
Experimenting with Formal Verification and
Model-based Development in Railways:
the case of
UMC and Sparx Enterprise Architect

Davide Basile, Franco Mazzanti, Alessio Ferrari

(FMICS 2023)

We are hiring!

• The Formal Methods and Tools (FMT) lab of the Institute of
Information Science and Technologies (ISTI) of the Italian National
Research Council (CNR) offers two temporary positions for research
in the field of formal modelling and analysis of critical software
systems, in particular but not limited to the railway and service
computing domains.

• Contact us:
• maurice.terbeek@isti.cnr.it
• davide.basile@isti.cnr.it

mailto:maurice.terbeek@isti.cnr.it
mailto:davide.basile@isti.cnr.it

Overview

• Formal Methods in Railways, Model-based Development

• Sparx Enterprise Architect, UML Model Checker

• Mapping of Sparx EA and UMC models

• Case Study: RBC2RBC handover

• Conclusion

Introduction

• Formal methods in Railways

• Model-based Software/Systems Development (MBSD)

• mainly based on the OMG UML Standard

• Integration of Formal Methods into MBSD

• Survey on formal verification of UML SM [1]

• “counterexamples are rarely mapped back to the original models”

• “UMC could be used to verify UML models”

• Integration of UMC with Sparx EA

[1] André E´., Liu, S., Liu, Y., Choppy, C., Sun, J., Dong, J.S.: Formalizing UML State Machines for Automated Verification–A Survey. ACM Comput. Surv. (2023).

MBSD, Sparx Enterprise Architect

• Development process guided by models

• UML: object-oriented paradigm

• State machines: classified behaviour of a class

• Labels of transitions: trigger[conditions]/effects

• Sparx EA: model-based tool based on OMG UML

• Selected within the H2020 Shift2Rail 4SECURail project based on different criteria

• e.g., composition of state machine

• Executable State Machines
• Composition of State Machines,
• Simple instruction for interactions

• Compiled into code for simulation

UML Model Checker (UMC)

• Freely available at
https://fmt.isti.cnr.it/umc/V4.8/umc.html

• Currently maintained by Franco Mazzanti

• Oriented towards fast prototyping

• Verification of CTL properties of SM

• On-the-fly model checking [1]

• Automatic translation to [2]:

• LOTOS NT, ProB

• Formally verified translation

[1] F. Mazzanti et al.: A state/event-based model-checking approach for the analysis of abstract system properties. Sci. Comput. Program. 76(2)
[2] F. Mazzanti et al.: Formal Modeling and Initial Analysis of the 4SECURail Case Study. MARS@ETAPS 2022

https://fmt.isti.cnr.it/umc/V4.8/umc.html

Bidirectional Approach
UMC SM Sparx EA SM

Semantics correspondence

• Sparx State Machines do not have a formal semantics

• No state-space generation in Sparx EA

• Manual inspection of the engine code of ESM:

• FIFO order of events

• Deterministic model (no conflicts in enabled transitions)

• Fixed scheduling of SM

• Semantics of Sparx EA included in the semantics of UMC

• Mapping of traces

Environment: Interactive Simulation vs Model Checking

Interactive
simulations: the
human user acts as
the environment.
No automation.

C1 C2

C1 C1 Stub

Model checking: the
environment is explicitly
modelled

• to obtain a fully closed system
on which the verification is
automatic.

Fully modelled

Rules for relating the model

• classes have a relation “has-a” with other classes,
• every object has a reference to other objects to whom it is interacting with

Object.Signal(value1, value2)

%SEND_EVENT("TRIGGER.sig(value1,value2)",CONTEXT_REF(RECIPIENT))%

Rules for relating the model

• Signals that are attributes of each class in UMC are in correspondence with global
trigger events in the Sparx type Signal and have the same parameters as in UMC.

Object.Signal(value1, value2)

%SEND_EVENT("TRIGGER.sig(value1,value2)",CONTEXT_REF(RECIPIENT))%

Send/write message

UMC Sparx EA

Receive/read message

UMC Sparx EA

Case Study: Communication Supervision Layer (CSL)

• RBC/RBC handover
protocol (borrowed from
the 4SECURail project)

• CSL responsible for:
• opening/closing a

communication

• maintaining connection
through life signs

D. Basile et al.: Formal Analysis of the UNISIG Safety Application Intermediate Sub-layer - Applying Formal Methods to Railway Standard Interfaces. FMICS 2021
F. Mazzanti et al.: Formal Modeling and Initial Analysis of the 4SECURail Case Study. MARS@ETAPS 2022
F. Mazzanti et al.: A Case Study in Formal Analysis of System Requirements. SEFM Workshops 2022
F. Mazzanti et al.: The 4SECURail Formal Methods Demonstrator. RSSRail 2022

environment

environment

modelled

UMC ICSL SM

SPARX EA ICSL SM

modelled

Formal verification

Abstractions {State: ICSL.sendtimer >

ICSL.maxsendtimer -> sendTimerError}

EF sendTimerError

mutation

Formal verification

Abstractions {State: ICSL.sendtimer >

ICSL.maxsendtimer -> sendTimerError}

EF sendTimerError

mutation

Formal verification

Abstractions {State: ICSL.sendtimer >

ICSL.maxsendtimer -> sendTimerError}

EF sendTimerError

mutation

Formal verification

Abstractions {State: ICSL.sendtimer >

ICSL.maxsendtimer -> sendTimerError}

EF sendTimerError

mutation

Formal verification

Abstractions {State: ICSL.sendtimer >

ICSL.maxsendtimer -> sendTimerError}

EF sendTimerError

mutation

Formal verification

Abstractions {State: ICSL.sendtimer >

ICSL.maxsendtimer -> sendTimerError}

EF sendTimerError

mutation

Abstractions {State: ICSL.sendtimer >

ICSL.maxsendtimer -> sendTimerError}

EF sendTimerError
PlantUML sequence diagram

https://zenodo.org/record/7956438

interactive
console

ICSL.sendtimer >

ICSL.maxsendtimer

mutated
guard

https://zenodo.org/record/7956438

Conclusion

• Integration of UMC with Sparx EA

• Notation restrictions

• Translation Rules

• Semantics correspondence

• The output of the formal verification is traced back
to Sparx EA

• Lessons learned and limitations

• Future work:

• full implementation of an application that is
formally verified using the proposed methodology.

Conclusion

• Integration of UMC with Sparx EA

• Notation restrictions

• Translation Rules

• Semantics correspondence

• The output of the formal verification is traced back to Sparx
EA

• Lessons learned and limitations

• Future work:

• full implementation of an application that is formally verified
using the proposed methodology.

• https://twitter.com/davidebasile (video of the presentation)

• Thanks for your attention!

https://twitter.com/davidebasile

	Slide 1: Experimenting with Formal Verification and Model-based Development in Railways: the case of UMC and Sparx Enterprise Architect
	Slide 2: We are hiring!
	Slide 3: Overview
	Slide 4: Introduction
	Slide 5: MBSD, Sparx Enterprise Architect
	Slide 6
	Slide 7: UML Model Checker (UMC)
	Slide 8: Bidirectional Approach UMC SM Sparx EA SM
	Slide 9: Semantics correspondence
	Slide 10: Environment: Interactive Simulation vs Model Checking
	Slide 11: Rules for relating the model
	Slide 12: Rules for relating the model
	Slide 13: Send/write message
	Slide 14: Receive/read message
	Slide 15: Case Study: Communication Supervision Layer (CSL)
	Slide 16
	Slide 17
	Slide 18: Formal verification
	Slide 19: Formal verification
	Slide 20: Formal verification
	Slide 21: Formal verification
	Slide 22: Formal verification
	Slide 23: Formal verification
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Conclusion
	Slide 28: Conclusion

