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Abstract—The transition from Cloud Computing to a Cloud-
Edge continuum brings many new exciting possibilities for
interactive and data-intensive Next Generation applications, but
as many challenges. Approaches and solutions that successfully
worked in the Cloud space now need to be rethought for the
Edge’s distributed, heterogeneous and dynamic ecosystem. The
placement of application images needs to be proactively devised
to reduce as much as possible the image transfer time and
comply with the dynamic nature and strict requirements of the
applications. To this end, this paper proposes an approach based
on the combination of Graph Neural Networks and actor-critic
Reinforcement Learning. The approach is analyzed empirically
and compared with a state-of-the-art solution. The results show
that the proposed approach exhibits a larger execution times but
generally better results in terms of application image placement.

Index Terms—Edge Computing, Cloud Computing, Compo-
nent Placement, Proactive Image Placement, Graph Neural
Networks

I. INTRODUCTION

The emergence of data-intensive and latency-aware (i.e.,
NextGen) applications is one of the primary drives for the
diffusion of Edge Computing [1]–[3]. The promise of Edge
computing is to facilitate the adoption of utility computing
for those applications left behind by the Cloud computing
revolution by enabling the allocation of applications close to
users and data sources, addressing concerns such as latency,
battery life, bandwidth costs, security, and privacy [4].

A microservice architecture typically characterizes these
applications, which are composed of independently deployable
and loosely coupled services [5], [6]. This organization enables
the on-demand and dynamic behavior to support the movement
of data and users. Such property implies that a microservice
must be switched on only when a certain number of users are
accessing it from the area around a specific edge resource.

Therefore, Edge devices are requested to run many mi-
croservices over time. As a direct consequence, it emerges the
need for resources at the Edge to access the sets of images
of microservices (regardless of their nature, e.g., containers,
Unikernels, etc.) to create running application instances in
a proactive fashion. Providing access to the images presents
several challenges: (i) limiting the transfer time to comply
with the dynamic behavior of the application, (ii) limiting the
bandwidth cost to download the image, and (iii) complying
with the possibly limited storage requirements of the edge

resources. These challenges can be further exacerbated when
the number of edge devices is high.

As a consequence, the download of images from a cen-
tralized repository is not always an option, due to possible
bandwidth costs and transfer time. In this paper, we advocate
for a distributed approach in which images are replicated
in a subset of edge resources. In particular, we consider an
approach that separates Edge resource into distinct groups,
and assign an image to each group. The goal is to balance
the storage usage with the latency induced by image transfer.
Ideally, such groups of Edges should be (auto-)determined
(and sized), depending on the actual availability of resources
and the requirements of the application instances to be run
(e.g., size, latency requirements, etc.).

To this end, we model the image placement to a Minimum
Vertex Cover (MVC) on the network that connects the Edge
nodes. We then propose GNOSIS, a learning approach based
on the combination of Graph Neural Networks and Deep
Reinforcement Learning. This solution combines the repre-
sentation power of a Graph Neural Network (GNN) approach
with the ability of actor-critic Reinforcement Learning to
provide strong solutions. We extensively analyzed GNOSIS
with different network topologies and sizes, and we compare
it with a greedy approach at the state of the art [7]. The
Greedy algorithm is a few orders of magnitude faster with
all network configurations. However, the results show that
GNOSIS outperforms the greedy algorithm in terms of vertex
cover quality for random and small-world networks, whereas
it falls behind for preferential attachment networks.

II. RELATED WORK

Optimally placing application images at the Edge is a
relevant problem [8], [9] in the dynamic and heterogeneous
environment of the Cloud-Edge Continuum. To face this issue,
some solutions are based on optimization techniques, like Inte-
ger Programming [10], [11], Markov Decision Processes [12]
or stochastic optimization [13].

Apart from the techniques used to formulate the problem,
many proposals consider that the main goal of this optimiza-
tion should be aimed to minimize the latency experienced by
the users of the services that have to be placed in the system. In
Rossi et al. [14], the authors exploit Reinforcement Learning
techniques for developing an extension of Kubernetes able to



deploy and replicate delay-sensitive containerized services in
a geographically distributed system. Zavodovski et al. [15]
propose ICON, a solution where autonomous containers col-
laborate to find the best (in terms of latency) allocation of their
services. Other solutions of this kind are presented in [16]–
[18].

A relevant point is that many of such works are based on
a reactive placement of the services, i.e. placement strategies
are exploited after one or more services have been requested.
However, stringent Quality of Service (QoS) constraints cou-
pled with the functional complexity of these solutions risk
to make them not adequate for the needs of the Cloud-Edge
Continuum. For this reason, in this work, we propose a novel
proactive approach. Only few other approaches adopt this
strategy. In [19], the authors propose a proactive mechanism
based on Reinforcement Learning to optimize microservice
placement and migration in the context of Mobile Edge
Computing (MEC). Their approach is designed to handle the
dynamic nature of the environment by anticipating future
needs and adjusting placement and migration decisions ac-
cordingly. Deng et al. [20] proposes a proactive application
deployment system consisting of three modules. An incentive
module uses a Spontaneous Edge deployment algorithm to
allow edge servers to compete in a two-stage game to win
deployment rights and get paid. The other two modules adjust
service prices and deployment intentions to maximize profits.
Gonçalves et al. [21] propose a solution for a system where
resource-constrained mobile devices have high mobility. Their
proposed model is based on mobility predictions that induce a
proactive migration of virtual machines to provide low-latency
access to resources at the edge.

All of the aforementioned solutions represent rather specific
solutions for determined scenarios. A peculiar aspect that is
not considered is the impact that the topology of the network
could have on the final results. To overcome this issue, we
propose a solution that is based on a learning approach that is
able to adapt to the shape of the connections existing between
entities at the edge. To best face this problem, the proactive
placement of application images problem is formulated as a
Minimum Vertex Cover problem. To the best of our knowl-
edge, this work is the first one to propose such a model for
proactive placement.

III. PROBLEM FORMULATION

A. Minimum Vertex Cover and Proactive Image Placement

Vertex Cover (VC) is a category of NP-complete problems
that describe the need to find paths in a vertex in order to
”cross” all available edges in it [22]. The Minimum Vertex
Cover (MVC) is a special category of VC problems that
require us to find the optimal combination of edges that allow
us to ”cross” all of the edges in the vertex. In order to
understand MVC a mathematical representation may provide
more insight.

So, for the classic VC we can say that for an un-directed
graph G = (V,E), one solution of the VC problem would
consist of a subset of vertices S ⊆ V which ensures that

u ∈ S or v ∈ S, or both for every edge (u, v) ∈ E. This
means that one vertex cover, which is one possible solution to
the VC problem, is a set of vertices that includes all edges in
E [23]. If values are added to the edges or vertices and the
criteria of minimizing the total values in the subset S is added
to the problem, then we are transitioning from a VC problem
to an MVC problem.

The Proactive Image Placement problem can be modelled
into an MVC problem by representing the network as the graph
G. Each v ∈ V is a node that either holds, requests, or is
not interested in the application image we are trying to place.
Each e ∈ E represents a connection between two nodes that
is assigned an available bandwidth. The MVC problem, in
this form, is trying to identify the subset S ⊆ V which is, in
essence, a list of nodes that need to hold the image in order
to minimize the data transfers in the network or/and the disk
space used.

B. Set Cover Problem

By introducing a more clearly defined problem formulation
and constraint we can create a set cover problem that describes
the problem of proactive image placement in greater detail.
The problem is the identification of the nodes on which one
or more replicas of the application image must be placed, in
order to achieve the following constraint for all nodes v, while
minimizing the cost function for the whole network.

The constraint can be defined as Limage/Wsd < T , where
Limage is the length of the image in bytes, the Wsd is the
available bandwidth in the connection between source s and
destination d and T is the time duration after which the image
will be needed in the destination. The cost function can be
defined as F (T, L(image), Rs) where T is the time threshold
for the image transfer, L(image) is the length of the image
in bytes and Rs is the cost of storage space in node s. A
possible solution DPi to the problem is a set of nodes that
can hold the application image we are trying to place. Its total
cost TCi is calculated by the sum of the costs provided by
the cost function for each node s that is included in DPi.

The problem can be defined in a mathematical fashion using
the function:

Limage/Wsd < T | ∃s ∈ DPi,∀d ∈ V (1)

For the solution i which is defined as:

DPi = [Node0, Node1, . . . , Nodes] and (2)

TCi =
∑
s

F (Limage, Cs, Rs) | ∀s ∈ DPi (3)

C. Optimization Problem

The minimum vertex cover problem we defined can be
converted into an optimization problem in order to fit into
more optimization algorithms and methodologies. In order to
convert it we need to define two things; an objective function
and a set of constraints. Every optimization problem can be
clearly defined using these two parts.

A useful tool in the definition of the necessary functions is
the definition of a new set of binary values Av∀v ∈ V where



Av ∈ {0, 1}. These values are equal to 1 if the relevant node
v holds a replica of the image or 0 if it doesn’t. This enables
us to define a constraint that forces the total transfer time for
all destination nodes d to be greater than zero, ensuring that
the destination nodes are getting the image as follows:∑

n

(Av ∗ Limage/Wvd) > 0 | ∀v ∈ V,∀d ∈ D (4)

,where Limage is the length of the image in bytes, Wvd is the
available bandwidth in the connection between source node v
and destination node d and D is the set of destination nodes
that request the image.

The objective function needs to take into consideration both
the total transfer time of data inside the network and the
amount of space being occupied by replicas of the image, as
discussed in the minimum vertex cover problem formulation.
Since it is impossible to define a constraint that forces the time
threshold limitation for each data transfer we are integrating
the transfer time to the objective function in order to achieve
the least possible total transfer time, limiting as much as
possible the violations to the time threshold. This means that
the objective function would take the following form:

min(
∑
n

(An ∗ Limage) +
∑
n

An ∗ Limage

Wnd
)

An ∈ {0, 1},∀n ∈ N, ∀d ∈ D (5)

The problem that arises in this case is that the two factors
of this objective function; the amount of space being occupied
and the total transfer time, are using different scales. The
space is calculated in gigabytes or even terabytes while the
time is calculated in milliseconds or seconds. This causes an
imbalance since a slight difference in the first scale would
greatly affect the function while the same change at the second
scale would have minimal effect. To counteract this effect we
decided to remove the Limage value from the first scale, taking
into consideration only the total number of nodes that hold a
replica of the image and using this number as a weight on the
total transfer time. The adjusted function takes the following
form:

min(
∑
n

An +
∑
n

An ∗ Limage

Wnd
)

An ∈ {0, 1},∀n ∈ N, ∀d ∈ D (6)

IV. THE GNOSIS APPROACH

The GNOSIS approach to solving the MVC problem that
was explored in the previous section is based on the use of
Graph Neural Networks & Deep Reinforcement Learning in
order to perform combinatorial optimization.

A. Graph Neural Networks

Graph Neural Networks (GNNs) are a type of neural net-
work that operate on graph-structured data, allowing for the
learning of node and graph-level representations. They can be
used for a variety of tasks, including node classification, graph
classification, link prediction and accurate resource usage

prediction [24]. Here we will focus on explaining GNNs for
graph-level representations.

Let us consider an undirected graph G = (V,E), where V
is the set of nodes and E is the set of edges. The graph can
be represented by an adjacency matrix A ∈ Rn×n, where n is
the number of nodes. The elements of A denote the presence
or absence of edges between nodes, such that Aij = 1 if there
is an edge between nodes i and j, and Aij = 0 otherwise. In
addition, we assume that each node i has an associated feature
vector xi ∈ Rd, where d is the number of features.

The goal of GNNs is to learn a function that maps the
graph G and its associated node features xii∈V to a vector
representation of the entire graph. This can be achieved by
defining a sequence of neural network layers, each of which
aggregates information from neighboring nodes and updates
the node representations.

At each layer k, the node representations are updated
according to the following formula:

h
(k)
i = σ

 ∑
j∈N (i)

1

cij
W (k)h

(k−1)
j + b(k)

 (7)

,where h
(k)
i is the updated representation of node i at layer

k, N (i) is the set of neighboring nodes of node i, cij is a
normalization constant, W (k) and b(k) are the trainable weight
matrix and bias term at layer k, and σ is an activation function
such as the rectified linear unit (ReLU).

After K layers, the final representation of the graph can
be obtained by applying a readout function to the node
representations, such as summation or max-pooling:

hG = ρ

(∑
i∈V

h
(K)
i

)
(8)

,where hG is the final representation of the graph and ρ is the
readout function.

The GNN is trained by minimizing a loss function that
depends on the final graph representation and the true label
or target associated with the graph, using backpropagation
and stochastic gradient descent. GNNs allow for the learn-
ing of graph-level representations by recursively aggregating
information from neighboring nodes through multiple layers
of neural network operations. This approach can be used
for a variety of tasks, including combinatorial optimization
problems.

B. The Actor-Critic Algorithm

Actor-critic is a class of reinforcement learning algorithm
that combines the advantages of both policy-based and value-
based methods. It consists of two neural networks: an actor
network, which learns the policy, and a critic network, which
estimates the value of the policy.

When leveraging temporal difference (TD) learning ap-
proaches, the critic network learns to estimate the expected
cumulative reward by iteratively updating its value function
based on the observed rewards. Specifically, at each time step



t, the critic updates its value estimate Vϕ(st) using the TD
error:

δt = Rt + γVϕ(st+1)− Vϕ(st) (9)

,where Rt is the observed reward at time step t, γ is the
discount factor, and st and st+1 are the current and next states,
respectively. The TD error represents the difference between
the predicted reward and the actual reward, and is used to
update the critic’s value estimate:

Vϕ(st)← Vϕ(st) + αδt (10)

,where α is the corresponding learning rate.
In the actor-critic algorithm with TD learning, the actor net-

work learns the policy by maximizing the expected cumulative
reward, which is estimated using the critic’s value function.
The policy update is based on the advantage function At,
which represents the advantage of taking action at in state
st compared to following the current policy. The advantage
function is defined as:

At = δt + γVϕ(st+1)− Vϕ(st) (11)

Finally, the policy update is then given by:

θ ← θ + β∇θ log πθ(at|st)At (12)

,where θ are the parameters of the actor network, β is the
learning rate, log πθ(at|st) is the log-probability of taking
action at in state st according to the policy, and ∇θ is the
gradient operator.

C. Graph Neural Networks & Deep Reinforcement Learning
for Combinatorial Optimization

Actor-critic algorithms have shown promising results in
solving combinatorial optimization problems. By combining
actor-critic with GNNs, we can leverage the power of GNNs
to represent graph structures and use actor-critic RL to provide
solutions.

One may represent a combinatorial optimization problem as
a graph G = (V,E), where V is the set of vertices and E is
the set of edges. Each vertex represents a decision variable,
and each edge represents a constraint between two decision
variables. Let x ∈ 0, 1n be a binary decision vector, where
n = |V |, such that xi = 1 if vertex i is selected and xi =
0 otherwise. The goal is to find an optimal decision vector
x∗ that maximizes an objective function f(x), subject to the
constraints encoded in the graph.

To apply actor-critic algorithms with GNNs, one has to
define a policy function πθ(a|s) that takes as input a state
representation s and outputs a probability distribution over the
action space a. We parameterize the policy function with θ.
The state representation s is obtained by feeding the graph
structure and the current decision vector x through a GNN.
The actor and critic are updated using the policy gradient and
the TD learning algorithms, respectively. The policy gradient
updates the policy parameters θ using the gradient of the

expected reward with respect to θ. The TD learning updates
the critic parameters ϕ by minimizing the mean squared error
between the estimated and actual values.

The actor-critic with GNNs algorithm for combinatorial
optimization is described in Algorithm 1.

Algorithm 1 Actor-critic with GNNs algorithm for combina-
torial optimization

Begin
1.Initialize the policy and critic parameters θ and ϕ.
2.For each episode do:
3. Initialize the decision vector x randomly.
4. Feed the graph structure and x through the GNN to
obtain the state representation s.
5. Sample an action a from the policy distribution πθ(a|s).
6. Obtain the next state s′ and reward r by applying the
action a to x.
7. Update the critic parameters ϕ using TD learning.
8. Compute the policy gradient and update the policy
parameters θ.
9. Repeat steps 4-8 until a stopping criterion is met.
10. Obtain the next state s′ and reward r by applying the
action a to x.
11.End For.
12.Return the decision vector x∗ that maximizes f(x).
End

V. EXPERIMENTAL EVALUATION

In this section, the experimental evaluation is presented
in relation to various performance indicators. The examined
algorithms are subjected to a rigorous investigation through
extensive experiments in the set cover problem, which in
turn sheds light on their properties and impacts on proactive
image placement. In the following, we describe the simulation
methodology (subsection V-A) and analyze the experimental
results (V-D).

A. Simulation Methodology

To simulate different network topologies, the image place-
ment and the image transfers between the nodes of the
networks, Python (3.6.9) scripts were developed and utilized.
The NetworkX [25] Python package is exploited to create a
wide variety of network topologies with different parameters.
In addition, NetworkX creates objects that facilitate the storage
and manipulation of node and edge labels and characteristics,
such as total capacity, image replication, and network connec-
tion usage.

Each network connection, modelled as an Edge, is char-
acterized by two attributes: its available bandwidth and its
usage. From these attributes, several secondary values can
be derived, such as the percentage of bandwidth usage and
the transfer time. Each node is labeled with a unique serial
number/ID and has an attribute with a boolean value that
indicates whether it holds a replica of the image (1) or not
(0). Additionally, a number of parameters are set regardless



of the networks that affected each set of experiments, such
as image size and maximum available bandwidth for Ethernet
and WiFi connections.

In the simulations carried out in this study, bandwidth
allocation was accomplished using the Max-min fairness algo-
rithm. Max-min fairness [26] tries to maximize the bandwidth
allocated to the flows with minimum share, thus guaranteeing
that no flow can increase its rate at the cost of a flow with
a lower rate. Initially, all flow rates are set to zero and
then each rate is gradually increased equally until the link’s
capacity is reached. The simulated network is represented as
an undirected graph, and Max-min fairness can provide a
reliable estimate of the network’s actual behavior. As a total
bandwidth capacity, the maximum bandwidth of the node’s
virtual network adapter is considered, which is randomly set
to either Ethernet (100MBps) or WiFi (25MBps). In a realistic
Edge network most communication, are made through WiFi
since a plethora of smart devices and IoT equipment are
utilized, therefore the Wifi network adapters were arbitrary
set to a 75% ratio while Ethernet adapters were assigned to
the rest 25% of nodes.

B. The Greedy algorithm

Leveraging various network topologies and associated at-
tributes, along with the simulation’s general parameters, a
multitude of experiments were conducted, utilizing two dif-
ferent algorithms in order to score and rank their performance
under various conditions. Specifically, we compare GNOSIS
(described in Section IV) with a Greedy algorithm.

The Greedy algorithm is a powerful method that can effec-
tively solve a variety of optimization problems. It works by
always selecting the option that appears best at the moment,
attempting to maximize the return based on local conditions,
assuming that this will lead to a globally optimal solution
[7]. In the case of the minimum vertex cover problem, the
Greedy algorithm starts with an empty set of vertices S, then
chooses an arbitrary edge e in the graph, adds both endpoints
of e to S, and finally removes all edges from the graph that
are covered by the vertices in S. If the graph is empty, S is
returned as the minimum vertex cover, otherwise, the process
starts again by choosing another arbitrary edge e. At each
step, the algorithm chooses the edge with the fewest number
of uncovered vertices and adds both endpoints to the vertex
cover set. Thus, it guarantees that the set of vertices will cover
as many edges as possible.

The Greedy algorithm does not always produce an optimal
solution as in some cases, the algorithm may get stuck in a
local optimum and fail to find the global optimum. However,
for the minimum vertex cover problem, the Greedy algorithm
is known to produce a solution that is at most twice the
size of the optimal solution. This bound is known as the 2-
approximation guarantee.

C. Network topologies

The performance of the examined algorithms is evaluated
over three different network graph topologies. Each topology

is simulated at various sizes, ranging from 64 to 512 vertices,
including V = [64, 128, 256, 512]. However, the number of
edges in each graph varies significantly due to the unique
characteristics, input parameters, and connectivity properties
of each topology, resulting from the different number of
vertices. The network topologies utilized in this research work
are:

Erdö–Rényi random network. The concept of random
graphs was introduced by Paul Erdös and Alfréd Rényi, who
found that probabilistic methods were effective in solving
graph theory problems [27], [28]. Due to the limited com-
puting power available when these network types were first
introduced in the 1950s, much of the modeling was focused
on relatively small “ordered” or “regular” networks, which
are infrequent in real-world scenarios [29]. An alternative
and equivalent definition of a random graph is the binomial
model, in which the G(N, p) model starts with N nodes
and connects each distinct node pair with probability p. Two
different variants of the Erdö–Rényi model, which are based on
the probability p indicating an edge between any two nodes,
have been considered in this work: p = 0.2 and p = 0.5.
As expected, the structure of the graph generated by each
probability, varies significantly; as p increases, the number of
edges also increases.

The uncorrelated Erdö–Rényi random graph model assumes
that every pair of vertices in a graph has equal and independent
probabilities, thus treating the network as a collection of
equivalent units. However, real networks are fundamentally
correlated systems, and their topology often diverges from that
of the uncorrelated random graph model. The attention has
shifted on developing more sophisticated graph models, with
particular emphasis on “real-world” networks like the Internet
and the World-Wide Web. To understand the general properties
of such networks, two classes of models have emerged: “small-
world” and “scale-free”. Small-world networks aim to capture
the clustering observed in real graphs and are inhomogeneous
in that the pattern of connectivity between nodes is relatively
localized. Scale-free networks present inhomogeneity in the
“degree” of nodes (i.e., the number of connections a node
has to other nodes) and reproduce the power law degree
distribution present in many real networks.

Watts–Strogatz small-world network. Watts and Strogatz
[30] proposed what has become known as the archetypical
small-world network. The algorithm behind the model begins
by constructing an undirected ring lattice network that consists
of a ring of nodes with edges evenly distributed between
its kL nearest left and right neighbors. The value of kL
represents the degree of each node in the initial lattice. Then
a process of random rewiring is applied where each edge
has a probability p of being re-wired. The algorithm only
rewires one end of each edge and traverses edges in a way
that ensures that each node loses at most half of its edges. It
is important to note that edges are only replaced, not added or
removed, thus the total number of edges and the mean degree
is unchanged. By varying p, it is easily proved that only a
small number of rewires is required to produce a low average



path length while maintaining a high clustering coefficient. In
fact, for p = 0 in the small-world model, a regular graph is
preserved while for p = 1 a random graph is generated, which
differs from the uncorrelated random graph only slightly. For
intermediate values of p, Watts-Strogatz produces a small-
world network, which captures the high clustering properties
of regular graphs and the small characteristic path length of
random graph models. Hence, we only focused on a single
rewiring probability of p = 0.5 for two distinct degree values:
kL = 2 and kL = 4. As the degree of a node represents the
number of edges connecting it to other nodes in the graph, the
resulting graph structure differs significantly for each degree
value; as kL increases, the number of edges also increases.

Barabási-Albert scale-free network. Barabási and Al-
bert [31] proposed the scale-free network which is able to
reproduce networks with “hubs”, where a few nodes have
significantly more connections to/from other nodes than the
average, a property known as scale-free. As a result, the
degree distribution is highly inhomogeneous. Since numerous
real-world networks exhibit degree distributions similar to
the Barabási-Albert model, it continues to be one of the
most renowned and frequently employed network generation
methods. The algorithm that produces a Barabási-Albert scale-
free network of size N , starts with a small number of nodes
mo and then N −mo nodes are introduced sequentially into
the network, where each node connects to/from m ≤ mo

existing nodes (it is typical to choose mo = m). It is not
possible to select m > mo as then the first new node
introduced cannot be assigned m edges. Therefore, the initial
network size mo dictates the maximum mean degree of the
network. Two different variants of the Barabási and Albert
model have been considered in this work: m = 1,m = 3. As
expected the structure of the graph generated by each value
m, varies significantly; as m increases, the number of edges
also increases.

D. Simulation Results

This section presents the simulation results for the different
network topologies obtained by the two examined algorithms.
Three performance metrics are used to assess the effective-
ness of each algorithm in addressing the component image
placement problem. The metrics that are considered are the
following: i) execution time (ExT ) ii) cost function (CF ), and
iii) size of the vertex cover (V CS). Execution time refers to
the total amount of time each algorithm requires to generate
a solution. One of the most important metrics of evaluation
is the cost function, which calculates the cost based on the
number of image replicas placed on the network as well as
the transfer delays, in order to share the image between all
network nodes. The cost function is the same as the objective
function (Function 6), as described in III-C. Finally, the last
metric employed is the size of the vertex cover, hence the size
of vertices in it.

As discussed in subsection V-A, different variants are
considered for each network topology, based on the input
parameters of the corresponding model. However, due to the

substantial number of experiments and space limitations, it
is not feasible to visually present all the variations of the
different network topologies. Consequently, only one repre-
sentative variation is considered for each model: p = 0.2
for Erdö–Rényi, kL = 2 for Watts–Strogatz and m = 1
for Barabási-Albert. Nevertheless, the detailed results for the
remaining variant of each model are presented in Table I.

Execution time analysis. Figure 1 evaluates the execution
time of each algorithm for the different network topologies.
As the results indicate, the execution time of both examined
algorithms is significantly higher for Erdö–Rényi graphs (Fig-
ure 1a) compared to other network topologies, especially as
the number of vertices increases. As an illustration, when
considering 512 vertices, the GNOSIS algorithm demonstrates
an execution time of 82 seconds for Erdö–Rényi graphs and
5.9 seconds (almost 14 times slower) for Barabási-Albert
graphs, whereas for the Greedy algorithm, the execution times
are 2.4 seconds and 0.5 seconds (almost 5 times slower),
respectively. Both algorithms exhibit the lowest execution
times for Barabási-Albert graphs. As the results suggest, the
GNOSIS algorithm demonstrates higher execution times com-
pared to the Greedy algorithm for all network topologies. Both
algorithms display a similar trend across the various network
topologies, wherein the execution time increases linearly with
an increase in the number of vertices. In general, as the number
of vertices increases and more nodes are added to the vertex
cover set, the execution time also increases as the generated
graph becomes larger.

Cost function analysis. Figure 2 evaluates the cost function
of each algorithm for the different network topologies. The
results indicate that for Erdö–Rényi graphs, the Greedy al-
gorithm results in the highest cost function values, whereas
for Barabási-Albert graphs, the GNOSIS algorithm yields the
highest cost function values. For both algorithms, as the num-
ber of vertices increases, Watts-Strogatz graphs demonstrate
comparatively lower cost function values. To illustrate, when
analyzing the Watts-Strogatz graph with 512 vertices, the cost
function obtained by the Greedy algorithm is 27571, whereas,
for Barabási-Albert and Erdö–Rényi, the same algorithm gen-
erates cost function values of 36592 and 110230, respectively.
In addition, as the number of vertices increases, there is no
significant difference in the cost function values between the
two examined algorithms for Watts-Strogatz graphs. It is worth
noting that in both Erdö–Rényi and Watts-Strogatz graphs, the
GNOSIS algorithm demonstrates lower cost function values in
comparison to the Greedy algorithm. The reduction in the cost
function obtained using the GNOSIS algorithm is particularly
remarkable in the case of Erdö–Rényi graph, as the decrease
is nearly half with an increase in the number of vertices.

Vertex Cover Set size analysis. Figure 3 evaluates the vertex
cover set produced by each algorithm for the different network
topologies. As expected, the vertex cover set’s size increases
in a linear fashion with an increase in the number of vertices.
As the results suggest, compared to other network topologies,
GNOSIS algorithm generates a significantly smaller vertex
cover set for Barabási-Albert graphs. The Greedy algorithm



TABLE I: Detailed results for the remaining variant of each model

#of Nodes Metrics

m=3 p=0.5 k=4

Barabási-Albert

64

Greedy GNOSIS

Erdö–Rényi

Greedy GNOSIS

Watts-Strogatz

Greedy GNOSIS

ExT 0.0263 0.88 0.0363 1.77 0.0238 0.5
CF 2519.53 2422 1027.26 861.89 1442.30 1552.34
VCS 34 35 58 59 47 47

128 ExT 0.0431 4.9 0.1522 6.09 0.0480 1.7
CF 5974.57 5421.32 5343.53 2084.31 3495.86 2756.91
VCS 66 75 120 117 94 90

256 ExT 0.1271 6.69 1.018 27.43 0.1259 3.65
CF 15948.10 9859.43 23919.62 17568.33 8555.45 7249.61
VCS 127 177 247 242 188 181

512 ExT 0.4602 18.43 7.719 126.43 0.4891 11.24
CF 61257.26 40930.19 106116.31 63837.23 35829.82 26619.32
VCS 264 350 502 496 368 353
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Fig. 1: Execution time of each algorithm for the different network topologies
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Fig. 2: Cost function of each algorithm for the different network topologies (the lower the better)

exhibits the same behavior as well. As an illustration, when
considering Barabási-Albert graphs with 512 vertices, the
GNOSIS algorithm generates a vertex cover set size of 176
while for Erdö–Rényi and Watts-Strogatz graphs, the sizes are

477 and 288, respectively. Both algorithms produce the largest
vertex cover sets for Erdö–Rényi graphs, followed by Watts-
Strogatz. Although the Greedy algorithm yields a smaller
vertex cover set for Barabási-Albert, the GNOSIS algorithm
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Fig. 3: Vertex Cover set of each algorithm for the different network topologies

produces superior results for the other two network topologies.
Discussion. A concise summary of the experimental sim-

ulation results and key insights is provided to summarize
the performance evaluation of each algorithm. As the results
suggested, the GNOSIS algorithm demonstrates higher execu-
tion times compared to the Greedy algorithm for all network
topologies. The reason is that GNOSIS involves training a
neural network on the graph data and making predictions for
each vertex in the graph. As the graph structure becomes
more complex, GNOSIS captures more intricate relationships
between the vertices which can lead to more accurate solutions
but it also requires more computation. The high execution
times presented by the GNOSIS algorithm result in higher
cost function values for Barabási-Albert graphs compared to
the Greedy approach. However, for the remaining network
topologies, the cost function values are lower when using the
GNOSIS algorithm. In terms of the size of the vertex cover set,
the GNOSIS algorithm generates larger results than the Greedy
algorithm for Barabási-Albert graphs. However, similar to the
cost function, the GNOSIS algorithm generates smaller vertex
cover set sizes for the other network topologies.

VI. CONCLUSION

The placement of container and VMs images is particularly
relevant in the context of Edge Computing. The dynamic na-
ture of Edge applications calls for short cold startup times, and
the ability to download application images as fast as possible is
a core requirement. In this paper, we modeled the problem as
a Minimum Vertex Cover and propose GNOSIS, an approach
that combines actor-critic RL with graph neural networks. We
evaluated GNOSIS with different graph topologies and sizes,
and we compared it with a Greedy state-of-the-art approach.
From the analysis of the results, it emerges that, compared with
the Greedy algorithm, GNOSIS has higher execution times but
generally better MCV scores.

While a Greedy approach can provide a simple and ef-
ficient solution, it often falls short in terms of optimality
as it considers locally optimal choices at each step without
considering the global structure of the graph. Consequently, it

lack the ability to adapt to different scenarios with complex
graphs, learn from the data and may yield suboptimal solu-
tions. In contrast, GNNs and actor-critic RL methods leverage
the graph structure, generalize to unseen graphs and learn
effective strategies to make globally informed decisions. This
allows them to achieve better performance and potentially find
optimal or near-optimal solutions, making them more effective
for solving the minimum vertex cover problem.

While the results look promising, we plan to perform further
evaluation of GNOSIS under different networks and versus
other approaches. In particular, we intend to extend the types
of topologies considered (e.g. balanced tree networks) and
the comparison approaches for solving MVC, such as genetic
meta-heuristics and Integer Linear Programming solutions.
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