
International Journal on Software Tools for Technology Transfer (2023) 25:641–658
https://doi.org/10.1007/s10009-023-00730-1

FOUNDATIONS FOR MASTERING CHANGE

Special Section: Rigorous Engineering of Collective Adaptive Systems

A toolchain for strategy synthesis with spatial properties

Davide Basile1 · Maurice H. ter Beek1 · Laura Bussi1 · Vincenzo Ciancia1

Accepted: 10 October 2023 / Published online: 2 November 2023
© The Author(s) 2023

Abstract
We present an application of strategy synthesis to enforce spatial properties. This is achieved by implementing a toolchain
that enables the tools CATLib and VoxLogicA to interact in a fully automated way. The Contract Automata Library (CATLib)
is aimed at both composition and strategy synthesis of games modelled in a dialect of finite state automata. The Voxel-based
Logical Analyser (VoxLogicA) is a spatial model checker for the verification of properties expressed using the Spatial Logic
of Closure Spaces on pixels of digital images. We provide examples of strategy synthesis on automata encoding motion
of agents in spaces represented by images, as well as a proof-of-concept realistic example based on a case study from the
railway domain. The strategies are synthesised with CATLib, while the properties to enforce are defined by means of spatial
model checking of the images with VoxLogicA. The combination of spatial model checking with strategy synthesis provides a
toolchain for checking and enforcing mobility properties in multi-agent systems in which location plays an important role, like
in many collective adaptive systems. We discuss the toolchain’s performance also considering several recent improvements.

Keywords Synthesis · Games · Spatial model checking · CAS · Multi-agent systems · Rigorous tool engineering

1 Introduction

Collective Adaptive Systems (CAS) consist of multiple
spatially distributed agents, each exhibiting intricate au-
tonomous behaviour. These agents possess the ability to
cooperate towards shared objectives while typically also en-
gaging in competition over limited resources [51].

Formal modelling and analysis are essential for enabling
rigorous reasoning on the behaviour of CAS [27, 58]. By em-
ploying strategy synthesis, we facilitate the capacity of CAS
to dynamically adapt their behaviour in accordance with
evolving requirements. The seamless integration of strat-
egy synthesis with well-established methods such as spatial
model checking enhances the modelling and analysis tech-
niques available for CAS.

Research on strategy synthesis in games is a hot topic,
with established relations with supervisory control the-
ory [3, 69], reactive systems synthesis [46], parity games [66]
(with complexity breakthroughs [31]), automated behaviour
composition [49], automated planning [32] and service co-
ordination [20]. Several academic tools have been devel-
oped [6, 35–37, 44, 59, 61, 68] and applied to disparate do-
mains, including land transport [18], maritime transport [70],
medical systems [62], CAS [53], and autonomous agents path
planning [54], in which problems are modelled as games and
solved using tailored strategy synthesis algorithms.

In an automata-based setting, a strategy is a prescription
of the behaviour (transitions) of a particular player for all
possible situations (states) that leads that player to a specific
goal (final state). Typically, there are other players or an en-
vironment with different, often competing goals to account
for, and the set of transitions may be partitioned into con-
trollable (by the particular player) and uncontrollable tran-
sitions. Strategy synthesis is concerned with the automatic
computation of a (safe, optimal) strategy (controller) in such
a game-based automata setting.

Recent advancements in spatial model checking have led
to relevant results like the fully automated segmentation of
regions of interest in medical images by brief, unambigu-
ous specifications in spatial logic. The topological approach
to spatial model checking of [40] is based on the Spatial
Logic of Closure Spaces (SLCS). It provides a fully au-
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tomated method to verify properties of points in graphs,
digital images, and recently 3D meshes and geometric struc-
tures [28, 65]. Spatial properties of points are related to topo-
logical aspects like being near to points satisfying a given
property, or being able to reach a point satisfying a cer-
tain property, passing only through points obeying specific
constraints.

The free and open-source tool VoxLogicA [25, 43] has
been designed from scratch for image analysis. Logical op-
erators can be freely mixed with a few imaging operators,
related to colour thresholds, texture analysis, or normalisa-
tion. The tool is quite fast, due to the following three factors:
i) most primitives are implemented using the state-of-the-art
imaging library SimpleITK;1 ii) expressions are never re-
computed (reduction of the syntax tree to a directed acyclic
graph is used as a form of memoisation); iii) operations are
implicitly parallelised on multi-core CPUs. Ongoing work
(cf., e.g. [29]) is devoted to a GPU-based implementation
which enables a speedup of 1–2 orders of magnitude.

Returning to the topic of strategy synthesis, the tool
CATLib [5, 6, 10] is a library for performing compositions of
contract automata [9] (a dialect of finite-state automata) and
synthesising either their supervisory control, their orchestra-
tion, or their choreography [20], using novel notions of con-
trollability [17]. CATLib offers scalability features such as
a bounded on-the-fly state-space generation optimised with
pruning of redundant transitions and parallel streams compu-
tations. Moreover, the software is free and open source [6], it
has been developed using principles of model-based software
engineering [5], and it has been extensively validated using
various testing and analysis tools to increase confidence on
the library’s reliability.

Contribution In this paper, we extend [22], where we pro-
posed a new approach to combine strategy synthesis and
spatial model checking. We proceed in a bottom-up fashion.
First, we present a toolchain based on established off-the-
shelf and tool-supported theories. We then explore the com-
bination of CATLib and VoxLogicA, to concert the com-
position and synthesis functionalities of CATLib with the
spatial model checking functionality of VoxLogicA. Subse-
quently, we provide proof-of-concept examples of strategy
synthesis on automata encoding motion of agents in spaces
represented by images.2 The main insight is to encode an
image as an automaton, whose states are the pixels of the
image. These states are then interpreted as positions of an
agent, and transitions to adjacent pixels represent motions

1 https://simpleitk.org/.
2 In the VoxLogicA approach, images are seen as a special kind

of graphs, where vertices are pixels, and edges represent proximity.
Actually, the VoxLogicA family of tools can also operate on arbitrary
directed graphs. Adapting the present work to the more general setting
is left for future work.

of the agent. A composition of automata is thus a collective
multi-agent system, in which each state of the composition
is a snapshot of the current position of the agents in the map,
and a game can thus be played by a set of agents against other
opponent agents, where successful states and failure states
can be identified using spatial model checking of the im-
ages. Consequently, the strategy is synthesised with CATLib,
while the properties to enforce are defined by means of spatial
model checking of the images with VoxLogicA. By updating
the properties to enforce, it is possible to synthesise a new
strategy enabling the agents to collectively adapt to the up-
dated properties. The developed examples are open source
and reproducible at [23].

This paper extends [22] into the following directions:

• the toolchain is automatically invoked by a main program
(written in Python) which takes care of receiving input
parameters from the user, and automatically routing them
appropriately when invoking the various phases of the
toolchain;

• the number of images that are analysed by the spatial model
checker has been drastically reduced;

• the performance of the toolchain has been improved by
pruning unuseful computations and by reducing the size
of the automata to be composed;

• the spatial model-checking procedure has been improved
by resorting to a batching technique that permits dramati-
cally increasing the computation-to-overhead ratio;

• an example from the railway domain [21] serves as a proof-
of-concept of the practical applicability of the toolchain to
real-world case studies, which also showcases the necessity
of using the recent notion of semi-controllability rather
than uncontrollability.

The benefits of our contribution can be summarised as
follows: we show the practical applicability of the combina-
tion of two quite different tools, and we provide an original
approach to strategy synthesis and spatial model checking,
bridging theories and tools developed in different research
areas.

Related work Practical application of spatial logics, in-
cluding model checking, has been ongoing during the last
decade. For instance, the research line originating in [56]
merges spatial model checking with signal analysis. In the do-
main of cyber-physical systems, the approach of [75] demon-
strates applications of SLCS in a spatio-temporal domain
with linear time, using bigraphical models. An abstract cate-
gorical definition of SLCS has been given in [34]. The spatial
model checking approach of SLCS and VoxLogicA has been
demonstrated in case studies ranging from smart transporta-
tion [38, 42] and bike sharing [39, 41] in the context of CAS,
to brain tumour segmentation [4, 25], labelling of white and
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grey matter [24], and contouring of nevi [26] in the context
of medical imaging.

Synthesising strategies (or plans/control) for motion of
agents is widely researched [2, 47, 54, 55, 64, 71]. Spatial
logics have been applied to this problem to investigate the
synthesis of strategies from properties of spatially distributed
systems specified with spatial logics [1, 57, 63]. Recently,
the application domain of smart cities has been explored in
[67], and the aforementioned signal-based approach has been
enhanced for a hybrid approach to multi-agent control syn-
thesis, by exploiting neural network and spatial-logical spec-
ifications in the Spatio-Temporal Reach and Escape Logic
(STREL) formalism.

Differently from the above literature, we set out to in-
tegrate previously developed off-the-shelf algorithms and
tools, with the aim of showing their applicability. Contract
automata and their toolkit were introduced to synthesise or-
chestrations and choreographies of compositions of service
contracts exchanging offers and requests [6, 9, 17, 20]. The
interpretation of an image as an (agent) contract automaton
enables to connect contract automata and CATLib with spa-
tial model checking and VoxLogicA, showing the flexibility
of both approaches.

Structure of the paper After providing the necessary
background on the tools CATLib and VoxLogicA in Sect. 2,
we describe the proposed toolchain in Sect. 3, followed by a
report on three experiments in Sect. 4, where we also discuss
the improvement in performance with respect to [22]. Finally,
we conclude and mention some future work in Sect. 5.

2 Background

In this section, we provide some background on the various
formalisms and tools used in this paper.

2.1 CATLib, automata composition, and strategy
synthesis

We first formally introduce contract automata and their syn-
thesis operation. Contract automata are a dialect of Finite
State Automata with a partitioned alphabet of actions. A Con-
tract Automaton (CA) models either a single service or a
multi-party composition of services performing actions. The
number of services of a CA is called its rank. When rank = 1,
the contract is called a principal (i.e. a single service). Fig-
ure 3 shows an example of a principal contract automaton.
Labels of CA are vectors of atomic elements called actions.
Actions are either requests (prefixed by ?), offers (prefixed
by !), or idle (denoted with a distinguished symbol -). Re-
quests and offers belong to the (pairwise disjoint) sets R
and O, respectively. The states of CA are vectors of atomic

elements called basic states. Labels are restricted to be re-
quests, offers, or matches where, respectively, there is either
a single request action, a single offer action, or a single pair
of request and offer actions that match, and all other actions
are idle. The length of the vectors of states and labels is equal
to the rank of the CA.

For example, the label [!goright, ?goright] is a
match where the request action ?goright is matched by
the offer action !goright. Note the difference between a re-
quest label (e.g. [?goright, -]) and a request action (e.g.
?goright). A transition may also be called a request, offer,
or match according to its label.

The goal of each service is to reach an accepting (final)
state such that all its request (and possibly offer) actions are
matched. In [17], CA were equipped with modalities, i.e. nec-
essary (�) and permitted (�) transitions, respectively. Per-
mitted transitions are controllable, whereas necessary transi-
tions can be uncontrollable or semi-controllable. The result-
ing formalism is called Modal Service Contract Automata
(MSCA). In the following definition, given a vector −→a , its
ith element is denoted by −→a

(i).

Definition 1 (MSCA)
Given a finite set of states Q = {q1,q2, . . .}, an MSCA A
of rank n is a tuple 〈Q,−→q0,Ar ,Ao,T,F〉, with set of states
Q = Q1 × · · · ×Qn ⊆ Q

n, initial state −→q0 ∈ Q, set of requests
Ar
⊆ R, set of offers Ao

⊆ O, set of final states F ⊆ Q, set
of transitions T ⊆ Q × A×Q, where A ⊆ (Ar

∪ Ao
∪ {•})

n,
partitioned into permitted transitions T� and necessary tran-
sitions T� such that: (i) given t = (−→q ,−→a ,−→q ′) ∈ T , −→a is either
a request, an offer, or a match; and (ii) ∀i ∈ 1, . . . ,n, −→a

(i) = •

implies −→q
(i) =
−→q ′
(i).

Composition of services is rendered through the compo-
sition of their MSCA models by means of the composition
operator ⊗, which is a variant of a synchronous product.
This operator basically interleaves or matches the transitions
of the component MSCA, but, whenever two component
MSCA are enabled to execute their respective request/offer
action, the match is forced to happen. Moreover, a match
involving a necessary transition of an operand is itself nec-
essary. The rank of the composed MSCA is the sum of the
ranks of its operands. The vectors of states and actions of
the composed MSCA are built from the vectors of states and
actions of the component MSCA, respectively.

In a composition of MSCA, typically various properties
are analysed. We are especially interested in agreement. The
property of agreement requires to match all requests, whilst
offers can go unmatched.

CA support the synthesis of the most permissive controller
(mpc) from the theory of supervisory control of discrete event
systems [33, 69], where a finite state automaton model of a
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supervisory controller (called a strategy in this paper) is syn-
thesised from given (component) finite state automata that
are composed. Supervisory control theory has been applied
in a variety of domains [20, 48, 52, 72–74, 76], including
healthcare. In this paper, we use the synthesis in the frame-
work of games, whose relation with supervisory control is
well known [3].

The synthesised automaton, if successfully generated, is
such that it is non-blocking, controllable, and maximally
permissive. An automaton is said to be non-blocking if from
each state at least one of the final states (distinguished stable
states that represent completed ‘tasks’ [69]) can be reached
without passing through so-called forbidden states, mean-
ing that the system always has the possibility to return to
an accepted stable state (e.g. a final state). The algorithm
assumes that final states and forbidden states are indicated
for each component. The synthesised automaton is said to
be controllable when only controllable actions are disabled.
Indeed, the supervisory controller is not permitted to directly
block uncontrollable actions from occurring; the controller
is only allowed to disable them by preventing controllable
actions from occurring. Finally, the fact that the resulting
supervisory controller is said to be maximally permissive (or
least restrictive) means that as much behaviour of the un-
controlled system as possible is still present in the controlled
system without violating neither the requirements, nor con-
trollability, nor the non-blocking condition.

Finally, we recall the specification of the abstract synthe-
sis algorithm of CA from [20]. This algorithm will be used to
synthesise a strategy for the spatial game in the next sections.
The synthesis of a controller, an orchestration, and a chore-
ography of CA are all different special cases of this abstract
synthesis algorithm, formalised in [20] and implemented in
CATLib [5] using map reduce style parallel operations of Java
Streams. This algorithm is a fix-point computation where at
each iteration the set of transitions of the automaton is re-
fined (pruning predicate φp) and a set of forbidden states R
is computed (forbidden predicate φ f ). The synthesis is para-
metric on these two predicates, which provide information
on when a transition has to be pruned from the synthesised
automaton or a state has to be deemed forbidden. We refer
to MSCA as the set of (MS)CA, where the set of states is
denoted by Q and the set of transitions by T (with T� denot-
ing the set of necessary transitions). For an automaton A,
the predicate Dangling(A) contains those states that are not
reachable from the initial state or that cannot reach any final
state. Let B = {�,⊥} denote the Boolean constants true (�)
and false (⊥).

Definition 2 (Abstract synthesis [20])
LetA be an MSCA,K0 =A, and R0 = Dangling(K0). Given
two predicates φp, φ f : T ×MSCA ×Q→ B, let the abstract

synthesis function f
(φp ,φ f )

: MSCA × 2Q →MSCA × 2Q be
defined as follows:

f
(φp ,φ f )

(Ki−1,Ri−1) = (Ki,Ri), with

T
Ki

= T
Ki−1 − { t ∈ T

Ki−1 | φp(t,Ki−1,Ri−1) =�},

Ri = Ri−1 ∪ {
−→q | (−→q −→) = t ∈ T�

A

, φ f (t,Ki−1,Ri−1) =�}

∪Dangling(Ki).

The abstract controller is defined in equation (1) below
as the least fixed point (cf. [20, Theorem 5.2]) where, if the
initial state belongs to R(φp ,φ f )

s , then the controller is empty;
otherwise, it is the automaton with the set of transitions
T
K

(φp ,φ f )

s

and without states in R(φp ,φ f )

s :

(K

(φp ,φ f )

s ,R(φp ,φ f )

s ) = sup({ f n
(φp ,φ f )

(K0,R0) | n ∈ N }). (1)

CATLib Contract automata and their functionalities are
implemented in a software artefact, called Contract Au-
tomata Library (CATLib), which is under continuous devel-
opment [6]. This software artefact is a by-product of scientific
research on behavioural contracts and implements results
that have previously been formally specified in several pub-
lications (cf., e.g. [9–17, 20]). CATLib has been designed
to be easily extendable to support similar automata-based
formalisms. Currently, CATLib also supports synchronous
communicating machines [45, 60]. CATLib and the other
CA tools [7] allow programmers to use CA for developing
more reliable applications. In this paper, we further showcase
the flexibility of CATLib by using it to synthesise strategies
for mobile agents in spatial games. CATLib has been im-
plemented using modern established technologies for build-
ing, testing, documenting, and delivering high quality source
code. CATLib is tested up to 100% coverage of all lines,
branches, and the strength of the tests is measured with mu-
tation testing with top score.

2.2 VoxLogicA, spatial model checking, and
image analysis

The Spatial Logic of Closure Spaces (SLCS) is a modal
logic language equipped with a unary ‘nearness’ modality
and two binary operators: ‘reaches’ and ‘is reached’. The
language is interpreted on points of a spatial structure, which
is, generally speaking, a Closure Space (cf. [40] for details).
Graphs, digital images, topological spaces, and simplicial
complexes are all instances of closure spaces.

In this paper, we concentrate on the interpretation of SLCS
on images. In this case, the two reachability modalities col-
lapse and the nearness modality is a derived operator based
on the reachability operator, causing a particularly simple
syntax.
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Definition 3
Fix a set AP of atomic propositions. The syntax of SLCS is
defined by the following grammar:

φ ::= p | � | ¬φ | φ ∧ φ | ρ φ[φ]

where p ∈ AP.

Models of SLCS formulae, for the purpose of this paper,
are the pixels of digital images, i.e. each SLCS formula in-
duces a truth value for each point of a given digital image. In
order to define the interpretation of formulae, a notion of path
needs to be established, based on a notion of neighbourhood
or connectivity of pixels. VoxLogicA uses the so-called ‘8-
neighbourhood’, i.e. each pixel is adjacent to 8 other pixels,
namely those that share an edge or a vertex with it. Adding
a notion of connectivity permits one to interpret the set of
pixels of an image as a (symmetric) graph. Graph-theoretical
paths are then well defined, and used below.

The interpretation of formulae depends upon a valuation
of atomic propositions, assigning to each atomic proposition
the set of points on which it holds, and assigning a direct
interpretation to the symbols p ∈ AP. The meaning of the
truth value � (true), negation (¬), and conjunction (∧) is the
usual one. A pixel x satisfies ρφ1[φ2] if there is a path rooted
in x, reaching a pixel satisfying φ1, such that all intermediate
points, except eventually the extremes, must satisfy φ2. We
make use of the derived operator φ1 � φ2 which is similar
to ρφ2[φ1], but the extremes are also required to satisfy φ1.
The near derived operator Nφ � ρφ[¬�] is true at point x
if and only if there is a pixel adjacent to x where φ holds.

From now on, we use the tool’s syntax, which uses
tt, &, |, !, ~>, and N for �, conjunction, disjunction,
negation, �, and N , respectively, permits macro abbre-
viations of the form let identifier = expression,
permits function definitions of the form let identifi-

er(argument1,...,argumentN) = expression, and it
also permits other constructs not needed for the scope of
this paper. On images, atomic propositions can be expres-
sions predicating over the colour components of the pixels.
For instance, in our example specification (cf. Fig. 7), to
characterise the pixels composing a door as the blue pixels
(note that 255 is the maximum value since we are using 8-bit
images), given that img denotes an image, we use:

Also, the tool permits global formulae that assign a truth
value to models, not just pixels in isolation. These can be
based on the volume(phi) primitive that computes the num-

ber of pixels satisfying the formula phi. For instance, exis-
tential and universal quantification are defined as follows:

We note that the type system of VoxLogicA is very simple,
and comprises numbers, Boolean values, images of num-
bers (single-channel images, sometimes called grayscale),
images of Boolean values, very often called binary images
or masks, and ordinary multi-channel images. Operators are
strongly typed with no type overloading. Therefore, for in-
stance, the pixel-by-pixel and of two Boolean-valued images
is a different operator with respect to the conjunction of two
Boolean values, and it also differs from the conjunction of
the Boolean value of each pixel of an image with a Boolean
(scalar) constant. With some exceptions, the naming con-
vention of operators reflects their type, having a dot on the
side of the ‘scalar’ value (Boolean or number) and no dot
on the side of the image; so, for instance, .&. is Boolean
and, whereas & is pixel-by-pixel and of two images. With
respect to Fig. 7, for instance, we have that base and img are
multi-channel images, with the operators red, green, blue,
extracting number-valued images from them. The definition
of mrRed (a red area) contains the =. operator taking a
number-valued image on the left, and a number on the right
(hence the dot on the right-hand side). In the definition of the
property forbidden1, one can find an example of the use
of the operator .|. which takes as arguments two Boolean
values.

3 Tool methodology

In this section, we discuss the tool methodology used to
chain CATLib and VoxLogicA in order to perform strategy
synthesis of spatial properties. The diagram in Fig. 1 depicts
the workflow and the various activities in which the whole
process is decomposed.

The process starts with a PNG image, depicting a map or
planimetry, for agents to move in. Note that this implies that
the state space is discrete, finite, and can be provided by a
user with no training on the underlying theories used. Further
input concerns the spatial properties that one wants to en-
force with the synthesised strategy, modelling the forbidden
configurations to avoid and the final configurations to reach,
as well as the number of agents in the experiments with their
starting position, and an indication of which agents are the
controllable players and which are the uncontrollable oppo-
nents. The aim of the process is to produce the maximally
permissive strategy for moving the players against all possible
moves of the opponents, such that no forbidden configuration
is ever reached and it is always possible to reach a final con-
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Fig. 1 The workflow showing the integration of the two tools
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Fig. 2 A zoom-in on a fragment of the agent automaton

Fig. 3 The driver automaton

Fig. 4 The door automaton

figuration. In game-theoretical jargon, this is both a safety
game and a reachability game [19]. The strategy is maximal,
in the sense that it includes all possible behaviour that satis-
fies the above properties. If the strategy is empty, then there
exists no strategy for the players satisfying the given prop-
erties. CATLib only considers finite traces: infinite looping
behaviour where an agent is stalled and is prevented from
reaching a reachable final configuration is ruled out.

CATLib activities To allow the integration of CATLib and
VoxLogicA, CATLib has been extended to allow the im-
port/export of PNG images, which are internally converted
into automata. These automata have pixels as states and tran-
sitions connecting adjacent pixels. We interpret these au-
tomata as agents, whose position is represented by the cur-
rent state and transitions are requests to move up, down, left,
or right to adjacent pixels/states. Note that more transitions
could be added to model complex movements (e.g. between
pixels that are not adjacent) should this be required by the
specific application. The experiments in this paper did not
require such movements. If a border is reached, then there
will be no request transition in the automaton to move be-
yond that border. Each state is labelled with both a position,
rendered in three coordinates (the third coordinate is cur-
rently not used), and the colour of the pixel. Figure 2 depicts
a small portion of an agent automaton.

A driver automaton is used to command an agent to move
in a specific direction. It is depicted in Fig. 3. The driver can

impose some constraints (e.g. never go down). The last au-
tomaton that is used models a door, which is initially closed,
and which can be opened and closed repeatedly. It is depicted
in Fig. 4.

The first activity of CATLib thus consists of importing
and creating such automata. There can be several instances
of agents and doors or different maps according to the pa-
rameters of the experiments to perform.

The second activity consists of composing these automata
to generate all possible reachable and valid configurations.
As stated in Sect. 2, the composition has unicast synchronisa-
tions between offers and requests of agents (called matches),
and labels that are only single moves of an agent performing
an offer. Agents who perform requests can move only when
paired with a corresponding offer. This type of synchronised
behaviour is called agreement – all requests must be matched.

Note that this is an optimisation with respect to the pre-
vious version of the toolchain as discussed in [22]. Indeed,
in [22], the composition included all possible behaviours,
including invalid ones. We refined this activity to avoid the
generation of invalid states in the composition. Previously,
this was done in an additional activity performed later on,
which has been removed. In Sect. 4, we will discuss the
improvement in performance.

To reduce the size of the state space, the composition
of CATLib allows to avoid generating portions of the state
space that are known to violate some property. These are, for
example, configurations where an agent is placed on top of
a wall (i.e. its state has colour #000000), on top of another
agent (i.e. in a state of the composition, two agents have
the same coordinates), or on top of a closed door (i.e. in a
state of the composition, one agent has the same coordinates
as the door and the door is closed). Since these are simple
invariant properties (it only suffices to check the labels of
states), they can be directly checked in CATLib. VoxLogicA
is used to evaluate more complex spatial properties (cf. Fig. 7
below). The aforementioned invalid moves are also specified
in VoxLogicA under the property wrong in Fig. 7 below.

In case of controllable ‘bad’ transitions, these will not be
generated since they will be pruned by the synthesis. In case
of uncontrollable ‘bad’ transitions, these will be generated
(since they cannot be pruned) but their target state will not
be visited (the synthesis will try to make these ‘bad’ states
unreachable). Thus, once some agent is rendered as not con-
trollable (by changing its transitions), it cannot be stopped
from reaching an illegal configuration. It follows that ille-
gal configurations must be removed before deciding which
agents are not controllable and which are controllable. In
this step it is also decided what are the initial positions of the
agents, i.e. the initial state where the state-space generation
starts. Indeed, the generated state space also depends on the
given initial conditions.
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Fig. 5 State [(10; 10; 0)_#FFFFFF, (5; 7; 0)_#FFFFFF,
Driver, Close] of the composition of two agents, a driver, and a
door. The door is in position (2; 7) and is closed. The first agent is
depicted red, the second is green, and the door is blue. The attributes
of the position of the two agents are both #FFFFFF, which is the
hexadecimal value for the colour white, i.e. both agents are placed on
a white cell of the map (Color figure online)

In the composed automaton, each state is a tuple of states
of all agents (including the door and the driver). Each state
can be represented as an image, a snapshot of the current
configuration. For instance, Fig. 5 depicts a state rendered as
an image. The image is generated by colouring the starting
PNG image with a red, green, and blue pixel to indicate where,
respectively, the first agent, the second agent, and the door
are located. The door is only coloured when it is closed.

The third activity consists of generating all images for all
states of the composition. These images are then passed to
VoxLogicA (whose activities are described below) to eval-
uate for all properties whether or not they are satisfied. The
number of images generated at this step are far fewer than
those that were generated in [22], because the composed
automaton has been polished by removing invalid states.

Next, the composed automaton must be marked with those
states that are forbidden and those that are final. This is the
fourth activity of CATLib. Also, it must be decided which
agents are controllable and which not. This information is
provided partly as input parameters of the experiments, and
partly as a JSon file computed by VoxLogicA, where each
state has as set of Boolean attributes, one for each evaluated
spatial property.

After all states and transitions have been marked with the
required information, the strategy synthesis is performed as
the final, fifth activity of CATLib. The algorithm computes
the maximal behaviour of the composition (in agreement)
such that it is always possible to reach a final configura-
tion and forbidden configurations are never traversed. If the
strategy is non-empty, this will provide information on the
behaviour to be followed by the controllable agents to ensure
that a final configuration is always reached without passing
through forbidden configurations, against all possible moves
of uncontrollable components.

VoxLogicA activities The first activity of VoxLogicA is
the evaluation of the formulae representing final and forbid-
den states. This is done via an auxiliary Python script that
takes as input the logical specification, written into a file with
.imgql extension, the base image (i.e. the map or planimetry

where agents move), and the directory containing all reach-
able configurations, encoded as images. The Python script
then iterates the specification on the whole dataset of input
images.

The second activity of VoxLogicA collects all the prop-
erties that have been computed in the first activity, locally
for each state, and turns them into a single source of infor-
mation, in the form of a JSon file that contains a record
for each state, reporting on all the properties that have been
described in the specification. In order to do so, a special
output mode of VoxLogicA is used, where the tool outputs
a single JSon record of all the user-specified properties that
have been printed or saved in the specification.

Parameterisation Previously, in [22], the parameters of
the experiments were hardcoded and each different setup
required to update the source code. We updated the toolchain
such that the parameters are now passed to the toolchain at
command line. This improves the usability of the toolchain
and allows its automatisation. Below we only report the most
significant parameters:

experiment [1|2|3] This is a special option that allows
to select the setup of either experiment 1, 2, or 3 (cf.
Sect. 4). If this option is not specified, one has to provide
the setup with the parameters below;
gateCoordinates x y This parameter is used to set the
coordinates of the gate;
position_agent_1 x y This parameter is used to set
the initial coordinates of the first agent;
position_agent_2 x y This parameter is used to set
the initial coordinates of the second agent;
controllability [1|2] If the value is 1 (2, respec-
tively), then the agents (gate, respectively) are controllable,
but not the gate (agents, respectively).
specificationThis parameter indicates theImgQL spec-
ification to be used as input of VoxLogicA.

Other parameters include the various paths of the files to
load/store, the name of the attributes in the output provided
by VoxLogicA, and the selection of an activity to execute
(e.g. image generation and strategy synthesis).

Handling higher dimensions Although in this paper,
we only develop examples using 2-dimensional images, the
toolchain enables the representation of scenarios with higher
dimensions. An n-dimensional object can be represented in
CATLib as an automaton whose state is a vector of coordi-
nates of length n (currently, three dimensions are supported).
On the logical side, we remark that the main case study for
VoxLogicA uses medical 3D images [25]. Furthermore, the
model checker has been ported to the analysis of 3D meshes
in [28]. Finally, the logic SLCS has also been interpreted
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Table 1 Summary of the two experiments

First experiment Second experiment

Controllable Red and green agents Door
Uncontrollable Door Red and green agents
Initial state Green agent in front of red agent Green agent in front of red agent
Final states Both the red and the green agent reached the exit The door separates the green agent on the right from the

red agent on the left
Forbidden states The door separates the green agent on the right from the

red agent on the left, or the red and green agents are not
near each other

Both the red and the green agent reached the exit

Strategy The red and green agents switch position before
traversing the door

Empty

Table 2 Summary of the third experiment

Third experiment

Semi-controllable Trains
Controllable Semaphore
Initial state Both trains behind the semaphore
Final states Both trains outside the junction area
Forbidden states Both trains inside the junction area or one train is inside the junction area, while the other train is before the

semaphore and the semaphore is open
Strategy The semaphore is opened for letting the first train enter the junction area. After it does, the semaphore is closed.

Once the first train exits the junction area, the semaphore opens again to let the second train enter the junction area
so that both trains can eventually exit the junction area

on higher-dimensional simplicial complexes, which are ca-
pable of expressing logical relationships between data, as
demonstrated in [65]. However, it must be noted that higher
dimensions may render analysis unfeasible unless specific
computational methods are used.

User input The way in which a user can provide the images
in input to the toolchain is not constrained, and it depends on
the specific problem. The automata used by CATLib are gen-
erated from the input image. Later, the images generated by
CATLib are interpreted as graphs for model-checking pur-
poses by VoxLogicA. Note that the input image provided
by the user is different from the images that are generated
by CATLib and model checked by VoxLogicA. Indeed, the
graph representation used by VoxLogicA is not related to
the behavioural graph (i.e. the contract automaton) used by
CATLib, but it only depends on an image’s structure.

4 Experiments

In this section, we describe the experiments that have been
performed following the process described in the previous
section. We performed three experiments.

The first two experiments, discussed in Sect. 4.1, start
from the same initial conditions, but with opposite control-
lable/uncontrollable agents and forbidden/final states. The
setup and outcome of these two experiments are reported
in Table 1. The third experiment, discussed in Sect. 4.2, is
based on a railway scenario. The setup and outcome of this
experiment are reported in Table 2.

The repository, publicly available [23], contains all data,
sources, and step-by-step instructions on how to use the
toolchain to reproduce the experiments.

4.1 Maze examples

The PNG map image used as planimetry is a 10 × 10 pix-
els image that weighs 188 bytes. It is depicted in Figs. 1
and 5 (without coloured pixels). This image was generated
using one of the many maze generators available through the
Internet.

The setup for the experiments is that of two duplicate
mobile agents, one door agent, and one driver agent. The
door agent is placed in position (2; 7) (cf. Fig. 5). Initially,
the red agent is in the top left corner of the white corridor
(position (1; 1)), whereas the green agent is just below the
red one (position (2; 1)) and the door is closed. The initial
state is depicted in Fig. 6 (left).
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Fig. 6 (Left) The initial configuration of both experiments. (Middle)
The final states of the first experiment (marked in violet). (Right) A con-
figuration traversed by one of the shortest paths of the first experiment’s
strategy, in which the red agent is crossing the door before the green
agent does, thus avoiding forbidden configurations (Color figure online)

The illegal moves were described in the previous section.
We recall that in a legal composition, no agent moves over a
wall, a closed door, or another agent.

Below we report the invocation of the composition func-
tion of CATLib. The composition is instantiated with the list
of operands, namely the two agents, the driver, and the door.
The second argument is the pruning predicate: if a generated
transition satisfies the pruning predicate it will be pruned
and not further explored. When applying the composition
it is possible to specify a bound on the maximum depth of
the generated automaton. In this case, the bound is set to the
maximum Integer value. The two agents are instantiated with
maze_tr and maze2_tr being their set of transitions, which
only differ in the initial state. The property of agreement
is passed as a lambda expression: transitions with a request
label will be pruned. Similarly, this condition is put in dis-
junction with a condition checking whether the target state
of the generated transition is ‘bad’ (i.e. an illegal transition),
in which case the transition is pruned.

Spatial properties In the first experiment, the final and
forbidden states are set according to the following defini-
tions. Consider the specification given in Fig. 7 (cf. Sect. 2
for an introduction to the operators used therein). The final
state is set to be that on the right-hand side of the image pass-
ing through the corridor where the door is located (property
final1), and is depicted in Fig. 6 (middle). The property
forbidden1 identifies forbidden states as the disjunction of
three sub-properties, characterising: 1) illegal states (prop-
erty wrong); 2) states in which the two agents are in two
areas separated by the closed door, and the green agent is on
the right side of the door, i.e. it can reach an escape (a final
state), whereas the red agent cannot because it is blocked
by the door (property greenFlees); and 3) states in which
the agents are not close to each other (!. nearby). In fact,
Fig. 5 represents one of these forbidden states.

Fig. 7 VoxLogicA specification of the properties of experiments 1
and 2

In the second experiment, we change the setting according
to what is summarised in Table 1. The final state becomes an
illegal state of the first experiment such that we end up with an
empty strategy. Hence, the property final2 is the disjunc-
tion of two previously forbidden properties: greenFlees
(i.e. the green agent can reach an exit, while the red one can-
not) andwrong, namely, an illegal situation that might consist
of agents over the door, agents over a wall, or overlapping
agents. Conversely, property forbidden2 is set to be the
final state of experiment 1, so we simply get forbidden2 =

final1 (cf. Fig. 7). Thus the forbidden state is now the one
in which both agents reach the exit.

Synthesis Finally, in this first experiment we interpret the
door as uncontrollable, whereas the red and green agents are
controllable. Basically, this is a scenario in which the two
players are playing against an uncontrollable door. Below
we list the code used to invoke the synthesis operation of
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Fig. 8 The scenario taken
from [21], where one train is
waiting to enter a junction area
while another train is
traversing it

CATLib. The instantiation of the operation takes as argu-
ment the property to enforce, agreement in this case, and the
automaton where the synthesis is applied, called marked in
this case.

The most permissive synthesised strategy consists of
684 states and 2635 transitions (recall that in each transi-
tion, only one of the agents is moving). The length of a
shortest path from the initial state to a final state is composed
of 33 transitions to be executed. In the initial state (Fig. 6
(left)), the green agent is in front of the red agent on the path
to the exit. However, in the strategy the green agent cannot
traverse the open door before the red agent. Indeed, in this
case, since the door is uncontrollable, it is not possible to
prevent the door from closing and separating the red agent
(blocked by the door) from the green agent (who can reach
the exit). This is indeed a forbidden state that the strategy
must avoid. In the strategy, to overcome this problem, the
two agents switch position before crossing the door. Figure 6
(right) depicts the moment where the red agent is crossing
the door right after exchanging position with the green agent
who is still in the corridor. Indeed, in the shortest path they
switch position near the door. Note that no forbidden state
occurs if the door closes after only the red agent has traversed
it. Indeed, in this scenario the green agent is prevented from
reaching an exit because it is blocked by the door. Hence,
after the red agent has traversed the door, the strategy guides
the green agent to safely cross the door such that they can
both reach a final state.

To confirm the first experiment, we performed a second
experiment by inverting the setup of the first experiment. In
this second experiment, the door is controllable, whereas the
green and red agents are both uncontrollable. The final states
are those in which the door separates the green agent (on
the right-hand side of the door) from the red agent (on the
left-hand side of the door). These are basically the forbidden
states of the first experiment. Similarly, the forbidden states
in the second experiment are those states in which both the
green and red agents have reached the exit, i.e. the final states
of the first experiment. The initial configuration is the same
as in the first experiment. As expected, in this dual case the
returned strategy is empty. Indeed, if this were not the case,

then we would have a contradiction because the green and
red agents have a strategy to reach the exit without being
separated by the door with the red agent blocked, for every
possible finite behaviour of the door.

There is no strategy for the door to reach a final config-
uration mainly because the door cannot ensure that the un-
controllable green agent traverses the door first. Moreover,
the door cannot prevent the agents from reaching the exit by
always remaining closed since (unless only the green agent
has traversed the door) a final state would not be reachable.

4.2 Railway example

The third experiment is based on a real-world case study
from the railway domain, which is a well-known application
domain for formal methods [50]. The specific example is
taken from [21] and it is displayed in Fig. 8. Similarly to the
previous two experiments, this experiment uses two agents
and a gate. It serves as a proof-of-concept of the practical
applicability of the toolchain to real-world problems.

In [21], an autonomous tram positioning (ATP) system is
analysed. In an ATP, the physical track circuits detecting the
occupancy of portions of the railway track are substituted by
virtual track circuits (VTCs). The VTCs are virtual positions
on a map. The real position of a train is detected using a
global positioning system.

In the scenario in Fig. 8, one junction area (commanded
by one interlocking) is composed of two VTCs, and there is
one tram outside the junction area and one tram inside the
junction area. Tram 2 is traversing its assigned route while
Tram 1 is waiting at a red signal for its route to be assigned.
VTC 0 is used to detect the occupation of a route, whereas
VTC 1 is used to detect the release of a route. Initially, both
trains are located behind the semaphore. The first train will
communicate its route to the interlocking, which will proceed
to set the route. This may cause the movement of the junction
point. Once the route is set, the interlocking will signal to
the train that the route is set by opening the semaphore. The
train enters the junction point and the semaphore is closed
again. While the first train is traversing its route, the second
train will stop at the (closed) semaphore to ask for its route.
The route will be assigned, the junction point moved, and
the semaphore opened only after the first train has exited the
junction area. Otherwise, the movement of the junction point
could cause the derailment of the train inside the junction
area [21].
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Fig. 9 (Left) The initial configuration of the railway example. (Middle)
A final configuration where both trains exit the junction from the same
route. (Right) The junction area is emphasised in purple (Color figure
online)

We have modelled this scenario using images. Indeed, in
general, maps of railway stations are bidimensional planime-
tries (generally called centralised traffic control boards). In
this experiment, the PNG map image used as planimetry is
an 11 × 6 pixel image that occupies 157 bytes. This image
is derived from the junction scenario in Fig. 8. The image
representing the initial configuration of this experiment is
depicted in Fig. 9 (left). Initially, both trains (green and red)
are waiting for entering the junction area, whose access is
signalled by a semaphore (blue). The semaphore acts like
the gate in the maze examples. The open gate models the
green signal, whilst the closed gate models the red signal.
The VTC 0 detecting the occupancy of the junction area is
at the right-hand side of the semaphore, while we assume
that the last two pixels on the right borders of the image both
contain VTCs for realising the junction. Figure 9 (middle)
shows a final configuration where both trains exited the junc-
tion area from the same exit, whereas Fig. 9 (right) shows in
purple the junction area.

We want to synthesise a controller for the semaphore
such that both trains can safely traverse the junction area.
Therefore, we synthesise a strategy for a game in which the
semaphore is the player and the opponents are the trains. The
successful final states are those where both trains have exited
the junction area, i.e. they both reach the right-hand side of
the image. In this case, the trains cannot travel backwards
(from right to left). This means that in the composition, the
Driver automaton (cf. Fig. 3) does not have the transition
labelled with !goleft. The forbidden states are those where
both trains are inside the junction area as well as those where
one train is inside the junction area, the other train is before
the semaphore, and the semaphore is opened (thus creating
a hazardous scenario).

Spatial properties The setting in this experiment is quite
similar to that of the previous ones. The semaphore changes
its colour dynamically, and this requires to check which part
of the floor is free (floor is the white area in the specifica-
tion) for each image, differently than in the previous exam-
ples (cf. Figs. 7 and 10). We are also interested in knowing
where the semaphore is (gate in the specification). We then
specify what is the junction area, namely, the area where
the railway forks after the semaphore: this is a dangerous
area. Then we consider the area before the semaphore (out

Fig. 10 VoxLogicA specification of the properties of experiment 3

in the specification) and the exits (outOfJunction) to be
safe. The semaphore is green in those images where there is
no blue pixel in (4,2): we can thus match these coordinated
with the floor (note that it is not needed to explicitly check
for the y coordinate, as it is implicitly assumed by the floor).
Trains, which are represented by the green and the red pix-
els, are defined as MrGreen and MrRed, as in the previous
specification.

At this point, we can start to define our properties of
interest. The possible final combinations are represented by
those in which both trains reach the exit. So we have two
possibilities: MrRed reaches the upward exit, while mrGreen
reaches the other exit, or vice versa. Hence, the final state is
the disjunction of the two.

We can now focus on the forbidden state. Also in this
case, we have two possibilities, but things are a bit more
involved. Indeed, we may have a forbidden state in the case
where only one of the trains is inside the junction area, but
the semaphore is green. As previously said, this could lead
to a dangerous situation, and must thus be avoided. This sit-
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uation is managed by defining the two properties gOp1 and
gOp2. The property wrongSignal, which is the disjunc-
tion of the two, is the first part of our forbidden property.
The other forbidden situation is represented by the simpler
case of having both trains inside the junction. This is man-
aged directly in the definition of the forbidden property, by
means of the conjunction (exists(mrRed & junction)

.&. exists(mrGreen & junction)). In the end, the for-
bidden property is defined as the disjunction of the latter and
wrongSignal.

Synthesis In the previous experiments, the player tran-
sitions were controllable, whereas the opponent transitions
were uncontrollable (called urgent necessary transitions in
contract automata [20]), and the standard most permissive
controller synthesis of supervisory control theory (imple-
mented in CATLib) was used to synthesise the strategies.
However, the standard notion of uncontrollability from su-
pervisory control theory is too strict for this third experi-
ment. This is because in the composed automaton, the tran-
sitions of the uncontrollable opponents (i.e. the trains) would
be prioritised over those of the controllable player (i.e. the
semaphore). This causes the strategy to be empty. Indeed,
the semaphore must be opened to reach a final state (both
trains have crossed the junction area). Once the semaphore
is opened, both opponent trains can execute a sequence of un-
controllable transitions leading them to a forbidden state (e.g.
both trains inside the junction area). These uncontrollable
transitions have higher priority than the player’s controllable
transitions (i.e. closing the semaphore). Indeed, the setting
of a player (the semaphore) playing against an opponent (the
trains) is not suitable for this particular case study.

For this reason, the orchestration synthesis introduced in
contract automata theory is used instead of the mpc syn-
thesis (cf. Sect. 2). Differently from the mpc synthesis, in
the orchestration synthesis, the transitions are partitioned
into controllable for the player and semi-controllable (also
known as lazy necessary transitions) for the opponent [20].
The notion of semi-controllability emerges when dealing
with concurrent compositions of agents who can internally
decide their next transition, but whose scheduling is con-
trollable [8]. In this experiment, the player controls both the
semaphore and also decides whose service in the composi-
tion will execute the next transition (i.e. the player also acts
as the scheduler/orchestrator). All transitions (i.e. the trains’
movements) of the opponent cannot be prevented from even-
tually being executed, but their execution can be scheduled to
happen after the execution of transitions of other services in
the composition (i.e. the semaphore transitions). This means
that the (controllable) semaphore can thus be closed before
the (semi-controllable) second train traverses it. Indeed, the
trains are not competing against the semaphore, but are rather

cooperating with the semaphore to traverse their (internally
chosen) route safely.

The synthesised strategy consists of 180 states and 469
transitions. In this strategy, once the semaphore is opened
and the first train enters the junction area, the closing of
the semaphore happens prior to the second train entering the
junction area. After the first train has exited the junction area,
the semaphore is opened again, and the second train can now
execute its transitions to reach the exit of the junction area.
Hence, a final state is reached without traversing forbidden
states.

We conclude with some further remarks on the difference
between semi-controllability and controllability. Note that in
Fig. 9 (right), on both routes the two right-most pixels are
outside the junction area. This allows both trains to exit the
junction area from the same route, as shown in Fig. 9 (mid-
dle). Conversely, if only the right-most pixel were outside the
junction area, then it would not be possible for both trains
to exit the junction from the same route. The trains could
only exit the junction area if their route is different. In this
case, a non-empty strategy is only possible if also the trains
are controllable (i.e. there is no opponent). Instead, if the
trains are semi-controllable, then there would be no strategy
to guarantee that both trains eventually exit the junction area.
This is because the opponent decides internally which route
each train will take. Hence, the player cannot prevent the
trains from taking the same route.

4.3 Performance of the experiments

We now report the time needed to compute various phases
of the three experiments and measures of the computed
automata. We also discuss the performance improvement
with respect to [22]. The experiments have been performed
on a machine with Intel(R) Core(TM) i9-9900K CPU @
3.60 GHz equipped with 32 GB of RAM. This is the same
machine that was used in [22].

The time performance is reported in Table 3. We note that
the synthesis is (computationally) more expensive than the
composition. Indeed, as showed in Sect. 2, each iteration of
the synthesis requires to compute the set of dangling states,
which requires a forward and backward visit of the automa-
ton. The performances of the synthesis are similar to those
of [22]. There is a slight difference due to the updated ver-
sion of CATLib (v.1.0.2) that has been used in this paper with
respect to that used in [22] (v.1.0.1). In CATLib v.1.0.2, the
forward and backward visit of the synthesis has been updated
from a (tail) recursive schema to an iterative schema. This
solved the problem of requiring a larger than default size
of the stack to avoid stack overflow errors due to the many
recursive calls.

We also analysed the improvement in the various activ-
ities of CATLib with respect to [22]. We only compare the
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Table 3 Time needed to perform the three experiments

Phase Experiment
First and Second Third

Computing the composition 1739 ms 633 ms
Generating images 1518 ms 345 ms

First Second
Running VoxLogicA 84,379 ms 87,008 ms 6594 ms
Marking the composition with VoxLogicA properties and controllability 29,822 ms 10,161 ms 691 ms
Synthesis 31,391 ms 11,979 ms 1411 ms

Table 4 Number of states,
number of transitions, and size
of the automata used in the first
two experiments

Automaton #States #Transitions Size (bytes)

Agent 100 360 19,087
Composition 3200 15,176 2,019,916
Marked composition (first experiment) 3202 17,651 2,355,749
Marked composition (second experiment) 3202 15,549 2,081,535
Strategy (first experiment) 684 2635 350,327

Table 5 Number of states,
number of transitions, and size
of the automata used in the third
experiment

Automaton #States #Transitions Size (bytes)

Train 66 230 12,269
Composition 363 1084 145,485
Marked composition 365 1232 165,388
Strategy 180 469 62,962

performance of the first two experiments (Table 1), since the
third experiment was not present in [22].

In [22], the composition was computed twice, first with
all possible behaviour and subsequently with only legal be-
haviour. This required a total of 29,130 ms, which has been
reduced to 1739 ms in this paper. Similarly, the generation of
images has been improved by passing from 7910 ms in [22] to
1518 ms in this paper. This is because the number of images
to generate (i.e. the number of states in the composition) has
been reduced. Finally, we consider the activity of marking the
composition with the properties computed by VoxLogicA.
Again, the log to parse in this paper is much smaller than
that produced in [22], due to the reduced number of images
that are generated. In [22], the marking required 108,058
and 118,291 ms for the first and second experiment, respec-
tively. In this paper, the time has been reduced to 29,822 and
10,161 ms, respectively.

Finally, concerning the performance of the third experi-
ment in Table 2, we note that it is better (faster) than either
of the first two experiments, mainly due to the smaller size
of the image.

Tables 4 and 5 report the number of states, the number of
transitions, and the size (in bytes) of the various automata. As

expected, the number of states of the agent automata equals
the number of pixels of the images. We note that an automa-
ton encoding an image weighs more than the starting PNG

image. Finally, the marked compositions have two additional
states with respect to the composition, which are the added
initial and final states. The number of transitions of these two
automata differs according to the number of states marked
as final, to which a transition to the newly added final state
is added, and the number of forbidden states, to which a bad
transition is added as a self-loop.

Spatial properties The analysis of spatial properties is
performed using the image analyser VoxLogicA, as in [22].
However, the overall performance has improved signifi-
cantly: indeed, the execution time in the previous version
of the toolchain was dominated by the overhead of setting
up the computation, importing the images and parsing the
specification several times. This depends on the fact that
a single image at a time was processed. In this paper, we
overcome this issue by adopting a batching technique, sim-
ilar to that used in [30]. The logical specification is parsed
by a Python script, which automatically generates a new,
much larger specification, replicating the original specifica-
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tion k times, each time replacing the name of the image to
be analysed, so that k images are processed in a single run.
VoxLogicA is then called to process the newly generated
specification, and to produce the JSon script to be used by
CATLib. The size k of each such ‘batch’ is limited to 150 im-
ages, as the current version of VoxLogicA does not include
a garbage collector (which is a planned feature), therefore
much larger specifications may result in memory overflows.
By using this technique, the overhead for loading and start-
ing the tool’s executable, and parsing the specification, only
affects the computation time once every k runs of the model
checker, instead of each time. Furthermore, the degree of
parallelism can be much higher, as the processing of each
image is independent from the others, and all such threads
are executed concurrently on multi-core machines.

5 Conclusion

We have discussed a further integration of the tools CATLib
and VoxLogicA to perform strategy synthesis on images
processed with spatial model checking.

Our original contribution, in [22], constituted the first ap-
plication of CATLib and VoxLogicA to build a framework for
modelling and solving mobility problems of collective multi-
agent systems, introducing an original approach to combine
strategy synthesis with spatial model checking. In this pa-
per, we have presented a full-fledged toolchain built from
CATLib and VoxLogicA, thus enriching the available tool-
ing for modelling and analysis of CAS. We have improved
the efficiency of the encodings, the computations, and the
tool integration. The preliminary experiments we performed
in [22] have been enriched with a realistic example based
on a case study from the railway domain. Several interesting
opportunities for future work remain.

Future work The toolchain could be improved further. In
the current approach, each agent has a state for each pixel of
the image. Relaxing the representation of an image to one
where each state is a zone of the image (e.g. a corridor)
rather than a pixel would reduce the state space. Another im-
provement could be to decompose a large image into smaller
images. For instance, the final states of the first experiment in
Sect. 4 could be entering points to a new portion of the map.
Several small maps could be linked together by ports for en-
tering and exiting. Yet another improvement could be to drop
the requirement of a strategy to be most permissive in favour
of some objective function to optimise. A near-optimal so-
lution could be synthesised as a trace using statistics over
runs, in the style of [54]. As for the possibility of allow-
ing more than two agents, this would lead to an exponential
blow up of the state space of the composed automaton. How-
ever, in future work we plan to exploit state-space reduction

techniques, like those just discussed, to tackle this kind of
problem.

Concerning metrics, from the behavioural point of view,
the purpose of our analysis is qualitative, i.e. to synthesise
strategies described through finite state automata that enforce
qualitative properties described in the spatial logic supported
by VoxLogicA. Future work is needed for synthesising strate-
gies enforcing quantitative properties. From the spatial point
of view, the language of VoxLogicA already supports dis-
tance and texture similarity measures, which could definitely
be employed in further examples similar to those included in
this paper. Finally, concerning VoxLogicA, the input/output
overhead could also be eliminated by exploiting the recent
GPU implementation [29], which is expected to yield an
additional speedup, typically of 1–2 orders of magnitude.
A future version of the toolchain is meant to leverage on
such currently experimental improvements.
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