions, denoted by ∆3,
and necessary (or must) transitions, denoted by ∆2, such that ∆2 ⊆ ∆3, i.e., all
(necessary) transitions are permitted. A transition (q, a, q′) ∈ ∆3 is also denoted as
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q
a−→3 q′ and likewise q

a−→2 q′ if (q, a, q′) ∈∆2. The reader may be misled to think
that q a−→3 q′ excludes q

a−→2 q′, and vice versa that q a−→2 q′ excludes q
a−→3 q′.

However, the first statement is not always true and the second is always false, since
∆2⊆∆3. For our purpose, it is irrelevant to indicate that a transition is permitted. For
the sake of simplifying the presentation, we thus opt for a slightly revised definition of
MTS, where we partition the set of transitions into optional and necessary transitions,
and no longer indicate the fact that all transitions are permitted.

Definition 1 (MTS). A Modal Transition System (MTS) S is a 5-tuple
S = (Q,A, q,∆◦, ∆2), with set Q of states, set A of actions, initial state s ∈ Q,
and transition relation ∆ ⊆ Q × A × Q partitioned into optional transitions, denoted
by ∆◦, and necessary transitions, denoted by ∆2, i.e., ∆◦∩∆2 = ∅. If (s, a, s′) ∈ ∆◦,
then we also write s a−→◦ s′, and likewise we also write s a−→2 s′ for (s, a, s′) ∈ ∆2. We
write s

a−→ s′ when (s, a, s′) ∈ ∆. We may omit the target state when it is immaterial.

Note that the standard definition of MTS is (Q,A, q,∆3, ∆2), where ∆3 = ∆◦ ∪
∆2. An LTS is an MTS where ∆◦ = ∅. In the sequel, the conversion from an MTS
(and NMTS, cf. Section 3) (Q,A, q,∆◦, ∆2) with ∆◦ = ∅ to an LTS (Q,A, q,∆)
with ∆ = ∆2 is implicit. Moreover, we will use subscripts or superscripts to indicate
the origin of an element of a tuple, i.e., S = (QS , AS , s,∆

◦
S , ∆

2
S ). We now define

modal refinement of MTS.

Definition 2 (modal refinement). An MTS S is a (modal) refinement of an MTS T ,
denoted by S ⪯m T , if and only if there exists a refinement relation R ⊆ QS × QT

such that (s, t) ∈ R and for all (s, t) ∈ R, the following holds:

1. whenever t a−→2 t′, for some t′∈QT and a∈AT , then a∈AS , ∃ s′∈QS : s
a−→2 s′,

and (s′, t′) ∈ R, and
2. whenever s a−→ s′, for some s′ ∈QS and a∈AS , then a∈AT , ∃ t′ ∈QT : t

a−→ t′,
and (s′, t′) ∈ R.

We also say that S (modally) refines T when S ⪯m T .

Intuitively, S modally refines T if any necessary transition of T can be mimicked by
a necessary transition of S, and every transition of S can be mimicked by a transition of
T . The set of implementations of an MTS S, written Implm(S) is defined as the set of
LTS I such that I ⪯m S. Indeed, LTS cannot be further refined and are considered im-
plementations. In other words, every LTS refinement of an MTS S is an implementation
of S.

In [12], it is shown that S ⪯m T implies Implm(S) ⊆ Implm(T ). In other words,
modal refinement is sound, i.e., each time an MTS S modally refines an MTS T , it
follows that the set of implementations of T also contains the implementations of S.
However, the contrary is not true, i.e., modal refinement is not complete. Figure 1,
reproduced from [7], shows an example where the set of implementations of T also
contains the implementations of S, but S does not modally refine T .



4 Davide Basile

s s1

a

a

t t1t2

a

a

a

Fig. 1. From left two right, two MTS S and T such that S ̸⪯m T and Implm(S) ⊆ Implm(T ),
showing that modal refinement is not complete (reproduced from [7]). Dashed arcs are used to
depict optional transitions (∆◦), while solid arcs depict necessary transitions (∆2).
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Fig. 2. From left two right, two MTS S and T such that Implm(S) ⊆ Implm(T ) but S ̸⪯m T .
Both S and T are not NMTS because f2

S (c) ∩ f◦S (c) = {a} and f2
T (c) ∩ f◦T (c) = {a}

3 Non-Reducible MTS Refinement

All examples documented in the literature (e.g., [7,12]), which demonstrate that modal
refinement is not complete (e.g., Figure 1), involve the utilization of a non-deterministic
choice within the system under refinement. This non-deterministic choice, such as the
outgoing transitions from state t in T (as depicted in Figure 1), is subsequently elimi-
nated in the refined system, as it is the case in Figure 1 for system S.

Consider Figure 2. Similarly to Figure 1, it shows an example of two MTS S and T
such that the implementations of S are included into the implementations of T , although
S and T are not in modal refinement relation. Figure 2 differs from Figure 1 (and all
other similar examples in the literature) in that it preserves the non-deterministic choices
of T within S. In T , the states t1 and t2 are reachable by executing the same action c
and both exhibit outgoing transitions labeled as a. Nonetheless, these two transitions do
not share the same modality.

NMTS In this section, we identify the subset of MTS that exclusively discards sys-
tems as those in Figure 2. Indeed, Figure 2 shows how such MTS instances can result
in a violation of completeness. We introduce Non-reducible Modal Transition Systems
(NMTS). In NMTS, whenever a sequence of actions leads non-deterministically to dif-
ferent states, all these states are interconnected by the requirement that transitions asso-
ciated with the same action must also have the same modality.

In the following, let w = a1 . . . an be a sequence of actions in A∗. The sequence of
transitions s a1−→ s1, s1

a2−→ s2, . . ., sn−1
an−−→ s is written as s w−→ s. Furthermore, we

write s ̸ w−→ s when it is not possible to reach s from s through the sequence of actions w.

Definition 3 (NMTS). A Non-reducible Modal Transition System (NMTS) S is a 6-
tuple S = (Q,A, q,∆, f2, f◦), with set Q of states, set A of actions, initial state s ∈ Q,
and transition relation ∆ ⊆ Q × A × Q, where ∆ is partitioned into ∆◦, the set of
optional transitions, and ∆2, the set of necessary transitions, i.e., ∆◦ ∩ ∆2 = ∅.
Functions f2 : A∗ 7→ 2A and f◦ : A∗ 7→ 2A are such that
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Fig. 3. Top row, from left two right, two NMTS S and T such that Implm(S) ⊆ Implm(T ) but
S ̸⪯m T . Furthermore, S ̸⪯n T and Impln(S) ̸⊆ Impln(T ). Bottom row, an implementation
I such that I ⪯n S, I ̸⪯n T , but I ⪯m T

– for all w ∈ A∗ such that s w−→ s it holds that f2(w) ∩ f◦(w) = ∅,
– for all w1, w2 ∈ A∗ whenever s

w1−−→ s and s
w2−−→ s then f2(w1) = f2(w2),

f◦(w1) = f◦(w2),
– whenever (s, a, s′) ∈ ∆ there exists w ∈ A∗ such that s w−→ s and either

• a ∈ f2(w), and in this case (s, a, s′) ∈ ∆2, or
• a ∈ f◦(w), and in this case (s, a, s′) ∈ ∆◦.

– whenever a ∈ f2(w) ∪ f◦(w) for some w ∈ A∗ there exists a state s ∈ QS such
that s w−→ s and (s, a, s′) ∈ ∆ for some s′ ∈ QS .

We write f(w) to denote f2(w) ∪ f◦(w).

Definition 3 enhances Definition 1 by including two functions, namely f2 and f◦.
These functions serve a dual purpose. Firstly, they establish a connection between states
reachable through the execution of identical sequences of actions. Secondly, they con-
straint outgoing transitions from interconnected states that are sharing the same label to
also share the same modality.

Note that NMTS are a stric subset of MTS because in NMTS, for all w ∈ A∗ such
that s w−→ s, the condition f2(w) ∩ f◦(w) = ∅ holds (as defined in Definition 3). In
contrast, within MTS, it is possible to have f2(w) ∩ f◦(w) ̸= ∅. If we were to remove
this constraint from Definition 3, then NMTS would become equivalent to MTS.

Consider Figure 3. In contrast to Figure 2, Figure 3 presents two systems, denoted
as S and T , satisfying the conditions of Definition 3 (i.e., S and T are NMTS), and
satisfying the conditions Implm(S) ⊆ Implm(T ) and S ̸⪯m T . Similarly to Figure 2,
also in Figure 3 the non-deterministic choice in state t1 in T is maintained in state s1
in S. Figure 3 proves that, for achieving completeness, it is not sufficient to constrain
MTS to be NMTS. In the following, we will show that it also necessary to introduce
constraints on the refinement relation between NMTS.
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Fig. 4. Two LTS I and I ′ both implementations of the MTS S and T of Figure 2. The set
Impln(S) contains all and only LTS that are strongly bisimilar to either I or I ′. It follows that
Impln(S) ⊆ Impln(T ), and S ̸⪯n T (under the assumption that ⪯n is also applicable to MTS)

NMTS refinement We now introduce NMTS modal refinement ⪯n. In contrast to stan-
dard modal refinement, an additional condition is introduced, which applies to the op-
tional transitions within the system undergoing refinement. If an optional transition is
deactivated during the refinement process, it is required that this deactivation applies
uniformly to all other optional transitions sharing the same action. This uniform de-
activation rule applies across all source states reachable through the same sequence of
actions.

Definition 4 (NMTS refinement). An NMTS S is an NMTS refinement of another
NMTS T , denoted as S ⪯n T , if there exists a refinement relation R ⊆ QS × QT

between the states of the two systems such that (s, t) ∈ R and for all (s, t) ∈ R there
exists w ∈ A∗

S such that s w−→ s and t
w−→ t and

1. whenever t
a−→2 t′ (for some t′ ∈ QT , a ∈ f2

T (w)), then a ∈ f2
S (w) and there

exists a state s′ ∈ QS such that s a−→2 s′ and (s′, t′) ∈ R.
2. whenever t a−→◦ t′ (for some t′ ∈ QT , a ∈ f◦T (w)), then one of the following holds:

– a ̸∈ fS(w)

– a ∈ fS(w) and there exists a state s′ ∈ QS such that s a−→ s′ and (s′, t′) ∈ R.
3. whenever s a−→ s′ (for some s′ ∈ QS , a ∈ fS(w)), then a ∈ fT (w), and there exists

a state t′ ∈ QT such that t a−→ t′ and (s′, t′) ∈ R.

As discussed earlier, Figure 3 shows that the further constraint imposed by Def-
inition 3 is not sufficient to achieve completeness of modal refinement. Figure 2 and
Figure 4 show that the additional constraint imposed by Definition 4 on the refinement
relation, when considered independently, is also not sufficient to achieve completeness.
Indeed, if we switch ⪯m with ⪯n in Figure 2, as showed in Figure 4, it would still hold
that Impln(S) ⊆ Impln(T ) and S ̸⪯n T , because S and T are not NMTS. In other
words, the example in Figure 2 proves that if non-deterministic MTS do not meet the
criteria to be classified as NMTS, then it is possible to build an example, as the one in
Figure 2, showing that both modal refinement and NMTS refinement are not complete.

In summary, the examples in Figure 2 and Figure 3 show that the constraints on
MTS and their refinement provided by Definition 3 and Definition 4 are both required
to achieve completeness. By either dropping the constraints on MTS (i.e., Definition 3)
or on their refinement (i.e., Definition 4), it is possible to demonstrate that the resulting
refinement relation is not complete. In Theorem 3, we will prove that the constraints
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Fig. 5. Two MTS S and T such that S ⪯m T , S ̸⪯n T . Furthermore, T ⪯m S and T ̸⪯n S. In
both directions, s a−→◦ s2, t a−→◦ t1, t1

b−→◦ t2, b ∈ fS(a) and s2 ̸ b−→

imposed by Definition 3 and Definition 4 are also sufficient to achieve completeness of
the refinement relation.

Figure 5 depicts another example showcasing the differences between ⪯m and ⪯n.
Consider the LTS IT obtained by switching all transitions of T (in Figure 5) to must.
Clearly, IT ⪯n T , but IT ̸⪯n S (note that this is not true for the case of ⪯m).

Due to the coinductive nature of Definition 3, similarly to the complexity of decid-
ing modal refinement or strong bisimulation, also the complexity of deciding an NMTS
refinement is polynomial, provided that the input includes the functions f2 and f◦.

Remark Note that as an alternative characterisation, the condition outlined in Defini-
tion 3 (namely, f2(w) ∩ f◦(w) ̸= ∅) can be omitted, at the cost of modifying the
refinement relation ⪯n to a new form, call it ⪯′

n, modified as follows. In ⪯′
n, whenever

a ∈ f2(w) ∩ f◦(w) for some a ∈ A, all transitions reachable via w and labeled with
a are treated as necessary, even if they are declared optional. We argue that while this
alternative characterisation would enable the inclusion of all MTS and not a limited sub-
set, it would introduce ambiguity. This is because it would permit to denote a necessary
transition δ as optional whenever there exists another necessary transition δ′ with the
same action as δ and reachable through the execution of the same sequence of actions.
Therefore, whenever in an MTS it holds that a ∈ f2(w) ∩ f◦(w) for some a ∈ A,
rather than considering all transitions reachable via w and labeled with a as necessary,
even if they are denoted as optional, we opt to exclude such MTS from consideration.

We show that ⪯n is a conservative extension of ⪯m.

Theorem 1. Let S and T be two NMTS. If S ⪯n T then S ⪯m T .

Proof. Let R be proving S ⪯n T . It holds that (s, t) ∈ R. Furthermore, for any
(s, t) ∈ R, by hypothesis there exists some w ∈ A∗

S such that s w−→ s and t
w−→ t.

Furthermore:

– whenever t a−→2 t′, it holds that a ∈ f2
S (w) (therefore a ∈ AS), s a−→2 s′ and

(s′, t′) ∈ R;
– whenever s a−→ s′ it holds that a ∈ fT (w) (therefore a ∈ AT ), t a−→ t′ and it holds

that (s′, t′) ∈ R. ⊓⊔

Consider Figure 3. Since S ̸⪯m T , by Theorem 1 it follows that S ̸⪯n T .
We now show the relations between the functions f2 and f◦ of two systems in

NMTS refinement relation.

Lemma 1. Let S and T be two NMTS such that S ⪯n T . For all w ∈ A∗
S such that

s
w−→ s, it holds that f◦S (w) ⊆ f◦T (w), f2

T (w) ⊆ f2
S (w) and f2

S (w) \ f2
T (w) ⊆

f◦T (w) \ f◦S (w).
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Proof. Each action AS appears in some transition in ∆S (there are no redundant el-
ements in AS). By hypothesis S ⪯n T and by point 3 of Definition 4 it holds that
AS ⊆ AT (we assume that all states are reachable, i.e., there are no redundant states).
We first prove that for all w ∈ A∗

S such that s w−→ s it holds f2
T (w) ⊆ f2

S (w). By contra-
diction, assume that there exists some w ∈ A∗

S such that s w−→ s and a ∈ f2
T (w)\f2

S (w).
Hence, by Definition 3 there exists a transition δ ∈ ∆2

T labelled with a for some t ∈ QT

source state of δ such that t w−→ t. By hypothesis, there must be some s ∈ QS such that
(s, t) ∈ R, where R is the NMTS refinement relation for S ⪯n T . By Definition 4 it
holds that s a−→2 s′ ∈ ∆S and a ∈ f2

S (w). We reached a contradiction.
We now show that for all w ∈ A∗

S such that s w−→ s it holds f◦S (w) ⊆ f◦T (w).
By contradiction, assume that there exists some w ∈ A∗

S with s
w−→ s and an action

a ∈ f◦S (w) \ f◦T (w). Hence, there exists a transition δ ∈ ∆S◦ reachable via w and
labelled with a. Let s be the source state of δ. By Definition 4, since AS ⊆ AT , for some
t ∈ QT it holds that t w−→ t and (s, t) ∈ R. By Definition 4 it holds that t a−→ t′ ∈ ∆T .
Since a ̸∈ f◦T (w), it must be the case that a ∈ f2

T (w), hence a ∈ f2
S (w). We reached a

contradiction.
Finally, we prove that for all w ∈ A∗

S such that s w−→ s it holds f2
S (w) \ f2

T (w) ⊆
f◦T (w) \ f◦S (w). Let a ∈ f2

S (w) \ f2
T (w). Since f2

S (w) ∩ f◦S (w) = ∅, we have
a ̸∈ f◦S (w). Moreover, there exists some transition s

a−→ s′ ∈ ∆S with s
w−→ s. By Def-

inition 4, for some t ∈ QT it holds that t w−→ t , (s, t) ∈ R, t a−→ t′ ∈ ∆T , a ∈ fT (w)
and (s′, t′) ∈ R. Since a ∈ f2

S (w) \ f2
T (w), it must be the case that a ∈ f◦T (w). ⊓⊔

We now show that, similarly to ⪯m, also ⪯n is a preorder.

Lemma 2. The relation ⪯n is a preorder.

Proof. Let S be an NMTS. Clearly, {(s, s) | s ∈ QS} shows that S ⪯n S. Let T and
U be two NMTS such that S ⪯n T and T ⪯n U .

We now prove that the relation R = {(s, u) | (s, t) ∈ RS⪯nT , (t, u) ∈ RT⪯nU , t ∈
QT } shows that S ⪯n U . Clearly (s, u) ∈ R. Whenever (s, u) ∈ R for some w ∈ A∗

S

where s
w−→ s and u

w−→ u then:

– if u
a−→2 u′, by (t, u) ∈ RT⪯nU it holds t

a−→2 t′ and (t′, u′) ∈ RT⪯nU . By
(s, t) ∈ RS⪯nT it holds s a−→2 s′, (s′, t′) ∈ RS⪯nT . Therefore, (s′, u′) ∈ R;

– if u a−→◦ u′ by (t, u) ∈ RT⪯nU we distinguish two cases:
• either a ̸∈ fT (w). By (s, t) ∈ RS⪯nT and Lemma 1 (i.e., fS(w) ⊆ fT (w)), it

follows a ̸∈ fS(w);
• a ∈ fT (w), t

a−→ t′ and (t′, u′) ∈ RT⪯nU . By (s, t) ∈ RS⪯nT either, a ̸∈
fS(w) or a ∈ fS(w) s

a−→ s′, (s′, t′) ∈ RS⪯nT and (s′, u′) ∈ R;
– if s a−→ s′ by (s, t) ∈ RS⪯nT it follows that t a−→ t′ and (s′, t′) ∈ RS⪯nT . By

(t, u)∈RT⪯nU it follows that u a−→ u′ and (t′, u′)∈RT⪯nU . Hence (s′, u′)∈R.
⊓⊔

Given an MTS S we denote with Impln(S) the set of LTS I such that I ⪯n S. The
soundness of ⪯n is straightforward.
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Theorem 2 (⪯n soundness). Let S and T be two MTS. If S ⪯n T then Impln(S) ⊆
Impln(T ).

Proof. Pick an implementation I ⪯n S, since S ⪯n T by transitivity I ⪯n T . ⊓⊔

Before proceeding to prove the completeness of ⪯n, we establish two auxiliary
lemmata. The first lemma demonstrates that a refinement can occur by either asserting
(i.e., switching to necessary) or removing a set of optional transitions that are reachable
through the same sequence of actions and share the same action label.

Lemma 3. Let S be an NMTS and let S′ = (QS′ , AS′ , s,∆S′ , f2
S′ , f◦S′) be obtained

from S as follows:

– there exists a sequence w ∈ A∗
S such that s w−→ s for some s ∈ QS and

– ∀w′ ∈ A∗
S such that (i)∃s′ ∈ QS .s

w−→ s′ and (ii) ∀s′′∈QS .s ̸
w−→ s′′ ∨ s ̸ w

′

−→ s′′, it
holds that f2

S′(w′) = f2
S (w′) and f◦S′(w′) = f◦S (w′) and

– there exists a ∈ f◦S (w) such that a ̸∈ f◦S′(w) and either a ∈ f2
S′(w) (assert action)

or a ̸∈ f2
S′(w) (remove action).

Furthermore QS′ = {s | s ∈ QS , s is reachable in S′} and AS′ = {a | a ∈ AS ,
(s, a, s′) ∈ ∆S′ for some s, s′ ∈ QS′}. It holds that S′ ⪯n S.

Proof. Let R = {(s, s) | s ∈ QS′}. We show that R proves S′ ⪯n S. Trivially
(s, s). Furthermore, for all couples (s, s) ∈ R such that s ̸ w−→ s the outgoing transitions
of s are identical in S and S′ and the conditions in Definition 4 hold trivially. When
(s, s) ∈ R is such that s w−→ s it holds that:

– whenever s a′

−→2 s′ ∈ ∆S (a′ ∈ f2
S (w)), we need to show that a ̸= a′, otherwise,

in case of remove, we would have a ̸∈ f2
S′(w). Since a ∈ f◦S (w) and f◦S (w) ∩

f2
S (w) = ∅, it follows that a ̸= a′, a′ ∈ f2

S′(w), s
a′

−→2 s′ ∈ ∆S′ and (s′, s′) ∈ R;

– whenever s a′

−→◦ s′ ∈ ∆S (a′ ∈ f◦S (w)), if a ̸= a′ then a ∈ f◦S′(w), s
a′

−→◦ s′ ∈
∆S′ and (s′, s′) ∈ R. Otherwise, a ̸∈ f◦S′(w);

– whenever s a′

−→ s′ ∈ ∆S′ (a′ ∈ fS(w)), then a′ ∈ fS(w), s
a′

−→ s′ ∈ ∆S and
(s′, s′) ∈ R. ⊓⊔

The second lemma shows the conditions under which it is possible to switch a set of
necessary transitions (whose source state is reachable by the same sequence of actions)
to optional ones, whilst preserving NMTS refinement.

Lemma 4. Let S and T be two NMTS such that S⪯nT , where for some s ∈ QS there
exists a sequence w∈A∗

S .s
w−→ s such that a∈f2

S (w) \ f2
T (w). It holds S′⪯nT , where

S′=(QS , AS , s,∆S′ , f2
S′ , f◦S′) and:

– ∀w′ ∈ A∗
S such that (i)∃s′ ∈ QS .s

w−→ s′ and (ii) ∀s∈QS .s ̸
w−→s∨ s ̸ w

′

−→s, it holds
that f2

S′(w′) = f2
S (w′) and f◦S′(w′) = f◦S (w′) and

– f2
S′(w) = f2

S (w) \ {a} and f◦S′(w) = f◦S (w) ∪ {a}.
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Proof. Firstly, since S ⪯n T , by Lemma 1, for all w′ ∈ A∗
S such that s w′

−→ s, it holds
f2
S (w′) \ f2

T (w′) ⊆ f◦T (w′) \ f◦S (w′). Therefore, by hypothesis, a ∈ f◦T (w). Assume
that R proves S ⪯n T . Then, we show that the relation R also proves S′ ⪯n T . Firstly,
(s, t) ∈ R. For all (s, t) ∈ R such that s ̸ w−→ s and t ̸ w−→ t, we have that the outgoing
transitions of s in S′ are identical to those in S, and the conditions in Definition 4 hold
trivially. Otherwise, for all (s, t) ∈ R such that s w−→ s and t

w−→ t it holds:

1. Whenever t a′

−→ t′ ∈ ∆T :
(a) if a′ ∈ f2

T (w), by hypothesis it holds a′ ̸= a. Since (s, t) ∈ R, it holds

a′ ∈ f2
S′(w), s

a′

−→2 s′ ∈ ∆S′ and (s′, t′) ∈ R;
(b) if a′ ∈ f◦T (w) and a′ ∈ fS(w), then a′ ∈ fS′(w) and by (s, t) ∈ R, it holds

s
a′

−→ s′ ∈ ∆S′ and (s′, t′) ∈ R;
(c) if a′ ∈ f◦T and a′ ̸∈ fS(w), then by construction also a′ ̸∈ fS′(w);

2. whenever s a′

−→ s′ ∈ ∆S′ , then by construction a′ ∈ fS(w), thus s a′

−→ s′ ∈ ∆S ,

and since (s, t) ∈ R, we have t
a′

−→ t′ ∈ ∆T and (s′, t′) ∈ R. ⊓⊔

We are now ready to prove the main result of this section, the completeness of ⪯n.

Theorem 3 (⪯n completeness). Impln(S) ⊆ Impln(T ) implies S ⪯n T .

Proof. Let IS = (QS , AS , s,∆IS , f
◦
IS
, f2

IS
), where for all w ∈ A∗

S .f
2
IS
(w) = fS(w),

f◦IS = ∅ be the implementation obtained from S by repeatedly applying until exhaustion
the assert operation from Lemma 3. By Lemma 3, IS ⪯n S, therefore IS ∈ Impln(S).
By hypothesis, IS ⪯n T . Note that IS is an implementation since ∆◦

IS
= ∅, whilst

∆2
IS

= ∆S .
Let I ′S = (Q′

S , A
′
S , s,∆IS′ , f

◦
I′
S
, f2

I′
S
) be the implementation computed from S by

repeatedly applying until exhaustion the remove operation from Lemma 3. It holds that
for all w ∈ A∗

S , f2
I′
S
(w) = f2

S (w), f◦I′
S
(w) = ∅, ∆◦

IS′ = ∅, ∆2
IS′ = ∆2

S . By Lemma 3,
it holds that I ′S ⪯n S, therefore I ′S ∈ Impln(S). By hypothesis I ′S ⪯n T .

For any w ∈ A∗
S such that s w−→ s by Lemma 1 and f2

T (w) ⊆ f2
I′
S
(w) = f2

S (w) it
holds f◦S (w) ∩ f2

T (w) = ∅.
If for all w ∈ A∗

S such that s w−→ s it holds f◦S (w) = ∅, then since f◦S (w)∩f2
S (w) =

∅ we have that S = IS and the thesis follows. Hence, assume that for some s ∈ QS

such that s w−→ s, w ∈ A∗
S , it holds f◦S (w) ̸= ∅. We perform two nested iteration loops.

In the external loop, we iterate on the states in the set P = {s | s∈QS , w∈A∗
S , s

w−→ s,

f◦S (w) ̸=∅ }. We start by selecting an s1 ∈ QS and w1 ∈ A∗
S such that s w1

−−→ s1 and
f◦S (w1) ̸= ∅. In the internal loop, for each selected state, we iterate on the actions a ∈
f◦S (w1). We pick an action a ∈ f◦S (w1), thus a ̸∈ f2

T (w1) and a ∈ f2
IS
(w1). From IS ,

T , and a by applying Lemma 4 we obtain an NMTS S1
1 = (QS , AS , s,∆S1

1
, f2

S1
1
, f◦

S1
1
)

such that for all w′ with s ̸ w
′

−→ s1 it holds f2
S1
1
(w′) = f2

IS
(w′), f◦

S1
1
(w′) = f◦IS (w′) = ∅.

Furthermore, f2
S1
1
(w1) = f2

IS
(w1)\{a}, f◦

S1
1
(w1) = {a}. By Lemma 4, since IS ⪯n T ,

a ∈ f2
IS
(w1) \ f2

T (w1), it holds S1
1 ⪯n T .
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We re-iterate (internal iteration) and pick the next action. From S1
1 , T , and an action

b ∈ f◦S (w1), b ̸∈ f2
T (w1) such that b ̸= a, hence b ∈ f2

S1
1
(w1), we build an NMTS

S2
1 = (QS , AS , s,∆S2

1
, f2

S2
1
, f◦

S2
1
) such that for all w′ with s ̸ w

′

−→ s1 it holds f2
S2
1
(w′) =

f2
S1
1
(w′), f◦

S2
1
(w′) = f◦

S1
1
(w′), and f2

S2
1
(w1) = f2

S1
1
(w1) \ {b}, f◦

S2
1
(w1) = f◦

S1
1
(w1) ∪

{b} = {a, b}. By Lemma 4, since S1
1 ⪯n T , b ∈ f2

S1
1
(w1) and b ̸∈ f2

T (w1), it holds
S2
1 ⪯n T .

We re-iterate (internal iteration) for all actions in f◦S (w1). We obtain an NMTS
Sn
1 = (QS , AS , s,∆Sn

1
, f2

Sn
1
, f◦Sn

1
) where |f◦S (w1)| = n such that f2

Sn
1
(w1) = f2

S (w1),
f◦Sn

1
(w1) = f◦S (w1).
We repeat again the (external) iteration for all states in P . At the second (external)

iteration, we pick a state s2 ∈ P and a sequence of actions w2 ∈ A∗
S such that s w2

−−→ s2,

f◦S (w2) ̸= ∅ and s ̸ w
2

−−→ si for all i < 2. If this last condition is not satisfied (i.e., for

all w2 ∈ A∗
S it holds that s w2

−−→ si for some i < 2) then we skip this iteration and
continue with the next (the external counter is incremented nonetheless). We pick an
action a ∈ f◦S (w2), thus a ̸∈ f2

T (w2) and a ∈ f2
Sn
1
(w2) = f2

IS
(w2). From Sn

1 , T , and a

we build an NMTS S1
2 = (QS , AS , s,∆S1

2
, f2

S1
2
, f◦

S1
2
) such that for all w′ with s ̸ w

′

−→ s2

it holds f2
S1
2
(w′) = f2

Sn
1
(w′), f◦

S1
2
(w′) = f◦Sn

1
(w′), and f2

S1
2
(w2) = f2

Sn
1
(w2) \ {a},

f◦
S1
2
(w2) = {a}. By Lemma 4, since Sn

1 ⪯n T , a ∈ f2
Sn
1
(w2) and a ̸∈ f2

T (w2), it holds
S1
2 ⪯n T . At the end of the second (external) iteration we obtain an NMTS Sm

2 where
m = |f◦S (w2)| such that f2

Sm
2
(wi) = f2

S (wi), f◦Sm
2
(wi) = f◦S (wi) for i ∈ {1, 2}.

Every subsequent (external) iteration starts by reusing the last NMTS computed at
the previous (external) iteration. Let o = |P | (recall that we incremented the external
counter also when skipping some element of P ), and p = |f◦S (wo)|, where wo is the
trace selected at the last, o-th iteration of the procedure. The returned NMTS Sp

o =
(QS , AS , s,∆Sp

o
, f2

Sp
o
, f◦

Sp
o
) is such that for all w ∈ A∗

S , f2
Sp
o
(w) = f2

S (w), f◦
Sp
o
(w) =

f◦S (w), and by Definition 3, ∆Sp
o
= ∆S . Therefore, Sp

o = S. It follows that S ⪯n T .
⊓⊔

A practical consequence of Theorem 3 is that the complexity of deciding Impln(S) ⊆
Impln(T ) is equivalent to the complexity of deciding S ⪯n T .

4 Non-determinism of NMTS is Non-reducible

In the previous section, we showed how the further constraints imposed on MTS and
their refinement (i.e., Definition 3 and Definition 4) are necessary and sufficient to ob-
tain a sound and complete refinement relation. An important challenge discussed in [12]
is to argue that the considered set of implementations is also interesting from a practical
point of view (i.e., no valuable implementation is disregarded by ⪯n).

In this section we discuss a property concerning non-deterministic optional tran-
sitions that is violated by all implementations accepted by ⪯m and discarded by ⪯n.
MTS allow to express transitions that must be enabled in all implementations. In this
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Fig. 6. From left to right, the NMTS modelling a coin toss game, an NMTS implementation
allowing infinite plays, an NMTS implementation allowing one play.

case, the presence of non-determinism is unaltered in all implementations, because
must transitions cannot be disabled. Conversely, optional transitions can be arbitrar-
ily disabled, and in MTS the non-determinism in optional branches can be reduced or
fully resolved. However, the standard semantics of MTS do not provide the means to
specify actions that are susceptible to both enablement and disablement, yet inevitably
yield non-deterministic outcomes. This issue arises since any action capable of being
deactivated (i.e., an optional action) also opens the possibility of diminishing its as-
sociated non-determinism. We term the property stating that all optional actions in an
MTS can be enabled or disabled, while retaining their irreducible non-determinism, as
non-reducible non-determinism.

In formal specifications expressed as MTS, non-determinism is commonly used
to express under-specifications. This variant of non-determinism does not necessitate
preservation across all implementations of an MTS. Consequently, modal refinement
can reduce the non-determinism to fully determine a specification, i.e., modal refine-
ment does not satisfy the non-reducible non-determinism property (see, e.g., Figure 5).
There exists a distinction between non-determinism present in all implementations
(as showed in the next example) and the non-determinism that characterizes under-
specifications. However, both these forms of non-determinism are expressed in an iden-
tical way within MTS. This inherent ambiguity contributes to the incompleteness of
modal refinement. To address this, we assume that non-deterministic behaviour of MTS
is always preserved across all implementations, thereby eliminating non-determinism as
a source of under-specification. Consequently, NMTS refinement satisfies the property
of non-reducible non-determinism, whilst this is not the case for modal refinement.

In the following, we discuss an example showcasing the need to establish the non-
reducible non-determism property. Consider the NMTS in Figure 6 (left). This NMTS
serves as a model for a coin toss game. We visualize the actions of this NMTS as buttons
that light up and can only be pressed when the respective action becomes enabled. Upon
pressing an enabled button, the associated action is carried out.

Initially, only one action, namely toss, is enabled. Upon executing the toss action,
the outcome can result in either head or tail. If the outcome is head, the win action be-
comes enabled, while in the case of tail, the lose action is enabled. Upon the execution
of either win or lose, the NMTS reverts back to its initial state. The NMTS does not
specify whether the coin is biased.

The toss action exemplifies the property of non-reducible non-determinism. In
essence, any implementation that enables the toss action must consistently manifest
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the same non-deterministic behavior. Notably, the toss action can be deactivated. An
implementation that restricts the coin’s outcomes solely to either heads or tails is con-
sidered invalid. However, under the standard modal refinement ⪯m, such invalid im-
plementations are deemed acceptable. Figure 6 (center and right) depicts two valid im-
plementations of the NMTS. In one, an indefinite number of plays are feasible, while
in the other, only a single play is permitted. Both these implementations are preserving
the non-determinisc nature of the toss action.

The introduced NMTS refinement (see Definition 4) exclusively permits implemen-
tations like the one showcased in Figure 6 whilst forbidding invalid implementations as
those forcing the coin to only return either head or tail. Clearly, by relaxing the con-
straints in either Definition 3 or Definition 4, it is possible to define systems whose im-
plementations may violate the non-reducible non-determinism property (see Section 3).

5 Related Work

MTS and their dialects are widely studied in the literature. Given two MTS S and T , S
is a thorough refinement of T whenever the set of implementations of S is included in
the set of implementations of T . In [12], four different refinement relations are studied
extensively, including thorough refinement, and an MTS is said to be consistent if it
admits at least one non-empty implementation. MTS that allow inconsistent specifica-
tions, where transitions can be necessary but not permitted, are called Mixed Transition
Systems [8,1].

In [7, Corollary 4.6], it is proved that, similarly to modal refinement, thorough re-
finement is decidable in polynomial time for deterministic MTS, whilst thorough re-
finement is decidable in EXPTIME for non-deterministic MTS. The authors describe
a tableau-style algorithm [7, Section 6] for deciding thorough refinement, which runs
in exponential time in the worst case. While thorough refinement does not always im-
ply modal refinement of MTS, in [6, Lemma 3.6] it is proved that thorough refinement
implies modal refinement of a deterministic overapproximation of (non-deterministic)
MTS.

In [12, Theorem 3], it is proved that any alternative notion ⪯alt of modal refinement
that is both sound and complete cannot be decided in polynomial time unless P=NP.
This is obtained by reducing the problem of deciding thorough refinement to the prob-
lem of deciding whether a 3-DNF formula is a tautology. However, in this case, thor-
ough refinement considers all implementations obtained through modal refinement ⪯m,
and not only those obtained using the alternative notion ⪯alt. The problem of proposing
an alternative notion of modal refinement that is both sound and complete with respect
to its set of implementations is left open [12]. The main challenge is to argue that the
considered set of implementations is also interesting from a practical point of view. In
this paper, we addressed this challenge and discussed how all implementations retained
by ⪯m and discarded by ⪯n are violating the non-reducible non-determinsm property
(see Section 4).

Parametric MTS (PMTS) [5,11,4] were introduced to enhance the expressiveness
of MTS. PMTS are LTS equipped with an obligation function Φ, which is a parametric
Boolean proposition over the outgoing transitions from each state. The satisfying as-
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signments of Φ yield the allowed combinations of outgoing transitions. When Φ is not
parametric, PMTS are called Boolean MTS (BMTS). PMTS are capable of expressing,
among others, persistent choices (i.e., once some outgoing transition is enabled, it must
be enabled also everywhere else). It is shown that MTS are a special case of BMTS,
and that BMTS are a special case of PMTS. Rather than extending MTS, in this pa-
per we presented a subset of MTS for which a sound and complete refinement relation
is proposed. Thorough refinement is computable in NEXPTIME for both BMTS and
PMTS, while we show in this paper that thorough refinement is polynomial for NMTS.
Modal refinement of MTS, BMTS, and PMTS is not complete, whereas we show in
this paper that NMTS refinement is complete (Lemma 3). The deterministic variants
of PMTS and BMTS are called, respectively, DPMTS and DBMTS. When restricting
to only deterministic systems, similarly to NMTS, also DBMTS modal refinement is
complete, whereas DPMTS modal refinement is still not complete.

In [2,3], Coherent MTS (CMTS) are introduced as a model for software product
lines (SPL). In CMTS, the features of an SPL are identified with the actions of an MTS.
Therefore, in CMTS an action cannot be the label of both a necessary and an optional
transition, since a feature is either mandatory or optional. The notion of ‘consistent’
product derivation requires that whenever an optional transition is discarded in an im-
plementation, all transitions sharing the same label must also be discarded. This consis-
tency requirement mimicks the aforementioned persistency of PMTS [5,11,4] and it is
not to be confused with the above mentioned notion of consistency as studied in [12].
In [2] the refinement of CMTS is presented, which is demonstrated to be both sound
and complete in relation to its set of implementations.

CMTS and their refinement [2] are an important milestone in addressing the long-
standing problem proposed at CONCUR 2007 [12]. NMTS and CMTS are currently
the only available subsets of MTS that possess the capacity to preserve both non-
deterministic specifications and completeness of the refinement relation. In contrast, all
the other MTS extensions mentioned above do not possess completeness of refinement
in the case of non-deterministic specifications. In CMTS, by interpreting SPL features
as MTS actions, ‘consistency’ and ‘coherence’ are enforced globally across all system
states. NMTS are a generalization of CMTS. In NMTS, the SPL-derived limitations are
discarded (i.e., actions are not interpreted as features of an SPL). The constraints that in
CMTS are applied globally, in NMTS are instead applied exclusively to the set of states
reachable through the same sequence of actions. Consequently, NMTS strictly include
CMTS while introducing a refinement concept that remains sound and complete. Dif-
ferently from the restrictions imposed by CMTS and their refinement, in Section 3,
we identified the restrictions imposed by NMTS and their refinement as necessary to
achieve completeness in the refinement relation. Furthermore, in Section 4 we presented
a property that is violated by all implementations discarded by the NMTS refinement
relation but accepted through modal refinement.

6 Conclusion

We have introduced a subset of Modal Transition Systems (MTS) called Non-reducible
MTS (NMTS) and their refinement relation (⪯n).
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In NMTS, states reached through the execution of identical action sequences are
related. Outgoing transitions from related states that are labeled by the same action also
exhibit the same modality. Disabling an optional transition within a refinement results
in the deactivation of all transitions that share both the same action label and are outgo-
ing from related states. We showed that these two conditions are necessary to achieve
completeness. If either of these conditions is relaxed, it becomes possible to construct
two systems that are not in refinement relation, yet their respective sets of implemen-
tations still maintain a relation of set inclusion. We proved that ⪯n is both sound and
complete with respect to its set of implementations. By interpreting the optional non-
determinism present in MTS as non-reducible (i.e., non-deterministic behaviour within
MTS is consistently maintained in all implementations), we have showed that all im-
plementations permitted by ⪯m (modal refinement) but rejected by ⪯n are considered
invalid.

Future work In Section 4, we investigated optional non-determinism of MTS, which
can be interpreted in two distinct ways: as either under-specifications or optional actions
with irreducible non-determinism across all implementations. To resolve this ambigu-
ity and the challenge posed by [12], we opted to associate the latter interpretation with
non-deterministic optional actions. However, this decision brings forth a new challenge:
introducing the means to express under-specifications while preserving the complete-
ness of the refinement relation requires further investigations.
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