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Abstract Introduction of Machine Learning is certainly a revolutionary outbreak,
both in the medical field and in many other research fields. The opportunities ML
opens up are many, it can be used to analyze medical images, to relate clinical
data, to identify lesions, to support diagnosis, to make predictions on prognosis
and disease evolution, but it must be used carefully and competently so as not
to run into wrong applications and consequently in misleading results. Machine
Learning is represented by a series of algorithms which, through a learning process,
are able to develop strategies to analyse, classify and evaluate many types of data.
However, there are important points on which to pay close attention, such as the
preparation of the learning dataset, the choice of the most suitable algorithm for the
aimed task, the evaluation of the results, the weighing of the computing resources
available. There are also some aspects related to Artificial Intelligence that need to
be carefully considered, such as evaluation of the developed model, explainability,
interpretability, reproducibility of the outputs, and all the legal and ethical issues that
the nature of these approaches generates. Taking the necessary precautions for use,
however, it cannot be denied that the application of ML in the medical field opens up
very interesting and revolutionary perspectives, especially in the field of precision
and personalized medicine.

1 Introduction

The increasing availability of patient-related data is driving new research trends
addressing new personalised prediction and disease management. Nevertheless, the
complexity of such an analysis makes it necessary the use of cognitive augmentation
in the form of Artificial Intelligence (AI) systems [1, 2].
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modern AI techniques have considerable potential to exploit complex medical
data towards an improvement of current healthcare.

Many of the advances in this field are tied to progress in a subdomain of AI
research known as Machine Learning (ML).

The scientist Arthur Lee Samuel was the first to introduce the term Machine
Learning in 1959. He created the checkers player, a program designed to develop its
own logic while playing and self-improve its performance.

ML algorithms are fruitfully applied in many research fields involving the most
varied applications [3, 4, 5] . As far as applications in the medical and clinical fields
are concerned, many uses, advantages and opportunities can be enumerated [6, 7, 8].

Nevertheless, ML is not yet used in the medical field as a direct diagnostic tool,
but exclusively as a support to the diagnosis, because human supervision is still
indispensable and probably will remain so for a long time. A vast trend is that of
the analysis and interpretation of medical images, such as, for example, X-ray, US,
echo, RM, using ML algorithms. Another widespread use is the prediction of the
prognosis associated with particular diseases, such as different types of cancer. ML
algorithms can also help automatically select patients suitable for particular clinical
pathways and experimental trials. The analysis of the ML anatomical features can
also be very useful in the real-time and non-real-time support of surgery, with the
aim of promptly identifying unexpected critical or irregular anatomical structures.
Other uses also include drug discovery, genomic screening, cardio-vascular tasks and
epidemiology. In Table 1 many examples of medical applications are summarized.

In this chapter, we aim to describe, as simply as possible, what Machine Learning
is and how it is possible to use it fruitfully in the medical field. In section 2, we
describe the flow of a learning algorithm, in section 3, instead we report the main ML
techniques and their most widespread clinical applications. In section 4, however, we
briefly address some highly interesting issues (i.e. model evaluation, explanability,
reproducibility, sharing, ethical and legal problems) and the great challenges of
precision medicine and personalised medicine, which are increasingly handy thanks
to Machine Learning.

2 What is Machine Learning?

Machine learning is a branch of AI which comprises elements of mathematics,
statistics, and computer science. The term machine learning describes the ability of an
algorithm to “learn” from data by recognising patterns and making inferences and/or
predictions of future events with minimal human intervention and without explicit
programming. In other words, the results produced by ML algorithms are inferences
made from complex statistical analyses of adequately large datasets, expressed as the
likelihood of a relationship between variables [9]. Furthermore, machine learning
methods improve their performance adaptively as the number of examples from
which they learn increase.
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Table 1 Main medical applications for Machine Learning methods.

Applications Description Ref.

Cardio Vascular Tasks Cardiovascular risk prediction.
Hyper-Myocardial infarction prediction.
Coronary artery disease detection.
Heart failure prediction.
Stroke risk prediction.
Cardiac arrhythmias evaluation.

2018 [59]
2016 [60]
2018 [61]
2011 [36]

Human Cancer Imaging Cancer detection on CT-scan, X-ray, US, MRI images.
Lesion segmentation.
Regression on cancer grade.
Cancer risk evaluation.
Cancer evolution prediction.
Cancer classification.

2018 [62]
2016 [57]
2019 [20]
2022 [63]
2021 [64]
2019 [65]

Cancer Genomics Cancer genomics classification.
Identification of pathogenic variants.
Detection of oncogenic states.
Bioactivity prediction.
Cancer cell-line specific interactions.
Clinical trials monitoring.

2007 [28]
2013 [26]
2014 [66]
2003 [33]
2014 [67]
2021 [68]

Functional Genomics Prediction of protein secondary structure.
Prediction of epigenomic marks.
Transcriptional and post-transcriptional regulation
investigation.
Transcription biological rules detection.
Protein Mass Spectrometry classification.

2001 [69]
2011 [48]
2018 [70]
2015 [71]
2020 [72]
2021 [73]

Metabolic Disorders Metabolic syndrome risk prediction
Alignment of metabolomic peaks.
Metabolites classification.
Kinetic metabolic modelling.
Prediction of estrogen receptor status.

2021 [22]
2014 [74]
2017 [75]
2016 [76]
2022 [77]

Prognostic Prediction Survival Prediction.
Disease prognosis.
Trials outcome prediction.
Identification of risk factors.
Disease recurrence prediction.

2018 [78]
2019 [79]
2019 [80]
2016 [81]
2018 [82]

Drug Discovery Drug target identification.
Target druggability prediction.
Splice variants classification.
Anticancer drugs prioritization.

2018 [83]
2016 [84]
2015 [85]
2019 [86]

Over the past 5 years, machine-learned tools have demonstrated visible suc-
cesses in the medical field, and in particular in disease detection, patient monitoring,
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prognosis prediction, surgical assistance, patient care, and systems management, by
supporting complex clinical decision-making [10, 11].

A wide variety of machine learning algorithms are in use today. The choice of
a particular model for a given problem is determined by the characteristics of the
data as well as the type of desired outcome. The majority of ML algorithms can be
categorised into three types learning techniques: supervised learning, unsupervised
learning, reinforcement learning (Fig. 1).

Fig. 1 ML algorithms are generally categorised as supervised learning, unsupervised learning,
reinforcement learning

However, any type of algorithm consists of a series of key steps, as shown in
Fig.2:

• Data collection: as machines learn from the data that one gives them, it is of the
utmost importance to collect data from reliable sources. The higher the quality of
the data, the higher the accuracy of the developed model. Good data are relevant,
contain very few missing and repeated values, and have a good representation
of the various subcategories/classes present. Noisy or incorrect data will clearly
reduce the effectiveness of the model.

• Data pre-processing: after collecting data, they have to be correctly prepared. For
instance, they may be randomised to make sure that data are evenly distributed,
and the ordering does not affect the learning process. Also, data may be cleaned
by removing missing/duplicate values, by converting data type etc. Finally, the
cleaned data should be split into two sets: a training set and a testing set. The
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training set is the set the model learns from. The testing set is used to check the
accuracy of the trained model.

• Model training: the prepared data are analysed, elaborated and interpreted by the
machine learning model to find patterns and make predictions. Over time, with
training, the model gets better at learning from the data and inferring.

• Model testing: after training the model, its performances have to be checked. This
is done by testing the accuracy and the speed of the model on previously unseen
data (Testing Set).

• Model improving: this step is also known as Parameter Tuning. Once created
and evaluated the model, the tuning of model parameters allows for improving
the accuracy of the model itself. Parameters are the variables in the model that
better fit the relationship between the data. At certain values of the parameters set,
the accuracy may reach the maximum. Parameter tuning refers to finding these
values.

Fig. 2 Core steps of any type of ML approach

In the following sections the three main types of learning are described: super-
vised, unsupervised and reinforcement learning.

3 Principal ML Algorithms

Machine learning concerns three main types of algorithms: supervised learning,
unsupervised learning and reinforcement learning. The difference between them is
defined by how each algorithm learns the data to make predictions.
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Supervised Machine Learning

Supervised learning refers to approaches in which a model is trained on a set of nu-
merical inputs (or features, or predictors) which are associated with known outcomes
(also referred to as ground truth, or prior knowledge).

As reported in Fig. 3, the goal in the first stage of learning is to best approximate the
relationship between input and output observable in the data. In the validation step,
the model is iteratively improved to reduce the error of prediction using optimisation
techniques: in other words, the learning algorithm iteratively compares its predictions
with the correct output (ground truth label) and finds errors in order to modify itself
accordingly. Once the algorithm is successfully trained, it will be able to make
outcome predictions when applied to new data.

Fig. 3 Three steps of Supervised Learning: i) training of the algorithm, ii) validation of the trained
model, iii) test of the model

Predictions can be either discrete (sometimes referred to as classes e.g., positive
or negative, benign or malignant, no risk – low risk – high risk, etc.) or continuous
(e.g., a value from 0 to 100). A model which maps input to a discrete output is
based on a classification algorithm (Fig. 4). Examples of classification algorithms
include those which predict if a tumour is benign or malignant, or to establish
whether comments written by a patient convey a positive or negative sentiment
[15, 16, 17]. Classification algorithms return the probability of a class (between 0 for
impossible and 1 for definite). Typically, a probability of 0.50 will be transformed
into a class of 1, but this threshold may be modified according to the required
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algorithm performance. A model which maps input to a continuous value is based on
a regression algorithm (Fig. 4). A regression algorithm might be used, for instance, to
estimate the percentage of fat in the liver in case of steatosis, or predict an individual’s
life expectancy [18, 19].

Fig. 4 How classification (on the left) and regression algorithms (on the right) work. Classification
algorithms find out the better hyperplane(s) which divides the data in two (or more) classes; a
regression model aims to find out the better function that approximates the trend of the data

Note that in [18] the estimation is performed based on ultrasound images. For
this type of tasks, i.e. image processing, the predictors must be processed by a fea-
ture selector. A feature selector extracts measurable characteristics from the images
dataset which then can be represented in a numerical matrix and understood by the
algorithm (see Fig. 3).

Four key concerns to be considered in supervised learning are:

• Bias-variance tradeoff: in any supervised model, there is a balance between bias,
which is the constant error term, and variance, which is the amount by which
the error may vary between different training sets. Increasing bias will usually
lead to lower variance, and vice-versa. Generally, in order to produce models
that generalize well, the variance of the model should scale with the size and
complexity of the training data: small datasets should usually be processed with
low-variance models, and large, complex data-sets will often require higher-
variance models to fully learn the structure of the data.

• Model complexity and volume of training data: The proper level of model com-
plexity is generally determined by the nature of the training data. A small amount
of data, or data that are not uniformly spread throughout different possible sce-
narios, will be better explained by a low-complexity model. This is because a
high-complexity model will overfit if used on a small number of data points.

• Overfitting: it refers to learning a function that fits the training data very well,
but does not generalize to other data points. In other words, the model strictly
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learns the training data without learning the actual trend or structure in the data
themselves that leads to those outputs.

• Noise in the output values: this issue concerns about the amount of noise in the
preferred output values. Noisy or incorrect data labels will clearly reduce the
effectiveness of the trained model.

Here, the most prominent and common methods used in supervised machine
learning are reported: Linear Regression, Support Vector Machine, Random Deci-
sion Forest, Extreme Gradient Boosting, Naive Bayes.

Linear regression

Linear Regression (LR) is one of the simplest and most used supervised learning
methods. In essence, this method formalizes and identifies the relationship between
two or more variables. The assumption of linearity on the cost function is very strong,
therefore more complex cost function regression methods have been developed:
Non-Linear Regression, Polynomial Regression, Logistic Regression with Sigmoid
function, Poisson Regression and many others. As one of the oldest approaches, LR
has been widely used in many fields, including medical [20]. This approach is mainly
used when a relationship between variables is strongly assumed and the value of one
variable (unknown) is to be deduced starting from the values of the other (known).
A recent example of use of LR in medicine concerns the prediction of the evolution
of systemic diseases starting from clinical evidence [21, 22], or in the genomic field,
for example, it can be useful for estimating gene expression patterns in particular
biological conditions [23].

Support Vector Machine

Support Vector Machines (SVMs) are supervised learning methods for binary clas-
sification. The SVMs represent the data as points in space, building an hyperplane,
as wide as possible, which can be positioned as a separator between the two classi-
fication categories. The SVMs perform a linear classification, but it is also possible
to perform a non-linear classification using an adequate kernel, projecting the data
into a multi-dimensional rather than a two-dimensional space. This algorithm is
used in many classification and regression problems, in the medical field it is often
used for signal separation or for clinical discrimination starting from well-specified
characteristics [24, 25]. A very interesting and promising use concerns the early
diagnosis [26] or the classification of some types of cancer starting from genomic
data [27, 28].

Random Decision Forest

Random Decision Forests (RDF) were first proposed by Tin Kam Ho in 1995 [29].
They are a learning method based on training many Decision Trees (DT), from which
a decision strategy is then aggregated. The various Decision Trees are based on the
observation of certain characteristics of the data, selected randomly. RDTs are often
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unstable methods, but have the great advantage of being easily interpretable. They
can be used for both regression and classification. It is mainly used in problems
on which there is not yet a precise idea of the weight of the data characteristics or
of the relationships between them. In the medical field it is a widely used method
for relating clinical features and pathologies [30, 31, 32, 33, 34]. In a recent work
by Wang et al. [35] RDFs have been use to detect the factors that most impact on
medical expenses for diabetic individuals in the US, while Hsich [36] studied the
most critical risk factors for survival in patients with systolic heart failure through
Random Survival Forests (RSFs). RDFs models have also been used for the analysis
of genomic data [37].

Extreme Gradient Boosting

Extreme Gradient Boosting is a supervised machine learning technique for regression
and classification problems that aggregates an ensemble of weak individual models
to obtain a more accurate final model. This method is applied to multicollinearity
problems in which there are high correlations between the variables. It helps a lot in
improving the predictive accuracy of the model and is often used in risk assessment
problems. In the medical field it has been used in many applications, some examples
are represented by the evaluation of the outcomes of clinical treatments [38] or the
study of systemic diseases that depend on multifactorial conditions that are difficult
to interpret [39].

Naive Bayes

Bayes Classifiers are ML methods that use Bayes’ theorem for the classification pro-
cess. These classifiers are very fast and, despite their simplicity, are efficient at many
complex tasks, even with small training datasets. They are used to calculate the con-
ditional probability of an event, based on the information available on other related
events. A disadvantage of such classifiers is the fact that they require knowledge
of all the data of the problem, especially the simple and conditional probabilities
(information that is difficult to obtain). They also assume the independence of the
characteristics of the input and therefore provide a simple approximation (naive) of
the problem. In the medical field they have often been used in classification prob-
lems [40] or in feature selection [41]. Silla et al. [42] used an extension of the Naive
Bayes approach in the context of proteomics, for the hierarchical classification of
protein function, while Sandberg et al. [43] used a naive Bayes classifier for the anal-
ysis of complete sequences of bacterial genomes, capturing highly specific genomic
signatures.

Unsupervised Machine Learning

In contrast with supervised learning, unsupervised learning models process un-
labeled data to uncover the underlying data structure. In unsupervised learning,
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patterns are found out by algorithms without any input from the user. Unsupervised
techniques are thus used to find undefined patterns or clusters of data points which
are “closer” or more similar to each other.

A visual illustration of an unsupervised dimension reduction technique is given
in Fig. 5. In this figure, the raw data (represented by various shapes in the left panel)
are presented to the algorithm which then groups the data into clusters of similar data
points (represented in the right panel). Note that data which do not have sufficient
commonality to the clustered data are typicaly excluded, thereby reducing the number
of features within of the dataset. Indeed, these techniques are often referred to as
dimension reduction techniques.

Fig. 5 How Unsupervised Machine Learning algorithms work. They use a more self-contained
approach, in which a computer learns to identify patterns without any guidance, only inputting
data that is unlabeled and for which no specific output has been defined. In practice, this type of
algorithms will learn to divide the data into different clusters based on the characteristics that unite
or discriminate them the most.

Unsupervised methods ability to discover similarities and differences in infor-
mation make them the ideal solution for exploratory data analysis. The output is
highly dependent on the algorithm and hyperparameters selected. Hyperparameters,
also called tuning parameters, are values used to control the behaviour of the ML
algorithm (e.g., number of clusters, distance or density thresholds, type of linkage
between clusters). Algorithms exist to detect clusters based on spatial distance be-
tween data points, space or subspace density, network connectivity between data
points, etc.

By compressing the information in a dataset into fewer features, or dimensions,
issues including multiple collinearity between data or high computational cost of the
algorithm may be avoided.

Unsupervised approaches also share many similarities to statistical techniques
which will be familiar to medical researchers. Unsupervised learning techniques
make use of similar algorithms used for clustering and dimension reduction in
traditional statistics. Those familiar with Principal Component Analysis, for instance,
will already be familiar with many of the techniques used in unsupervised learning.
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Here, the most prominent and common methods used in Unsupervised Machine
Learning are reported: k-Nearest Neighbours, Principal Component Analysis, k-
Means Clustering.

k-Nearest Neighbours

k-Nearest Neighbours is an instance-based learning algorithm, used for pattern recog-
nition for classification or regression. The algorithm uses similarity criteria between
elements that are close to each other. In essence the closest neighbours contribute
more to the attribution of characteristics than the distant ones. The parameter k rep-
resents the number of neighbours that will contribute to the training in the feature
space. This algorithm is often used in problems concerning the recognition of simi-
larity patterns aimed at classification and it is a fast, precise and efficient algorithm,
but has the disadvantage that the precision of the predictions is strongly dependent
on the quality of the data. In the medical field it has often been used for the analysis
of hidden patterns on very big amount of data from clinical repositories [44] and in
the genomic field [45].

Principal Component Analysis

Principal Component Analysis (PCA, also called Karhunen-Loève transform) is a
statistical procedure for dimensionality reduction of the space of variables. The PCA
consists of a linear transformation of the variables that projects the original ones
into a new Cartesian system in which the new variables try to transfer most of the
significance (variance) of the old variables onto a plane, thus obtaining a dimensional
reduction without losing too much information. One major limitation of this method
is that it can only capture linear correlations between variables. To overcome this
disadvantage, sparse PCA and non-linear PCA have been recently introduced. PCA
is widely used especially in the fields of medicine and psychology, where scientists
works with datasets made up of numerous variables [46, 47, 48].

k-Means Clustering

K-Means Clustering is a vector quantization method for partitioning input data into k
clusters. The goal of the algorithm is to minimize the total intra-group variance; each
group is identified by a centroid or mid-point. At each step of the algorithm, the input
points are assigned to the group with the closest centroid to them. The centroids are
recalculated at each step until the algorithm converges and the centroids are stable.
k-Means is both a simple and efficient algorithm for clustering problems, but it has
the drawback of being very sensitive to outliers, which can significantly deviate the
centroids, and of having to choose the number of clusters a priori. In medicine, it is
mainly used in situations where a lot of unlabelled data are available [49, 50, 51].
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Artificial Neural Networks

Artificial Neural Networks deserve a very long description, which is beyond the scope
of this chapter. We will only say that they are computational learning models made up
of artificial ”neurons”, inspired by the simplification of biological neural networks.
Such models consist of layers of artificial neurons and processes using computational
connections. They are adaptive systems, which change their structure based on the
information they process during the learning phase. The layers of neurons can also
be very deep (Deep Learning). They are used to create very complex learning
algorithms, with very high abstraction capabilities, which are therefore difficult to
interpret. In the medical field they have many applications, especially in areas where
large amounts of data are available (Big Data) [52, 53, 54, 55]. Among the ANNs,
the Convolutional Neural Networks (CNNs) deserve particular attention, in which
the pattern of connectivity between neurons is inspired by the organization of the
animal visual cortex, for this reason they are particularly suitable for processing
images, widely used for the analysis of medical images for detection, segmentation
and classification of anomalies or lesions [56, 57, 58].

Reinforcement Learning

Reinforcement learning is a machine learning technique in which a computer (agent)
keeps learning continuously to perform a task through repeated trial-and-error in-
teractions with an interactive environment. In other word, agent is self-trained on
reward and punishment mechanisms (see Fig. 6). This learning approach allows the
agent to make a series of decisions that maximize a reward metric for the activity,
without being explicitly programmed to do so and without human intervention.

Fig. 6 Basic diagram of Reinforcement Learning
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4 Issues and Challenges

Data Management

Data used in ML applications, derived by medical protocols and experimental trials
may be incomplete, contain errors, biases and artifacts. Moreover, some data point
may be missing for some of the samples. In this scenario, data imputation, denoising
and integration should be part of the design of ML algorithms applied to medicine.
We will not go into detail, but it is important to know that the performance of AI
algorithms is strongly dependent on the quality of the dataset, and that in the case
of unbalanced, incomplete, noisy, biased datasets, there are many solutions to be
applied to improve datasets and performances [87, 88, 89, 90, 91].

Machine Learning Model Evaluation Metrics

Evaluating the developed machine learning model is an essential part of any project.
Here are listed the most widely used evaluation metrics:

• Classification Accuracy: it is the sum of all the correct predictions divided by
the total number of input samples. Nevertheless, it works well only in case of
balanced dataset, i.e. there are equal number of samples belonging to each class.
In case of unbalanced samples, it can be misleading and give the false impression
of achieving high accuracy. For instance, if we have 98% samples of class ”A”
and 2% samples of class ”B”, the model can easily get 98% training accuracy by
simply predicting every training sample belonging to class A. But when tested on
a test set with 60% samples of class A and 40% samples of class B, the model
can get a lower accuracy of 60%. This issue may be a real problem when the cost
of misclassification of the minor class samples is very high: in case of serious
pathologies, the cost of not diagnosing a sick person’s disease is much higher
than the cost of further testing a healthy person.

• Logarithmic Loss (or Log Loss): it penalize the false classifications and works
well for multi-class classification. Log Loss nearer to 0 indicates higher accuracy.
In general, minimising Log Loss gives higher classifier accuracy.

• Area Under Curve (AUC): it is one of the most widely used metrics for evaluation,
especially for binary classification problem. AUC of a classifier indicates the
probability that the classifier will rank a randomly chosen positive example higher
than a randomly chosen negative example. To understand how it is computed, let
us introduce: (i) the True Positive Rate (TPR, or Sensitivity), which corresponds
to the proportion of positive data samples that are correctly considered as positive,
with respect to all positive data samples; (ii) the True Negative Rate (TNR, or
Specificity), which corresponds to the proportion of negative data samples that
are correctly considered as negative, with respect to all negative data samples.
Sensitivity and (1- Specificity) are plotted at varying threshold values in the range
[0,1] and the Receiver Operating Characteristic (ROC) curve is graphed. AUC is
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the area under ROC curve and the higher the value, the better is the performance
of the ML model.

• Mean Absolute Error: it is the average of the difference between the correct outputs
and the predicted outputs. It gives us the measure of how far the predictions were
from the actual values. Nevertheless, they don’t gives any idea whether we are
under predicting the data or over predicting the data.

• Mean Squared Error (MSE): it is quite similar to Mean Absolute Error, as it takes
the average of the square of the difference between the correct outputs and the
predicted outputs. As the square of the error is calculated, the effect of larger
errors become more pronounced then smaller error, hence the model can focus
more on larger errors.

Explainability, Interpretability, Ethical and Legal Issues

Both the interpretability and the explainability of ML algorithms go in the direction
of strengthening trust in ML algorithms [92, 93]. Interpretability concerns the way
in which the ML model reaches its conclusions and has the aim of verifying that
the accuracy of the model derives from a correct representation of the problem and
not from artifacts present in the training data, while explainability seeks to explain
the reasons why an algorithm made one decision rather than another. The concept
of explainability is receiving more and more attention from a legal point of view,
according to the right of every individual to receive detailed explanations regarding
the decisions that impact on his life. In general, explainability and interpretability
are well achievable with simple classification algorithms such as decision trees or
linear regressors, but the relationships between data characteristics are not always
linear, consequently, these approaches may not be suitable in many tasks.

Most ML algorithms are too complex to be understood directly, so it is necessary
to adopt post-hoc analysis [94]. In some cases, the explanation is achieved by deriving
a transparent model that mimics the original one, although such an approach is not
always possible. It is often necessary to work hard to obtain explanations, through
empirical approaches, recursive attempts and series of examples. Applications of
ML in the medical field are often directed towards diagnosis and therapy, and as
with doctors, they can make mistakes, generate delays and sometimes lead towards
wrong therapies, running into major legal and economic problems. For this reason,
the use of ML in the medical field is still limited to supporting diagnosis, providing
for the review of outputs by human experts.

Another very important aspect of the application of ML in medicine concerns the
equity of data. By their nature, and certainly not by intention, artificial intelligence
algorithms can be highly discriminatory against minorities, generating deep ethical
issues [95, 96]. Given their heavy dependence on available data, it is clear that their
performance will be very good for people from well-represented populations and
very bad, misleading and even dangerously wrong for people from underrepresented
populations [97]. With most medical data repositories coming from hospitals in rich,
industrialized countries, developing countries risk finding themselves completely
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shut out of new medical advances if they rely heavily on ML. This is certainly a
problem that needs attention and prompt solutions.

Perspectives in Personalised Medicine

The synergy between artificial intelligence and precision medicine is revolutionising
the concepts of diagnosis, prognosis and assistance [98, 99]. Conventional symptom-
based treatment of patients is slowly giving way to more holistic approaches in which
aggregate data and biological indicators of each patient are combined with specific
observations and general patterns inferred from artificial intelligence approaches
on large numbers of patients . Genetics, genomics, precision medicine, combined
with machine learning and deep learning algorithms, make it possible to generate a
personalized therapy even for individuals with less common therapeutic responses
or with particular medical needs [100, 101, 102].

In general, the shared adoption of the EHR (Electronic Health Record) format
for storing clinical data has allowed for the systematic collection of a great deal of
information on the health of individuals in digital format. This format has greatly
facilitated the use of ML tools in the medical field, thanks to the uniformity of data
and the ease of retrieval and use. Other projects born with the aim of facilitating the
application of ML in the medical field are the health databases containing data of
millions of individuals, such as the All of US Research Program Project, the Human
Genome Project, the UK Biobank, the IARC Biobank and the European Biobank.

To conclude our contribute on the innovative, indeed, revolutionary perspectives
of the application of ML in medicine, we would like to mention the Digital Twins,
models that mimic the biological background of a patient as much as possible,
making it possible to test drugs, therapies, treatments, maximizing the results and
minimizing the risks on the patient’s health [103].

5 Conclusions

The introduction of Artificial Intelligence has upset all fields of research, necessarily
medicine as well. It has changed our perception of diseases, of treatments, our
relationship with doctors and it has changed procedures, it has opened many doors
and brought to the table issues and problems that we hadn’t really thought about yet.
We consider ML as a huge opportunity to improve more or less everything we can
operate on, but it is a tool to understand, to handle with care, to use with attention.
In this chapter we have provided some basic indications to navigate the ocean of
ML, especially for non-experts. We’ve described the most used methods, giving
guidance on when to use them, and we’ve provided plenty of bibliography, so you
know where to go further. We have tried not so much to provide answers, but rather
to help understand what are the right questions to ask when you want to use ML in
the medical field, which is already a very important starting point.
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USEFUL GLOSSARY

■ Accuracy:Measure of the algorithm ability in giving correct predictions.
■ Algorithm: Any systematic calculation scheme or procedure.
■ Classification: Learning process in which the data are divided into

two or more classes and the system assigns one or more classes among the
available ones to an input.

■ Clustering:Learning process in which a set of data is divided into groups
that are not known a priori.

■ Features: Interesting parts, qualities or characteristics of something.
■ Layer: Collection of nodes operating together.
■ Model: Formal representation of knowledge related to a phenomenon.
■ Normalisation: Process of feature transformation to obtain a similar

scale.
■ Neural Networks: Computational model made of artificial neurons,

vaguely inspired by the simplification of a biological neural network.
■ Node:Computational unit (also called artificial neuron) which receives one

or more inputs and composes them to produce an output.
■ Overfitting: Excessive reliance of the model on training data, leading

to inability to generalise and evaluate other data well.
■ Pre-processing: Manipulating data before it is used in order to ensure

or improve performance in the data mining process.
■ Regression:Learning process similar to classification, with the difference

that the output has a continuous domain and not a discrete one.
■ Training: the process of creating a model from the training data. The

data is fed into the training algorithm, which learns a representation for the
problem, and produces a model. Also called “learning”.

■ Training Set: Set of data used in input during the learning process to fit
the parameters.

■ Test Set: Set of data, independent to the training set, used only to assess
the performances of a fully specified classifier or a regressor.

■ Validation Set: Set of data used to tune the parameters and to assess the
performances of a classifier or a regressor. It is sometimes also called the
development set (dev set).

■ Weights: Parameters within a neural network calibrating the transforma-
tion of input data.
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