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ABSTRACT

This paper presents a dataset on edge devices and mobility patterns
to comprehensively understand user behaviour and devices work-
load in Edge computing environments. The dataset is built on top
of a publicly available dataset of cellular tower locations to simu-
late Edge devices, and on user mobility trajectories generated by a
state-of-the-art simulator based on real location maps in the area
of the city of Pisa, Italy. The resulting dataset reports the amount
of vehicles in the range of about 200 Edge devices for each step of
the simulation. The dataset can be used for various applications in
edge computing and mobility, most notably for assessing results
on resource and application management solutions at the edge in a
realistic environment.

CCS CONCEPTS

• Networks→ Network resources allocation; • Human-centered

computing → Ubiquitous and mobile computing design and

evaluation methods; • Information systems→ Computing plat-
forms.
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1 INTRODUCTION

In today’s world, where mobile devices are prevalent, smartphones
are gateways to a vast collection of data and applications. This
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significantly impacts the computing infrastructure that handles
user requests passing through these gateways. Whilst the requests
generated by the current devices already challenge the existing
infrastructure, the envisioned future scenarios foresee even more
impactful requests that are aimed at supporting highly-reactive
multimodal human-computer interactions mediated through more
advanced devices (e.g., next-generation HMDs).

Traditional cloud-based infrastructures do not represent a suit-
able solution for the next generation of mobile applications and
devices due to the latency sensitiveness of applications and the data
deluge generated by devices. To address such needs, a viable ap-
proach is to bring computing capacity near the end devices instead
of transferring data and requests to remote computing infrastruc-
tures. Edge computing approaches the problem by exploiting edge
data centres, which are a sort of “walking-sized” Clouds located
pervasively in the environment (typically co-located with antennas
for mobile communication [5, 21]), to perform computational tasks
that would otherwise be processed remotely. Determining when
and what edge data centres to exploit for a large set of users and
applications while matching the requirements of the applications
and the expectation of users is challenging. Even more, achieving
it while ensuring optimal exploitation of resources is a hard task,
as by the NP-completeness of the underlying problems. Many ap-
proaches to face the problem have been proposed so far [11, 14],
however they usually assess their effectiveness only under specific
conditions that are hardly repeatable or customisable (e.g., to assess
the quality of the solution when conditions change).

To overcome these issues, this paper presents a comprehensive
dataset on edge devices and mobility patterns that can be used for
various applications in edge computing and mobility. Our approach
uses the publicly available dataset of cellular tower locations [17]
to use in combination with the user mobility patterns generated by
the SUMO simulator [12] based on real location maps. The resulting
artefact provides a more accurate and representative view of real-
world scenarios, enabling researchers and practitioners to develop
and evaluate edge computing and mobility solutions in a more
realistic environment. Finally, to foster further research in the field,
we made the dataset publicly available [4].

2 RELATEDWORK

Using reference datasets to verify solutions’ efficiency and effec-
tiveness is common in computer science and engineering research.
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Specifically, this applies to validating resource and application man-
agement solutions in large computing infrastructures. There are
notable examples of datasets that have been successful in this field.
Some of such artefacts consist of publicly available real workload
traces (such as Google cluster traces [8], Eucalyptus IaaS cloud
Workload [6], and many others). The relevance of such data for the
community is demonstrated by the large number of papers having
these datasets as the main subject or at least as a primary entity for
the evaluation activity [9, 10, 19, 20].

Other datasets provide collections of PoI relevant to edge comput-
ing research, such as antennas of mobile network carriers, properly
organised for easing the investigation and comparison of different
solutions. In this context, the dataset created within the BASMATI
EU project [2] presents the Received Signal Strength Indicator (RSSI)
of the smartphone WiFi transceivers of the attendants of a music
festival on a specific day, as many WiFi access points recorded it.
Among those, a prominent role for what concerns research on edge
computing and user mobility is played by the artefact provided by
Lai et al. [13]. Starting from such a dataset, many works have been
developed1.

A different but complementary approach has been followed by
Xiang et al. [22]. In this work, the authors focus on networking
aspects and release a dataset with data related to 3 randomly gener-
ated MEC topologies with increasing network size (from 25 to 100
nodes). Such topologies could be used to run extensive experiments
and compare different solutions’ performance concerning planning,
scheduling, routing, etc. Alsaedi et al. [1] released a dataset called
“TON_IoT Telemetry” includes Telemetry data of IoT-IIoT services,
Operating Systems logs and Network traffic of IoT network col-
lected from a realistic representation of a medium-scale network at
the Cyber Range and IoT Labs at the UNSW Canberra (Australia).
Starting from such a work, Zachos et al. [23] generate a set of IoT
edge network-specific datasets based on the “ToN_IoT Telemetry”
dataset.

All the datasets mentioned above aim to support research ac-
tivities in edge computing or user mobility. However, no publicly
available dataset supports validating and evaluating solutions con-
sidering user mobility and edge computing altogether.

3 THE DATASET

DATA7 is built by merging cellular towers’ position with the move-
ment of vehicles in the city of Pisa, Italy. The methodology we
followed is depicted in Figure 1. We used two main sources of data:
(i) synthetic vehicles trajectories made with SUMO to simulate the
movement of active users, and (ii) the real position of cellular tow-
ers from OpenCelliD, which we consider a good approximation of
the position of potential Edge computing nodes.

3.1 Sumo trajectories generation

Simulation of Urban MObility (SUMO) [3] is an open-source, mi-
croscopic, and continuous traffic simulator tool designed to handle
a large set of traffic scenarios. SUMO networks consist of nodes
and unidirectional edges representing street, waterways, tracks, etc.
A single simulation scenario involves vehicles moving through a

1a comprehensive list of papers that use it can be found here: https://github.com/
swinedge/eua-dataset

given road network. Each vehicle is modelled explicitly, has its own
route, and moves individually through the network. SUMO net-
works include detailed information regarding possible movements
at intersections and the corresponding right-of-way rules used to
determine the dynamic simulation behavior. A useful tool for initial
scenario preparation is the osmWebwizard [15] application, which
has been used in this paper to generate the network of Pisa. It
allows a simple selection of an area from a map display along with
a set of parametrized traffic modes. The tool uses this information
to download and import the network data from OpenStreetMap [7]
with parameters corresponding to the selected traffic modes. Addi-
tionally, SUMO provides the SUMO-GUI [16] application (Figure
2), which allows observing the simulation in various aspects such
as speeds, traffic densities, road elevation, or right-of-way rules.
To evaluate a simulation scenario quantitatively, the simulation
provides several output files, including: (i) Vehicle trajectories, (ii)
traffic data, (iii) protocols of traffic light switching, (iv) traffic data
aggregated for the whole simulation, and (v) Emissions and energy
consumption.

To identify the network of routes in the Pisa city area and create a
simulation scenario, we employed the SUMO OSMWebWizard tool,
as illustrated in Figure 2. Our simulation scenario was generated
with the "Import Public Transport" feature enabled, andwe exported
both busStops and trainStops. To generate car traffic, we configured
the demand generation to include a Through traffic control of 4
and a Count of 8. We conducted a simulation comprising of 3600
steps, where each step in SUMO corresponds to one second by
default. The Through Traffic Factor measures the likelihood of
selecting an edge at the simulation area’s boundary over an edge
within the area. A higher value indicates more through traffic, with
many vehicles departing and arriving at the boundary. The Count
parameter defines how many vehicles are generated per hour and
lane-kilometer [15]. In our simulation, we have not imposed any
restrictions on the road selection.

3.2 OpenCelliD Preprocessing

To simulate the position of edge devices, we downloaded the loca-
tion of cellular towers from the OpenCelliD website [17]. OpenCel-
liD collects information about cell towers in a community-driven
fashion, i.e., data is primarily contributed by smartphone users who
installed specific applications.

The dataset is organized into records, each containing informa-
tion about a single tower. The pieces of information we used in this
paper are the following:

• Identifier: each tower has associated an unique cell identi-
fier;

• Position: latitude and longitude coordinates;
• Radio technology: cellular system supported by the tower,
such as LTE, UMTS, GSM, etc.;

• Range: estimated range of the tower in meters;
• Samples: number of different observations obtained for the
tower.

OpenCelliD covers Europe, most of North America, India, South
East Asia, and some parts of South America and Africa. For this
paper, we used cell towers in Pisa, Italy.
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Figure 1: Methodology for the DATA7 construction

Figure 2: OSMWebWizard tool for Pisa city routes

Figure 3: Traffic

Estimating edge devices positions required a few preprocessing
steps to eliminate errors in the raw OpenCelliD database. Being
OpenCelliD a community-driven project, the localization and in-
formation about towers’ location, range, and characteristics can be
imprecise [18].

First, several observations reported a range exceeding the maxi-
mum theoretical working range for cellular towers, and we simply
discarded these observations. Second, the location of the same tower
could differ among different measurements, due to location errors in
smartphones and distance estimation errors. Therefore, the position
of each tower is computed as the average of the observed positions.

Figure 4: Edge devices positions in the area of Pisa.

Third, we removed those observations with very few samples (i.e.
< 3) as they probably do not contain reliable information.

The resulting dataset contains 216 cell towers, distributed in the
area of Pisa as in Figure 4.

3.3 DATA7 description

The dataset contains a record for each observation of a vehicle in
the range of an edge device. The same vehicle can be in the range
of multiple Edge nodes at the same time.

In the simulation scenario of SUMO, there were a large number
of vehicles involved (3500). However, to streamline our analysis and
focus on the most relevant data, we randomly selected 630 of them
to be included in our dataset. The chosen vehicles are exemplary
cases of edge system users actively using Edge services. However,
it’s crucial to recognize that their mobility behaviors are shaped by
the prevailing mobility patterns of the city. This implies that despite
operating under the edge devices system, these users actions still
align with the city’s chosen mobility model. This focused approach
allows us to understand better how these specific entities interact
with the edge network devices and how their use may affect them.
For example, Figure 5 shows the workload of a selected edge node
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Figure 5: Workload as the number of connected users to a

selected Edge node over time (grey, bottom). Total number

of vehicles in the simulation (blue, top).

Field Description

edge_id Unique identifier of the edge devices
edge_lat Latitude coordinate of the edge device
edge_lon Longitude coordinate of the edge device
time Simulation step of the observation
vehicle_id Unique identifier of the vehicle
vehicle_lat Latitude coordinate of the vehicle
vehicle_lon Longitude coordinate of the vehicle
distance Geodesic distance in meters from the vehicle and the edge

device

Table 1: DATA7 schema

compared to the total number of vehicles in the simulation at any
given time. The final dataset is composed of about 730k records
(whose format is presented in Table 1) that amount to 60MB. No
anonymization has been performed as no personal data is involved
in the creation of the dataset. Finally, the dataset is publicly available
as a comma-separated value (CSV) file [4].

4 CONCLUSION

This paper presented DATA7, a comprehensive collection of data
on edge devices and mobility patterns, which aims to provide re-
searchers and practitioners focusing on resourcemanagement at the
edge to develop and evaluate solutions in a realistic environment.
The dataset includes real data concerning the positioning of the
antennas of mobile network carriers and simulated data obtained
by leveraging realistic mobility patterns generated by SUMO.
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