
⊠■■■■■■■■■■■■■■■■■■■

A Runtime Environment for Contract Automata

Davide Basile and Maurice H. ter Beek

Formal Methods and Tools lab,
ISTI CNR, Pisa

Available

FM
Evaluation
Artifact

FM
Evaluation
Artifact

Reproducible

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

⊠□■■■■■■■■■■■■■■■■■■

Behavioural Contracts

Behavioural types: model the behaviour of ensembles of services in
terms of their interactions;

behavioural contracts, session types.

Useful for:

reasoning formally about well-behaving properties,
building applications that are verified by construction against these
properties.

Contract automata: behavioural contracts modelled as FSA,

In contract automata services match their requests and offers between
each other to reach an agreement

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

⊠□□■■■■■■■■■■■■■■■■■

Motivation

few studies on how to derive the finalised software from the verified
specification as behavioural contracts;

these behavioural specifications are not yet a feature of standard
mainstream programming languages.

We investigate the connection between a behavioural specification
given as contract automata and its implementation.

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023 3 / 20

⊠□□□■■■■■■■■■■■■■■■■

Contract Automata: Software Support

CATLib : library implementing contract automata and their
operations, for specifying applications using contract automata;

CAT App : Graphical front-end for designing contract automata;

CARE : Runtime Environment for implementing applications specified
via contract automata

https://github.com/contractautomataproject

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

https://github.com/contractautomataproject

⊠□□□□■■■■■■■■■■■■■■■

CARE methodology

«business actor»
RE Provider «business actor»

Service Providers /
Developers

«business actor»
App Designer

Customised
CARE

CARE
Services

CARE

«business actor»
Service Providers /

Designers

Contract
Automata

Application
Requirements

Orchestration

CARE
Orchestrator

designcomposition and synthesis

«use»
specialize CARE

executes

publish

coordinates r e alise

sa ti sfi es creates

specialize CARE

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023 5 / 20

⊠□□□□□■■■■■■■■■■■■■■

Operations of Contract Automata

contract automata are composed to model all possible behaviours,

composition in agreement: all requests of contracts are matched by
corresponding offers,

if the composition does not satisfy the requirements or it is not in
agreement, it is possible to automatically compute (i.e., synthesise)
a refinement of the composition such that the requirements are
satisfied,

this refined automaton is called orchestration,

the orchestration automaton implicitly assumes the presence of an
orchestrator coordinating the services to execute the actions
prescribed by the orchestration

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

⊠□□□□□□■■■■■■■■■■■■■

Benefits of CARE

We show a possible realisation of an orchestration engine,

abstracted away in the contract automata theory,
but needed for implementing applications specified with contract
automata,

improving our understanding of the relation between a specification
with contract automata and its implementation, and the
corresponding level of abstraction.

Benefits: formal guarantees, reduction of the software complexity,
separation of concerns, modularity.

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023 7 / 20

⊠□□□□□□□■■■■■■■■■■■■

Modal Service Contract Automata (MSCA)

MSCA are FSA enhanced with:
Partitioned alphabet of actions:

offers !a (or a) (Ao) and requests ?a (or a) (Ar)
special idle action (• ̸∈ Ao ∪ Ar)

rank : the number of services in the contract,
Transitions partitioned into permitted (T ⋄) and necessary (T2),
Labels are list of actions and are constrained to be:

offers: (•, •, •, !a),
requests: (•, ?a, •, •),
matches: (•, ?a, •, !a),

size(list) = rank

[0]

[Drink]

[InsEuro]

[InsDollar]

[!euro]

[?tea]

[!dollar] [?coffee]

[Drink, Stop]

[0, 0] [InsEuro, InsEuro]

[!euro, ?euro]

[?coffee, !coffee]

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

⊠□□□□□□□□■■■■■■■■■■■

Contract Automata Runtime Environment

the software is organised into:

the classes for the orchestrator and
the classes for the orchestrated services;

offers and requests of contracts are an abstraction of low-level
messages sent between the services and the orchestrator to realise
them.

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

⊠□□□□□□□□□■■■■■■■■■■

Runnable Orchestration, Runnable Orchestrated

RunnableOrchestration:

abstract class implementing an orchestrator,
it reads the synthesised orchestration and orchestrates the
RunnableOrchestratedContract to realise the overall application.

RunnableOrchestratedContract:

abstract class implementing an executable wrapper responsible for the
composition of the specification of a service with its implementation.
It implements a service that is always listening and spawns a parallel
process when entering an orchestration.
During an orchestration, it receives action commands from the
orchestrator or from other services, and it invokes the corresponding
action method.

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

⊠□□□□□□□□□□■■■■■■■■■

Two aspects to implement: action and choice

CentralisedOrchestratorAction

DictatorialChoiceRunnableOrchestration

DistributedOrchestratorAction

MajoritarianChoiceRunnableOrchestration

OrchestratorAction

+ doAction(RunnableOrchestration, ModalTransition<String, Action, State<String>, ? extends CALabel>,
AutoCloseableList<ObjectOutputStream>, AutoCloseableList<ObjectInputStream>): void

+ getActionType(): String

Runnable

RunnableOrchestration

- act: OrchestratorAction {readOnly}
- addresses: List<String> {readOnly}
- contract: Automaton<String, Action, State<String>, ModalTransition<String,Action,State<String>,CALabel>>

{readOnly}
- currentState: State<String>
- ports: List<Integer> {readOnly}
- pred: Predicate<CALabel> {readOnly}

- checkCompatibility(): void
+ choice(AutoCloseableList<ObjectOutputStream>, AutoCloseableList<ObjectInputStream>): String
+ getAddresses(): List<String>
+ getChoiceType(): String
+ getContract(): Automaton<String, Action, State<String>,

ModalTransition<String,Action,State<String>,CALabel>>
+ getCurrentState(): State<String>
+ getPorts(): List<Integer>
+ isEmptyOrchestration(): boolean
+ run(): void
+ RunnableOrchestration(Automaton<String, Action,

State<String>,ModalTransition<String,Action,State<String>,Label<Action>>>, Predicate<CALabel>,
Automaton<String, Action, State<String>, ModalTransition<String,Action,State<String>,CALabel>>,
List<String>, List<Integer>, OrchestratorAction)

-act

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

⊠□□□□□□□□□□□■■■■■■■■

CARE - match implementation

[?coffee,!coffee]

Alice: Integer coffee(String arg)

Bob: String coffee(Integer arg)

ror

ror

alice

alice

bob

bob

coffee

v1=alice.coffee(null)

coffee, v1

v2=bob.coffee(v1)

v2

alice.coffee(v2)

r o r

r o r

bob

bob

alice

alice

coffee

coffee

type=match

opens a fresh port

port

address and port of bob

v1=alice.coffee(null)

v2=bob.coffee(v1)

alice.coffee(v2)

ack

ack

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

⊠□□□□□□□□□□□□■■■■■■■

Formal Guarantees : Adherence to the Contract

if the orchestration is correctly synthesised
no contract exception will ever be raised

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

⊠□□□□□□□□□□□□□■■■■■■

Formal Guarantees : Uppaal model

formal model covering aspects that are abstracted in the algorithms:

centralised/distributed action
majoritarian/dictatorial choice

TCP/IP sockets modelled through blocking FIFO buffers

Difference between contract automata and Uppaal models:

contract automata are high level models of service applications that
can be implemented using CARE,
CARE is a distributed application, suitable to be verified with model
checking,
CARE itself is a software that has been formally modelled and verified
using Uppaal.

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

⊠□□□□□□□□□□□□□□■■■■■

Formal Guarantees : Uppaal model

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

⊠□□□□□□□□□□□□□□□■■■■

Formal Model : Traceability

https://github.com/contractautomataproject/CARE/tree/master/src/spec/uppaal

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

⊠□□□□□□□□□□□□□□□□■■■

Model Checking

A[](not deadlock || (ror.Terminated && (forall(i:id t) ROC(i).Terminated)))

absence of deadlocks

A[]((ror.Terminated && (forall (i:id t) ROC(i).Terminated)) imply

allEmpty())

absence of orphan messages

A[](ror.Stop imply A< >(ror.Terminated && (forall (i:id t)

ROC(i).Terminated) && allEmpty()))

whenever a choice to stop is made, eventually all services and the
orchestrator will terminate their execution.

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023 17 / 20

⊠□□□□□□□□□□□□□□□□□■■

CARE evaluation

two examples: Alice and Bob, Composition service

two implementations: one with CARE, one without using CARE

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023 18 / 20

⊠□□□□□□□□□□□□□□□□□□■

Conclusion, Future work

We have presented the first runtime environment for contract
automata, called CARE.

Future work support for choreographies and product lines is
formalised in contract automata and implemented in CATLib, but not
supported by CARE

Model-based testing

Uppaal tests generation,
generation of tests at the level of contract automata.

Other enhancements to do
https://github.com/orgs/contractautomataproject/projects/1

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

https://github.com/orgs/contractautomataproject/projects/1

⊠□□□□□□□□□□□□□□□□□□□

Other references

Basile, D. and ter Beek, M.H., 2022. Contract automata library.
Science of Computer Programming (Original Software Publication).

Pugliese, R., Ter Beek, M.H. and Basile, D., 2020. Synthesis of
orchestrations and choreographies: bridging the gap between
supervisory control and coordination of services. Logical Methods in
Computer Science, 16.

Basile, D., ter Beek, M.H., Degano, P., Legay, A., Ferrari, G.L.,
Gnesi, S. and Di Giandomenico, F., 2020. Controller synthesis of
service contracts with variability. Science of Computer Programming,
187, p.102344.

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

