XunsnEEEEEEEEEEEEEEE

A Runtime Environment for Contract Automata

FM Davide Basile and Maurice H. ter Beek FM
Arfifact Arfifact
Evaluation Evaluation

e Formal Methods and Tools lab, * %

. ISTI CNR, Pisa .
Available Reproducible

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

XOssnEEEEEEEEEEEEEEE

Behavioural Contracts

@ Behavioural types: model the behaviour of ensembles of services in
terms of their interactions;

e behavioural contracts, session types.
o Useful for:

e reasoning formally about well-behaving properties,
e building applications that are verified by construction against these
properties.

@ Contract automata: behavioural contracts modelled as FSA,

@ In contract automata services match their requests and offers between
each other to reach an agreement

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

XOoOEeEsEEEEEEEEEEEEEE

Motivation

o few studies on how to derive the finalised software from the verified
specification as behavioural contracts;

@ these behavioural specifications are not yet a feature of standard
mainstream programming languages.

@ We investigate the connection between a behavioural specification
given as contract automata and its implementation.

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023 3/20

XOooOeEsEEEEEEEEEEEEEE

Contract Automata: Software Support

@ CATLib : library implementing contract automata and their
operations, for specifying applications using contract automata;

@ CAT App : Graphical front-end for designing contract automata;

@ CARE : Runtime Environment for implementing applications specified
via contract automata

https://github.com/contractautomataproject

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

https://github.com/contractautomataproject

XooOoOEesEsEEEEEEEEEE

CARE methodology

specialize CARE_> Customised _‘{> CARE

«business actor» CARE
RE Provider _N /l\ __«business actor»
| - |) — " Service Providers /
specialize CARE - . publish.-—
\‘I/ - «use» _ - Developers
- ! _ -
=
CARE [_ coordinates_| - cage [_ realise~_| contract
Orchestrator Services __ =] Automata
T - - .
executes -=)
| composition and synthesis desngn,\
-
-
v -
> i sfi - creates
Orchestration F— —Sa—hiﬁ—eq> Application -
Requirements .
«business actor»
«business actor» Service Providers /
App Designer Designers

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023 5/20

XooooOesEsEEEEEEEEEE

Operations of Contract Automata

@ contract automata are composed to model all possible behaviours,
e composition in agreement: all requests of contracts are matched by
corresponding offers,
@ if the composition does not satisfy the requirements or it is not in
agreement, it is possible to automatically compute (i.e., synthesise)
a refinement of the composition such that the requirements are
satisfied,

@ this refined automaton is called orchestration,

@ the orchestration automaton implicitly assumes the presence of an
orchestrator coordinating the services to execute the actions
prescribed by the orchestration

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

XooooOoOesEsEsEEEEEEEEE

Benefits of CARE

@ We show a possible realisation of an orchestration engine,
o abstracted away in the contract automata theory,
e but needed for implementing applications specified with contract
automata,
@ improving our understanding of the relation between a specification
with contract automata and its implementation, and the
corresponding level of abstraction.

o Benefits: formal guarantees, reduction of the software complexity,
separation of concerns, modularity.

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

7/20

XooooooOEeEsEEEEEEEEE

Modal Service Contract Automata (MSCA)

@ MSCA are FSA enhanced with:
o Partitioned alphabet of actions:
o offers !a (or @) (A°) and requests ?a (or a) (A")
@ special idle action (e & A°U A")
rank : the number of services in the contract,
Transitions partitioned into permitted (T°) and necessary (T7),
Labels are list of actions and are constrained to be:
o offers: (e,0, 0, !a),
o requests: (e,7a,0, 0),
e matches: (e,7a,e,13),
size(list) = rank

['euro]
O [euro, ?euro]
[InsEur

[?coffee] [0, 0] [InsEuro, IngEuro]

[?coffee, !coffee]
[?tea]

[InsDollar] [Drink] [Drink, Stop]

[!dollar]

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

XoooooooOeEsEEEEEEEE

Contract Automata Runtime Environment

@ the software is organised into:
o the classes for the orchestrator and
o the classes for the orchestrated services;
@ offers and requests of contracts are an abstraction of low-level
messages sent between the services and the orchestrator to realise
them.

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

XooooooooOEeEEEEEEEE

Runnable Orchestration, Runnable Orchestrated

@ Runnable(Orchestration:
e abstract class implementing an orchestrator,
e it reads the synthesised orchestration and orchestrates the
RunnableOrchestratedContract to realise the overall application.
@ Runnable(OrchestratedContract:
e abstract class implementing an executable wrapper responsible for the
composition of the specification of a service with its implementation.
o It implements a service that is always listening and spawns a parallel
process when entering an orchestration.
o During an orchestration, it receives action commands from the
orchestrator or from other services, and it invokes the corresponding
action method.

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

XoooooooooOeeEsEEEEEE

Two aspects to implement: action and choice

OrchestratorAction
Ci
=T donct ion, ModalTransiti ing, Action, State<String>, ? extends CALabel>,
AutoCloseableList<ObjectOutputStream>, AutoCloseableList<Obj eam>): void

+ getActionType(): String

DistributedOrchestratorAction

,m/’\

Runnable
RunnableOrchestration

- act: OrchestratorAction {readOnly}

- addresses: List<String> {readOnly}

- contract: Automaton<String, Action, State<String>, ModalTransition<String,Action,State<String>,CALabel>>
{readOnly}

- currentState: State<String>

- ports: List<Integer> {readOnly}

- pred: Predicate<CALabel> {readOnly}

et al

(ISTI CNR Pisa)

- checkCompatibility(): void

choice(AutoCloseableList<ObjectOutputStreams, AutoCloseableList<ObjectinputStreams): String
getAddresses(): List<String>

getChoiceType(): String

getContract(): Automaton<String, Action, State<String>,
ModalTransition<String,Action,State<String>,CALabel>>

getCurrentState(): State<String>

getPorts(): List<Integer>

isEmptyOrchestration(): boolean

run(): void

RunnableOrchestration(Automaton<String, Action,
State<String>,ModalTransition<String,Action,State<String>,Label<Action>>>, Predicate<CALabel>,
Automaton<String, Action, State<String>, ModalTransition<String,Action,State<String>,CALabel>>,
List<String>, List<Integer>, OrchestratorAction)

+ o+ o+

ok

Contract Automata Runtime Environment FM 2023

XooooooooooOsEsEEEEE

CARE - match implementation

[?coffee, !coffee] [rer]

Alice: Integer coffee(String arg)
Bob: String coffee(Integer arg)

ror alice
T

coffee

T
|
|
'
|
|
|
'
|
'
|
'
|
'
|
'
|
|
|

¢.v1=alice.coffee(null)

A

coffee, v1

v2=bob.coffee(vl)

<
IN)

l

N
alice.coffee(v2)

.‘
=}
S

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

XoooooooooooOemEE=

et al. (ISTI CNR Pisa)

Formal Guarantees : Adheren

ce to the Contract

Algorithm 1 Orchestration

Algorithm 2 Service Thread

Require: non-empty orchestration automaton
Ensure: no exception is thrown
init Sockets > connect to the services|
cs < initialState > current state]
while true do
fws < forwardStar(cs)
if empty(fws) & notFinal(cs) then
throw Exception
end if
choice < choice() © interact with services|
if choice == stop & final(cs) then
return
end if
tr <+ select(fws,choice)
if tr not in agreement then
throw Exception
end if
doAction(tr) > interact with services
cs < targetState(ir)
end while

Require: connected to the orchestrator
init Socket > set socket timeout
cs « initialState > current state
while true do
act <+ receive(socket)
if stop(act) then
if final(cs) then
return
else throw ContractViolationException
end if
end if
if choice(act) then
performChoice()
continue
end if
tr < select(forwardStar(cs),act)
if no valid action then
throw ContractViolationException
else
invokeMethod(tr)
end if
cs < targetState(tr)
end while

> interact with or-
> chestration

if the orchestration is correctly synthesised
no contract exception will ever be raised

Contract Automata Runtime Environment

FM 2023

XooooooooooooOeEsEE=

Formal Guarantees : Uppaal model

e formal model covering aspects that are abstracted in the algorithms:
e centralised/distributed action
e majoritarian/dictatorial choice

e TCP/IP sockets modelled through blocking FIFO buffers
o Difference between contract automata and Uppaal models:

e contract automata are high level models of service applications that
can be implemented using CARE,

o CARE is a distributed application, suitable to be verified with model
checking,

o CARE itself is a software that has been formally modelled and verified
using Uppaal.

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

XoooooooooooooOEsEE=

Formal Guarantees : Uppaal model
©

volved _i=0,involved=0

i<involved && lisFull(i)
choice==DICTATORIAL_CHOICE
Start

CheckCoyppatibility
i

<involved 8& tisFull)
enqueue(,ORC_CHOICE), enqueue(, CHOICES),
- i
pehoice. @)-==\

© 2 ©

| MAJORITARIAN_CHOICE

: <N && TisFuil() invelved=n

<N && aailable(i}>=3 : enqueue(LORC_CHOICE),i++ T s

enqueue(,PRC_CHECK)) ! 'r'““;f‘“quu‘e(:‘siﬁ,‘?“”“’ d=dequeue(i)
anqueue(hoice) " modhoice -
enqueue(i petion) Stop SendingTermination

<N && lisFull()
nqueue(i, ORG_STOP),

VICE_CHOICE

d=0,i++
i Terminated
H lisFullirequester)88d==0FFER
! enqueue(requester OFFER),
| requester=(0
Adion CentralisedOffer AH{ON-1] ©
1 available(n>=2 (@ lisEmpty(offerer)
O 7 2 Oy @ acqieueiiore). O VsEmpty(offerer
CENTRALISED_AGTION| enqueue(offerer ACTION), offerer=0 d=dequeue(offerer),
' enqueue(offerer NOPAYLOAD) offerer=0
1
| Comasasan DU eEmplyeaues Bsneoet
. © @ rvrEat) gy a ©
& requester=n.offerer=n+1, <) LACTION).
enqueue(requester ACTION), enqueue(offerer, REQUEST)
enqueue(requester,SKIP)
CK
©
tisEmpty(offe|
d=dequeue(offef
actior offerer=0
DISTRIBUTED_ACTION lisEmpty(requester)
=dequeue(requester),
ibutedOffer available(offerer)>=2 requester=0
in enqueue(offerer TYPEOFFER
foererirl\“spu i(n) | enqueue(offerer, NOPAYLOAD)
requester=n+1, i available(requester)>=2
() & - lisFullirequester) &) @) sEmpty(offerer) @i
AcTIoN) & ’@ LACTION) & TYPEMATCH) =7 d=dequeue(offerer) =
DistributedMatch
D.B. et al. (ISTI CNR Pisa)

enqueue(requester ADDRESS,

enqueue(requester, PORT)

M 2023

Contract Automata Runtime Environment

XooooooooooooooOEEE=
Formal Model : Traceability
(d1==NOPAYLOAD||d1==REQUEST)&&isFull()

enqueue(OFFER),d1=0
CentralisedOrchestratedAction java

line 29
TION @ lisEmpty() U d1==8SKIP&&lisFu
d1=dequeue() & enqueue(REQUE:
CentralisedOrchestratedAction java CentralisedOrche:
ne 28 ne 29

=Y
DistributedOrchestratedAction.java

lines 73-74

https://github.com/contractautomataproject/CARE /tree/master/src/spec/uppaal

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

XoooooooooooooooOEs=

Model Checking

@ A[](not deadlock || (ror.Terminated && (forall(i:id.-t) ROC(i).Terminated)))

e absence of deadlocks

@ A[]((ror.Terminated && (forall (i:id_t) ROC(i).Terminated)) imply
allEmpty())

e absence of orphan messages

@ A[](ror.Stop imply A<>(ror.Terminated && (forall (i:id-t)
ROC(i).Terminated) && allEmpty()))

e whenever a choice to stop is made, eventually all services and the
orchestrator will terminate their execution.

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023 17 /20

Xooooooooooooooooom=

CARE evaluation

@ two examples: Alice and Bob, Composition service
@ two implementations: one with CARE, one without using CARE

HLOC ‘Cyclomatic Complexity ‘Cognitive Complexity ‘

. without CARE || 777 134 166
Alice and Bob With CARE 153 16 3
Composition Servieol¥ithout CARE [854 155 211

OMPOSItION ServiCe o h CARE 279) 55

D.B. et al. (ISTI CNR Pisa)

Contract Automata Runtime Environment

FM 2023

18 /20

Xoooooooooooooooooos

Conclusion, Future work

@ We have presented the first runtime environment for contract
automata, called CARE.
@ Future work support for choreographies and product lines is

formalised in contract automata and implemented in CATLib, but not
supported by CARE

@ Model-based testing

o Uppaal tests generation,
e generation of tests at the level of contract automata.

@ Other enhancements to do

https://github.com/orgs/contractautomataproject/projects/1

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

https://github.com/orgs/contractautomataproject/projects/1

Xooooooooooooooooooo

Other references

@ Basile, D. and ter Beek, M.H., 2022. Contract automata library.
Science of Computer Programming (Original Software Publication).

o Pugliese, R., Ter Beek, M.H. and Basile, D., 2020. Synthesis of
orchestrations and choreographies: bridging the gap between
supervisory control and coordination of services. Logical Methods in
Computer Science, 16.

@ Basile, D., ter Beek, M.H., Degano, P., Legay, A., Ferrari, G.L.,
Gnesi, S. and Di Giandomenico, F., 2020. Controller synthesis of
service contracts with variability. Science of Computer Programming,
187, p.102344.

D.B. et al. (ISTI CNR Pisa) Contract Automata Runtime Environment FM 2023

