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Behavioural Contracts

@ Behavioural types: model the behaviour of ensembles of services in
terms of their interactions;

e behavioural contracts, session types.
o Useful for:

e reasoning formally about well-behaving properties,
e building applications that are verified by construction against these
properties.

@ Contract automata: behavioural contracts modelled as FSA,

@ In contract automata services match their requests and offers between
each other to reach an agreement
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Motivation

o few studies on how to derive the finalised software from the verified
specification as behavioural contracts;

@ these behavioural specifications are not yet a feature of standard
mainstream programming languages.

@ We investigate the connection between a behavioural specification
given as contract automata and its implementation.

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023 3/20



XOooOeEsEEEEEEEEEEEEEE

Contract Automata: Software Support

@ CATLib : library implementing contract automata and their
operations, for specifying applications using contract automata;

@ CAT App : Graphical front-end for designing contract automata;

@ CARE : Runtime Environment for implementing applications specified
via contract automata

https://github.com/contractautomataproject
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CARE methodology
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Operations of Contract Automata

@ contract automata are composed to model all possible behaviours,
e composition in agreement: all requests of contracts are matched by
corresponding offers,
@ if the composition does not satisfy the requirements or it is not in
agreement, it is possible to automatically compute (i.e., synthesise)
a refinement of the composition such that the requirements are
satisfied,

@ this refined automaton is called orchestration,

@ the orchestration automaton implicitly assumes the presence of an
orchestrator coordinating the services to execute the actions
prescribed by the orchestration
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Benefits of CARE

@ We show a possible realisation of an orchestration engine,
o abstracted away in the contract automata theory,
e but needed for implementing applications specified with contract
automata,
@ improving our understanding of the relation between a specification
with contract automata and its implementation, and the
corresponding level of abstraction.

o Benefits: formal guarantees, reduction of the software complexity,
separation of concerns, modularity.
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Modal Service Contract Automata (MSCA)

@ MSCA are FSA enhanced with:
o Partitioned alphabet of actions:
o offers !a (or @) (A°) and requests ?a (or a) (A")
@ special idle action (e & A°U A")
rank : the number of services in the contract,
Transitions partitioned into permitted (T°) and necessary (T7),
Labels are list of actions and are constrained to be:
o offers: (e,0, 0, !a),
o requests: (e,7a,0, 0),
e matches: (e,7a,e,13),
size(list) = rank

['euro]
O [euro, ?euro]
[InsEur

[?coffee] [0, 0] [InsEuro, IngEuro]

[?coffee, !coffee]
[?tea]

[InsDollar] [Drink] [Drink, Stop]

[!dollar]
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Contract Automata Runtime Environment

@ the software is organised into:
o the classes for the orchestrator and
o the classes for the orchestrated services;
@ offers and requests of contracts are an abstraction of low-level
messages sent between the services and the orchestrator to realise
them.
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Runnable Orchestration, Runnable Orchestrated

@ Runnable(Orchestration:
e abstract class implementing an orchestrator,
e it reads the synthesised orchestration and orchestrates the
RunnableOrchestratedContract to realise the overall application.
@ Runnable(OrchestratedContract:
e abstract class implementing an executable wrapper responsible for the
composition of the specification of a service with its implementation.
o It implements a service that is always listening and spawns a parallel
process when entering an orchestration.
o During an orchestration, it receives action commands from the
orchestrator or from other services, and it invokes the corresponding
action method.
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Two aspects to implement: action and choice

OrchestratorAction
Ci
=T donct ion, ModalTransiti ing, Action, State<String>, ? extends CALabel>,
AutoCloseableList<ObjectOutputStream>, AutoCloseableList<Obj eam>): void

+ getActionType(): String

DistributedOrchestratorAction

,m/’\

Runnable
RunnableOrchestration

- act: OrchestratorAction {readOnly}

- addresses: List<String> {readOnly}

- contract: Automaton<String, Action, State<String>, ModalTransition<String,Action,State<String>,CALabel>>
{readOnly}

- currentState: State<String>

- ports: List<Integer> {readOnly}

- pred: Predicate<CALabel> {readOnly}

et al
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- checkCompatibility(): void

choice(AutoCloseableList<ObjectOutputStreams, AutoCloseableList<ObjectinputStreams): String
getAddresses(): List<String>

getChoiceType(): String

getContract(): Automaton<String, Action, State<String>,
ModalTransition<String,Action,State<String>,CALabel>>

getCurrentState(): State<String>

getPorts(): List<Integer>

isEmptyOrchestration(): boolean

run(): void

RunnableOrchestration(Automaton<String, Action,
State<String>,ModalTransition<String,Action,State<String>,Label<Action>>>, Predicate<CALabel>,
Automaton<String, Action, State<String>, ModalTransition<String,Action,State<String>,CALabel>>,
List<String>, List<Integer>, OrchestratorAction)

+ o+ o+

ok
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CARE - match implementation

[?coffee, !coffee] [rer]

Alice: Integer coffee(String arg)
Bob: String coffee(Integer arg)

ror alice
T

coffee

T
|
|
'
|
|
|
'
|
'
|
'
|
'
|
'
|
|
|

¢.v1=alice.coffee(null)

A

coffee, v1

v2=bob.coffee(vl)

<
IN)

l

N
alice.coffee(v2)

.‘
=}
S
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Formal Guarantees : Adheren

ce to the Contract

Algorithm 1 Orchestration

Algorithm 2 Service Thread

Require: non-empty orchestration automaton
Ensure: no exception is thrown
init Sockets > connect to the services|
cs < initialState > current state]
while true do
fws < forwardStar(cs)
if empty(fws) & notFinal(cs) then
throw Exception
end if
choice < choice() © interact with services|
if choice == stop & final(cs) then
return
end if
tr <+ select(fws,choice)
if tr not in agreement then
throw Exception
end if
doAction(tr) > interact with services
cs < targetState(ir)
end while

Require: connected to the orchestrator
init Socket > set socket timeout
cs « initialState > current state
while true do
act <+ receive(socket)
if stop(act) then
if final(cs) then
return
else throw ContractViolationException
end if
end if
if choice(act) then
performChoice()
continue
end if
tr < select(forwardStar(cs),act)
if no valid action then
throw ContractViolationException
else
invokeMethod(tr)
end if
cs < targetState(tr)
end while

> interact with or-
> chestration

if the orchestration is correctly synthesised
no contract exception will ever be raised
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Formal Guarantees : Uppaal model

e formal model covering aspects that are abstracted in the algorithms:
e centralised/distributed action
e majoritarian/dictatorial choice

e TCP/IP sockets modelled through blocking FIFO buffers
o Difference between contract automata and Uppaal models:

e contract automata are high level models of service applications that
can be implemented using CARE,

o CARE is a distributed application, suitable to be verified with model
checking,

o CARE itself is a software that has been formally modelled and verified
using Uppaal.
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Formal Guarantees : Uppaal model
©

volved _i=0,involved=0

i<involved && lisFull(i)
choice==DICTATORIAL_CHOICE
Start

CheckCoyppatibility
i

<involved 8& tisFull)
enqueue(,ORC_CHOICE),  enqueue(, CHOICES),
- i
pehoice. @)-==\

© 2 ©

| MAJORITARIAN_CHOICE

: <N && TisFuil() invelved=n

<N && aailable(i}>=3 : enqueue(LORC_CHOICE),i++ T s

enqueue(,PRC_CHECK) ) ! 'r'““;f‘“quu‘e(:‘siﬁ,‘?“”“’ d=dequeue(i)
anqueue( hoice) " modhoice -
enqueue(i petion) Stop SendingTermination

<N && lisFull()
nqueue(i, ORG_STOP),

VICE_CHOICE

d=0,i++
i Terminated
H lisFullirequester)88d==0FFER
! enqueue(requester OFFER),
| requester=( 0
Adion CentralisedOffer AH{ON-1] ©
1 available(n>=2 (@ lisEmpty(offerer)
O 7 2 Oy @ acqieueiiore). O VsEmpty(offerer
CENTRALISED_AGTION| enqueue(offerer ACTION),  offerer=0 d=dequeue(offerer),
' enqueue(offerer NOPAYLOAD) offerer=0
1
| Comasasan DU eEmplyeaues Bsneoet
. © @ rvrEat) gy a ©
& requester=n.offerer=n+1, < ) LACTION).
enqueue(requester ACTION), enqueue(offerer, REQUEST)
enqueue(requester,SKIP)
CK
©
tisEmpty(offe|
d=dequeue(offef
actior offerer=0
DISTRIBUTED_ACTION lisEmpty(requester)
=dequeue(requester),
ibutedOffer  available(offerer)>=2 requester=0
in enqueue(offerer TYPEOFFER
foererirl\“spu i(n) | enqueue(offerer, NOPAYLOAD)
requester=n+1, i available(requester)>=2
() & - lisFullirequester) & ) @) sEmpty(offerer) @i
AcTIoN) & ’@ LACTION) & TYPEMATCH) =7 d=dequeue(offerer) =
DistributedMatch
D.B. et al. (ISTI CNR Pisa)

enqueue(requester ADDRESS,

enqueue(requester, PORT)
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Formal Model : Traceability
(d1==NOPAYLOAD||d1==REQUEST)&&isFull()

enqueue(OFFER),d1=0
CentralisedOrchestratedAction java

line 29
TION @ lisEmpty() U d1==8SKIP&&lisFu
d1=dequeue() & enqueue(REQUE:
CentralisedOrchestratedAction java CentralisedOrche:
ne 28 ne 29

=Y
DistributedOrchestratedAction.java

lines 73-74

https://github.com/contractautomataproject/CARE /tree/master/src/spec/uppaal
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Model Checking

@ A[](not deadlock || (ror.Terminated && (forall(i:id.-t) ROC(i).Terminated)))

e absence of deadlocks

@ A[]((ror.Terminated && (forall (i:id_t) ROC(i).Terminated)) imply
allEmpty())

e absence of orphan messages

@ A[](ror.Stop imply A<>(ror.Terminated && (forall (i:id-t)
ROC(i).Terminated) && allEmpty()))

e whenever a choice to stop is made, eventually all services and the
orchestrator will terminate their execution.
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CARE evaluation

@ two examples: Alice and Bob, Composition service
@ two implementations: one with CARE, one without using CARE

HLOC ‘Cyclomatic Complexity ‘Cognitive Complexity ‘

. without CARE || 777 134 166
Alice and Bob With CARE 153 16 3
Composition Servieol¥ithout CARE [ 854 155 211

OMPOSItION ServiCe o h CARE 279 ) 55
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Conclusion, Future work

@ We have presented the first runtime environment for contract
automata, called CARE.
@ Future work support for choreographies and product lines is

formalised in contract automata and implemented in CATLib, but not
supported by CARE

@ Model-based testing

o Uppaal tests generation,
e generation of tests at the level of contract automata.

@ Other enhancements to do

https://github.com/orgs/contractautomataproject/projects/1
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