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Abstract—The AI-RIDE project proposes adopting an accel-
erated, online, and embedded Artificial Intelligence framework
in motorcycle rider training, mainly targeting the Practical
Driving Courses (PDC) and Driving License Exam (DLE) sessions
verification tools. The project targets a disruptive innovation
step in the context of driving learning techniques, significantly
going beyond the state of the art of the current instruments
used in the PDC and DLE ecosystem. This work presents last
year’s activities with the promising results obtained with the first
working prototype.

Index Terms—Camera-based systems, edge computing, trajec-
tory analysis, computer vision, artificial intelligence, motorcycle
driving test

I. INTRODUCTION

The evolving state-of-the-art IoT sensors for driving/riding,
driven by the automotive ecosystem and autonomous driving
applications, generate vast amounts of data for trajectory and
behaviour predictions. However, these instruments are unsuit-
able for providing instructive feedback during human learning
and training phases. Interacting with humans in driving school
scenarios requires a different approach. Currently, no available
technology in the market or scientific literature exists for
automating motorbike training and testing procedures. One
year ago, we presented a multi-camera system [1]that could
solve this problem. From that idea, the Artificial Intelligence-
driven RIding Distributed Eye (AI-RIDE) project was born,
and with this work, we aim to present the very first working
prototype. The AI-RIDE project focuses on Practical Driving
Courses (PDC) and Driving License Exams (DLE) for motor-
bikes. Factors such as performance time, trajectory precision,
speed management, driver’s posture, and motorbike position
influence the exam outcome. Video cameras along the circuit
track provide data for computing these factors. However,
cognitive features and specific human-interpretable feedback
are crucial in improving performance.

Such a framework would also provide instructors with
interactive teaching tools and improve learning sessions. It
also facilitates automatic verification and verifiability during
license exams, offering objective performance evaluation pa-

Fig. 1. The motorcycle driving licence test takes place on predefined paths
delimited with traffic cones: one path is smaller with close passages and low
speed (Low Speed Balance - LSB) and the other is larger and requires higher
speeds (High Speed Agility - HSA). On both of them, there is a slalom at the
beginning, then a curve, and finally, a straight section. The driver must stop
the vehicle in a specific space on the long track. Everything must terminate
respecting time constraints. The picture shows the two tracks at the testbed
site, the AUG of Pontedera.

rameters for AI-computed exam scores. This innovative toolkit
would benefit the entire drive/ride license ecosystem.

The AI-RIDE solution utilizes data fusion and AI processing
to improve motorbike riding performance: it combines infor-
mation from all the cameras on the track circuit, providing
details on body posture, vehicle position, speed/trajectory, and
penalty events.

Additionally, the AI-RIDE system records critical perfor-
mance parameters and provides online feedback and test
scores. It offers objective indicators to exam committees for
evaluating test performance. Automatic performance evalu-
ation, scores, and outcomes are provided remotely during
exams thanks to a distributed camera-triggered video pro-
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Fig. 2. AI-RIDE system architecture: the violet borderless shape are the image processing steps and the red rectangles indicate the penalties. In case of
positive result the system gives information about the execution time, the average speed and an experimental score with respect to a reference path executed
by the instructor. This example is the instance of the Low Speed Balance (LSB) track which uses two cameras, but it is possible to work with any number
of visual sensors.

cessing system, achieving objective audibility without exam
commissioners needing physical attendance.

In summary, AI-RIDE provides a complex and complete
video analytics system, leveraging data fusion, AI processing,
and augmented reality to enhance motorbike riding perfor-
mance, facilitate training, and automate exam evaluation. As
such, AI-RIDE uses advanced methods of computer vision
and deep learning, relying on a vast corpus of related works,
as already described in [1]. Moreover, it addresses the need
for tailored feedback in driving training by adapting IoT
sensors and data analytics tools to enhance human learning
and improve performance in motorbike riding scenarios. In the
following sections, we present last year’s activities: Section
II shows the system design and implementation, Section III
describes the testbed setup, and the evaluation results and
Section IV concludes the paper discussing about the future
improvements.

II. SYSTEM DESIGN AND METHODOLOGY

According to the Italian law [2], the first part of the
motorcycle driving licence test takes place on predefined paths
delimited with traffic cones: one path is smaller with close
passages and low speed (Low Speed Balance - LSB) and
the other is larger and requires higher speeds (High Speed
Agility - HSA). To achieve a positive result, the candidate
must conclude the test without committing any of the follow-
ing penalties: touching one or more cones; skipping a cone
during the slalom phase; exiting the course; demonstrating
irregular driving; putting a foot on the ground; failing the
time constraints. The AI-RIDE system architecture is scalable
and designed to process streams of multiple cameras and fuse
the resulting information with the primary goal of discovering
the penalties that could occur (the red shape in 5). In case
of a positive result, the system gives information about the
execution time, the average speed, and an experimental score
concerning a reference path executed by the instructor. The

workflow depicted in fig.2 is based on two cameras, the
instance we use for the LSB track. Let’s describe in detail
the processing steps.

A. Image rectification

Pinhole cameras introduce significant distortions in the
grabbed images. Typically straight line are not straight any-
more. A pixel of coordinate (xdistorted, ydistorted) is in general
in the the wrong position. Image rectification allows to calcu-
late the correct position (x, y) [3]. The main distortion is the
radial distortion, which depends on the lens curvature and it
can be represented by the following equations:

xdistorted = x · (1 + k1 · r2 + k2 · r4 + k3 · r6) (1)

ydistorted = y · (1 + k1 · r2 + k2 · r4 + k3 · r6) (2)

The farther the point (x, y) is away from the centre of the
image (distance r), the more the distortion grows. k1, k2, k3
are called the coefficient of radial distortion.

Another significant error depends on the tangential distor-
tion, which occurs because the lens is not aligned with the
sensor image plane. This distortion can be represented in the
following way:

xdistorted = x+ [(2p1 · x · y) + p2 · (r2 + 2x2)] (3)

ydistorted = y + [p1 · (r2 + 2y2) + (2p2 · x · y)] (4)

where (x, y) is the same point in the rectify image space,
r2 = x2 + y2 and p1, p2 are the coefficients of tangential
distortion.

Using standard camera calibration technique [4], which
involves a set of pictures of an object with known dimen-
sions, typically a calibration grid, it is possible to find a 5-
dimensional vector p of distortion parameters:

p = (k1, k2, p1, p2, k3) (5)



and use it to map the grabbed frame into an undistorted image,
which is fundamental to performing exact measurements of
distance and speed.

Fig. 3. Differential cone detection has been performed to distinguish between
untouched cones (red) and cones on the ground (yellow). This detection is
crucial for identifying exam mistakes.

B. Object detection

The object detection module is applied to all the frames
to identify the motorbike, the pilot and the cones of the
track. The accuracy of the outputs is vital to achieve an
overall good result for the system: the exact position of the
motorbike is essential to calculate the trajectory and analyse
its goodness, while the cones are used to determine the border
of the track. In the proposed approach, object detection is
achieved by resorting to background subtraction methods [5]
for identifying moving blobs of interest as well as on recent
methods based on deep learning belonging to the so-called
category of one-stage object detector [6]. In more detail,
differential cone detection has been performed to distinguish
between untouched cones and cones on the ground, see fig.3
with a bounding box of different colours. This detection is
crucial to detect exam mistakes (cones touched are critical,
cones moved and fallen are more critical).

For the detection of the motorbike, only cropped portions of
the whole frame are used: the Foreground blob coming from
the Background subtraction technique identifies the regions of
the frame that are changed with respect to the previous one;
this improves the accuracy and the speed of the detection of
the motorbike and enables the system to know where are the
cones that can be occluded or touched.

C. Points projection

In order to work with real-world coordinates, a perspective
projection is a necessary step. The aim is to transform the
image coordinates (fig.4-D) into coordinates of a plan view
(fig.4-E) that can be a common reference system for all the
different cameras. This is done with standard homography
calculation [7]. The best points to project are those that lay
on the ground plane. In the case of cones, the middle point
of the bottom side of the bounding box is generally a good
choice since cones do not move and they are relatively small

Fig. 4. Point projection: the representative point of the item should lay on the
ground. A) For the motorcycle the ground point depends on the angle of view
and the naive choice, like the green point, could lead to mistakes; B) Simple
interpolation is a fair choice but C) more elaborate processing with semantic
segmentation is the optimal. D) The middle point of the bottom side of the
bounding box is a good choice for cones because they are relatively small
objects; E) The projection of the LSB track with the black dots representing
the cones; F) using these points the track is divided into virtual zones to
understand if the path follows the right sequence or if the motorcycle enters
in any forbidden area (skipped cone or exit the course

objects. In the case of motorcycles, we need more accurate
processing because the ground point depends on the angle of
view and the same choice of the cone could introduce big
mistake (the green dot in see fig.4-A). With a simple linear
interpolation between the centre of mass and the bottom of
the bounding box (see the blue dots in fig.4-B) it is possible
to obtain a better result (the green dot in fig.4-B. To enable
finer detections, an additional semantic segmentation model
has been trained for motorbike and pilot, to obtain not only
the bounding box, but also the precise object profile at the
pixel level; this feature is useful to identifying a much better
motorbike reference point (blue dot in in fig. 4-C).

D. Information fusion

The fusion process permits to get the best performance by
the system by using two or more cameras. The developed
system uses two cameras installed as shown in figure 5-A.
The best performance obtained in this context depends strictly
on the resolution in pixels of the image. Let’s consider cameras



Fig. 5. For the LSB we are using 2 cameras. A) the position and the field of view of the cameras: they are placed orthogonal to each other and in a way
that every camera is aligned with one dimension of the track; B) the lateral cam L2 is placed in the middle of the X dimension of the track; C) the frontal
cam L1 is placed aligned with the central cones of the slalom initial part with respect to the Y dimension of the track;

without image aberration. Intuitively, the video resolution of
an area next to a camera is better than that of a far area. For
this purpose, we computed the resolutions of some particular
areas (see 5-B and 5-C) and we noticed that, with respect to the
X axis, the cam L2 has the best spatial resolution on almost
all the track, except for the area closest to the cam L1. Here,
L1 gets a more excellent resolution, and its spatial resolution
became predominant with respect to L2. The figures 5-B and
5-C show that the closest part of the track to L1 measures the
same spatial distance of L2 using 120 pixels instead of 60.
After this observation, the X axis has been divided into two
zones: for X values previously shown, the best choice is the
L1 cam, in the other cases, the best choice is L2. Regarding
the depth of the track, corresponding to Y axis, the best choice
is L1 for all the tracks. In fig.4-E, the black dots represents
the positions of the cones obtained after this fusion algorithm.

E. Tracking

A standard procedure connected with the tracking step is
using the Kalman Filter (KF) [8]. The KF operates through a
two-step process involving prediction and update steps, where
it continuously refines state estimates. Its adaptability and ef-
fectiveness in real-time applications have made it a cornerstone
in modern control theory and estimation theory [9]. The output
of the KF is a vector which indicates the position and the speed
of the vehicle. It is, therefore, straightforward to signal when
the speed goes down to zero. With a high probability, this case
is connected with the foot-on-the-ground penalty.

F. Trace analysis

With the output of the KF tracker, we have a good es-
timation of the positions and the speed of the vehicle in
every moment of the recorded video. It is, therefore, an easy
task to calculate the principal information of the driving test,
which are average, maximum and minimum speed and the
completion time. If this last value fails to complain about the
constraint, the system signs a time penalty. In order to work
with mathematical functions instead of linear segments, the
KF points are used to calculate a set of mono-dimensional
splines [10]. These functions offer a smooth visual path and
can be used for integral or derivative calculation.

1) Path checking: There are two types of penalties related
to the correctness of the path: if the motorbike exits the
course or if one cone is skipped during the slalom phase. The
system is able to discover both penalties using a lookup table
that is built dynamically based on the positions of the cones
calculated at the beginning of the video. In fig. 4-F, you can see
the lookup table which divides the track into different virtual
zones: the correct path is given by a sequence of positions
that starts from value 1 and remains on that for a while and
then increase by 1 passing to the consecutive number. In other
words, the correct sequence of the virtual zone is 1-2-3-4-5-
6-7-8-9-10-11-12. The virtual zone 0 means “exit the course”
penalty. Any other sequence raises the “skipped cone” error
message.

2) Overall score computation: The score computation takes
place by comparing the loss under examination with the opti-
mal path. The optimal route is evaluated and estimated by the
driving instructors. The idea behind the analysis consists of the
difference between the path established by the instructors and
the path followed by the candidate. Each path is characterised
by three main parameters: the execution time, speed and
route. Very good characteristics are the average speed and the
difference between the area enclosed in the expert’s path and
the candidate’s defined by the route (see fig.6; focusing on
what can be really different in irregular driving, we think that
maximum and minimum speed are good values to watch and
for the spatial part the correlations along the X and Y axes give
significant information too. Therefore, the following features
are examined:
s1 path execution time
s2 motorcycle average speed
s3 motorcycle maximum speed
s4 motorcycle minimum speed
s5 area defined by the route
s6 correlation of the X coordinates
s7 correlation of the Y coordinates

The candidate’s driving scores, from to s1 to s5, are calculated
using eq. 6 (r=instructor reference value, c=candidate value)

score =
|r|

|r|+ |r − c|
(6)

The s6 and s7 ratings involve the computation of the
correlation coefficients as described in eq. 7 and 8. The



Fig. 6. Irregular driving: to determine if the driving of the test has been
irregular, average speed, time and path are compared to an optimal route done
by an expert instructor. In particular, the system considers the area enclosed
between the recorded test and the optimal one (the less, the better).

correlation coefficients are computed for x and y coordinates.

corr coeff(xr, xc) =
cov(xr, xc)

σ(xr) · σ(xc)
(7)

corr coeff(yr, yc) =
cov(yr, yc)

σ(yr) · σ(yc)
(8)

These parameters are used to provide a rank of the candidate
test drive (see eq. 9).

rank =

(
1

n
· Σn

i=1ϕi · si

)
·

 m∏
j=1

ej

 (9)

where n = 7 and each parameter si has its own coefficient
ϕi because not all the events have the same importance. ej is
a binary value that becomes 0 if the corresponding penalty is
detected. If some fault happens, the corresponding ej gets the
value 0, and rank values go to zero. The computed fault events
are the ones we already discussed in II: 1) hitting a cone, 2)
exiting the course, 3) failing time constraints, 4) skipping a
cone during the slalom phase, 5) putting a foot on the ground.

III. EXPERIMENTAL ACTIVITIES

A. Testbed setup

The very first activity of the project was a detailed recog-
nition of the track testbed Facility in Pontedera (AUG track)
in order to understand the requirements and the constraints of
the location. To identify the sensor characteristics and their
position in the track to successfully cover all the use cases,
we acquired preliminary videos at different resolutions and
framerates. For this task we used a GoPro Hero 10 [11] with
up 2704x1520 resolution at 240fps and 3840x2160 resolution
(4K) at 120fps; the camera was mounted on an extendable
telescopic stand to reach the altitude of 5 meters from the
ground. After preliminary processing, considering precision
and execution time, we concluded that the video requirements
should be the Full HD resolution (1920x1080,2MPixel, 1080p)
at 50 f.p.s which is fast enough for the maximum speed

Fig. 7. Object detection of cones, motorbike and pilot: the YOLOv5 custom
model has been trained with more than 4000 images, and the system is able
to recognise the classes also in very different light conditions like the intense
shadow you can see in the picture above.

recorded on the tracks. In addition to the previous require-
ments, the camera should be able to operate outdoors and
have wired ethernet connectivity. The choice fell on the Dahua
IPC-HFW5541E-ZE [12], an Outdoor IP camera with the
advantage of a configurable focal length ranging from 2.7mm
up to 13.5mm. This vari-focal feature allows the use of the
same sensor as a wide-angle or low-angle, depending on the
particular position. The optimal camera number is 19: these
would include 2 wide-angle (6 meters height using dedicated
poles) and 4 low-angle cameras for LSB track, and 2 wide-
angle (6 meters height) and 9 low-angle cameras for HSA
track. The need of low-angle cameras would be required to
perform foot-on-the-ground detection along the whole track.
This type of recognition is particularly challenging and re-
quires detailed motorbike lateral detection. The first section
of the tracks is the most critical due to the slalom trajectory.
The instructors confirmed that the foot-on-the-gound event is
more likely to occur in this zone. Given the budget constraints,
we have identified a sub-optimal (final setup) possible camera
placement: a total of 8 cameras allowing the foot-on-the-gound
feature detection covering 50% of the two tracks (from one
side only). In particular, we used 6 cameras for the HSA track
and only 2 of them for the LSB track. The last one is the
working prototype we refer to from now on. You can see the
position and the field of view of the cameras in fig.5-A: they
are placed orthogonal to each other and in a way that every
camera is aligned with one dimension of the track; with respect
to the driver L2 is called the lateral cam and L1 is called the
frontal cam; fig.5-B and fig.5-C show the actual frames that



are processed in the workflow pipeline, where the mask step
with the black area is done by the camera itself.

B. YOLOv5 Custom model

The detection module utilizes artificial intelligence libraries,
particularly the YOLO version 5 [13], [14], trained using more
than 4000 images manually annotated with Roboflow [15].
Multiple training sessions have been employed to improve the
detection, facing several issues, such as the rotation of the
cone, the invariance of the detection with respect to lightning
and contrast image (the track is subject to different lighting
conditions and shadows due to the near presence of buildings
and the different sun positions during the day. This time
consuming model training activity has been done using the
High Performance Computer NVidia DGXA100 [16] which
relies on 8 A100 G.P.U. for a total of 320GB dedicated
memory. The multiple training allowed to achieve excellent
detection results in extremely different light conditions, as you
can see in fig.7-A. Fig.7-B shows the confidence of the four
classes: it is about 0.95 for cones and between 0.9 and 0.92
for the motorbike and the pilot.

C. Evaluation results

The working prototype that we used for these early results
is related to the LSB track. All the motorcycle tracking is
done using only the side camera, which has a better view
of all the track. The frontal camera information is used to
better estimate the positions of the cones. Figure 8 shows three
examples of the system’s output: it consists of a top-down view
of the LSB track where the green dots indicate the positions
of the cones at the beginning of the test, and the black path
is the one computed with the Kalman Filter. In the info-bar
at the bottom, information is reported about the time and the
average velocity, the outcome of the test and the experimental
score that is calculated according to II-F2. The most common
mistake is the “cone penalty”. Fig.8-A is an example of this
case: the blue dot indicates what cone is missing from the
standard configuration and the red dot shows where the system
sees a cone that should not be there. The yellow square around
the red dot means that the system “sees” that the cone lies on
the ground. A more difficult case to understand is when the
cone is touched but it remains in the stand-up position: the
system can understand this event if there is at least 8 cm of
displacement. Other major penalties which correspond to a
negative result are the exit-of-course and the skipped cone:
these penalties are detected very well using the look up table
that we explains in paragraph II-F1: a red dot is placed in
the location where the system detects the fault; in these cases
the error is connected to the precision of the position of the
motorbike which is relative to its middle point; a downside
of this approach is that if only a little part of the front wheel
exits the border of the track the system is not able to signal
it.

The time penalty is the case of fig.8-B where the end time
is lower than the minimum for this track. The outcome of the
test is negative and the score is zero like every case where

Fig. 8. Three examples of the system’s outcome: A) A cone has been touched
and the result is negative with an overall score of zero: the blue dot indicates
the original location of the missing cone, while the red dot shows the final
position; the yellow square means that the cone is laying down; B) the
motorcycle has done a clean path but the end time was under the limit of
15 sec and the test is negative; C) this test is positive because there is no
major penalty, however the score is low because the end time is very high
compared to the optimal

there is a major penalty. The foot-on-the-ground penalty is
very hard to recognised: as for now we can only check if the
speed of the vehicle goes down to zero during the test and
that is an error. Unfortunately very often there is a very small
touch of the foot just in case of loosing the balance; we have
to work on this involving the analysis of the posture of the
pilot. If there is no penalty the system response is positive
and an overall score is calculated: in fig.8-C the end time
is almost a minute, which is not a penalty, but it is more
than the double of what is expected by a good test; according
to this the score of 0.79 indicates a sufficient, but not good
result. Table I offers other examples of this scoring system
based on the formulas shown in paragraph II-F2: the first gray
column shows the reference values relative to an expert driver
and the following four columns represent different test-drives.
“Good” is a positive outcome with parameters very similar to
the reference and the overall score is 0.945, which is higher
than the “Very slow” we already discussed. It is interesting
to notice the difference between the two negative outcomes in
the central gray columns: both have an overall null score, but
looking at the average, the example “Too Fast” is a low 0.745
while the “Out of bound” is 0.901 because the end time is
more similar to the ”Reference” one. We’d like to remind that
this is a very experimental scoring system that needs further
improvements.



TABLE I
EXAMPLES OF THE EXPERIMENTAL SCORING SYSTEM: THE PARAMETERS OF THE TESTS ARE COMPARED TO THE “REFERENCE” PERFORMED BY THE
INSTRUCTOR. “GOOD” IS A POSITIVE OUTCOME WITH PARAMETERS VERY SIMILAR; “VERY SLOW” IS A POSITIVE OUTCOME TOO, BUT THE SCORE IS

LOWER BECAUSE THE END TIME IS MORE THAN DOUBLE WITH RESPECT TO THE REFERENCES. “OUT OF BOUND” AND “TOO FAST” ARE EXAMPLES OF
NEGATIVE RESULTS BECAUSE MAJOR PENALTIES HAS OCCURRED DURING THE TEST-DRIVE AND THEREFORE THE OVERALL SCORE IS ZERO.

Reference Good Too Fast Very Slow Out of bound
value value score value score value score value score

Area 202.368 m2 201.093 m2 0.99374 201.401m2 0.995244 204.845 m2 0.987908 208.725m2 0.969544
Corr x 0.981505 0.973566 0.995709 0.995709 0.92647 0.92647 0.974724 0.974724
Corr y 0.998595 0.998595 0.996716 0.996716 1 1 0.998567 0.998567
Time 18.5602 s 18.9202 s 0.980972 12.82 s 0.763784 51.30 s 0.361791 19.9003 s 0.932663

Max speed 571.41 cm/s 710.03 cm/s 0.804774 1158.15 cm/s 0.493384 649.81 cm/s 0.879346 718.886 cm/s 0.79486
Min speed 27.10 cm/s 24.7178 cm/s 0.919165 65.79 cm/s 0.411908 21.11 cm/s 0.818896 13.06 cm/s 0.658718
Avg speed 340.20 cm/s 319.125 cm/s 0.941642 468.62 cm/s 0.725976 133.78 cm/s 0.622372 331.367 cm/s 0.974668
Average 1 0.944636 0.764674 0.799539 0.900521

Score 1 0.944636 0 0.799539 0

IV. CONCLUSIONS AND FURTHER WORK

The AI-RIDE prototype successfully faces the problem of
assigning an automatic evaluation to a candidate during a
motorbike licence on-the-road test, leveraging computer vision
and machine learning. The obtained results have demonstrated
the system’s feasibility by realising a successful proof-of-
concept activity. The evaluation process uses only a few
cameras (one or almost two) to compute the outcome of the
examined test drive. Thus, the acquisition process introduces
non-eliminable artefacts due the occlusions in the recording
area, the spatial camera resolution, the frame per second of
the cameras, the real-time requirements and the computational
resource. The challenge is to use the available information
from low-cost devices to obtain an acceptable assessment.
Future goals are to use only one camera with high spatial/time
resolution for the LSB track, to finish the monitoring of the
HSA circuit and to extend the analysis including the car
driving license examination. Other investigations will concern
embedded hardware solutions to enable some edge processing,
e.g. to perform the camera image distortion and the object
detection step on the camera hardware. The overall goal
is to leverage pervasive computing solutions and embedded
systems to devise a new range of intelligent camera systems
for responding to the needs of smart cities and future internet
applications.

ACKNOWLEDGMENT

This work is partially supported by the VEDLIoT project
funded by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 957197.

REFERENCES

[1] G. R. Leone, M. Righi, D. Moroni, and F. Paolucci, “Towards Multi-
Camera System for the Evaluation of Motorcycle Driving Test,” in
PRELUDE 2022-International Workshop on PeRvasive sEnsing and
muLtimedia UnDErstanding-In conjunction with SITIS 2022,, 2022.

[2] Ministero dei Trasporti, “Decreto 26/09/2018 - prove di valutazione per
conseguimento patenti a1, a2 e a,” https://www.gazzettaufficiale.it/eli/id/
2018/10/12/18A06493/sg, 2018, last reviewed October 17, 2023.

[3] A. Distante, C. Distante, W. Distante, and Wheeler, Handbook of image
processing and computer vision. Springer, 2020.

[4] Z. Zhang, “A flexible new technique for camera calibration,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 11, pp. 1330–1334, Nov 2000.

[5] B. Garcia-Garcia, T. Bouwmans, and A. J. R. Silva, “Background
subtraction in real applications: Challenges, current models and future
directions,” Computer Science Review, vol. 35, p. 100204, 2020.

[6] S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and
B. Lee, “A survey of modern deep learning based object detection
models,” Digital Signal Processing, vol. 126, p. 103514, 2022.

[7] M. Sonka, V. Hlavac, and R. Boyle, Image processing, analysis, and
machine vision. Cengage Learning, 2014, ch. 11.2.3 ”Estimating
homography from point correspondences”, pp. 558–561.

[8] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Transactions of the ASME–Journal of Basic Engineering,
vol. 82, no. Series D, pp. 35–45, 1960.

[9] G. Welch and G. Bishop, “An introduction to the kalman filter,”
University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,
Tech. Rep. 95-041, 1995. [Online]. Available: http://www.cs.unc.edu/
∼welch/kalman/kalmanIntro.html

[10] B. Bojanov, H. Hakopian, and B. Sahakian, Spline Functions and Multi-
variate Interpolations, ser. Mathematics and Its Applications. Springer
Netherlands, 2014.

[11] GoPro, “HERO10 Black action camera,” https://gopro.com/it/it/shop/
cameras/hero10-black/CHDHX-101-master.html, 2022.

[12] Dahua, “IPC-HFW5541E-ZE: 5MP IP Vari-focal Bullet Network
Camera,” https://www.dahuasecurity.com/products/All-Products/
Network-Cameras/WizMind-S-Series/5MP/IPC-HFW5541E-ZE=S3,
2023.

[13] G. J. et al., “Yolov5 classification models, apple m1, reproducibility,
clearml and deci.ai integrations,” https://zenodo.org/record/7002879#
.YwUUqHZByUk, 2022.

[14] Glenn Jocher and Sergiu Waxmann, “Comprehensive guide to ultralytics
yolov5,” https://docs.ultralytics.com/yolov5/, last reviewed October 17,
2023.

[15] Roboflow Inc., “Roboflow annotation framework,” http://www.roboflow.
com/, last reviewed October 17, 2023.

[16] Chris Campa, Chris Kawalek, Haiduong Vo and Jacques Bessoudo,
“Defining AI Innovation with NVIDIA DGX A100,” https://developer.
nvidia.com/blog/defining-ai-innovation-with-dgx-a100/, last reviewed
October 17, 2023.

https://www.gazzettaufficiale.it/eli/id/2018/10/12/18A06493/sg
https://www.gazzettaufficiale.it/eli/id/2018/10/12/18A06493/sg
http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html
http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html
https://gopro.com/it/it/shop/cameras/hero10-black/CHDHX-101-master.html
https://gopro.com/it/it/shop/cameras/hero10-black/CHDHX-101-master.html
https://www.dahuasecurity.com/products/All-Products/Network-Cameras/WizMind-S-Series/5MP/IPC-HFW5541E-ZE=S3
https://www.dahuasecurity.com/products/All-Products/Network-Cameras/WizMind-S-Series/5MP/IPC-HFW5541E-ZE=S3
https://zenodo.org/record/7002879#.YwUUqHZByUk
https://zenodo.org/record/7002879#.YwUUqHZByUk
https://docs.ultralytics.com/yolov5/
http://www.roboflow.com/
http://www.roboflow.com/
https://developer.nvidia.com/blog/defining-ai-innovation-with-dgx-a100/
https://developer.nvidia.com/blog/defining-ai-innovation-with-dgx-a100/

	Introduction
	System design and Methodology
	Image rectification
	Object detection
	Points projection
	Information fusion
	Tracking
	Trace analysis
	Path checking
	Overall score computation


	Experimental activities
	Testbed setup
	YOLOv5 Custom model
	Evaluation results

	Conclusions and further work
	References

