
Efficient and Effective Tree-based and Neural Learning to Rank∗

Sebastian Bruch
Pinecone, U.S.A.
sbruch@acm.org

Claudio Lucchese
Ca’ Foscari University of Venice, Italy

claudio.lucchese@unive.it
Franco Maria Nardini
ISTI-CNR, Pisa, Italy

francomaria.nardini@isti.cnr.it

May 16, 2023

Abstract

As information retrieval researchers, we not only develop algorithmic solutions
to hard problems, but we also insist on a proper, multifaceted evaluation of ideas.
The literature on the fundamental topic of retrieval and ranking, for instance, has a
rich history of studying the effectiveness of indexes, retrieval algorithms, and complex
machine learning rankers, while at the same time quantifying their computational costs,
from creation and training to application and inference. This is evidenced, for example,
by more than a decade of research on efficient training and inference of large decision
forest models in Learning to Rank (LtR). As we move towards even more complex, deep
learning models in a wide range of applications, questions on efficiency have once again
resurfaced with renewed urgency. Indeed, efficiency is no longer limited to time and
space; instead it has found new, challenging dimensions that stretch to resource-, sample-
and energy-efficiency with ramifications for researchers, users, and the environment.

This monograph takes a step towards promoting the study of efficiency in the era
of neural information retrieval by offering a comprehensive survey of the literature on
efficiency and effectiveness in ranking, and to a limited extent, retrieval. This monograph
was inspired by the parallels that exist between the challenges in neural network-based
ranking solutions and their predecessors, decision forest-based LtR models, as well as
the connections between the solutions the literature to date has to offer. We believe that
by understanding the fundamentals underpinning these algorithmic and data structure
solutions for containing the contentious relationship between efficiency and effectiveness,
one can better identify future directions and more efficiently determine the merits
of ideas. We also present what we believe to be important research directions in the
forefront of efficiency and effectiveness in retrieval and ranking.

∗Preprint of article accepted for publication in Foundations and Trends® in Information Retrieval

1

ar
X

iv
:2

30
5.

08
68

0v
1

 [
cs

.I
R

]
 1

5
M

ay
 2

02
3

Figure 1.1: The Document Ranking Problem in the context of web search—our running example. The
user sends a text query to the search engine (1), which, in turn, retrieves the most relevant documents from
a large collection, and presents them as a ranked list (2). The user then decides if and to what extent the
ranked list satisfies their information need, which affects metrics of interest (3).

1 Introduction

Search engines are a familiar tool to the reader of this manuscript. In fact, you have likely
arrived at this copy by typing a few keywords into one and perusing the relevant links
and page descriptions in its results page. Indeed, the abundance of data on the web makes
search engines an integral tool, without which it would be nearly impossible to discover the
right information and satisfy an information need.

We similarly rely on a suite of other algorithmic tools to get what is pertinent to us, such
as discovering news articles, movies, or songs (recommendation systems), getting answers to
natural language questions (question answering and conversational agents), finding images
depicting a given description (image search), and many more. What all of these tools have
in common is that they are different manifestations of the retrieval and ranking problem,
which seeks to discover a set of relevant items from a large collection and order them
according to some criteria and with respect to some context.

Definition 1.0.1 (The Document Ranking Problem). Given a query q (context) and a set
of documents D (items), the goal is to order elements of D such that the resulting ranked
list maximizes a user satisfaction metric Q (criteria).

We take web search as the theme of this monograph and delve into the ranking problem
in that context. In document ranking, the query q is an intent expressed (often briefly) as a
set of textual keywords or in natural language, the documents D are (possibly long) texts

2

written in natural language, and Q is any utility metric that captures the relevance of an
ordered list to q. We have illustrated this setup in Figure 1.1.

Document ranking presents a number of unique questions that are the subject of much
research in the field of information retrieval: How do we define Q to quantify the perceived
quality of a ranked list and its utility to a user? How do we capture and interpret implicit,
noisy, and sometimes circular user preferences, which are represented by clicks? And, more
pertinent to this monograph, how do we arrive at a ranked list given a query, a set of
documents, a metric, possibly subject to a set of other constraints?

Over a decade ago, machine learning transformed how we approach the document
ranking problem and answer the questions above. That wave resulted in a paradigm shift
from early statistical methods, heuristics, and hand-crafted rules to determine the relevance
of documents to a query, to what would later be called Learning to Rank (LtR) (Liu, 2009),
where the relevance of a document to a query is estimated by a learnt function, hence
“learning” to rank. This leap was perhaps best exemplified by LambdaMART (Burges, 2010)
in the Yahoo! Learning-to-Rank Challenge (Chapelle and Chang, 2011).

This transformation of the document ranking problem culminated in a framework that
comprises of two distinct algorithms, depicted in Figure 1.2: top-k retrieval, which finds
a subset of k documents that are more relevant to a query, followed by ranking which
orders the documents in the top-k set. In LtR, the ranking stage uses an often expensive
function that was trained using supervised or online learning methods, while the retrieval
algorithm solves a form of the maximum inner product search (MIPS) problem. As we
will describe later, in “dense retrieval,” retrieval is often (but not always) an approximate
nearest neighbor search while ranking is the identity function.

1.1 The importance of efficiency

Any solution that addresses the ranking problem, including LtR, by definition seeks to
maximize a user satisfaction metric, Q. But in many real-world applications achieving the
highest effectiveness is only one of many requirements. We may indeed desire to impose
additional constraints on the ranked list, such as a requirement that ranked lists fairly
represent underrepresented categories; that they guarantee privacy when the set D consists
of documents private to a user; or that they counter biases and ensure trust. Each of these
additional constraints is an important objective to optimize in its own right.

An objective that is equally as important as effectiveness in many applications is the
efficiency of the retrieval and ranking systems. For example, it is often imperative to find
the right documents and finalize a ranked list within a small time budget to meet demand
and ensure a timely delivery of information. In fact, a perfectly-ordered ranked list may be

3

Figure 1.2: Retrieval and ranking algorithms in a modern search system. The retrieval algorithm often
solves one form of the maximum inner product search (MIPS) problem using, for example, an approximate
nearest neighbor (ANN) search or an inverted index-based top-k retrieval algorithm where closeness is
determined by lexical matching scores. The ranking algorithm may be as simple as an identity function
(e.g., in deep learning-based “dense retrieval”) or a complex learnt function such as decision forests or deep
learning models.

of little value or have a low perceived quality if delivered too late or with substantial delay.1
The question of efficiency gained increasing significance with the rise of LtR whose

training and serving require large amounts of computational power. Indeed, the success of
LambdaMART and subsequent decision forest-based descendents (Ganjisaffar et al., 2011;
Dato et al., 2016; Bruch, 2021; Lucchese et al., 2018b) in improving the quality of rankings
came at the expense of the efficiency of training and inference. The training of such models is
expensive because we must often (and repeatedly) learn ensembles of hundreds to thousands
of deep decision trees sequentially with gradient boosting (Friedman, 2001), with each node
in every tree requiring a search in the feature space (Breiman et al., 1984). To become
accurate, these large models need to be trained on vast amounts of data, often represented
as complex features that are in turn costly to compute. Inference, too, is computationally
intensive because estimating the relevance of a single document to a query requires the
traversal of paths, from roots to leaves, of every decision tree in the model.

1Kohavi et al. (2013), reporting on an experiment conducted at Bing, a web search engine, estimated
that “every 100msec improves revenue by 0.6%.”

4

1.2 Efficiency considerations beyond latency

A decade later, deep neural networks, and in particular, Transformer-based (Vaswani et al.,
2017) pre-trained language models advanced the state-of-the-art in ranking dramatically (Lin
et al., 2021; Nogueira and Cho, 2020; Nogueira et al., 2019a; Nogueira et al., 2020). Learnt
representations of queries and documents by deep networks, too, offer a range of opportunities
including the development of a new generation of “dense” retrieval methods (Karpukhin
et al., 2020; Xiong et al., 2021), document expansion techniques (Nogueira et al., 2019b),
and others. These recent developments mark the beginning of a new era known as Neural
Information Retrieval (NIR).

NIR is a leap forward, reaching new highs in quality. Whatever the reason behind its
success may be, NIR achieves a greater effectiveness than the previous wave of machine
learning models like decision forests on many information retrieval tasks, but with orders of
magnitude more learnable parameters and much greater amounts of data. The new scale
drastically increases the computational and economic costs of model training and inference.
GPT-3 (Brown et al., 2020), for example, required 285,000 CPU cores and 10,000 GPUs to
train, with an estimated economic cost of $4.6M.2 Although it may be argued that the high
cost of training deep models is amortized because large language models can, through a
process known as “fine-tuning,” be recycled and reused for a variety of applications with a
substantially smaller effort, it is still a significant price to pay upfront. Furthermore, not all
large neural models can be easily recycled—in fact, that is one of the properties Scells et al.
(2022) call out in their article. What is more, once trained, the use of such large models
in production similarly requires a nontrivial amount of tensor multiplications and other
complex operations.

Due to their alarming computational requirements, NIR models underline several
dimensions of efficiency that have thus far been less obvious. Crucially, “efficiency” is no
longer characterized by low latency, but is instead a concept that amalgamates space-,
sample-, and energy-efficiency, among other emerging factors, as summarized in Table 1.1.

In other words, the inefficiency of an algorithm cannot and should not be understood
solely in terms of negative user experience due to greater latencies, but instead, we must
acknowledge that ineffciency has adverse implications for resource-constrained researchers
and practitioners, and more importantly, for the environment (in the form of emissions
and carbon footprint) (Scells et al., 2022; Strubell et al., 2019; Xu et al., 2021). We
must therefore acknowledge that, due to environmental factors, attempting to address
the efficiency problem by relying on advances in hardware systems or by utilizing more
resources is not a sustainable long-term solution. Instead, combating this multi-faceted
issue of efficiency necessitates a careful study and design of efficient algorithms and data

2https://lambdalabs.com/blog/demystifying-gpt-3/

5

https://lambdalabs.com/blog/demystifying-gpt-3/

Table 1.1: Taxonomy of a multi-faceted view of ranking efficiency and the stages in which they manifest.

Dimension Definition Scope

Query Time elapsed between the arrival of a
query and the presentation of ranked
list of documents

Inference

Sample Number of training examples required
to learn a ranking function

Training

Space Total storage used to serve a ranking
model

Training;
Inference

Training Time required to train a ranking model Training
Energy Amount of energy required to train a

model or evaluate a learnt model on a
query-document pair

Training;
Inference

structures, as highlighted by deliberations at recent academic workshops (e.g., the Workshop
on Reaching Efficiency in Neural Information Retrieval (Bruch et al., 2022b; Bruch et al.,
2023)).

1.3 Efficient and effective ranking

Accuracy by way of ever-increasing complexity presents a challenge: how do we then optimize
for both effectiveness and efficiency? Must we lose accuracy to find a more efficient solution,
inevitably trading off effectiveness for efficiency and vice versa? These and other similar
questions give rise to a research topic that extends the document ranking problem as follows:

Definition 1.3.1 (The Efficient Document Ranking Problem). Given a query q and a set of
documents D, the goal is to order elements of D efficiently such that the resulting ranked
list maximizes a user satisfaction metric Q.

The problem above spawned a line of research in the information retrieval community to
systematically investigate questions of efficiency and explore the trade-offs between efficiency
and effectiveness in ranking models, leading to several innovations. The community widely
adopted multi-stage, cascade rankers, separating light-weight ranking on large sets of
documents from costly re-ranking of top candidates to speed up inference at the expense
of quality (Wang et al., 2011; Asadi and Lin, 2013a; Dang et al., 2013; Culpepper et
al., 2016; Mackenzie et al., 2018; Liu et al., 2017; Asadi, 2013). From probabilistic data
structures (Asadi and Lin, 2012; Asadi and Lin, 2013b), to cost-aware training and post hoc
pruning of decision forests (Asadi and Lin, 2013c; Lucchese et al., 2017b; Lucchese et al.,

6

2016a; Dato et al., 2016), to early-exit strategies and fast inference algorithms (Cambazoglu
et al., 2010; Asadi et al., 2014; Lucchese et al., 2016b; Lucchese et al., 2015b), the information
retrieval community thoroughly considered the practicality and scalability of complex
ranking algorithms.

In addition to volumes of publications, the output of this research effort included
standardized algorithms and reusable software packages (Ke et al., 2017; Lucchese et al.,
2015b). Perhaps more crucially, the community developed an understanding that quality
is not the be-all and end-all of information retrieval research and that model complexity
must be managed (through more efficient training and inference) and justified (e.g., by
contextualizing quality gains in terms of the amount of computational resources required).

As complex neural network-based models come to dominate the research on document
ranking, it is unsurprising that there is renewed interest in the question above, not just in
the information retrieval community but also in related branches such as natural language
processing. Interestingly, many of the proposals put forward to date to contain efficiency are
reincarnations of past ideas, such as stage-wise ranking with BERT-based models (Nogueira
et al., 2019a; Matsubara et al., 2020), early-exit strategies in Transformers (Soldaini and
Moschitti, 2020; Xin et al., 2020; Xin et al., 2021), neural connection pruning (Gordon
et al., 2020; McCarley et al., 2021; Lin et al., 2020b; Liu et al., 2021), precomputation of
representations (MacAvaney et al., 2020b), and enhancing indexes (Zhuang and Zuccon,
2022; Nogueira et al., 2019b; Mallia et al., 2022; Lassance and Clinchant, 2022). Other
novel but general ideas such as knowledge distillation (Jiao et al., 2020; Sanh et al., 2020;
Gao et al., 2020) have also proved effective in reducing the size of deep models. Yet other
innovative ideas developed specifically for ranking include efforts to reinvent Transformers
from the ground-up (Mitra et al., 2021; Hofstätter et al., 2020).

1.4 About this monograph

Given the resurgence of the question of efficiency and the trade-offs between efficiency and
effectiveness in ranking, and the apparent overlap between the neural and pre-neural ideas
to address this question, we believe it is necessary to present a comprehensive review of
this literature with a particular focus on the document ranking problem. We have thus
prepared this monograph in four parts in the hope that it serves as one such resource.

The first part introduces the document ranking problem and reviews a machine learning
formulation of it in the context of web search in depth. We also describe the architecture of
a modern search engine to illustrate an application of ranking that is of primary interest to
this work. As we explain the ingredients of a search engine and all that is involved in the
training and serving of a ranking model within this framework, we highlight the costs to
efficiency and call out the levers that trade off effectiveness for efficiency.

7

While the first part of this monograph concerns an abstract, general setup, the two
subsequent parts get more specific and examine two popular families of ranking algorithms
through the lens of efficiency. One presents a treatment of a branch of LtR that is based on
forests of decision trees, while another turns to neural networks and deep learning methods
for retrieval and ranking. Each family presents its own unique challenges and requires its
own set of solutions to explore the Pareto front on the efficiency-effectiveness optimization
landscape.

As the reader will notice, the approaches developed for the two families of ranking
algorithms appear to be—and in many ways, are—independent. But the ideas behind them
overlap too. We attempt, in the last part of the monograph, to identify the common threads
that can help translate ideas from one space to another. We also discuss emerging research
directions, made urgent by the rise of deep neural networks in information retrieval, and
explore open challenges within this space.

2 Learning to Rank:
A Machine Learning Formulation of Ranking

A ranking algorithm, at its core, is a function of a set of documents and a query. It is no
surprise then that its simplicity or complexity is determined by how we represent documents
and queries.

Let us, for example, strip away grammar and sentence structure from a text query or
document. That leaves us with a bag-of-words perspective of the text: a query or document
is simply a multiset of terms from a fixed vocabulary. Modeled this way, we can represent
documents and queries naïvely as vectors in a space that has as many dimensions as
there are terms in our vocabulary, and where each dimension records the frequency of
the corresponding term in that document or query. Perhaps we would further weight each
dimension to reflect its “importance” (Sparck Jones, 1972)—an article like “the” that occurs
frequently in a large subset of documents but that carries little information would have a
lower weight.

In the vector space construction above we can measure the relevance of a document to a
query using a similarity measure between query and document vectors (Salton and Buckley,
1988), such as cosine similarity or inner product, as illustrated in Figure 2.1.1 Alternatively,
because each vector is a distribution over a vocabulary, we may use a probabilistic approach
based on language models (Ponte and Croft, 1998) to measure query-document similarity

1If this reminds the reader who is familiar with neural information retrieval of neural rankers, it is
because in both models queries and documents are represented as vectors. While similar in principle, in the
bag-of-words model, these vectors are sparse vectors of basic statistics such as (weighted) term frequencies,
while a neural ranking function learns a dense or sparse vector representation of its input from the raw data.

8

Figure 2.1: Vector representation of query and documents in the bag-of-words model. The relevance of a
document to a query may be estimated using the inner product of their vectors.

(e.g., the likelihood of observing a query given a document). In either case, the ranking
function is simple: it computes the similarity scores for pairs of query and document vectors
and sorts the documents in decreasing order of similarity.

Term frequencies in a bag-of-words model only carry so much information, and there
is indeed far richer signals available in queries and documents to aid ranking. Term co-
occurrences and increasingly more advanced semantic features provide greater insight than
individual words, for example. Another source of useful features, especially in the context
of web search, is the structure within documents, where “fields” such as titles and sections
carry different weights (Jones et al., 2000; Robertson et al., 2004). Continuing with the web
search example, there are numerous other indicators of relevance in the web graph (such
as the anchor text of incoming links, in-degree and out-degree of a web page, number of
references in social network streams) and in the user interaction with the search system
(e.g., clicks, user sessions, effect of query reformulation).

The list of statistics used in modern search engines is indeed long, encompassing many
facets of documents and queries beyond term frequencies. Benchmark ranking datasets, for
example, represent queries and documents with hundreds or thousands of statistics. As
examples, there are 136 features for a query-document pair in the MSLR datasets,2 and
700 in the Yahoo! Learning to Rank Challenge datasets.3

As the size and complexity of the query and document representations grow, it becomes
impractical to hand-craft a ranking function and ineffective to use basic similarity measures.
It is rather more practical and effective to view the ranking problem as a supervised learning
task—a task known as LtR, visualized in Figure 2.2. We should highlight that, other texts
often use LtR to refer specifically to the first wave of machine learning-based methods that
came before deep learning. In this monograph, we view neural networks and deep learning

2Available at https://www.microsoft.com/en-us/research/project/mslr/.
3Available at https://webscope.sandbox.yahoo.com/catalog.php.

9

https://www.microsoft.com/en-us/research/project/mslr/
https://webscope.sandbox.yahoo.com/catalog.php

Figure 2.2: Visualization of a supervised framework for learning a ranking function. A training example in
ranking consists, at least, of a query and a set of (partially) labeled documents. Each example is represented
by a vector of features, either learnt using a deep learning model or engineered based on statistics. A ranking
function is then trained to produce ranked lists so as to minimize the difference between the produced
ranked list and the ideal one.

10

as just another hypothesis class in the LtR framework and use LtR to discuss both pre-
and post-neural research in ranking in a unified framework.

Equipped with a rich representation of queries and documents as vectors of feature values,
and a set of labels indicating the relevance of a document to a query, we have one piece of
the puzzle to learn a ranking function. To complete the picture, we also need a method
of evaluation to determine the success of the learnt ranking function, and an optimization
objective to enable learning. In this chapter, we unpack each of these components in the
context of ranking.

2.1 Ranking datasets

To understand the structure of a ranking dataset, we find it helpful to first revisit other tasks
in the family of supervised learning algorithms which have a simpler construction. Take
regression and classification as its well-known members. A typical regression or classification
dataset is made up of a number of examples that, respectively, come with a value and a
class label. An example could be an image to be classified as a cat or a dog, or a piece of
text to be decided as relaying a positive or negative sentiment. Each example is assumed to
have been sampled independently of others, but from the same underlying data distribution.
Examples are either given as vectors of feature values—hence, tabular or structured—or
represented in their raw, unstructured form such as text, or a mix of both.

Ranking adds a new dimension to the construction above, with an example now com-
prising of two parts: A query and a set of documents.4 The objective of a ranking algorithm
is to sort the set of documents with respect to the query in some order. In web search,
that order is often determined by relevance, but other factors such as diversity, fairness,
freshness, personalization, or a combination of those may play a role.

The additional dependence of a ranking example on query and document affects how
we represent and label a ranking dataset. The next two sections explain its implications.

2.1.1 Representation

How a query and documents are represented is largely similar to the regression or classifica-
tion setting, with tabular features summarizing examples or unstructured data from which
latent features may be learnt. The one difference in ranking, however, is that in addition to
extracting features from the query, and another set from individual documents, we must
also obtain signals that jointly describe a query-document pair.

4Note that, while “query” and “document” may suggest textual content, these notions, in fact, extend
to a variety of multi-modal domains such as a recommendation engine where a query may be a user “profile”
and documents are movies.

11

Consider the query alone. We may classify the query and record its type (e.g., news
vs. health) or categorize a user session (Bennett et al., 2010; Jiang et al., 2016; Lucchese
et al., 2013). These signals allow the ranking model to better determine the user intent
and match the query to a document from the appropriate class, and to adaptively use the
available features (e.g., recency should be considered as a more discriminative signal if we
are searching for news articles rather than historical facts).

Now consider the document in isolation. There are important signals in the structure of
a web document, such as the number of incoming links, or the PageRank value, its quality
or spamminess, or other more advanced link analysis features (Henzinger et al., 2000). The
MSLR dataset, for example, includes some rather surprising document features such as the
number of slashes in a document’s URL, click count, and dwell time, capturing aspects of
user interaction and experience!

Now consider the numerous signals that may describe or capture the relevance of a
document to a query. The MSLR dataset, for example, uses a vector of 136 real-valued
features for each query-document pair. These features include signals from a vector space
model (such as the weighted sum of term frequencies of query terms in that document (Salton
and Buckley, 1988)), as well as the expected relevance according to different language
models (Ponte and Croft, 1998). Another class of features that can be computed jointly for
a query-document pair is term proximity (Rasolofo and Savoy, 2003): the terms of a query
with multiple terms are likely to appear within a short span in relevant documents. It is
common to compute such content-based features not just from the body of a document,
but also from its other parts such as its URL, title, and anchors, resulting in a fine-grained
feature set.

Table 2.1 summarizes some of the most common features used to represent a query-
document pair, and categorize by whether they model a document, a query, a user or their
combination. We refer the interested reader to an analysis of these features by Macdonald
et al. (2012).

2.1.2 Relevance labels

Viewed as a simple yes or no question—is this and only this ranked list correct?—the
ranking problem reduces to a classification one, where a single binary label suffices for each
example. But the ranking question is seldom this coarse and it is unlikely there is just a
single correct ranking. Instead, for a single query, many different ranked lists may equally
make sense. For instance, it hardly matters how documents that are irrelevant to a query
are ordered relative to each other, so long as they appear below the more relevant ones.

In fact, in most applications of ranking, labels are defined at the granularity of query-
document pairs: Is this document relevant to that query? If so, what is its degree of relevance?
In most practical settings where document collections are vast and query possibilities endless,

12

Table 2.1: Typical features to represent a query-document pair.

Category Description Feature

Document Properties of body and URL
(MSLR datasets)

Number of slashes in
URL; length of URL; page
length

Document Properties of the page as a
node in the Web graph (MSLR
datasets)

Inlink count; outlink
count; PageRank

Document Document quality Spam score (Cormack et
al., 2011); fraction of stop-
words; fraction of visible
terms (Bendersky et al.,
2011)

Query Query classification (Bennett
et al., 2010; Jiang et al., 2016)

Query topic; query intent

Query-
Document

Properties of query-document
match (MSLR datasets)

Boolean model; TF-IDF;
BM25; vector space
model; language model

Query-
Document

Proximity-sensitive matching
(Rasolofo and Savoy, 2003)

Term proximity

User-
Document

Properties of user interac-
tion with the page (MSLR
datasets)

URL click count; dwell
time

User-
Query-
Document

Properties of the user interac-
tion with the page in response
to a query (MSLR datasets)

Query-URL click count

13

labels may only be defined for a fraction of documents. Documents that are examined and
subsequently labeled too are typically not drawn uniformly randomly from the collection.
In these ways, labels in a ranking dataset are different from those in classification datasets.

We distinguish between two different methods for labeling document with relevance
labels. The first approach is to manually assign labels. It is well known that major web
search engines have been using thousands of quality raters for this purpose (The Guardian,
2017). And in this case very accurate guidelines for raters exists (Gomes, 2017) so that the
labeling process is accurate, consistent, and reliable. For instances, it might be preferable
to collect preference judgments among document pairs (Carterette et al., 2008) (i.e., is
document A more relevant to the query q than document B?).

Manually labeling collections of query-document pairs in a naïve manner clearly does
not scale in terms of space (number of documents) or time (new queries and new documents
come in every day) and can therefore be cost-prohibitive. To scale this effort, researchers
have developed other methods of collecting feedback such as by using active learning to
minimize the number of annotations but still maximize the quality of the training data
(Long et al., 2010). Interestingly, Yilmaz and Robertson (2009) also show that, for the
purposes of training a ranking model, it is more advantageous to collect a larger dataset of
shallow judgements (i.e., fewer annotated documents per query) as opposed to a smaller
dataset of deep judgments (i.e., with a large number of annotations per query).

An alternative to (targeted) manual labeling, one can look to a different source of
information to deduce relevance labels. One important source is the implicit feedback
generated by the users of a ranking system. Consider, for instance, the number of clicks
received by a document in response to a query, or even the absence of any click, or the
editing and reformulation of a query by a user after an unsatisfactory search results list,
among other signals (Joachims et al., 2005; Joachims, 2002; Radlinski and Joachims, 2005).
All of those actions can be mined for and translated into relevance labels! Of course, this
data is subject to different biases: users are more likely to click on the top document in
the result list; users are unlikely to traverse multiple result pages; and the system may
not be able to return the most relevant result for a query anyway. But this noisiness
and these biases can be modeled using “click” models (Chuklin et al., 2015) and treated
counterfactually (Oosterhuis et al., 2020; Joachims et al., 2017) to enable unbiased learning
and evaluation of ranking models. We refer the reader to the vast literature on these topics
for details.

2.1.3 Notation

Let us introduce some notation to summarize the discussion in this section and formally
define a typical LtR dataset. Such a dataset D comprises of a set of triplets (q,x,y). The

14

vector5 x includes the documents that we want to rank in response to the query q. For a
given query-document pair (q, xi), where xi is a member of x, the true relevance of xi with
respect to q is encoded by yi in the vector y of relevance labels.

Each (q, xi) is represented in some feature space X that captures properties of the
query (e.g., its likelihood, category), of the document (e.g., its incoming links), and of their
relationship (e.g., the number of occurrences of the query in the document). We denote by
Y the set of possible labels. This is typically binary indicating relevant vs. non-relevant,
or graded where Y is restricted to a small set of integers such as Y = [4] , {0, 1, 2, 3, 4},
encoding different degrees of relevance with larger grades corresponding with stronger
relevance.

A ranker R is a function that, given a pair (q,x) ∈ X n, produces a permutation vector
π ∈ Zn, πr ∈ [n], of the n items in x. Such a permutation defines the ranking produced by
R as follows: the item ranked at position r is the πr-th item in x: xπr . An ideal ranking π∗
is one that sorts documents in decreasing order of their relevance labels, where yπ∗r ≥ yπ∗r+1

.
Note that there might be multiple ideal rankings.

2.2 Ranking metrics

Earlier in our discussion, we touched on ways in which labels in ranking are different from
those in classification. It is not surprising then that evaluation metrics that help us assess the
quality of a ranked list too are different from their classification or regression counterparts.

Ranking metrics attempt to measure the utility of a ranked list to a user. It is therefore
helpful to consider the important factors in the way users interact with a ranked list. First,
users expect the relative ordering of documents to be correct. That is, documents that
are placed higher in the ranked list (i.e., towards the top of the list) should satisfy the
information needs of a user better than documents lower on the list, and that as the user
goes down the list, documents become less relevant to the query. Second, user attention has
a skewed distribution with much of it focused on the top of the ranked list. In other words,
users typically do not examine all documents at every position with equal probability or
care. As such, higher positions carry more weight.

The information retrieval literature offers a great number of metrics that are designed
specifically on the basis of the factors above. Most of these have the following additive form:

Q@k(π, (q,x,y)) = 1
Z

∑
1≤r≤k

Gain(r) ·Discount(r). (2.1)

At a high level, the additive nature of the formulation above reflects the view that each
document contributes to the overall quality Q of a ranking π independently of others.

5Throughout this monograph, we denote vectors as lowercase letters in bold.

15

Typically, we only consider the top k high-ranking documents when computing Q and
denote it by Q@k, reflecting the assumption that user attention dissipates past position k.
Within this framework, a document at rank position r provides a contribution of Gain(r)
to the metric, which is typically a function of its label yπr . However, this contribution wanes
as r grows, by a factor of Discount(r), a decreasing function of r. Note that, both Gain(·)
and Discount(·) are typically formulated based on a model of user behavior or “click”
models (Chuklin et al., 2015). The constant Z is often used as a normalization factor to
ensure that the metric Q lies within the unit interval. Finally, given a test ranking dataset
of examples (q,x,y) and their corresponding ranked lists πq, we compute Q@k for each
example and report its mean as the average quality.

Specific instances of Equation (2.1) differ in how they define Gain and Discount. We
review a few metrics that are commonly used in the ranking literature in this section, but
encourage the reader to refer to (Liu, 2009) for a more thorough treatment.

As an example, consider Rank-Biased Precision (RBP) by Moffat and Zobel (2008).
The authors define Gain(r) = yπr , but to formulate Discount, they make the assumption
that, at any given point, a user inspects the next document on the list with probability p
and abandons the ranked list altogether with probability 1− p. On that basis, they take the
probability that a user reaches rank r as the discount factor: Discount(r) = pr−1. The
normalization constant Z is 1− p, the inverse of the average number of documents that a
user inspects.

As another example for graded relevance, consider one of the most popular metrics known
as Normalized Discounted Cumulative Gain (NDCG) (Järvelin and Kekäläinen, 2000). The
gain is computed as Gain(r) = 2yπr − 1, leading to a dynamic where a document with label
4 is about twice as important as a document with label 3. The discount is computed as
Discount(r) = 1

log2(r+1) . When Z = 1, the resulting metric is called Discounted Cumulative
Gain (DCG). To compute NDCG, however, we normalize by the ideal DCG by setting
Z = DCG@K(π∗, (q,x,y)).

Both RBP and NDCG assume that the user examines the next document on the ranked
list independently of the relevance of the documents observed along the way. In a more
practical click model, however, users are likely to stop their inspection of the remainder
of a ranked list soon after they find the document that satisfies their information need.
With the goal of capturing such a behavior, Chapelle et al. (2009) propose the Expected
Reciprocal Rank (ERR). The gain there is defined as Gain(r) = pr

∏r−1
i=1 (1− pi), where

pi is the probability that the user is satisfied with the document at rank i and stops
inspecting the rest of the list. This probability is generally a function of relevance, for
example, pi = 2yπi−1

2maxY . The gain of the document at rank r is thus the probability that the
user finds the first satisfactory document at that position, having judged as non-relevant
all the preceding documents. The discounting mechanism is simply Discount(r) = 1

r , and
Z = 1 as no normalization is necessary. Experiments show that ERR correlates better with

16

Table 2.2: Common evaluation metrics for ranked lists

Relevance Name Metric as a function of π and (q,x,y)

Binary MAP 1∑
r
yπr

∑
1≤r≤n,
yπr=1

P@r, P@r = 1
r

∑
1≤i≤r yπi

Graded

RBP (1− p) ·
∑
yπr · pr−1

DCG@k
∑

1≤r≤k
2yπr −1

log2(r+1)

NDCG@k DCG@k(π, (q,x,y))/DCG@k(π∗, (q,x,y))

ERR@k
∑

1≤r≤k pr
∏r−1
i=1 (1− pi) · 1

r , pi = 2yπi−1
2max Y

user satisfaction (Chapelle et al., 2009).
The metrics we have reviewed thus far are based on Equation (2.1), but not all ranking

metrics belong to this family. One such example is Mean Average Precision (MAP) (Buckley
and Voorhees, 2005) for binary relevance. Let us parse this metric one term at a time. Let
Precision at k, denoted by P@K, be the fraction of relevant documents among the top k
documents. Then define Average Precision (AP) as follows:

AP(π, (q,x,y)) = 1∑
r yπr

∑
1≤r≤n,
yπr=1

P@r.

MAP is the mean of this value computed over all queries in a dataset.
Table 2.2 summarizes the metrics we have reviewed. We conclude by highlighting that

measures such as NDCG and ERR are very difficult to optimize and that changes that
may appear small have a significant impact in practice. According to (Chapelle et al., 2012),
the differences between major revisions of Bing, “involve changes of over half a percentage
point, in absolute terms, of MAP and NDCG.”

2.3 Learning objectives

We have just seen what factors are good indicators of the quality of a ranked list and how
ranking metrics evolved to take those factors into consideration. In this section, we review
how we learn a ranker that produces high-quality ranked lists.

While we defined a ranker R to be a function that permutes documents x in response to
a query q, in practice, R instead computes a relevance score for every query-document pair
(q, xi) and subsequently sorts xi’s in decreasing order of relevance to produce a permutation.

17

This two-step trick greatly simplifies the learning of a ranker R, which is also known as a
scoring function.

How do we learn such a scoring function given a labeled training dataset? At a high
level, it is natural to take a ranking metric Q and learn an R that maximizes it, with the
intuition that a ranking function trained to maximize Q should produce high-quality ranked
lists as measured by Q.

While the instinct to use a ranking metric as the learning objective may be natural,
whether that is sensible depends on the optimization method itself. Consider, for example,
gradient-based optimizers that are commonplace in machine learning. For an objective to
be optimized by such an optimizer, it must have meaningful gradients. A ranking metric,
being a function of discrete ranks, does not offer gradients that are all that interesting:
small perturbations of relevance scores computed by a ranking function often do not lead to
a change in ranks, and as such, the gradients of a ranking metric with respect to relevance
scores are typically either zero or nonexistent due to discontinuities.

The popularity and effectiveness of gradient-based optimizers and their unfortunate
incompatibility with ranking metrics bring us to an important research topic that offers a
way to reconcile the two: surrogate objectives. The idea is to devise or derive from ranking
metrics an objective that is differentiable and consistent. It must be differentiable so that
its gradients can inform an optimizer of the correct direction to follow. It must be consistent
with a ranking metric so that, in expectation, optimizing it leads to an optimal metric as
well.

The LtR literature has long sought and studied surrogate objectives that are differentiable
and, while not necessarily consistent, exhibit a behavior that is intuitively in keeping with
ranking metrics. To help explain the differences between existing surrogate ranking objectives,
let us place them into one of three buckets based on their behavior: pointwise, pairwise,
and listwise.

The intuition behind pointwise methods is to reduce the ranking problem to one of
regression, multi-class classification, or ordinal regression (Liu, 2009). In regression, for
example, we may optimize the squared difference between the true relevance label and
predicted relevance score of a query-document pair in expectation, known as the mean
squared error, as illustrated in Figure 2.3(a). When cast this way, as noted earlier, the
question becomes one of predicting the degree of relevance of each document with respect
to a given query independently of others. Furthermore, this framing of the ranking problem
implicitly requires an absolutist view of relevance: a document is either relevant or it is not.

We hinted in our earlier discussion that such a view is hardly appropriate in general.
For the vast majority of applications, a stronger view is to consider relevance as a relative
concept: a document is more (or less) relevant than another. The next wave of surrogate
ranking objectives reflect this paradigm shift.

Pairwise methods are closer to the relative definition of relevance in that they model

18

(a) Pointwise (b) Pairwise

Figure 2.3: Illustration of the machinery of pointwise and pairwise ranking objectives for four documents
({A,B,C,D}) in the context of a single query, with numbers attached to each document indicating a
relevance label or predicted score. In pointwise methods, (a), the predicted relevance score of every document
is compared to its label. In pairwise methods, (b), the function is evaluated in terms of its accuracy in
predicting the correct order among pairs of documents.

error as a function of not a single, isolated document, but of pairs of documents: When
sorted by their relevance scores, does the resulting order between any pair of documents
correctly reflect our preference between them? This is illustrated in Figure 2.3(b). Presented
this way, the question becomes one of preference learning via binary classification and, as
such, any classification objective serves as a suitable surrogate. RankNet (Burges et al.,
2005), Ranking-SVM (Joachims, 2002), and RankBoost (Freund et al., 2003) offer examples
of this approach.

To make the idea more concrete, consider RankNet, whose surrogate objective was
argued to correlate with NDCG (Cao et al., 2007). Given two documents xi and xj , it maps
the difference between their relevance scores (oij) to a probability using the logistic function:
Pij = 1/(1 + e−oij). This probability can be understood as the strength of the predicted
order between the pair. When we have computed these probabilities for every pair, it is
simply a matter of optimizing its cross entropy (Cij) with the ground truth P ij , which is 1
if xi is more relevant than xj and 0 otherwise: Cij = −P ij log(Pij)− (1− P ij) log(1− Pij).

In repeated experiments, pairwise methods have proven successful, particularly when
compared with their pointwise counterparts. The empirical success that ensued the shift
above motivated the research community to extend the idea of preference learning from a
pair of documents to an entire list of documents. In other words, similar to how ranking
metrics quantify the quality of an entire ranked list, we seek to quantify the ranking error in

19

Figure 2.4: Illustration of the ListNet (Cao et al., 2007) objective for a single query with four documents,
with numbers attached to each document indicating a relevance label or predicted score. The labels and scores
are separately projected onto the probability simplex to form a distribution over documents. Subsequently,
the cross entropy between the two distributions is taken as a measure of how far the ranked lists are from
each other.

terms of the induced order among a list of documents, not just between pairs. The surrogate
objectives that have emerged from this research effort are known collectively as the class of
listwise methods.

The LtR literature contains a great number of listwise methods. ListNet (Cao et al.,
2007) and ListMLE (Xia et al., 2008) take a probabilistic approach by applying the
Plackett-Luce model to estimate the probability of permutations. This is illustrated in
Figure 2.4. More interestingly, others like ApproxNDCG (Qin et al., 2010; Bruch et al.,
2019b) or SoftRank (Taylor et al., 2008) derive smooth approximations to ranking metrics.
LambdaRank and LambdaMART (Burges, 2010) extend the RankNet objective using a
heuristic where the contribution to the error from a pair of documents is shrunk or amplified
by a multiplicative factor that correlates with the amount of change in NDCG (or any
other metric) if the two documents traded ranks. A more recent work (Bruch et al., 2019a;
Bruch, 2021) modifies the ListNet objective to improve its consistency. Oosterhuis (2021)
proposed an approach to directly optimize the Plackett-Luce model for ranking.

The listwise methods cited above are but a few representatives of a large class of
algorithms in the machine learning and information retrieval literature (Swezey et al., 2021;
Xie et al., 2020; Cuturi et al., 2019; Blondel et al., 2020; Jagerman et al., 2022). We return
to these methods in later chapters and study some of them in greater detail. But first, to
complete the supervised learning formulation, we must discuss hypothesis classes.

20

2.4 Hypothesis classes

Equipped with a training dataset, a ranking objective, and an optimizer, we are ready
to learn a ranker R. There is, however, one final piece of the supervised learning puzzle:
What relationship do we hypothesize exists between a relevance score and the features that
represent a query-document pair? In other words, what family of functions do we think R
belongs to?

In its simplest form, R may be a linear function, parameterized by a set of coefficients
and a bias term that can be learnt from data so as to optimize our objective. It is clear
that such a function, on its own, does not model any nonlinear relationship that may exist
in the data, and, as such, is generally less effective than other, more complex families of
functions. However, its simplicity facilitates formal and rigorous analysis and allows us
to provide certain guarantees on performance. That is why linear rankers are favored in
the vast literature on online LtR with bandit algorithms (Radlinski et al., 2008; Yue and
Joachims, 2009; Yue et al., 2012; Hofmann et al., 2013a; Hofmann et al., 2013b; Kveton
et al., 2015).

Another class of algorithms take R to be a decision forest: an ensemble of decision trees,
typically with real-valued leaves. At a high level, a decision tree is a piecewise constant
function that is learnt by recursively partitioning the feature space into disjoint spaces
and assigning a value to each partition. Learning many of these decision trees and putting
them together into a forest in an additive manner yields highly complex functions, capable
especially of modeling tabular features. Indeed, past studies have shown decision forest-based
rankers to be highly effective (Ganjisaffar et al., 2011; Szummer and Yilmaz, 2011; Bruch,
2021), among them, LambdaMART (Burges, 2010) remains the state of the art.

In recent years, the success of neural networks and deep learning in related areas of
research has led to a rise in deep learning methods for ranking, where R is taken to be
an often complex neural network with specialized modules for processing textual data.
The effectiveness of pioneering methods such as ConvDNN (Severyn and Moschitti, 2015),
DSSM (Huang et al., 2013), and others (Mitra et al., 2016; Mitra et al., 2017; Dehghani
et al., 2017; Borisov et al., 2016) attests to the potential of neural networks in ranking. In
particular, the ability of deep neural networks in learning an effective representation for
query-document pairs from raw, unstructured data opens a new frontier in the ranking
research.

Decision forests and deep neural networks represent the most common classes of functions
in LtR. While these classes are highly effective, their inherent complexity leads to a number
of challenges. To illustrate one such challenge, consider inference. Computing a relevance
score for a query-document pair from a decision forest involves traversing many decision
branches in a large number of decision trees. Similarly, doing a forward pass through
a deep neural network to compute a relevance score requires a large number of matrix

21

multiplications, each of a considerable size. Finally, producing a single ranked list for a
query involves the computation of relevance scores for a large number of query-document
pairs. Doing so within a small time budget, therefore, necessitates efficient data structures
and inference algorithms. We explore these specialized tools for decision forests and neural
networks in the remainder of this work.

3 Efficiency Challenges in Learning to Rank

The modern web search engine is a complex software with one main objective: to identify
and return the subset of documents that are more relevant to a user query from a much
larger set of all known documents. In the preceding chapter, we reviewed the ingredients
of an LtR model and the machinery of its supervised training without explaining how a
trained model is used within a search engine and what challenges we may face in adopting a
complex ranker for the task above. We examine these unexplored questions in this chapter
by describing the anatomy of a ranking pipeline and identifying the costs and efficiency
challenges associated with each component at a high level.

Before we even get to the ranking part of a search engine, we should address a more
immediate problem. It is clear that, due to the sheer size of document collections, it is
simply infeasible to rank all documents known to a search engine in response to a query
with a complex LtR model. Instead, we usually first apply a lightweight retrieval mechanism
to find a smaller subset of documents that potentially match a query. This may be a dense
retrieval method over representations learnt by a deep neural network where a match is
determined by how similar the representation of a document is to the representation of the
query, or it may be a statistical score defined for terms and phrases from the vocabulary
where a document is deemed a potential match if it scores high—the latter is also known as
sparse or lexical retrieval.

We do not delve into the algorithmic details of dense retrieval methods which often
(but not always) use approximate nearest neighbor search algorithms, or lexical retrieval
methods which often (but not always) operate over inverted indices. However, we highlight
the importance of efficient index structures and top-k retrieval algorithms over index
structures, and present the following efficiency challenge:

Efficiency Challenge 1. Given a query q and a large collection of documents D, we seek
a space-efficient data structure known as an index I to represent D and a time-efficient
algorithm ARetrieve that operates on I and returns the top-k documents that are most
similar to q.

A great body of Information Retrieval literature and beyond investigate this particular
challenge. We refer the interested reader to these works and citations therein for more

22

details (Asadi and Lin, 2013a; Asadi and Lin, 2012; Asadi and Lin, 2013b; Wang et al.,
2021a; Malkov and Yashunin, 2016; Petri et al., 2019; Mackenzie et al., 2021; Ding and Suel,
2011; Broder et al., 2003; Mallia et al., 2022). Throughout the rest of this monograph, we
take for granted the existence of an efficient index and retrieval algorithm as a first step in
processing a user query, and focus instead on the LtR stage.

While the retrieval step above greatly reduces the problem size, it does not change the
overarching goal; we must still train a ranker and apply it to every retrieved document to
compute relevance scores and return a ranked list.

Consider the training of an LtR model. As discussed in Chapter 2, we need labeled
training data in the form of queries and sets of documents, which we then use to learn
the parameters of a ranking function with the objective of optimizing a ranking loss. It is
clear that the efficiency of the training procedure depends on the size of the data collection
(as larger datasets require larger storage capacity and lead to longer training duration) as
well as the complexity of the parameterized function (as a larger set of parameters requires
exponentially more tuning). In addition to memory and time requirements, a training
procedure that utilizes more data and requires more parameter updates is likely to result in
higher energy consumption. This last point is particularly acute when the parameterized
function is the class of deep neural networks (Scells et al., 2022; Strubell et al., 2019; Xu
et al., 2021). Together, these factors present the following efficiency challenge:

Efficiency Challenge 2. We seek a sample-efficient learning algorithm ATrain—requiring
as few training data points as possible—to learn a parameterized function f(·, ·; Θ) with
minimal complexity required, in an energy- and time-efficient manner, such that f yields a
desired quality measure on unseen data.

Once we have trained a model efficiently, we must apply the learnt function f to user
queries in production. A naïve design to accomplish this goal would be to use an LtR model
in a single stage, as depicted in Figure 3.1. The resulting ranking architecture is aptly called
the single-stage pipeline.

It turns out that even with an effective retrieval method, the set of matching documents
may yet be too large for an LtR ranker to process efficiently. That is because computing a
single relevance score requires the execution of two potentially expensive operations. First,
the set of query-document pairs must be translated into feature vectors—a phase that
is known as “feature computation” or “feature extraction.” Second, the model must be
applied to each feature vector, which as discussed in the previous chapter, may involve
computationally-expensive operations such as tree traversal or matrix multiplication. As
the complexity of features and models increase, the cost incurred by these operations may
become prohibitive, to the point where computing relevance scores for an entire set of
retrieved documents may be impractical. As such, the inference procedure above involves
addressing a number of efficiency challenges, which we summarize as follows:

23

Figure 3.1: Single-stage ranking pipeline

Efficiency Challenge 3. Given a query q and a retrieved set of documents Sq by algorithm
ARetrieve, we seek a time-efficient algorithm AInfer that first represents the set {(q, xi) |xi ∈
Sq} in a |Sq|×d-dimensional feature space X ⊂ R|Sq |×d and subsequently applies the function
f(·, ·; Θ) learnt by ATrain to each query-document pair and orders them in decreasing order
of relevance scores.

We have so far described the challenges inherent in retrieval, and training and inference
of an LtR model. In the remainder of this chapter, we will describe high-level ideas that
help address some of these challenges. We start, however, with inference and visit training
efficiency last.

3.1 Efficient inference

How may we achieve effective but efficient ranking given a trained model or a collection
of trained models to address Challenge 3? At a high level, the answer is quite intuitive
and follows how we split the ranking problem to one of retrieval-then-rank: the set of
retrieved documents can go through multiple stages, where each stage weeds out less-
relevant documents and passes to the next stage a more promising but much smaller subset,
and where each stage uses a more complex ranking model with increasingly sophisticated
features than the stages before it. This paradigm is known as the multi-stage ranking
pipeline. But to understand how we arrived at this solution, we must dissect the two
operations involved (i.e., feature computation and model inference) and identify the factors
that contribute to the overall cost.

24

3.1.1 Feature computation

Feature computation deals with the computation of query-document features that are
given as input to the model to compute relevance scores. This task can be computationally
expensive for a number of reasons. First, the number of features used in modern rankers is
typically large with hundreds of features describing a single query-document pair. Second,
each feature has its own intrinsic complexity: it can be a composition of more basic signals,
or itself be the output of another machine-learnt model. This added complexity is justifiable
because more sophisticated features often offer a higher discriminative power than basic,
cheap-to-compute features such as term frequency.

On that basis, determining the appropriate set of features involves an implicit trade-off:

Trade-off 1. Using a large number of sophisticated features likely leads to improved ranking
quality but also increased overall query processing time.

Figure 3.2: Two-stage ranking pipeline

The two-stage design

One idea to rein in the cost of feature computation is to break up the ranking pipeline
into two stages, as we illustrate in Figure 3.2. The first stage in this design is in charge of
executing a recall-oriented ranking of documents. It is important for this stage to employ
simple rankers using cheap-to-compute features, to keep at bay the total cost of ranking the
potentially large set of retrieved documents. The second stage, which only ever observes
the top-K documents (also known as “candidates”) as ranked by the first stage, is free to
apply a precision-oriented, complex ranker to re-rank the candidates and produce a final
ranked list.

The two-stage design greatly shrinks the set of documents for which we must compute
expensive features, and as a result, reduces the overall cost of feature computation. It

25

therefore makes it feasible to use complex LtR models to produce effective ranked lists but
do so efficiently. However, materializing this design requires choosing one key parameter:
the cut-off value K that caps the number of documents that the second stage must re-rank.
This choice presents our second trade-off:

Trade-off 2. A large K leads to a larger set of candidates to re-rank, in turn, increasing the
cost of the second-stage ranker while potentially facilitating a higher-quality final ranked
list. A small K, on the other hand, enables faster ranking in the second stage by passing a
smaller set of candidates to re-rank, while potentially hurting quality.

The trade-off above has been the subject of much research in the past. Macdonald
et al. (2013) demonstrated empirically that the cut-off value does indeed affect ranking
performance. The authors evaluated the impact of K on two public document collections
and gave a detailed analysis of the performance of two-stage pipelines where the first
stage used statistical retrieval models (e.g., BM25 and DPH) and the second stage applied
pointwise, pairwise and listwise LtR models.

Approaching this trade-off from a slightly different angle, Dang et al. (2013) investigated
the recall bias of the first stage ranker. They found that the performance of the first stage
affects the second-stage ranker in two unsurprising ways: (1) by influencing the quality of
the training data available to learn the ranking model; and, (2) by controlling the number
of relevant documents observed by the learnt model. The authors then showed that by using
a learnt, yet fast model in the first stage, not only did recall improve in the first stage, but
so did the overall performance of the second stage ranker.

This ability to trade off effectiveness for efficiency makes the two-stage design suitable
for real-world applications where quality and speed are both critical to users. There is indeed
evidence in the literature to support this speculation. Yin et al. (2016), for example, describe
the query processor at Yahoo search engine as a distributed system deployed on hundreds
of machines where each search node retrieves “hundreds of thousands” of candidates for a
subsequent stage to re-rank. Another known deployment of this architecture is Alibaba’s
e-commerce search engine (Liu et al., 2017).

The multi-stage design

With all the benefits the two-stage design has to offer, as observed by study after study, and
all the knobs it provides to choose the right balance between efficiency and effectiveness,
it is natural to wonder if one could simply extend the design to more than two stages. In
the work by Yin et al. (2016), for example, the ranking pipeline is actually comprised of
three stages, as shown in Figure 3.3. As in the two-stage design, the first two stages, which
they call “Core Ranking,” find top candidates for a query and re-rank those to produce a
high-quality ranked list. The third stage, dubbed “Contextual Re-ranking,” extracts features

26

Figure 3.3: Three-stage ranking pipeline

that capture contextual information about the entire list (e.g., rank, feature mean and
variance, normalized features, topicality), and uses the resulting richer feature set to re-rank
the candidates again. This idea of leveraging contextual, rank-based features showcases the
flexibility of a stage-wise view of ranking, and has been shown in other independent studies
to greatly improve both ranking quality, and, when applied wisely, speed (Lucchese et al.,
2015a).

Given the success of a progression from two stages to three, it is tempting to generalize
the design to N stages, as shown in Figure 3.4. Although potentially more effective, the
multi-stage ranking pipeline is characterized by an increased complexity due to the sequential
nature of query processing: each stage has to wait for the output of its predecessor to begin
processing the input candidates. There are other questions too: Which features and which
model should be used in each stage? How many documents should each stage re-rank?

Chen et al. (2017) study a subset of these questions: Suppose we have, in some way,
arrived at a particular number of stages in a multi-stage ranking system. Given this
particular scaffolding, can we select features and the number of candidate documents passed
between consecutive stages so as to maximize effectiveness and efficiency of the overall
cascade? Chen et al. (2017) formalize this problem using the concept of regularization
from machine learning and present an optimization framework to minimize the “cost” of a
cascade—defined as the cost of computing a particular feature and the number of documents
for which this feature must be computed—while maximizing its ranking precision. For
example, through `1-regularization, one can enforce a certain degree of sparsity in the set
of features used within a single stage of the cascade; a more aggressive sparsity rate yields
a more compact, but potentially less effective stage.

In a follow-up study, Gallagher et al. (2019) identify another gap in the construction

27

Figure 3.4: Multi-stage ranking pipeline

of multi-stage ranking systems: The models employed within individual stages are often
learnt independently of one another, while in reality the decisions and rankings of one stage
affects that of subsequent stages. The authors posit that the “stage-wise” ranking loss and
the global effectiveness and efficiency objectives of a cascade can be optimized jointly using
backpropagation. The key insight that enables gradient-based optimization of a cascade is
that whether a document enters a stage but is dropped within that stage (i.e., document is
covered by stage) can be expressed as an indicator function, which can be smoothed and
differentiated.

3.1.2 Model inference

We have just seen how the multi-stage design offered a way to manage the cost of feature
computation by introducing levers that allow us to trade off speed for quality. That included
using simpler features in early stages and computing more complex features in later stages
where we have fewer documents to re-rank. In our discussion, we also hinted that rankers
in early stages are typically “simpler” and that we are free to use more “complex” models
as we get to later stages. But what makes a ranking model more complex than others?

To answer the question above, it helps to consider the wide array of algorithms that
the LtR literature has to offer. Many of these learn a ranking function with very few
parameters, therefore requiring few operations to compute a relevance score for a given
feature vector. Examples include Coordinate Ascent (Tseng et al., 1988), Ridge regression
(Hoerl and Kennard, 1970), SVM-Rank (Joachims, 2002), and RankBoost (Freund et al.,
2003). But there are also models that comprise of deep learning modules or hundreds or
thousands of deep decision trees, resulting in large matrices to be multiplied sequentially
or an exponentially large number of comparisons to evaluate recursively. These include
GBRT (Friedman, 2001), Initialized GBRT (Mohan et al., 2011), LambdaMART (Burges,
2010), and large language model-based Rankers (Lin et al., 2021).

28

Even once we choose an LtR algorithm, we are often in control of the complexity of the
model it learns. For example, in tree-based algorithms, we can cap the number of leaves
each tree is allowed to have, or limit the maximum number of trees in the ensemble, all by
adjusting the corresponding hyperparameters in the training algorithm.

Given the diverse set of algorithmic choices before us, it is not surprising that numerous
studies have in the past conducted a comparative analysis of models based on their
complexity (Tax et al., 2015; Capannini et al., 2016; Liu et al., 2017; Macdonald et al., 2013;
Scells et al., 2022). Capannini et al. (2016), for example, show that complex models—in
particular, those based on decision trees—achieve significantly higher quality. They conclude
that choosing the best model depends on the time budget available for query processing,
and propose an objective—the Area under the Quality Cost Space (AuQC)—to compare
different algorithms in terms of their accuracy-latency requirements. Scells et al. (2022), as
another example, compare a range of models from decision tree-based to large language
model-based rankers and observe significantly higher energy consumption in more complex
models, adding a new but important dimension to the efficiency of ranking algorithms.

These empirical observations lead to a third trade-off between efficiency and effectiveness
stemming from inherent complexities of LtR models:

Trade-off 3. Models that have fewer parameters and thus require fewer operations for
evaluation are fast to execute and consume less energy typically at the expense of ranking
quality. The flip side is that more complex models achieve higher effectiveness but incur a
significantly higher computational cost and energy consumption.

3.2 Efficient training

Unlike inference, there have been relatively few studies in the LtR literature that investigate
Challenge 2: efficient training. This is because up until the advent of deep learning, training
even the most complex decision forests for LtR required a relatively modest number of
training data points and the algorithms used to learn individual decision trees themselves
would complete reasonably fast on general-purpose CPUs. As such, most training procedures
were considered sample-, space-, and time-efficient, thereby rendering efficiency in training
a non-issue.

That changed with the arrival of deep learning models, whose training needs vast
datasets—thereby resulting in larger sample and space requirements—and involves computationally-
intensive operations—in turn, requiring longer training duration on specialized, energy-
hungry hardware.

The march towards ever larger datasets and ever more complex deep learning-based
ranking models led Scells et al. (2022) to study the training efficiency challenges with a
particular focus on environmental impact. The authors conducted a comparative study of

29

widely-used LtR models in terms of time-efficiency and effectiveness, as well as their power
usage, which can be translated into the amount of CO2 emissions. Their comprehensive study
reveals that the training of deep learning models yields orders of magnitude larger emissions
as compared to decision forests. They conclude their study by offering a framework for
Information Retrieval researchers to alleviate some of the environmental costs of developing
deep learning retrieval and ranking models.

As shown by a few recent works (Scells et al., 2022) and events (Bruch et al., 2022b;
Bruch et al., 2023), there is increasing interest in the efficiency challenges during training,
driven by the urgency created by the environmental costs of recent ranking models. But
more research is needed to help understand the trade-offs and offer solutions.

The challenges and trade-offs reviewed in this chapter capture the existing research
in the efficient LtR literature. In the subsequent chapters, we present a detailed analysis
of state-of-the-art solutions that explore these trade-offs to improve the efficiency of LtR
models. As we pointed out earlier, because decision forests and neural networks require
different types of intervention, we study them separately.

4 Tree-based Learning to Rank
Consider a basic supervised learning task where we have a labeled set of data points
D = {(xi, yi) | 1 ≤ i ≤ |D|} with xi ∈ Rd being a d-dimensional real-valued vector of
features and yi ∈ R a target label. As usual, we wish to learn a function F : Rd → R that
predicts a label y for an example x by optimizing the empirical loss LD:

LD(F) = 1
|D|

∑
(x,y)∈D

`(y, F (x)),

where `(·) is a loss function such as the Squared Error (MSE).
A familiar approach to learning F is to parametrize it with a set of parameters Θ,

F (·; Θ), and find a Θ∗ that leads to an optimal LD. In other words, we first choose the family
of functions that we believe represents the relationship between examples and labels—which
may be a line, a neural network, or a decision tree—and then find the right shape by
adjusting its parameters. We typically find Θ∗ iteratively by applying gradient descent
where at each iteration we take a step proportional to the negative gradient of F with
respect to the current Θ:

Θ(t+1) ← Θ(t) − η∇ΘF,

where η is the learning rate.
Contrast the above with a different formulation where we assume that F can be broken

up into additive components as follows: F (x) =
∑
t ft(x). ft’s, which are known as weak

learners, may be any arbitrary function including parameterized families of functions,

30

ft(·; Θt). We learn F , again, iteratively, but here at the m-th iteration we learn the weak
learner fm to approximate the residual error: the negative gradient of the loss LD with
respect to the current function F (m−1) =

∑m−1
t=1 ft(x). This quantity is also known as the

pseudo-response and is defined as follows:

gm(xi) = −∂LD(yi, F)
∂F

∣∣∣
F=F (m−1)(xi)

.

For example, when LD is the MSE, gm is simply y − F (m−1). Said differently, fm is learnt
in a supervised manner on a new copy of the dataset D(m) = {(xi, gm(xi)) |xi ∈ D} where
the residuals are now the labels. Finally, we scale fm by a regularizing shrinkage factor, ν,
and add it to F (m−1) to obtain F (m).

The learning framework just described is known as gradient boosting. It can be thought
of as performing gradient descent in the space of functions, where instead of adjusting the
parameters of a function at each step to reduce error, we learn an entirely new function
that accounts for the leftover error and add it to the ensemble.

Within this framework, when the weak learners are the class of decision trees, we refer
to the resulting forest as gradient boosted decision trees or GBDTs. Similarly, when the
decision trees have real-valued leaves—also known as regression trees—we use GBRTs as a
shorthand.

GBRTs are central to a powerful class of LtR algorithms and, as such, are the topic of
the next few chapters. But before we proceed, we must explain how GBRTs are adapted to
the ranking task.

4.1 GBRTs and learning to rank

It is easy to see that the gradient boosting framework described earlier is quite general
and flexible, and that it can extend to specific learning tasks simply through the use of a
differentiable loss function that is appropriate for the desired task. In theory, then, LtR
with GBRTs is a matter of plugging in a ranking loss function as LD that is applicable to
a ranking dataset D = {(qi,xi,yi) | 1 ≤ i ≤ |Q|}, which, as a reminder, is a set of tuples
with each tuple comprising of a query q ∈ Q, a set of documents belonging to that query
x = {x1, x2, . . . , x|x|}, and a set of relevance labels y corresponding to those documents.
The only challenge specific to LtR, as we explained in Chapter 2, is deriving a surrogate
smooth loss function that is more amenable to gradient boosting than ranking metrics.

As we have already seen, the need for surrogate losses is a central question in LtR
research whenever the optimization algorithm requires meaningful gradients. It is in no way
unique to gradient boosting or GBRTs. Naturally then, any of the ranking loss functions
reviewed in Chapter 2 are reasonable candidates and, indeed, some such as the cross-entropy
ranking loss (Bruch, 2021) have been implemented with GBRTs.

31

What makes GBRTs stand out, however, is the observation that all one needs to conduct
a boosting step are the residuals: we need not necessarily have a closed-form loss function LD,
so long as its gm’s are known to us. This simple observation inspired LambdaMART (Burges,
2010), an early but influential LtR algorithm.

LambdaMART designs the residuals at each iteration heuristically and leaves the
existence of a loss function with those gradients to assumption. Concretely, the residual of
document xk ∈ x belonging to a query q is a sum of pairwise quantities as follows:

gm(xk) =
∑
l:xl∈x

λk,l.

Each λk,l is the multiplication of two factors. One measures the distance between the scores
of documents xk and xl using a sigmoid transformation. The other sorts the documents
in x by their scores up to the current iteration (i.e., F (m−1)(xi)), swaps the positions of
documents xk and xl, and measures the change in the metric we wish to optimize. So, for
instance, if our metric of interest is NDCG, λk,l would materialize as follows:

λk,l = 1
1 + e−(sk−sl)

×∆NDCGk,l,

where so = F (m−1)(xo) and ∆NDCGk,l is the change in NDCG when xk and xl trade
positions in the ranked list. Note that the algorithm uses relevance labels y to compute
NDCG.

Once the residuals of every document of every query are computed, we have all that
is necessary to finalize one boosting step following the general recipe of gradient boosting.
Repeating this process results in a forest of GBRTs that can be readily used as a ranker.

4.2 The prominance of tree-based learning to rank

GBRT-based LtR algorithms rose to prominence not just in academic research, but also in
real-world applications in industry thanks to their unrivaled effectiveness. In tasks ranging
from Ads Click Prediction at Facebook (He et al., 2014) and Microsoft (Ling et al., 2017), to
product and document ranking at Amazon (Sorokina and Cantú-Paz, 2016) and Yahoo! (Yin
et al., 2016), to forecasting and recommendations at Yandex, GBRT-based rankers have
played a major role. Winning solutions in many machine learning competitions in recent
years too were centered around GBRTs. LambdaMART, for example, was the winner of the
Yahoo! LtR Challenge (Chapelle and Chang, 2011). In a competition hosted by Kaggle in
2015 too the majority of the winning solutions used GBRTs (Chen and Guestrin, 2016).
According to the same source, so did the top 10 teams who qualified in the KDDCup 2015.

The expansion of GBRTs and GBRT-based LtR algorithms to a larger and more varied
range of applications has inspired novel implementations of gradient-boosted tree learning

32

algorithms. Among them XGBoost (Chen and Guestrin, 2016), LightGBM (Ke et al., 2017),
and CatBoost (Prokhorenkova et al., 2018) offer state-of-the-art results with comparatively
lightweight training routines. That, in turn, led to a variety of evaluation and analysis
frameworks for LtR (Lucchese et al., 2020a; MacAvaney et al., 2022; MacAvaney et al.,
2020a; Lucchese et al., 2017a).

The instances above highlight the continued importance of GBRTs in machine learning—
and, in particular, in LtR—even in the face of the recent successes of deep learning. That
is the reason why we study this family of algorithms in the next few chapters of this
monograph.

5 Training Efficient Tree-based Models
Is it possible to train a tree-based LtR model that is efficient during inference? In other
words, given we have identified and are aware of the factors that challenge the efficiency of
an inference algorithm in Chapter 3, can we use that knowledge to train a model that does
not incur high efficiency costs during its application? This chapter reviews methods that
explore the trade-offs between inference efficiency and effectiveness while learning a ranking
model. Broadly, these methods approach the problem in two different ways: (1) by presenting
variations of the learning algorithm to address efficiency while training the ranking model
and (2) by applying post-hoc optimization to a trained model in a post-processing phase.
We review these methods in order.

5.1 Optimizing inference efficiency while learning

There is a large class of methods that aim to reach inference-efficiency while learning a
ranking model. This research effort dates back to the work of Wang et al. (2010b) who first
introduced the notion of temporally-constrained ranked retrieval as a desirable property of
a ranking algorithm. They argued that, equipped with this property, the ranking algorithm
can cope with diverse users and information needs, and better manage load and variance in
query execution time.

As a way to induce the property above in an LtR model, Wang et al. (2010a) proposed
a unified framework for jointly optimizing effectiveness and inference efficiency during
learning. The idea is simple: Instead of optimizing an effectiveness metric during the training
of a model, the new framework optimizes a hybrid metric that balances efficiency and
effectiveness. Dubbed the “Efficiency-Effectiveness Trade-off” metric (EET) is a weighted
harmonic mean of some measure of efficiency and effectiveness, which can be stated more
formally as follows:

EET (q) = (1 + β2) · γ(q) · σ(q)
β2 · (γ(q) + σ(q)) ,

33

where σ(q) and γ(q) are two functions R→ [0, 1] mapping efficiency and effectiveness of a
model for a given query Q into the unit interval.

Most query effectiveness metrics have the form above, including precision, recall, average
precision, and NDCG. The authors use average precision for γ(·) in their work, but any of
the other metrics too can be plugged into the hybrid metric. As for the measure of efficiency,
σ(·), the authors take the query execution time (measured in seconds) as input and map
it to a efficiency score in the unit interval such that 0 and 1 represent an inefficient and
efficient ranking, respectively. For example, consider the following mappings: constant, step,
exponential, and step + exponential.

The constant function always maps the query execution time to the same value indepen-
dent of the actual execution time. The step function computes a score of 1 for all queries
whose execution time does not exceed a given threshold (e.g., 300 msec.) and 0 for all other
queries. The exponential decay function allows for a softer penalization of increasing query
execution times. Finally, the step + exponential decay function is a combination of the two
previous functions that allow for a soft penalization of query execution times above a given
threshold. Figure 5.1 shows the four different σ(q) functions introduced to quantify the
efficiency behavior of a query q.

The EET metric is a weighted harmonic mean. In fact, the contribution of efficiency
and effectivenss factors to the final measure is controlled by a hyper-parameter, β, which
in the original work of Wang et al. (2010a) is set to β = 1. Note that, EET measures
the efficiency-effectiveness trade-off on a per-query basis. As such, the training algorithm
optimizes the mean EET, called MEET(q) and defined as 1

N

∑N
i=1EET (qi), to learn a

ranking model on a set of N training queries.
Suppose we wish to learn a linear function of the following form, as in the work of Wang

et al. (2010a):
S(q, d) =

∑
λifi(q, d),

where q is a query, d is a document, S(q, d) is the ranking score produced by the function,
fi(q, d) is a feature computation function, and λi is the weight assigned to feature i. How
may we make the function more efficient to compute during inference? One idea is to
introduce an L1 penalty in the learning objective, thereby encouraging the model to learn
sparse weights. That results in a function S(·, ·) where a large number of lambdai’s have a
value close to 0. It is now reasonable to disregard feature whose weights are close to 0 as
their contribution to the final score is small, thereby obviating the need to compute those
features for a query-document pair during inference, and as a result improving inference
efficiency with little impact on effectiveness.

Wang et al. (2010a) put that hypothesis to the test and conduct experiments on three
TREC web collections: Wt10g, Gov2 and ClueWeb09 (part B). The empirical results show
that models learnt by optimizing MEET achieve a good balance between effectiveness and

34

Figure 5.1: The four different σ(q) functions measuring efficiency introduced by Wang et al.. The figure is
redrawn based on (Wang et al., 2010a).

35

efficiency. A comparison of the query likelihood (QL) model or the sequential dependence
model (SD) (Metzler and Croft, 2007) shows that mean query evaluation time for MEET-
optimized models is greater than that of QL, but less than that of SD. As expected,
increasing the decay rate in a exponential decay flavor of MEET reduces the mean query
evaluation time, suggesting that MEET is able to take efficiency into consideration during
the learning process.

In a later study, Xu et al. (2013) observe that in real-world web search engines the time
available for evaluating and applying a machine learning model is budgeted (Kohavi et al.,
2013; Lucchese et al., 2015b; Chapelle et al., 2011; Zheng et al., 2008). As discussed before,
this time budget is typically spent on computing features and evaluating the model itself.
In the models studied by Xu et al. (2013), the inference time is often dominated by the
computation required to perform feature values. Reducing the number of features required
to confidently rank documents for a given query thus should greatly improve efficiency.

In contrast to Wang et al. (2010a) and similar works (Efron et al., 2004; Dredze et al.,
2007) which discard entire features from the feature set and reduce costs equally across
all queries, Xu et al. (2013) take a more dynamic, query-dependent approach. Figure 5.2
describes their solution pictorially. The figure on the left shows a model that comprises a
cascade of classifiers (CSCC) where each classifier in the cascade terminates the inference
for queries that it considers “easy,” thereby reducing the total amount of computation
necessary to confidently predict a relevance score for a query-document pair. Contrast
that with Figure 5.2 (right), which instead illustrates a tree of classifiers (CSTC). The
tree is used to classify test queries flowing along individual paths from root to leaf nodes.
Each path computes different features and is optimized for a specific sub-partition of the
input space. This tree structure allows us to decrease the feature computation cost by
computing only the features that benefit a given input the most. This is possible because
the input space is partitioned by the tree and different features are only computed when
they contribute most heavily to the final ranking quality.

Learning such a structure requires an query-dependent feature selection strategy and a
dynamic allocation of time budgets for features used in different tree paths (e.g., infrequent
paths require a larger share of the inference time budget). As such, we need a new learning
objective to optimize. Xu et al. (2013) introduce the following loss function to learn a
CSTC:

min
β0,θ0,...,β|V |θ|V |

∑
vk∈V

(1
n

n∑
i=1

pki `
k
i + ρ|βk|

)
︸ ︷︷ ︸

regularized loss

+λ
∑
vl∈L

pl
[∑
α

cα

√ ∑
vj∈πl

(βjα)2]
︸ ︷︷ ︸

test-time cost penalty

.

This loss has two terms: a typical regularized loss and a inference-time cost penalty. These
terms together encourage the learning process to re-use features that are already computed
along a specific path, rather than computing additional features.

36

Figure 5.2: Cascade of classifiers (CSCC) vs Tree of classifiers (CSTC). Circular nodes represent classifiers
(with their parameters β). Squares represent predictions. The color of each classifier indicates the number
of inputs passing through it (darker shades indicate that a larger number of queries are evaluated by that
classifier). The figure is redrawn based on (Xu et al., 2013).

Xu et al. (2013) provide a comprehensive empirical evaluation of CSTC on the Yahoo!
Learning to Rank dataset, with a comparison against several state-of-the-art methods such
as stage-wise regression (Friedman, 2001), early-exit strategies (Cambazoglu et al., 2010),
and Cronus optimized (Chen et al., 2012) in terms of NDCG@5.

Results confirm that CSTC achieves a higher ranking quality at a small fraction of the
computational cost of other methods. The early exit methods achieve limited gains because
the inference cost is dominated by feature computation, rather than model evaluation cost.
On the other hand, CSTC has the ability to identify features that are most beneficial to
different groups of queries, which in turn allows CSTC to achieve a higher NDCG.

The optimization of the loss above was made possible through the use of a mixed-norm
relaxation of the L0 norm, allowing the inference-time cost penalty term to be continuous
and differentiable. Later, Kusner et al. (2014) observe that the CSTC problem is NP-hard
and that Xu et al. (2013) developed an approximate solution through the mixed-norm
relaxation technique. It turns out that the mixed-norm relaxation is slow to train and
requires hyper-parameter tuning. To remedy these problems, Kusner et al. (2014) propose an
alternative relaxation using approximate submodularity, called Approximately Submodular
Tree of Classifiers (ASTC), which casts the objective as an approximate submodular set
function optimization problem. This new relaxation proved much simpler to implement,
yield equivalent results without the need for hyperparameter tuning.

The authors report the results of an empirical evaluation of ASTC on the Yahoo! Learning
to Rank dataset as well as three other non-cost-sensitive datasets: Forest (tree type), CIFAR

37

(image classification), and MiniBooNE (particle identification). Their experiments show
that ASTC performs just as well—and sometimes slightly better—than the state-of-the-art
CSTC, while its training is up to two orders of magnitude faster.

5.2 Mixed optimization strategies of inference efficiency

In contrast to the methods we reviewed in the previous section which modify the learning
process only, mixed strategies can take as input a model that has already been trained
to optimize effectiveness and improve its inference efficiency through some form of post-
processing without significantly degrading effectiveness. Alternatively, these algorithms
could interleave training and pruning-based optimization to achieve the same objective. We
study some of these methods in this section.

One work that highlighted the efficacy of post-hoc optimization is a comparative
investigation by Asadi and Lin (2013c) of a cost-aware method to train GBRTs and a
post-learning pruning of decision trees. The core idea behind their methods was inspired
by the simple observation that the cost of traversing a decision tree is proportional to its
depth and is a function of its structure, and therefore compact, shallow, and balanced trees
must yield faster predictions. They then proposed two solutions as manifestations of that
basic idea.

Their first method belongs, in fact, to the previous category of algorithms: Optimization
of inference efficiency by modifying the training algorithm. Named “cost-sensitive tree
induction,” it modifies the splitting strategy used in learning individual decision trees. The
idea is that, while growing a decision tree, instead of splitting the node that leads to the
maximal gain, G∗, in the effectiveness loss function, we consider the set of all possible
splits whose split gain is at least (1− τ)G∗ for some τ ∈ [0, 1]. Of the splits in this set, the
algorithm chooses the split that results in the shallowest depth. The hyper-parameter τ
trades off efficiency for effectiveness: when τ = 0 the algorithm ignores tree depth and is
reduced to effectiveness-maximizing tree learning, but as τ increases splits that are possibly
less effective but that do not add to the tree depth are selected.

The other realization of their idea, which is called “pruning while boosting,” belongs to
the second class. Once a decision tree in a GBRT forest is learnt using the standard tree
learning algorithm, a post-processing step prunes some of the nodes so as to reduce the
tree depth and create a shallower and more balanced tree. The pruning algorithm works as
follows: Let |t| be the number of nodes in the tree (including leaf nodes) and dt be the depth
of the tree. The greedy algorithm selects the two deepest leaf nodes and collapses them into
their parent node so long as |t| ≥ α

(
2dt+1 − 1

)
, for some hyper-parameter α ∈ [0, 1] which

controls the balance between efficiency for effectiveness. When α = 0 no pruning occurs,
while when α = 1 the output tree is perfectly balanced. Note that the pruning process is

38

oblivious with respect to the loss function. The rationale behind this pruning is that the
loss increment due to the pruning can be counter-balanced by subsequent trees that will be
learnt in the GBRT forest.

Asadi and Lin (2013c) present experiments on the MSLR-WEB10K dataset and show
that the pruning approach is much more effective. Cost-sensitive tree induction has a modest
effect on efficiency (of approximately 1%): trees are slightly less deep, but more trees are
generated in the forest and the total number of nodes in the GBRT ensemble is unaffected.
The pruning approach, on the other hand, leads to an increase in the number of trees
in the ensemble, but both the depth and the total number of nodes in the ensemble is
halved. With proper tuning of α, it is possible to reduce the evaluation cost of the forest by
approximately 40% while maintaining the same NDCG@5.

As noted earlier, the work of Asadi and Lin (2013c) shows the efficacy of post-processing
approaches. The pruning method utilizes the full power of state-of-the-art learning algorithms
to learn an effective model, while also reducing their inference cost by inducing a desired
model structure. Despite this success, the core idea behind this work has a major caveat:
Taking the left or right branch in a decision tree depends on the input data and, as such,
paths are taken with different, non-uniform probabilities. Rather than creating balanced
trees that minimize the depth of every path, it may make more sense to minimize the depth
of the most likely paths. Additionally, as with (Lucchese et al., 2015b; Ye et al., 2018),
inference cost may be a non-trivial function of the tree topology, where the tree depth may
not be neatly correlated with efficiency.

Pruning at the ensemble level

While the pruning technique of Asadi and Lin (2013c) works at the tree level, Lucchese
et al. (2016a) propose CLEaVER which instead operates at the ensemble level: instead of
pruning nodes, entire decision trees are removed from the ensemble. The motivation is that
the iterative GBRT learning algorithm may generate similar and redundant trees, especially
when the learning rate is small. It must thus be possible to identify a subset of decision
trees that contribute more significantly to the effectiveness.

To that end, given a forest of n trees and with the goal of producing a leaner forest of p
trees, Lucchese et al. (2016a) consider six pruning strategies:

• Random: A subset p is selected at random;

• Last: The last n− p trees of the ensemble are discarded;

• Skip: One tree every dnp e trees is kept;

• Low-Weights: As learning algorithms typically generate a weighted ensemble, the p
trees with the largest weights are kept;

39

• Score-Loss: The p trees that contribute the most to the prediction score of the
ensemble are kept; and,

• Quality-Loss: Given a ranking quality metric such as NDCG, the algorithm
computes for each tree the degradation in quality if that tree were to be discarded
from the ensemble, and subsequently selects the p trees that result in the smallest
decrease in quality.

The hyper-parameter p controls the balance between reaching efficiency and effectiveness:
When p = n, no pruning is performed and the original effectiveness is maintained. When
p < n, fewer trees will remain in the ensemble but at the risk of degrading effectiveness.
As a way to compensate for the possible degradation in quality due to the removal of the
n− p trees, the algorithm performs a tree re-weighting step to assign new weights to the
surviving p tree. To compute new weights, the algorithm simply uses line search as it allows
to locally optimize any given quality measure.

Experiments with λ-Mart on both MSLR-WEB30K and Istella-S show a dramatic
reduction of the inference cost. Authors choose p so as to produce the smallest model that
provides at least the same effectiveness as the full λ-Mart model. In their experiments,
the largest model evaluated on MSLR-WEB30K has 737 trees. The size of the forest was
reduced to 369 trees using the Quality-Loss pruning protocol, with a speed-up factor
in the inference time of 1.9. Similarly, using Skip, a model of 736 trees on Istella-S was
cut down to 368 trees with a speed-up factor of 1.8. Overall, Lucchese et al. (2016a) found
that Quality-Loss is the most stable strategy across all experiments, due to the fact that
it is aware of the target quality metric during the pruning process. The observation that
a strategy as simple and cheap as Skip also provides decent boost to inference efficiency
suggests that ensembles are typically very redundant, and therefore pruning followed by a
re-weighting of trees is a successful way to improve the efficiency of such complex models.

We highlight that the post-processing strategies seen so far—pruning while boosting
of (Asadi and Lin, 2013c) and CLEaVER of (Lucchese et al., 2016a)—provide about the
same savings in inference costs and result in an approximately 2.0 speed-up factor. While
the two ideas are orthogonal, their combined effect on inference efficiency has not yet been
explored.

In a follow-up work, Lucchese et al. (2018a) proposed X-CLEaVER, an iterative meta-
algorithm that is able to learn more efficient and effective ranking ensembles. X-CLEaVER
interleaves the iterations of a given gradient boosting learning algorithm with pruning
and re-weighting phases. First, redundant trees are removed from the given ensemble, and
then the weights of the remaining trees are fine-tuned by optimizing the desired ranking
quality metric. The authors propose and analyze several pruning strategies, with a subset
borrowed from (Lucchese et al., 2016a). They assess the benefits of interleaving the pruning
and re-weighting phases during learning instead of applying it as a single post-learning

40

optimization step. Experiments on the MSLR-WEB30K and Istella-S datasets show
that X-CLEaVER can be successfully applied to several LtR algorithms and optimizes
the effectiveness of the learnt ensembles, thereby obtaining more compact forests, making
them more efficient at scoring time.

Interestingly, reducing the size of a complex model also brings the advantage of reducing
the risk of over-specialization. This side of the problem is well investigated in (Vinayak
and Gilad-Bachrach, 2015). Authors show empirically that later trees learnt by a GBRT
algorithm influence the prediction of a very limited set of training instances and provide
a negligible contribution to the rest. This over-fitting behavior, it is argued, affects the
generalization power of the model to unseen test instances.

To overcome this limitation, the authors borrow the idea of dropout from deep learning
(Hinton et al., 2012). When dropout is applied to a layer in a neural network, it suppresses a
random subset of neurons in that layer during training, with the intuition that the remaining
active neurons cannot rely on a limited set of connections to compute their output. In the
context of GBRTs, this translates into muting some of the previously learnt trees while
learning a new decision tree. Once the new tree is learnt and added to the forest, the
algorithm computes its weight as follows: if k trees are muted during training, then the
predictions of the newly learnt tree are rescaled by a factor of 1/(k + 1). The intuition is
that, the new tree will likely learn to make large predictions to compensate for the absence
of the muted k trees, and that scaling its predictions down attenuates their contribution
to the final prediction. Finally, the muted trees are rescaled by a factor of k/(k + 1) so
as to suppress their contribution to account for the presence of the new tree. In their
experiments, Vinayak and Gilad-Bachrach (2015) show that the proposed algorithm, called
Dart (Dropouts meet Multiple Additive Regression Trees), can improve the performance
of λ-Mart for the ranking task on the MSLR-WEB10K dataset.

This idea was further explored by Lucchese et al. (2017b) who propose to replace the
muting strategy with pruning. Their algorithm, named X-Dart, uses the same dropout
approach with a crucial difference: At each iteration, either the muted trees are restored into
the forest, or are removed from the forest. In particular, when the newly added tree leads
to better quality metrics than the k muted trees, the muted trees are dropped, resulting in
a forest with k − 1 fewer trees. Together with an adaptive strategy to fine-tune k, X-Dart
produces impressive performance: On the MSLR-WEB30K dataset, an X-Dart model
with 500 trees yields the same NDCG@10 as a λ-Mart forest with 1200 trees. Similarly,
NDCG@10 of 500 X-Dart trees is on par with a λ-Mart forest of 1500 trees on the
Istella-S dataset. This line of work that was inspired by dropout reduces the size of a
ranking forest, and improves its efficiency up to a factor of 3 without any loss in accuracy.

41

Knowledge distillation

Both X-Dart and CLEaVER rely on the idea that given a large and effective model,
we can find a smaller model that achieves improved efficiency while retaining the same
effectiveness. In particular, these algorithms prune an existing model and find a subset of
the model with the largest contribution to the final quality metric. But the idea that a
small model can approximate a larger one is not new, and it is at the core of knowledge
distillation (Ba and Caruana, 2014) in the deep learning literature.

In knowledge distillation, a complex teacher model is first trained on a given dataset,
then a simpler student model is trained by minimizing the deviation of its prediction
both from the ground-truth labels and from the teacher’s predictions. The intuition is
that, the teacher model, thanks to its greater complexity, captures complex relationships
in the data and potentially removes noise, thereby providing a “cleaner” training signal
to the student model. In the deep learning scenario, training a new student model from
scratch is a more natural choice than pruning layers or other components of a deep neural
network. Nevertheless, we might consider X-Dart and CLEaVER as knowledge distillation
approaches specifically tailored to decision tree forests.

The idea of knowledge distillation has been applied to LtR in other ways too. In what
we regard as homogeneous distillation, such as the work of Tang and Wang (2018), the
teacher and student models are both from the same hypothesis class. But Cohen et al.
(2018) show that it may be more appropriate for the two models to come from different
classes, which we call heterogeneous distillation. Let us dissect these two works as examples
of knowledge distillation in LtR.

Ranking Distillation by Tang and Wang (2018) is an example of homogeneous knowledge
distillation in the context of LtR. While in that work, the authors fall back to the usual
(pointwise or pairwise) logistic loss to train the teacher model, the novelty of their approach
rests in the way they train the student model, which has fewer parameters than the teacher:
Rather the working on the full training set, the student model is allowed to evaluate only the
k documents that received the highest ranking by the teacher model. The prediction error—
again, based on the logistic loss—of those k documents is weighted by their rank, and it is
adaptively tuned at each training iteration in a manner similar to boosting. Experiments on
a recommendation task show that the student model performs even better than the teacher
both in the case of convolutional neural networks and matrix factorization. In addition, the
student model is about twice as fast as the teacher model. Interestingly, training a student
model on the original training dataset provides significantly worse performance figures.

In an interesting turn, Cohen et al. (2018) argue that, in the context of LtR, decision
tree ensembles like λ-Mart are a better choice for the teacher model, but forests may not
be all that appropriate for a student model because of the inherent efficiency challenges
during inference. Instead, they propose to use a neural network as student model for the

42

following two reasons: neural networks should be able to learn the predictions of a decision
forest thanks to the Universal Approximation Theorem, and modern hardware is highly
optimized for the inference of neural networks. While deep networks are still too expensive,
the authors show that a medium-sized network as a student can be effective and efficient.

In order to make this work, Cohen et al. (2018) create a new training dataset that
consists of the original training instances used in learning a teacher λ-Mart, and a set
of randomly generated instances whose feature values are chosen so as to lie in between
the different splitting points of the λ-Mart forest. The labels of both types of training
instances is the output of the teacher λ-Mart model. Intuitively, the enhanced training
dataset helps the student model approximate the behavior of the teacher on the original
training instances as well as points close to its discontinuities.

Experiments on the MSLR-WEB30K dataset show that a feed-forward network with
two fully connected hidden layers of 500 and 100 neurons, achieves results that are on
par with the teacher model with any observed difference being statistically insignificant.
Authors explore both CPU and GPU for inference and find that GPUs achieve up to 100×
speed-up. While a fair comparison between a multi-threaded implementation of a neural
network against a multi-threaded implementation of a forest traversal algorithm was not
presented, this work overcomes the limitations of back-propagation for ranking by mirroring
a λ-Mart forest, and, in turn, benefits from advances in hardware that is typically used
for computations in neural networks.

Finally, Nardini et al. (2022) explore the additivity of knowledge distillation, pruning,
and fast matrix multiplication in bringing about inference efficiency. The authors first use
the knowledge distillation framework to train shallow neural networks from an ensemble
of regression trees. They additionally apply neural network pruning to the learnt network
so as to induce more sparsity in its most computationally-intensive layers. The sparse,
shallow network is then executed with a optimized sparse matrix multiplication algorithm.
Their experiments on two public LtR datasets show that sparse neural networks produced
with this approach are competitive at every point of the effectiveness-efficiency trade-off
when compared with tree-based ensembles, leading to 4× speed-up during inference without
adversely affecting ranking quality.

5.3 Open challenges and future directions

Table 5.1 summarizes the methods discussed in this chapter. We observe two main research
directions pursued over the recent years. The first includes novel methods for learning
regression forests wherein not only is an effectiveness metric maximized, but their inference
cost is also taken into consideration. We identify two different ways of realizing this idea:
(1) methods that quantify inference efficiency and optimize it while learning an LtR model,

43

(2) methods that introduce a more efficient organization of an LtR model so as to reduce
the overall feature computation cost. We believe these works can be foundations for new,
more complex approaches that learn cost-aware models for web search. Many of these ideas,
for example, may be extended to directly learning complex ranking cascades.

The second class of algorithms attempt to condense an existing, effective model into a
smaller model that is more efficient during inference but just as effective. This reduction
in size not only affects a model’s inference cost, but as highlighted by Vinayak and Gilad-
Bachrach (2015), it can help to prevent over-fitting. Indeed, finding a model of the smallest
complexity that achieves high effectiveness is not just an important question in ranking, it
is a great challenge in machine learning in general. We expect that research in this area
can not only contribute to the specific task of efficient ranking, but that it can also lead to
contributions of a wider scope to the data mining community.

We saw that it is possible to borrow and translate ideas from the deep learning literature
to design novel learning algorithms (c.f., Dart) or use simple feed-forward networks to
achieve effective ranking while benefiting from efficient hardware. It is very likely that
novel advances in deep learning will affect how we think about LtR and help us design
better algorithms. Though, we note that information retrieval systems often have additional
requirements and constraints (such as on scale and time complexity) that create non-trivial
challenges.

An interesting and relevant line of research which we did not cover in this chapter is
that of online LtR. When we need to promptly explore user feedback and fine-tune or
re-train a ranking model, the time constraints on the training procedure are even more
strict. Oosterhuis and Rijke (2017) consider this problem and propose a cascading model,
where a fast-to-train model is first optimized to provide reasonable effectiveness from a small
number of user interactions, and only when this model converges, it is used to initialize a
second expressive model. This direction of research highlights, once again, the importance
of efficiency and creates new challenges for an LtR system.

6 Efficient Inference of Tree-based Models

In the previous chapter, we described ideas that either learn a model that is efficient during
inference or reduce the efficiency cost of an already-trained model. An orthogonal idea is to
improve the efficiency of model evaluation itself by reducing its computational complexity.
This is particularly important in the context of decision forests because, in order to make
a prediction, we must traverse each decision tree in the forest from root to leaf nodes,
which involves the evaluation of a decision at every intermediate node and branching to
the appropriate sub-tree. While methods from the previous chapter can help reduce the
complexity and the size of a decision forest, we are nonetheless faced with the challenge of

44

evaluating the leaner but still large model.
We study that second problem in this chapter and review data structures and algorithms

that help lower the costs of model evaluation. This includes improved traversal of decision
trees, producing approximate predictions, and cascading models. The following sections
explore these ideas in more depth.

6.1 Efficient traversal of decision forests

Let us depart from the realm of theory, and go back to the basics and consider how we may
implement a decision tree from scratch. The most straightforward and perhaps naïve way
of materializing a tree is by using some form of if-then-else blocks of code or a conditional
or ternary operator depending on the language used. That is, at each node, we compare a
feature value against a threshold and decide if we need to take the right or left branch. We
continue executing similar decisions until we reach a leaf node.

While this implementation may be the most readable, it is computationally intensive.
Yes, the resulting code may be compiled with whatever optimization strategy a compiler
can muster, but regardless the size of the resulting code is proportional to the total number
of nodes in the ensemble, and it is impossible to successfully leverage the instruction cache
due to frequent branching in the code. Conditional blocks have proven to be efficient when
the feature set is small (Asadi et al., 2014), but it still suffers from control hazard, defined
as instruction dependencies introduced by conditional branches.

Asadi et al. (2014) improve this implementation in a data structure they call Struct+.
This data structure stores the feature id of intermediate nodes and the threshold used in the
split, and has pointers to the left and right children. The traversal of the tree starts from
the root and moves down to leaves according to the result of a boolean expression on the
traversed nodes. But different from the naïve implementation, Struct+ uses an optimized
memory layout that linearizes the tree nodes via a breadth-first traversal of the tree.

While the improved memory layout brings about advantages, Struct+ still has a few
notable drawbacks. Importantly, the next node to be processed is known only after the
boolean decision is evaluated and as such does not address the frequent control hazard. Its
efficiency thus is a function of the branch mis-prediction rate. Another caveat is that, due
to the unpredictability of the path visited by a given test instance, tree traversal has low
temporal and spatial locality, leading to low cache hit ratio and poor CPU cache utilization.

How may we work around these limitations? Asadi et al. (2014) offer an algorithm
called Pred that rearranges the computation such that control hazard is replaced with
data hazard, defined as data dependencies introduced when one instruction requires the
result of another. The algorithm works by first replacing pointers with node indices within
a contiguous array of memory, then using the output of the binary expression directly to

45

compute the index of the next node. The traversal of a tree of depth d is then statically
“un-rolled” into d operations, starting from the root node to the leaves. Leaf nodes are
encoded so that their indexes generate self loops. At the end of the traversal, the algorithm
identifies the leaf node and uses a look-up table to retrieve the predicted value of the tree.

Pred removes control hazards because the next instruction to be executed is always
known. However, it now introduces data dependencies because the output of one instruction
is necessary to execute the subsequent one. The algorithm does not address poor memory
access patterns of Struct+ either because the path traversed depends on the test instance.
Finally, Pred creates yet a new source of overhead: for a tree of depth d, even if a test
instance ends in a shallower leaf, the algorithm executes all d instructions anyway. Asadi
et al. (2014) remedy some of these limitations by creating a vectorized version of the
algorithm, named VPred, which interleaves the evaluation of a small batch of documents.
VPred was shown to be 25% to 70% faster than Pred on synthetic data, and to outperform
other methods we discussed so far.

Feature-major traversal

The algorithms we discussed so far have taken a node-at-a-time view to evaluate a decision
tree: When a test instance enters the decision tree at the root, these algorithms evaluate
decisions in each recursively until they reach a leaf node. They then move onto evaluating the
next document. Lucchese et al. (2015b) offer a different traversal pattern in QuickScorer
by devising a feature-wise evaluation of decision trees.

QuickScorer traverses a complete forest by evaluating all the nodes that make a
decision using the first feature, then all the nodes branching off of the second feature, and so
on. Note that, the order in which features are selected is immaterial and may be arbitrary.
The algorithm then creates a bit vector for each tree, called leafindex, which has as many
bits as there are leaves in that tree, and updates it to mark the subset of leaves than will
never be reached for the instance under evaluation. That some leaves will never be visited
happens because of the structure of the tree: if an intermediate node that evaluates to
false, then its right subtree is not visited. Each intermediate node too has a bit vector
associated with it, which is called a nodemask. This bit vector encodes the leaves that are
never reached should the condition in that node evaluate to false.

Given these bit vectors and the outcome of the feature-wise evaluation, QuickScorer
takes the nodes whose condition evaluated to false, and performs a logical AND of the
leafindex vector with that node’s nodemask. After all false nodes have been processed, the
leafindex bit-vector identifies the exit leaf for the test instance, which the algorithm uses to
retrieve a value from a look-up table.

Due to this reorganization of the computation, QuickScorer’s data structure can be
implemented as a set of contiguous arrays, enabling fast linear scans and bit-wise operations.

46

Overall, because of these properties, QuickScorer exhibits a cache-efficient behavior.
But Tang et al. (2014) show that cache utilization can further improve by what is called
blocking; partitioning the tree ensemble into subsets of limited size, so that each subset can
be processed entirely in cache. One can tailor the block sizes based on the different levels of
CPU cache (Jin et al., 2016). Lucchese et al. (2015b) apply these ideas to QuickScorer
with different flavors of blocking (Dato et al., 2016), and make further improvements
through vectorization over multiple documents (Lucchese et al., 2016b), multi-core and
GPU parallelism (Lettich et al., 2019). More recently, Gil-Costa et al. (2022) and Molina
et al. (2021) propose a novel design of of the QuickScorer algorithm and the application of
binning or quantization techniques to tree ensembles to fully leverage novel, energy-efficient
field-programmable gate arrays (FPGAs).

Ye et al. (2018) take the data structure in QuickScorer and make it more compact in
their algorithm, RapidScorer. The first observation was that nodemasks are two sequences
of 1’s separated by a sequence of 0’s (i.e., 1a0b1c for some a, b, c ≥ 0), and that only the
sequence 0b is relevant for the logical AND operations. The second observation was that,
node tests may be repeated several times throughout a forest, leading to duplication in the
original QuickScorer data structure. Consider for instance the case of a binary feature,
where the only valid test is xi ≤ 0, and this can be repeated hundreds or thousands of times
in a large forest. Finally, similar to vectorized QuickScorer (Lucchese et al., 2016b), one
may use SIMD instructions to evaluate multiple documents in parallel.

Following these observations, Ye et al. (2018) propose a more compact representation
of nodemasks; a merging mechanism to store and execute repeated node tests only once;
and a suitable data structure to allow efficient use of SIMD instructions that operate on
256 (or larger) bit-wide registers. Together this added compactness and parallelism reduces
the algorithm’s memory footprint and number of operations. These improvements boost
inference speed by a factor of 3.5 over QuickScorer on various datasets with up to 870
features, and for a variety of models with up to 400 leaves and 20,000 trees.

6.2 Approximate prediction by partial evaluation

In the previous section—and indeed the previous chapter—we insisted on making exact
predictions and evaluating all nodes in a forest. But what if we relaxed this strict requirement
and allowed the inference algorithm to produce an approximate prediction instead? If we
are able to produce inexact scores faster but in such a way that the final quality remains
unaffected, then this approximation would be acceptable.

That question motivated the work of Cambazoglu et al. (2010). Their work started with
the observation that two properties of web search allow one to potentially short-circuit
the scoring process in additive ensembles. First, that document relevance follows a skewed

47

distribution: for most queries, there are very few highly relevant documents, but many non-
relevant documents. Second, that most users view only the first few top-ranking documents,
and therefore, it may be possible to terminate the scoring of documents that are unlikely to
be ranked within the top k. Given these observations, the question before the authors was
whether it is possible to terminate the inference midway through the forest (i.e., without
consuming every tree) and yet maintain high quality among the top-k documents.

To answer that question we need to first consider the ways in which a tree prediction
algorithm scores a set of documents with respect to a query. One obvious approach is the
“document-ordered traversal” (DOT) strategy where documents are scored separately by
computing predictions from all trees in the forest. Alternatively, we may evaluate each tree
(or scorer) on all documents at once, resulting in the “scorer-ordered traversal” strategy
(SOT). In SOT, we must accumulate and keep track of partial scores for all documents until
the entire ensemble has been evaluated. Both strategies have advantages and disadvantages
in terms of memory footprint and cache friendliness. We note that, the vectorization methods
of QuickScorer and RapidScorer belong to the DOT class, but where small batches of
documents are evaluated with a SOT strategy.

Cambazoglu et al. (2010) place exit points at fixed positions in a given forest (e.g., every
100 trees) and introduce four early-exit algorithms that decide at each exit point whether
the evaluation of a document can be terminated early. These algorithms are as follows:

• Early Exits Using Score Thresholds (EST): This simple approach filters documents
on the basis of a pre-computed threshold and drops documents whose score does not
exceed it along the way.

• Early Exits Using Capacity Thresholds (ECT): A more adaptive solution that main-
tains a heap with the highest scores and drops documents that do not fit in the
heap.

• Early Exits Using Rank Thresholds (ERT): Similar to the EST method, except that
thresholds are applied to the rank of documents.

• Early Exits Using Proximity Thresholds (EPT): Preserves the top-k documents but
additionally keeps all documents whose score is within a range p from the k-th
document’s, where p is learnt and computed offline.

We highlight that, EST is applicable to both SOT and DOT whereas ECT applies only
to the DOT method. ERT and EPT, on the other hand, operate only within the SOT
scheme. Experiments showed that the EPT strategy led to the largest gains in inference
efficiency (with a speed-up factor of 4×) with only a negligible loss in precision.

Cambazoglu et al. (2010) used statistical information from document scores and ranks
to decide when to exit early. In contrast, Busolin et al. (2021) introduced a learnt technique,

48

called LEAR, that uses a classifier to predict whether a document should trigger early
termination if it is unlikely to be ranked among the final top-k results. The early exit
decision occurs at a sentinel point (i.e., after having evaluated a limited number of trees)
with the partial scores determining if documents should exit. Their experimental evaluation
on two public datasets shows that LEAR has a significant impact on the efficiency of the
query processing with a speedup of up to 5× with a negligible loss in NDCG@10.

Separately, Lucchese et al. (2020b) investigate the problem of query-level early-exit
strategies, where the decision to exit depends on the partial scores of all candidate documents
for a query. The main finding of the work is that queries exhibit different behaviors as scores
are accumulated during the traversal of the ensemble and that query-level early stopping
can remarkably improve ranking quality with an overall gain of up to 7.5% in terms of
NDCG@10 and a query processing speedup of up to 2.2×.

6.3 Efficient cascades

In the early-exit strategies discussed above, we relied on a partial evaluation of an ensemble
to decide whether or not to exclude a document from further evaluation. That detail is
analogous to the idea of multi-stage rankers, which we reviewed in Chapter 3. Indeed,
early-exiting is similar to having multiple rankers that rank a set of documents sequentially
and pass along to subsequent rankers the top-ranking subset.

Wang et al. (2011) took that idea and fused together such a cascading model using an
additive ranking model. Each ranker in the model is also coupled with a pruning function
that removes the least promising documents before passing them on to the next ranker.
This ranker-pruner pair constitutes one stage in the multi-stage ranker, and documents
that are kept by the pruning function keep accumulating partial scores from stages along
the way until they end up in the final top-k set or are dropped in later stages.

Wang et al. (2011) implement an instance of such a multi-stage ranker following the
principles behind AdaRank (Xu and Li, 2007), where each ranker operates on a single
feature only. Interestingly, the pruners and rankers are trained jointly with a hyper-parameter
that facilitates fine-tuning the balance between quality and efficiency. Their experiments
show that this jointly optimized cascade model reduces the inference cost with limited
impact on quality. We should note that the gains in efficiency are not as substantial as
those achieved by score approximation approaches.

Culpepper et al. (2016) take a slightly different approach. They design a multi-stage
ranker composed of binary classifiers, where the number of classifiers is equal to the number
of relevance grades in the training set. They train the classifier at stage Si to detect
documents with relevance ≤ i. When a classifier at stage Si predicts the probability Pri(d)
for document d, then d exits the inference process with label i if Pri(d) < t, and otherwise

49

moves to the next stage. This design follows the intuition that a different number of
candidates may be required for different queries and that these classifiers can help detect
the subset of candidates adaptively. Experiments show that the best configuration of this
cascade design can speed up inference by a factor of 2× without an adverse effect on the
ranking quality.

Another advantage of the cascade design is that the computation of expensive features
can be delayed to later stages, where fewer documents are evaluated. On the other hand,
effective features should be used as early as possible in the cascade so that a larger number
of documents can be filtered early on. That is precisely what Chen et al. (2017) explore
in their work. Through extensive experiments, they show that a three-stage cascade with
λ-Mart in each stage is most effective with a cost reduction of about 50%.

6.4 Open challenges and future directions

We summarize in Table 6.1 the methods reviewed in this chapter which fall naturally into two
major research directions. The first covers efficient algorithms for the traversal of decision tree
ensembles. This research culminated in the QuickScorer and RapidScorer algorithms
which today are the de facto standard tree traversal implementation, not just for the ranking
task but in regression and classification too. But while the existing implementations achieve
incredible efficiency in standard computing environments, investigating the inference of
complex models in embedded devices remains an open challenge, especially with the rapid
rise in the use of machine learning models in resource-constrained devices. Additionally,
such non-standard environments define new and unique dimensions of efficiency such as
strict bounds on energy consumption among other factors.

The second line of research is an investigation of cascade models which includes early-exit
strategies and ad hoc training of a multi-stage cascade. There remains a lot in this area
that warrants further investigation. The optimal number of stages in a cascade architecture
or the value of their hyper-parameters, for example, have proven difficult to determine,
which, in turn, limit the applicability of cascade models. Moreover, the observed impact
on efficiency is smaller than the gains from efficient traversal techniques. Despite these
challenges, we believe that research into cascade models and understanding the trade-offs
inherent in their design are promising directions in LtR.

Cascade models, for example, can delay heavy computation to later stages or leverage
the benefits of complementary models (e.g., neural and tree models). They may also provide
stability to an LtR system, where only a few stages may need to be re-trained or updated
to improve effectiveness. We thus believe that the construction of an efficient cascade that
takes into account feature computation costs, personalization, online training, or offline
updates remains an exciting and potentially impactful research direction.

50

7 Neural Learning to Rank

In Chapter 2, we wrote about the various statistical signals which exist in queries and
documents that a ranking model can use to estimate relevance. There, and indeed throughout
the past chapters, we took for granted that query-document pairs are given to us in the
form of vectors of k pre-computed features that in some way quantize those signals, and
instead focused on learning a ranking function from them. Let us now take a step back and
reconsider feature vectors.

A feature vector is effectively a function that maps queries and documents to a k-
dimensional space. Typically, a subset of these features can be viewed as a function of the
query alone (φq : Q → Rkq), another of the document alone (φd : D → Rkd), and the rest
form a joint function of query and document pairs (φq,d : Q×D → Rkq,d). These functions
map their input to a vector of real values, together making up k = kq + kd + kq,d features
as the representation of a query-document pair: (φq(·), φd(·), φq,d(·, ·)).

If no feature vectors exist and all we have is the raw data, the thinking goes, we must
define and build our own input-to-feature mappings. This process of defining and computing
mappings from our input space to feature values is known as feature engineering. It is often
laborious and costly, involving meticulous analysis of the data and making judgment calls
on the usefulness of individual features to a machine learning model (Geng et al., 2007;
Gigli et al., 2016). Furthermore, our model’s ability to learn an effective ranking function
from engineered features is tied to and bounded by their richness and discriminative power,
which may be limited because we design features following our own intuition and often
incomplete understanding of the problem.

Can we avoid the costs and pitfalls of feature engineering and find features that are
more helpful to our model? In other words, instead of constructing them by hand, can we
learn the functions φq(·), φd(·), and φq,d(·, ·)?

The question above hints at one of the primary reasons behind the emergence of deep
learning in information retrieval. After researchers in other communities demonstrated
the success of deep neural networks in learning rich representations from raw images and
natural texts, it was only natural to consider their application to text ranking. The promise
deep learning held for ranking was that it would obviate the need for extensive feature
engineering and, instead, it would automatically learn features that give the model the
necessary power to estimate relevance.

There are three major directions in the information retrieval literature that explore the
role of deep models in learning a representation of queries and documents. We review these
briefly in the remainder of this chapter.

51

(a) Representation-based (b) Interaction-based

Figure 7.1: Schematic illustration of pre-Transformer neural rankers. In (a), the two functions φq and φd
learn representations of query and document such that relevant documents stay “closer” to the query than
non-relevant ones, where closeness is measured by a vector similarity function such as cosine similarity. In
(b), the representations of query and document terms interact with each other in φq,d and their relevance is
estimated by a subsequent function.

7.1 Representation-based models

The first wave of deep learning models for ranking, aptly known as representation-based
models, focus squarely on learning φq(·) and φd(·) (with kq = kd) from queries and documents
such that the representations of relevant documents are “closer” than non-relevant ones to
the representation of queries. Closeness is typically determined with a simple metric such
as inner product or cosine similarity. We illustrate a generic version of this approach in
Figure 7.1(a).

An early iteration of this idea called Deep Structure Semantic Model (DSSM) (Huang
et al., 2013), for example, uses feed-forward networks to learn φq and φd from character
n-grams of queries and documents. Subsequent works in this space extend the same idea in
different ways. Shen et al. (2014), for example, uses convolutional neural networks instead
to capture contextual features. Dual Embedding Space Model (DESM) (Mitra et al., 2016)
takes as input the pre-trained word2vec (Mikolov et al., 2013) representations instead of
character n-grams.

7.2 Interaction-based models

What is left out of the representation-based models is the joint query-document function
φq,d(·, ·); no component of these models captures the interactions between query terms and
document terms. Modeling φq,d motivated another class of neural rankers that are often
known as interaction-based models. Specifically, as depicted in Figure 7.1(b), these models
create an “interaction” matrix of the representations of query terms and document terms,
often in the form of a similarity matrix. The interaction matrix then becomes an input
to another function that estimates relevance. Methods in this class include DRMM (Guo

52

et al., 2016), KNRM (Xiong et al., 2017), and ConvKNRM (Dai et al., 2018).
The distinction between representation- and interaction-based methods lies not just in

what features each is capable of learning which affects their effectiveness, but also in their
computational efficiency. Because representation-based models learn to map documents to
representations with a function φd that is distinct from φq, we can store learnt document
representations to enable efficient inference. Interaction-based models, in contrast, are more
expensive because we must compute φq,d during inference as its output depends jointly
on the query as well as the document. Despite these differences, the two ideas are not
mutually exclusive. In fact, models such as DUET (Mitra et al., 2017), incorporate elements
of representation- and interaction-based models to learn all three mappings φq, φd, and φq,d
for effective and efficient ranking.

Foregoing feature engineering for representation learning also makes it possible to explore
functions beyond the three mappings above. If we can model the interactions between query
terms and document terms, for example, why stop there and not capture the interactions
among the set of documents being ranked too? In other words, we may extract additional
features as a joint function of a set of m documents φq,d : Q×Dm → Rkq,d . Different flavors
of this idea were investigated by Ai et al. (2019) and Pang et al. (2020), where the main
challenge is in ensuring that φq,d is permutation-invariant (i.e., the output of the function
does not depend on the order in which documents are presented to the function).

Our brief review above only sketches an outline of ideas in the early years of neural
ranking and leaves out a great deal of details. We refer the interested reader to existing
surveys on representation- and interaction-based neural rankers for a more comprehensive
review and analysis of these methods (Onal et al., 2018; Mitra and Craswell, 2017; Guo
et al., 2020). But even from this outline emerges a clear picture: models grew more and more
complex as we sought to enrich the representations of queries and documents. That trend
continues to date, with a notable jump in model complexity when rankers based on the
Attention mechanism in Transformers (Vaswani et al., 2017) dwarfed many early models.1

7.3 Transformer-based models

That began when Nogueira and Cho (2020) reported a dramatic jump in ranking quality
by applying Bidirectional Encoder Representations from Transformers (BERT) (Devlin
et al., 2019) to the MS MARCO (Nguyen et al., 2016) passage re-ranking task, where
short passages are to be ranked with respect to a text query. Their model was later named
“monoBERT.” In the language of our discussion here, the BERT component in monoBERT
serves as the joint function φq,d, producing a representation for a query-document pair.

1We often refer to neural rankers that are based on the Attention mechanism as “Transformer-based”
rankers. However, we recognize that “Transformer” implies an encoder and a generative decoder neural
module, with the latter playing no role in the vast majority of retrieval and ranking systems.

53

(a) monoBERT (b) duoBERT

Figure 7.2: Illustration of the (a) monoBERT and (b) duoBERT rankers. MonoBERT predicts a relevance
score of a single query-document pair—a familiar scoring machinery in LtR. DuoBERT takes a pair of
documents and predicts whether the first document is more relevant to the query than the second document.
Note that, the scoring function itself takes two documents as input, in contrast to pairwise LtR where the
loss function takes the scores of two documents.

From that, a simple feed-forward network learns to estimate relevance by optimizing a
pointwise loss function. This is illustrated in Figure 7.2(a). The remarkable effectiveness of
this network architecture generated much excitement in the community and led to a flurry
of research activity.

Many subsequent works (Akkalyoncu Yilmaz et al., 2019; Li et al., 2020; Dai and
Callan, 2019; MacAvaney et al., 2019) seek to address monoBERT’s limitation on input size
(capped at 512 tokens), which was enough to rank short passages but not sufficiently large
to apply to long documents. Others (Nogueira et al., 2019a) extended the model to learn
representations for pairs of documents; that is, φq,d where d is a set of two documents. The
resulting model is known as “duoBERT” and is shown in Figure 7.2(b). Yet others (Nogueira
et al., 2020; Pradeep et al., 2021) go beyond BERT and use a sequence-to-sequence model
such as Text-to-Text Transfer Transformer (T5) (Raffel et al., 2020) for ranking. We refer
the interested reader to a recent survey by Lin et al. (2021) on Transformer-based rankers
for a detailed discussion of each method and their many existing variants.

As is often the case, this march from basic feed-forward networks to gargantuan stacks
of Transformer-based neural modules with millions of parameters has made stunning
improvements in quality possible only at the expense of training and inference efficiency.
Better accuracy through ever-increasing complexity once again presents a new but familiar
challenge: How do we balance the two competing objectives of efficiency and effectiveness?
This question has gained even more significance due to the sheer scale of neural rankers
and the the multitude of additional efficiency dimensions they introduced, such as sample-
and energy-efficiency. Additionally, scaling these models to long documents (as opposed to
short “passages”) introduces another efficiency challenge that is largely unique to neural

54

rankers (Lin et al., 2021).
In the next chapter, we will review some of the ideas that explore this trade-off in the

context of neural rankers, many of which will, unsurprisingly, look familiar to the reader,
just as the question above did. So as we present our summary of each class of methods, we
highlight their connection to the first half of this manuscript.

8 Efficiency in Neural Learning to Rank

We have argued in this monograph that neural rankers are just another instantiation of the
general LtR framework, where the hypothesis class is the set of deep neural networks. It is
therefore not surprising that the ideas that were introduced in previous chapters to manage
inefficiency in decision forest models carry over to neural LtR at a high level.

This portability of ideas is easy to see in the case of the multi-stage and cascade
architecture of retrieval and ranking because their general setup is agnostic to the specific
choice of models in each stage. In other words, by trimming the candidate list in the first
stage (or first few stages), we can reduce the volume of candidates that must be re-ranked
by an expensive, neural ranker, thereby improving the inference and training efficiency of
the end-to-end ranking system.

This general method was first investigated by Nogueira et al. (2019a) in the context
of neural rankers. Nogueira et al. (2019a) observe that duoBERT, which learns to score
pairs of documents jointly as explained in Chapter 7, is more effective than monoBERT but
at a much higher inference cost. That is because, given k candidates, duoBERT performs
inference on k(k − 1) pairs of documents di and dj to estimate the probability pi,j of di
being more relevant than the other. It then aggregates the probabilities pi,∗ using one of
the many proposed aggregation functions (e.g., sum) to arrive at a single relevance score for
individual documents. It is clear that duoBERT, due to its more computationally intensive
inference, would fare better for smaller values of k relative to monoBERT.

That prompted the authors to consider a multi-stage ranking pipeline illustrated in
Figure 8.1 where candidates, generated by BM25, are first ranked by monoBERT and only
then the top candidates are rearranged by a duoBERT ranker. Nogueira et al. (2019a) then
explore the trade-offs such a setup offers between ranking quality and inference latency, by
studying the interplay between quality and the number of candidates retrieved with BM25,
along with the number of candidates passed from monoBERT to duoBERT.

Among the many interesting observations, they found that providing a larger pool
of candidates to monoBERT helps ranking quality—up to a point, beyond which we see
diminishing returns. That indicates that documents with a relatively low BM25 score can
indeed be relevant to the query and be placed at higher ranks with monoBERT. Interestingly,
it is often enough to apply duoBERT to a handful of top documents ranked by monoBERT

55

Figure 8.1: Multi-stage search pipeline of Nogueira et al. (2019a) consisting of BM25, monoBERT, and
duoBERT.

to obtain the highest achievable ranking quality.
In fact, this last point turns into a rather surprising phenomenon in a follow-up study.

Pradeep et al. (2021) extend the multi-stage pipeline of Figure 8.1 and add one more stage
right before BM25: The authors use doc2query-T5 (Nogueira and Lin, 2019), a generative
model, to expand documents with predicted queries, prior to the BM25 stage. They also
replace BERT with an adaptation of T5 (Raffel et al., 2020), a sequence-to-sequence model,
to the ranking task. They find that, for some but not all monoT5’s aggregation functions,
passing more candidates between monoT5 and duoT5 re-rankers leads to a drop in quality.
Pradeep et al. (2021) do not articulate if the quality degradation is statistically significant,
nor do they explain why they observe this rather counter-intuitive behavior. It is therefore
unclear if this points to a weakness of the duoT5 model itself, or the aggregation functions
used to produce relevance scores from probabilities.

Some small details aside, the general observations reported in these works are consistent
with the prior literature on multi-stage ranking systems which attests to the robustness of
this general and rather intuitive design. In fact, the idea is so natural that others have also
investigated similar setups in different contexts, e.g., (Matsubara et al., 2020; Zhang et al.,
2021).

In the remainder of this chapter, we summarize other solutions for efficiency in neural
LtR whose connection to the earlier literature is less obvious, and discuss other new problems.
We revisit, for example, early-exit strategies and show how this simple technique can be
baked into a neural LtR model. We show how distillation can be used to find a small, more
efficient model given a large, more effective ranker. Finally, we review the literature on
dense or semantic retrieval and describe the challenges this new problem introduces.

56

Figure 8.2: Illustration of the Cascade Transformer (Soldaini and Moschitti, 2020). Every group of
Transformer layers forms a stage of the cascade and is followed by a classifier, whose output is used to rank
candidates in a batch. Between consecutive stages, the model discards α% of candidates.

8.1 Early exit strategies

What motivated Cambazoglu et al. (2010) to only partially evaluate a gradient-boosted
decision forest for some documents, thereby exiting the inference algorithm early, was the
hypothesis that trees that come later in the forest are there to refine the ranking among
the top candidates; the scores of the vast majority of candidates, especially those that are
obviously non-relevant, should not change dramatically after the evaluation of the first few
trees. So using some form of thresholding, we can exit early and prevent certain candidates
from going through an entire forest.

In effect, a gradient-boosted forest can itself be understood as a cascade ranker where
each stage is a decision tree. We can therefore trim the candidate list every few stages in
the cascade and progressively reduce the cost of inference for any query.

Interestingly, one can view a stack of Transformers much the same way: Each Transformer
layer in a multi-layered model such as BERT is akin to a stage in a cascade ranking system!
As a candidate list bubbles up the stack of Transformers, analogous to the decision forest
scenario, the score of non-relevant documents should change less and less substantially and
their position in the ranked list should move up or down less dramatically. As such, it may
be possible to exit inference early for a subset of candidates and avoid evaluating the full
model on the entire candidate list, all without noticeable impact on effectiveness.

That is, in fact, one major idea that has emerged in the neural information retrieval
literature to improve inference efficiency. In the context of an Answer Sentence Selection
task for Question Answering, for example, Soldaini and Moschitti (2020) apply that idea to

57

the multi-layered Transformer model—which they call Monolithic Transformer—to obtain
the Cascade Transformer. In particular, they intersperse lightweight classifiers between
every few layers of the model, so that layers 4, 6, 8, 10, and 12 become exit points in the
cascade. This is illustrated in Figure 8.2.

Conceptually, one can think of each classifier as predicting whether a document should
continue to be evaluated or whether it can safely exit the inference altogether. The concrete
logic is quite straightforward: Given the predictions of one classifier on a batch of candidates,
the cascade ranks the candidates according to their scores and discard α% of them, before
passing the rest onto the next stage in the cascade. This logic repeats until the very last
classifier, which produces the final predictions for the remaining candidates. For example,
if there are 128 documents in the initial batch and α = 30%, the first exit point drops 38
documents, with the remaining 90 documents moving onto the next exit point. The authors
justify this trimming strategy by noting that, discarding a fixed number of items from a
batch allows the cascade to know the batch size in each stage a priori—a desirable behavior
in today’s neural network inference engines. Were they to discard candidates by a fixed
score or rank threshold as Cambazoglu et al. (2010) did, in contrast, batch sizes at each
stage of the cascade would become dynamic, possibly leading to sub-optimal throughput.

Another notable difference with earlier work in the context of decision forests is that
the model and classifiers can be learnt jointly in an end-to-end manner: At each training
iteration, the training procedure selects one stage in the pipeline uniformly at random,
computes the value of the loss function, and back-propagates the error throughout earlier
stages. This training schedule, the authors claim, makes the later stages of the cascade
more robust to noise that stems from high variance in earlier stages.

Soldaini and Moschitti (2020) evaluate the Cascade Transformer in terms of quality
and inference cost reduction with respect to a Monolithic Transformer on a number of
Question Answering datasets. The results present no surprises: Choosing a larger value of
α and discarding candidates more aggressively between stages of the cascade degrades end
effectiveness but leads to a larger inference cost reduction (−37% when α = 30%).

While the Cascade Transformer was tailored to improving throughput—hence the
emphasis on fixed batch sizes throughout the cascade—other works target the inference
latency (i.e., batch size of 1) using very similar ideas. For example, Xin et al. (2020) explored
a design that inserts a classifier after every layer. At each exit point (called “off-ramp” in
their work), its classifier is evaluated and, depending on the confidence in the classifier’s
prediction, inference terminates early or the sample goes on to be evaluated by later layers.
In a follow-on study, Xin et al. (2021) present an evolution of this idea where, instead of
deciding to exit early based on the classifiers’ confidence, the decision to exit or not is itself
learnt at every exit point.

These and other contemporary works on early-exit strategies in Transformer-based
models (Liu et al., 2020; Schwartz et al., 2020) are a natural application of the idea of

58

partial evaluation of Cambazoglu et al. (2010) to neural rankers, often resulting in similar
trade-offs between effectiveness and efficiency.

8.2 Knowledge distillation and neural compression

We introduced knowledge distillation in Chapter 5, where the idea was to train a small
and efficient “student” model that attempts to imitate the behavior and predictions of a
larger and effective “teacher” model. The intuition was that, because the teacher model
has a greater complexity, it captures nontrivial relationships in the data and cleans up
noisy input. In this way, the student model learns from a “clean” version of the data and
can focus on learning what is more germane to the task. In that chapter, we also reviewed
examples of what we argued may be seen as knowledge distillation in the decision tree-based
LtR literature. This included X-Dart, CLEaVER, and X-CLEaVER, which arrive at a
student model by compressing an existing tree ensemble.

Compression is easy to translate to the world of neural networks: Individual connections
or entire layers can be removed, reset in a network if their existence is not “salient” according
to some definition of salience, or quantized. The resulting network may become leaner in
size or its weight matrix sparser, leading to different and often more efficient computational
patterns. We refer the reader to existing surveys (Xu and McAuley, 2022) that cover this
growing literature in the context of large language models for a detailed discussion of these
methods.

Knowledge distillation (Ba and Caruana, 2014) in the deep learning literature works
not by pruning a large model, but by learning a new, more compact model instead.
Perhaps the most relevant and pivotal studies from the knowledge distillation literature
are TinyBERT (Jiao et al., 2020) and DistilBERT (Sanh et al., 2020). While the specifics
of these two works are different, the general idea is rather similar: Given a large pre-
trained BERT language model, the two studies explore strategies to train a more compact
student model that uses the same Transformer architecture but has fewer parameters. In
TinyBERT, for example, the student model learns to fit the individual weight matrices from
the attention modules of a large BERT model, with the intuition that linguistic knowledge
can be transferred to the student in this way. Additionally, the output of Transformer
layers, the embedding layers, and the predictions of the model too become objectives for
the student model to attain. As one would expect, distillation leads to models that are
several factors faster and lighter than the large teacher models, with little to no loss in
effectiveness.

In the context of LtR, we have already called out three works (Tang and Wang, 2018;
Cohen et al., 2018; Nardini et al., 2022) in Chapter 5 that demonstrate the usefulness of
knowledge distillation for balancing efficiency and effectiveness of ranking models.

59

Building on that foundation, Gao et al. (2020) explore how ranking-specific knowledge
can be transferred between a teacher and a student BERT-based model. Gao et al. (2020)
study several distillation strategies. In one, dubbed “Ranker Distill,” they train monoBERT
over the MS MARCO (Nguyen et al., 2016) dataset, then randomly initialize a smaller
student model and ask it to reproduce the teacher model’s ranking behavior. In “LM Distill
+ Fine-tuning”, they transfer knowledge from a pre-trained, general-purpose BERT model
(but not monoBERT) to the student model, and only then fine-tune the student model
for ranking. Finally, in a hybrid of the two methods, they have the student model learn
from a general-purpose BERT model first, followed by distillation of ranking behavior from
mono-BERT.

Of the three distillation strategies, Gao et al. (2020) find that the hybrid approach can
produce a student ranking model that is just as effective as monoBERT but that is up to 9
times faster during inference. This is an important finding that goes to suggest that large
models may be over-parameterized and that knowledge distillation can substantially reduce
inference cost in exchange for additional training of a more compact, student model.

One can even take the idea of distillation a bit further and distill the collective knowledge
of an ensemble of teacher models into a compact, student model. This is the idea Zhuang
et al. (2021) studied for ranking, which they claim leads to a model that is more efficient
during inference and that displays more stable predictions.

As the authors articulate, one can either have the student predict an aggregated, ensemble-
level teacher label, or solve a multi-objective optimization problem by predicting all model-
level labels simultaneously. In either case, we need to define what the model- or ensemble-level
labels are. Zhuang et al. (2021) experiment with two model-level labels: (1) the raw score of
rankers in the ensemble; and, (2) the reciprocal rank (i.e., 1/

(
α+ πi

)
, where α is a constant

and πi is the rank of document i). They define the ensemble-level label as the mean of
model-level labels.

Their experiments on the MS MARCO passage ranking dataset appears to corroborate
the authors’ hypothesis that distilling knowledge from multiple teachers can indeed produce
a high-quality student model. It turns out that optimizing a single loss defined on ensemble-
level labels is just as good as a multi-objective formulation; and that, using raw scores
versus reciprocal ranks makes little difference in the end.

While the idea in this article is interesting in and of itself, it is unclear how generalizable
the empirical findings are—as the authors themselves point out too. Perhaps what gives
one pause is that the student model is itself a BERT ranker and that the individual rankers
in the teacher ensemble are also BERT rankers that are all trained in the same manner
but starting out from different initial weights. The authors justify this by suggesting that
evaluating a single BERT ranker is cheaper than executing an ensemble of BERT rankers.
That may be true, but that small detail may explain the observed insensitivity to the choice
of labels and the distillation strategy. More importantly, one wonders if, in this instance,

60

Figure 8.3: The most basic form of dense retrieval produces vector representations (circles) for a collection
of documents offline. During inference, the query is similarly transformed into a vector (red rhombus) in the
same representational space. An approximate nearest neighbor algorithm then finds the closest document
vectors to the query vector (blue circles). By training the encoders in the right way, we can structure the
representational space such that closeness in the space implies semantic similarity.

knowledge distillation is not simply related to variance reduction as the student model
learns the average of predictions of teacher models.

8.3 Dense retrieval

One of the major innovations in neural LtR research was the evolution of “cross-encoders”
such as monoBERT and duoBERT to two-tower or “bi-encoder” models. Instead of learning
a parameterized function (like BERT) that takes a query-document pair (or multiple
documents) as input and simultaneously learns representations (i.e., features) and predicts
their relevance, bi-encoders disentangle the relevance prediction function from representation
learning, and simplify the former as much as possible. The idea is to push much of the
complex, time-consuming inference operations offline and thereby speed up query processing.

In its most basic form, this design resembles the representation-based neural ranker
architecture of Figure 7.1(a), but where φd and φq are pre-trained large language models
that may be further fine-tuned. Because the representation of documents is independent of
queries, we may store the document vectors in an offline index and, during retrieval, compute
the representation of the query and find its closest document vectors. This paradigm is
often referred to as “dense retrieval” or “semantic search,” which is typically solved using a
k nearest neighbor (NN) search or k approximate nearest neighbor (ANN) search algorithm.
We illustrate this procedure in Figure 8.3.

The feasibility of this basic idea was demonstrated by several works (Zhan et al., 2020;
Karpukhin et al., 2020; Ma et al., 2021a; Qu et al., 2021). Karpukhin et al. (2020) present
what they call Dense Passage Retrieval (DPR) and show that dense vector representations

61

can indeed be used to perform the retrieval task following the recipe above. Interestingly,
effective representations can be learnt from a small number of questions and passages (in
a question-answering task) by a simple bi-encoder framework. They evaluate DPR on a
wide range of open-domain QA datasets, with the results showing that DPR outperforms
a strong BM25 system by 9%–19% absolute points in terms of top-20 passage retrieval
accuracy.

In the general dense retrieval framework of Figure 8.3, there are two key factors that
contribute to the overall efficiency and effectiveness: the ANN algorithm itself that performs
the search over millions or billions of vectors, and, as we will discuss, the nature and quality
of the learnt vector representations. In the rest of this section, we pay particular attention
to the latter and review a subset of methods that encode queries and documents for dense
retrieval.1

Existing encoding models fall into one of two categories based on the granularity of the
representations they produce: per-document encoders (single-vector) and per-term encoders
(multi-vector). The former class, which includes DPR, learns a single vector representation
for a document, whereas the latter produces a contextualized representation for every term
in a document.

Single-vector dense retrieval

Intuitively, for a single-vector dense retrieval method to work well, the structure of the
representational space must tightly preserve the semantic similarity between pieces of text.
In other words, vectors that are close to each other according to some vector distance
function, should be semantically similar to each other and vice versa.

A key factor that contributes to the quality of representations and thus the structure of
the space is the quality of the negative examples used to train an encoder. This is a challenge
because, unlike in standard LtR where the assumption is that a short list of documents with
relevant and possibly non-relevant documents exist, in dense retrieval the set of possibly
non-relevant documents is extremely large and diverse; everything in a collection minus
the very few positive documents is non-relevant to any arbitrary query. Choosing which
documents to present to the model as negative examples can have a profound effect on the
effectiveness of the final model and its representational space.

In DPR (Karpukhin et al., 2020), for example, negative documents are selected using
three different strategies: randomly; by retrieving top-k documents with BM25 and selecting
those that do not contain the answer but have significant lexical overlap with the query; or,
positive documents for other queries that appear in the same training batch.

1We reiterate that our monograph is primarily focused on ranking. While recent works on dense retrieval
blur the line between retrieval and ranking, we still believe that a deeper discussion of dense retrieval and
efficiency and effectiveness trade-offs in that literature is beyond the scope of this monograph.

62

ANCE (Xiong et al., 2021), which like DPR is a single-vector encoder, continually finds
negative examples based on the current structure of the vector space. The way it realizes
this idea is by asynchronously updating an ANN index while the dense retrieval model
is being trained, and retrieving the top-k set for training queries from this index. Every
document that appears in the top-k set that is not a positive example is deemed a “hard”
negative and used to further train the model. This training procedures continues until
convergence.

The authors show that ANCE outperforms other competitive dense and sparse retrievers,
with substantial margins in long document retrieval task. Perhaps more importantly, by
measuring the success rate of an ANN algorithm in finding relevant documents, they claim
that sampling negative examples as done in ANCE improves the quality of the final vector
representations. In fact, an ANCE-based dense retrieval model approaches the effectiveness
of a cross-encoder, BERT re-ranker in a multi-stage setup. These observations, Xiong et al.
(2021) state, cast doubt on “a previously-held belief that modeling term-level interactions is
necessary in search.” Comparing their inference with a BERT re-ranker, they conclude that
ANCE brings about a speedup of 100× due to higher quality representations. While some
of these claims are not entirely supported and the speedup may be exaggerated, the fact is
that sampling negative examples in this way appears to be more effective than previous
strategies.

While the relative inference efficiency and effectiveness of ANCE is rather impressive, its
training is resource-intensive and time-consuming. This is because an ANN index must be
updated with the latest representations and negative examples must be retrieved from this
index periodically. To lessen the training cost, Lindgren et al. (2021) suggest to maintain a
cache of possibly-stale negative examples. Caching, as shown in experiments, allows the
training procedure to work more efficiently and scale to a larger pool of negative examples
with a lower memory and computational footprint. It turns out, as the authors show in their
theoretical analysis, updating a very small fraction of the cache at each iteration ensures
fast convergence.

Up to this point, the marriage of ANN search algorithms and learnt vectors from
general-purpose language models and encoders led to much success in retrieval quality. Gao
and Callan (2021a), however, question the suitability of the latter: Are general-purpose
language models optimal for dense retrieval?

Gao and Callan (2021a) argue that existing language models are suboptimal and
inefficient because of the way they aggregate and condense information into a single vector,
which is designed for tasks (such as next sentence prediction) that are removed from the
objectives of dense retrieval. This is because, how information is aggregated and what
signals are encoded are determined by how the “attention” mechanism works. In particular,
the representation of the CLS token—a token that is prepended to a sequence and whose
representation is typically taken as the final vector representation of a query or document—

63

has weak interactions with other document terms in early layers, and uses too broad of an
attention span over document terms in later layers.

Having made this observation, Gao and Callan (2021a) tailor the Transformer archi-
tecture in a model they call Condenser by customizing how it attends to document terms.
Notably, the “head” of the model takes the CLS representation from the later layers as in a
Transformer but, additionally, takes term representations from early layers. The authors
experimentally evaluate their model on two public datasets and show that the use of Con-
denser improves over standard language models by large margins on several text retrieval
and similarity tasks.

In a follow-up study, Gao and Callan (2021b) argue further that for the CLS representa-
tion to be effective, it must be transformed by a head, a typically non-linear function. This
is different from what takes place in ANN search, where we simply find the closest neighbors
with respect to dot product (or other simple distances). There is therefore a disconnect
between how representations are generated and how they are used to perform dense retrieval.
They then propose augmenting the pre-training loss with an unsupervised corpus-level
contrastive loss to “warm start” the embedding space; in effect, the pre-training stage asks
the model to learn that similar passages (spans within a document) should have closer
representations and dissimilar passages (spans from different documents) should instead be
positioned farther. They show the effectiveness of this regime and, as a side-effect, show
that it renders unnecessary heavy data engineering efforts such as augmentation, synthesis,
and filtering.

The single-vector dense retrieval literature is vast and growing still with many other
works that straddle the literature on the ANN as well as the modeling pieces. We do
highlight the works of Zhan et al. (2021) and Zhan et al. (2022) who investigate a joint
optimization of vector representation learning and the construction of the ANN index for
more efficient and effective overall retrieval and a more compact index.

Multi-vector dense retrieval

The methods we reviewed so far learn a single vector representation for a document. Khattab
and Zaharia (2020) question whether a simple ANN search over single-vector representations
is sufficient to ensure quality and whether relevance estimation would improve by replacing
the simple distance function (e.g., dot product) with a more complex function.

ColBERT (Khattab and Zaharia, 2020; Santhanam et al., 2022a) approaches the encoding
and similarity estimation problems in two steps: A first step uses a language model (e.g.,
BERT) to encode query terms and document terms (separately). The output of this step is
a sequence of vectors representing terms in a query or document. A subsequent step uses a
“late-interaction” function to estimate the overall similarity of query and document terms.
This function may be the norm of a matrix whose entry at row i and column j is the inner

64

product of the query’s ith vector and a document’s jth vector.
As a result of this two-step process, ColBERT can leverage the expressiveness of deep

language models and, at the same time, enable us to pre-compute document representations
offline. The authors comprehensively evaluate ColBERT using two passage search datasets
(MS MARCO Ranking and TREC Complex Answer Retrieval) and show that it is more
effective than non-BERT baselines and competitive with existing BERT-based models, but
that ColBERT is two orders of magnitude faster and requires up to four orders of magnitude
fewer FLOPs per query.

It should come as no surprise that ColBERT’s higher effectiveness comes at a cost.
One new challenge is the inflated size of the index: rather than storing a single vector for
every document in our index, we must now find room for term-level vector representations.
Santhanam et al. (2022a) offer a solution to remedy this particular cost by reducing the
overall memory footprint of the representations.

Another added cost that pits multi-vector representations against single-vector encoders
is that we can no longer perform retrieval in a single step by using an exiting ANN search
algorithm: With single-vector representations, once documents are encoded, all we must
do to retrieve the top-k documents is to ask for the k nearest neighbors from an ANN
index. Tonellotto and Macdonald (2021) proposed to rank terms by their importance and
compute the similarity score for query-document pairs only using a subset of query terms
instead. Lin et al. (2020a) ask, instead, if knowledge distillation makes it possible to learn a
model that is just as effective as ColBERT but offers a single-step search like earlier works.
With the intuition that tight coupling between the teacher and student models may enable
more flexible distillation strategies that yield better representations, the authors show that
their distilled model, called TCT-ColBERT, does indeed improve query latency and greatly
reduces memory usage with a limited reduction in effectiveness relative to ColBERT.

8.4 Open challenges and future directions

Table 8.1 summarizes the methods we reviewed in this chapter. They naturally fall into
three major research directions. The first covers early exit strategies to speed up the
inference of Transformer-based neural rankers. We discussed the connection to the literature
on tree-based LtR, where early-exit strategies were applied successfully to ensembles of
regression trees. With Transformer-based rankers, the approach is similar to tree ensembles:
A stack of Transformer layers is equipped with classifiers, placed at different points of the
network. These classifiers are in charge of deciding when to stop the inference of a given
document. Several works contributed to this direction by proposing how to position the
different classifiers and how to decide when to stop the inference.

The second line of research investigates the use of knowledge distillation for ranking,

65

where we observe two main classes of ideas. The first focuses on applying knowledge
distillation to ensemble of regression trees to distill their “knowledge” into a small, more
efficient neural networks. The second concerns Transformer-based rankers and attempts to
derive networks that are faster during inference without loss in accuracy.

The third category is the literature on dense retrieval methods that concern the efficiency-
effectiveness trade-offs with Transformer-based networks. Most proposals use a pre-trained
language model to learn representations of documents that can be pre-computed and quickly
searched through at query processing time with fast similarity operations. We touched on
two main approaches in the literature, single-vector vs. multiple-vector representations,
and reviewed how they induce specific time-space trade-offs involving approximate nearest
neighbors search.

We note that the dense retrieval literature is still evolving rapidly with new innovative
methods being developed actively to learn higher-quality representations and to search for
approximate nearest neighbors more efficiently and effectively. As we stated earlier, we
believe dense retrieval and the topic of efficiency and effectiveness trade-offs in this specialty
deserves its own, more comprehensive survey than what we delivered in our ranking-focused
monograph. We therefore refer the reader to a recent survey by Zhao et al. (2022) on this
topic for a complete treatment.

9 Discussion and Open Challenges

The preceding chapters offered a review of LtR and the many ideas put forward in the
literature to understand the efficiency and effectiveness aspects of LtR methods. We reviewed
tree-based methods separately from neural network-based methods, but showed how some
of the ideas carry from one area to the other. In this chapter, we conclude our monograph
by looking ahead and identifying the problems within this space that we anticipate will
require significant attention from and research by the community in the coming years.

9.1 Stochastic cascades

Conventionally, ranking functions are deterministic: given a query-document pair, the
output of an LtR function is a score that captures the relevance between the input query
and document. By sorting candidates by this relevance score, we obtain a final, unique
ranked list. It turns out that one may view the set of relevance scores for a list of candidates
together as defining a distribution from which a ranked list may be sampled. This stochastic
view of ranking scores, first proposed by Bruch et al. (2020), has proven to be a principled
perspective and has already led to a flurry of research and many innovations (Oosterhuis,
2021; Diaz et al., 2020; Zamani et al., 2022) due to its flexibility and theoretical properties.

66

One notable application of this idea that is relevant to the discussion on efficiency
and effectiveness is the work of Zamani et al. (2022) where the authors take the cascade
architecture introduced in Chapter 6 and theoretically analyze the connection between
the first-stage retrieval and a second-stage ranker. In particular, by viewing retrieval and
subsequent ranking as a stochastic process, they show that, contrary to conventional wisdom,
it is not enough for the first-stage retrieval to return a candidate list that maximizes recall.
Instead, the retrieved set must maximize precision. One implication of this analysis is
that retrieving the same number of candidates for all queries in a cascade architecture is
not appropriate, and, in fact, individual queries may require a shorter or a longer list of
candidates.

The conclusions of Zamani et al. (2022) are reminiscent of the work by Wang et al.
(2011) and help reaffirm the idea of a simultaneous ranking and pruning of the candidate
list in each stage of the cascade. But more importantly, their work lays the foundation for
a more principled construction of cascade ranking models where its end-to-end efficiency
and effectiveness may be modeled and optimized. Is it, for example, feasible to construct
a cascade system with improved efficiency (by way of pruning candidate lists between
stages) and enhanced quality (by maximizing precision in early stages)? Can we learn
the parameters of such a cascade efficiently? As we stated in our concluding remarks in
Chapter 6, we believe an exploration of this question to be important and consequential for
efficiency and effectiveness in retrieval and ranking systems.

Going one step further, we ask what implications, if any, this stochastic view of ranking
systems has for cascade-like rankers such as decision forests and layered Transformer models.
While we often place early exit methods in a category separate from post-hoc pruning
algorithms (of nodes, trees, or neural connections), can we unify these methods instead
by casting ranking as a stochastic process? If so, what opportunities does such a unified
framework bring about insofar as the trade-offs between efficiency and effectiveness? These
are open questions that we believe can help shape the future of this topic.

9.2 Retrieval of hybrid vectors

Throughout this monograph, we emphasized the role of cascade architectures in enabling
efficient and effective ranking systems. But one thread that has emerged in recent years is
whether it is feasible for a cascade ranking system to collapse into a single stage. Can we
achieve effectiveness and efficiency (in all its senses) by applying a single function to an
entire collection of documents and directly obtain a ranked list? Indeed, this is one of the
motivating factors behind the research on “dense retrieval” methods.

As explained earlier, in most dense retrieval methods, we project documents into a vector
space where each coordinate is dense (i.e., every coordinate is almost surely non-zero) to

67

obtain a vector representation (or “embedding”). During inference, queries too are projected
into the same vector space. Finding a ranked list of documents that are the most relevant
to a query is then equivalent to finding the document vectors that are closest to the query
vector. This problem can often be solved efficiently using an Approximate Nearest Neighbor
Search algorithm such as FAISS (Johnson et al., 2021) or Hierarchical Navigable Small
World Graphs (Malkov and Yashunin, 2016).

While dense retrieval methods produce high-quality ranked lists, they are typically
much more inefficient than their inverted index-based counterparts such as BM25. This
observation has led researchers to explore sparse representations. The crux of the idea is to
learn sparse representations in a space that has as many dimensions as there are terms in
the vocabulary, where each coordinate encodes the “importance” of the corresponding term
in the context of a query or document (MacAvaney et al., 2020c). By regularizing the model
to encourage sparsity in its output, we can create vector representations that have very
few non-zero coordinates relative to the total number of dimensions. Given this sparsity,
the thinking goes, we may leverage traditional inverted index-based algorithms for efficient
retrieval. Examples of this research include the works of (Lassance and Clinchant, 2022;
Formal et al., 2022; Zhuang and Zuccon, 2021; Zhuang and Zuccon, 2022) among others.

While retrieval over learnt sparse representations is often more efficient than dense
retrieval, and there is ongoing research on making “sparse retrieval” algorithms more
efficient (Mallia et al., 2022), many challenges still remain. For example, if certain coordinates
of document vectors are non-zero for a large portion of the collection, the retrieval algorithm
will need to visit more documents to obtain the top-k candidates, thereby creating scalability
and efficiency issues. Given that existing retrieval algorithms such as (Broder et al., 2003)
and its variants, generally assume that queries are much shorter than documents, we face
similar scalability and efficiency challenges if a query has a large number of non-zero
coordinates in its sparse representation. More research is therefore needed in developing
data structures and algorithms that can operate over sparse representations.

Furthermore, there is increasing evidence that a hybrid retrieval framework—where we
fuse dense and sparse retrieval to obtain a final candidate list—brings about substantial
gains in retrieval and ranking quality (Thakur et al., 2021; Luan et al., 2021; Wang et al.,
2021b; Chen et al., 2022; Bruch et al., 2022a). While existing studies only consider BM25 for
the sparse (also known as “lexical” part), it is in theory possible to extend hybrid retrieval
to learnt dense and sparse representations, resulting in hybrid vectors for queries and
documents. In fact, as explained in the previous paragraph, learnt sparse representations
can themselves be dense in some subspace, thereby taking on a hybrid form in practice. It
is as yet unclear how this joint retrieval problem should be addressed and what trade-offs
exist in this regime. We believe these research questions to be important to the discussion
on efficiency and effectiveness.

68

9.3 A multi-faceted view of efficiency

Efficiency has historically been taken to mean space- or time-efficiency, primarily in the
context of inference. But we should not forget the other factors that contribute to the
overall efficiency of a system. For instance, Scells et al. (2022) show through an extensive
comparison of a range of models from bag-of-words to decision trees to large language model-
based rankers, that complex neural models are unsurprisingly energy-hungry, especially
during training. This increased energy consumption coupled with the need for larger and
larger datasets present new challenges to retrieval and LtR, especially considering the
environmental impact of this research.

These new challenges underline the importance of broadening the definition of efficiency
to encompass not just time- and space-efficiency as before, but also other related facets
such as sample-efficiency (i.e., the amount of data required to train an effective model),
resource-efficiency (e.g., the amount of computational resources needed to train a model),
and energy-efficiency (i.e., the emissions produced during the course of model training).

This expansion requires the development of formal definitions and standardized metrics
for measuring and reporting the efficiency of a retrieval and ranking system. To that end,
research is needed to design efficiency-oriented evaluation protocols and guidelines that
can help researchers assess the merits of an approach and better understand the trade-offs
between various methods. For example, if a work improves efficiency in certain dimensions,
but not others, all at the cost of effectiveness, how should we evaluate and interpret the
empirical results. This additionally highlights the importance of developing appropriate
benchmark datasets. We believe these research questions to be instrumental to the future
of efficiency within neural retrieval and ranking.

9.4 Designing multidimensional leaderboards

Existing leaderboards and open challenges in information retrieval that draw much attention
and competition from the research community have historically been centered on measures
of quality or effectiveness. For example, the MS MARCO (Nguyen et al., 2016) leaderboard
orders submitted systems for its various tasks in decreasing order of ranking quality such
as MRR@10.

These leaderboards have demonstrably contributed to the progress we have witnessed
over the years: MRR@10 for the MS MARCO passage retrieval task, as a representative
example, has remarkably gained over 24 points since its debut! But as Santhanam et al.
(2022b) argue, the emphasis on quality hides the fact that some ranked lists are much more
expensive to obtain than others. The authors show this by conducting a post-hoc comparison
of published works as well as an in-depth cost analysis of representative methods (BM25,
Dense Passage Retrieval, SPLADE, and ColBERTv2) to arrive at conclusions that are

69

broadly consistent with the observations around model inference of Scells et al. (2022).
Santhanam et al. (2022b) use this fact to encourage the adoption of multidimensional

leaderboards and motivate research on metrics that capture the overall utility of a retrieval
or ranking method in a single quantity. They point to the Dynascores proposed by Ma et al.
(2021b) as one such measure that allows for a single ranking of a collection of systems. For
example, they evaluate the four retrieval methods above in terms of their query latency,
accuracy, and dollar cost (as measured on different cloud-based hardware platforms per
million queries). By assigning different weights to each dimension (a “policy”) and combining
the measurements using Dynascores according to the policy, they order retrieval systems by
their utility in the context of the given policy.

We too encourage the development of multidimensional leaderboards to incentivize
research into efficient and effective systems. In fact, while Santhanam et al. (2022b) argue
for leaderboards that capture inference efficiency, we believe training efficiency too must be
reflected in the overall utility of a retrieval and ranking system. In spite of arguments that
training a model incurs a cost that is amortized and thus comparably insignificant, we note
that retrieval and ranking models have a relatively short lifetime: As the data distribution
shifts, models must often be re-trained or fine-tuned on fresh samples. By incorporating
these costs into model evaluation and comparison, a leaderboard could encourage reusability
and recyclability of models. How these costs may be measured and factored into a ranking
on a leaderboard, however, is an open question.

Acknowledgements
We are grateful to the three anonymous reviewers who perused an earlier version of this
monograph meticulously and gave us constructive feedback. This manuscript benefited
greatly from their thorough and thoughtful suggestions.

We drew inspiration from discussions we had with participants of the Workshop on
Reaching Efficiency in Neural Information Retrieval (ReNeuIR) at ACM SIGIR 2022. We
thank them for the topics they brought to our attention and their insight into all aspects of
efficiency.

Finally, we extend our sincere gratitude to Maarten de Rijke for his patience, encour-
agement, and invaluable feedback as we prepared this manuscript.

This research has been partly funded by PNRR - M4C2 - Investimento 1.3, Parte-
nariato Esteso PE00000013 - “FAIR - Future Artificial Intelligence Research” - Spoke 1
”Human-centered AI”, funded by the European Commission under the NextGeneration EU
programme.

70

Table 5.1: Highlights of cost-aware learning methods.

Method Category Strategy Inference
Speed-up

Joint optimization
(Wang et al., 2010a)

Cost-sensitive learn-
ing

Learn linear functions with a
novel metric (EET) mixing ef-
ficiency and effectiveness

2×

CSTC (Xu et al.,
2013)

Cost-sensitive learn-
ing

Tree of classifiers reducing the
number of features extracted
per instance

2×

Submodular trees of
classifiers (Kusner et
al., 2014)

Cost-sensitive learn-
ing

Tree of classifiers reducing the
number of features extracted
per instance. Reduced time for
learning the model w.r.t (Xu
et al., 2013)

up to 119×
(training
time)

Pruning while boost-
ing (Asadi and Lin,
2013c)

Node pruning Collapse leaves to reduce tree
depth.

1.6×

CLEaVER (Lucch-
ese et al., 2016a)

Tree pruning Remove trees and tune
weights.

2.6×

X-Dart (Lucchese et
al., 2017b)

Tree pruning Mute trees and remove them
when appropriate

3×

Ranking Distillation
(Tang and Wang,
2018)

Homogeneous
knowledge distilla-
tion

Student trained on top-
ranking instances by teacher.

2×

Fast neural networks
from tree-based en-
sembles (Nardini et
al., 2022; Tang and
Wang, 2018; Cohen et
al., 2018)

Heterogeneous
knowledge distilla-
tion

Feed-forward networks
learned as students approxi-
mating λ-Mart

4× (CPU),
100×
(GPU)

71

Table 6.1: Highlights of inference methods.

Method Category Strategy Inference
Speed-up

Runtime optimizations for
tree-based machine learning
models (Asadi et al., 2014)

Efficient
Traversal

Predication and interleaved
multi-document evaluation

2×

QuickScorer (Lucchese et al.,
2015b)

Efficient
Traversal

Feature-wise traversal and
cache-aware data layout

additional
6.5×

RapidScorer (Ye et al.,
2018)

Efficient
Traversal

Compact data layout 3.5× (over
QuickScorer)

Early Exit (Cambazoglu et
al., 2010)

Approximate
Scoring

Terminate ensemble traversal
early

4×

Dynamic cutoff prediction
(Culpepper et al., 2016)

Cascade Query-based prediction of the
number of candidate docu-
ments

2×

A Cascade Ranking Model
(Wang et al., 2011)

Cascade Joint learning of pruning and
ranker stage

tunable trade-
off

Cost-Aware Cascade Rank-
ing (Chen et al., 2017)

Cascade Expensive features are moved
to later stages

2×

72

Table 8.1: Highlights of neural learning to rank.

Method Category Strategy

Early-exit on cascade Transformers (Sol-
daini and Moschitti, 2020)

Early exit Discard fixed-size subset of documents at each exit
point.

Early-exit on Transformers (Schwartz et al.,
2020)

Early exit Early-exit inference of “easy” documents in Transformer-
based networks. More layers are executed for “difficult”
documents.

Per-layer early-exit for Transformers (Xin
et al., 2021; Xin et al., 2020)

Early exit One “off-ramp” classifier for each layer that terminates
inference. Decision taken based on the confidence in the
classification (Xin et al., 2020). In a later work, the de-
cision of the classifier (i.e., to “exit” or not) is learnt at
every exit point of the network (Xin et al., 2021).

Adaptive inference for distilling fast
Transformer-based networks (Liu et al.,
2020)

Early exit,
Distillation

Student-teacher model applied to BERT. The student
model uses classifiers to enable early exits based on con-
fidence.

Distilling smaller models from BERT (Gao
et al., 2020)

Distillation Smaller models learnt from BERT and monoBERT. Hy-
brid distillation strategies (i.e., a student model learns
from a general-purpose BERT model first, followed by
distillation of ranking behavior from monoBERT) per-
form as well as monoBERT but are up to 9× faster at
inference.

Single-vector dense retrieval (Karpukhin et
al., 2020; Xiong et al., 2021; Lindgren et al.,
2021)

Dense re-
trieval

Documents and passages are encoded as single vec-
tors. Several contributions concern the negative selec-
tion strategy that is crucial to generating effective dense
representations. While DPR (Karpukhin et al., 2020) se-
lects negative examples in the beginning of the training
process, ANCE (Xiong et al., 2021) continually finds
negative examples based on the current structure of the
vector space by using an ANN index as the model is
being trained. To limit the computational burden of the
learning process, Lindgren et al. (2021) propose to cache
negative results during training so to work more effi-
ciently.

Multiple-vector dense retrieval (Khattab
and Zaharia, 2020; Santhanam et al.,
2022a)

Dense re-
trieval

Each term of the documents and passages are encoded
as a vector. Finer granularity leads to improved perfor-
mance. Inference is often a two-step process: (1) use a
language model to encode query and document terms
(separately), (2) use a “late-interaction” function to es-
timate the overall similarity of query and document
terms.

73

References
Ai, Q., X. Wang, S. Bruch, N. Golbandi, M. Bendersky, and M. Najork. (2019). “Learning

Groupwise Multivariate Scoring Functions Using Deep Neural Networks”. In: Proceedings
of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval.
Santa Clara, CA, USA. 85–92.

Akkalyoncu Yilmaz, Z., S. Wang, W. Yang, H. Zhang, and J. Lin. (2019). “Applying BERT
to Document Retrieval with Birch”. In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP): System Demonstrations.

Asadi, N. (2013). Multi-Stage Search Architectures for Streaming Documents. University of
Maryland.

Asadi, N. and J. Lin. (2012). “Fast Candidate Generation for Two-Phase Document Rank-
ing: Postings List Intersection with Bloom Filters”. In: Proceedings of the 21st ACM
International Conference on Information and Knowledge Management. Maui, Hawaii,
USA. 2419–2422.

Asadi, N. and J. Lin. (2013a). “Effectiveness/Efficiency Tradeoffs for Candidate Generation
in Multi-Stage Retrieval Architectures”. In: Proceedings of the 36th International ACM
SIGIR Conference on Research and Development in Information Retrieval. Dublin,
Ireland. 997–1000.

Asadi, N. and J. Lin. (2013b). “Fast Candidate Generation for Real-Time Tweet Search
with Bloom Filter Chains”. ACM Transactions on Information Systems. 31(3).

Asadi, N. and J. Lin. (2013c). “Training Efficient Tree-Based Models for Document Ranking”.
In: Proceedings of the 35th European Conference on Advances in Information Retrieval.
Moscow, Russia. 146–157.

Asadi, N., J. Lin, and A. P. de Vries. (2014). “Runtime Optimizations for Tree-Based
Machine Learning Models.” IEEE Transactions on Knowledge and Data Engineering.
26(9): 2281–2292.

Ba, J. and R. Caruana. (2014). “Do Deep Nets Really Need to be Deep?” In: Advances in
neural information processing systems. 2654–2662.

Bendersky, M., W. B. Croft, and Y. Diao. (2011). “Quality-Biased Ranking of Web Docu-
ments”. In: Proceedings of the 4th ACM International Conference on Web Search and
Data Mining. Hong Kong, China. 95–104.

Bennett, P. N., K. Svore, and S. T. Dumais. (2010). “Classification-enhanced Ranking”. In:
Proceedings of the 19th International Conference on World Wide Web. 111–120.

Blondel, M., O. Teboul, Q. Berthet, and J. Djolonga. (2020). “Fast Differentiable Sorting and
Ranking”. In: Proceedings of the 37th International Conference on Machine Learning.

74

Borisov, A., I. Markov, M. de Rijke, and P. Serdyukov. (2016). “A Neural Click Model for
Web Search”. In: Proceedings of the 25th International Conference on World Wide Web.
531–541.

Breiman, L., J. Friedman, C. J. Stone, and R. Olshen. (1984). Classification and Regression
Trees. Chapman and Hall/CRC.

Broder, A. Z., D. Carmel, M. Herscovici, A. Soffer, and J. Zien. (2003). “Efficient Query
Evaluation Using a Two-Level Retrieval Process”. In: Proceedings of the 12th Interna-
tional Conference on Information and Knowledge Management. New Orleans, LA, USA.
426–434.

Brown, T. B., B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M.
Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei. (2020). “Language Models are Few-Shot Learners”. arXiv: 2005.14165
[cs.CL].

Bruch, S. (2021). “An Alternative Cross Entropy Loss for Learning-to-Rank”. In: Proceedings
of the Web Conference 2021. Ljubljana, Slovenia. 118–126.

Bruch, S., S. Gai, and A. Ingber. (2022a). “An Analysis of Fusion Functions for Hybrid
Retrieval”. arXiv: 2210.11934 [cs.IR].

Bruch, S., S. Han, M. Bendersky, and M. Najork. (2020). “A Stochastic Treatment of Learn-
ing to Rank Scoring Functions”. In: Proceedings of the 13th International Conference
on Web Search and Data Mining. 61–69.

Bruch, S., C. Lucchese, and F. M. Nardini. (2022b). “ReNeuIR: Reaching Efficiency in
Neural Information Retrieval”. In: Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval. Madrid, Spain.
3462–3465.

Bruch, S., C. Lucchese, and F. M. Nardini. (2023). “Report on the 1st Workshop on Reaching
Efficiency in Neural Information Retrieval (ReNeuIR 2022) at SIGIR 2022”. SIGIR
Forum. 56(2).

Bruch, S., X. Wang, M. Bendersky, and M. Najork. (2019a). “An Analysis of the Softmax
Cross Entropy Loss for Learning-to-Rank with Binary Relevance”. In: Proceedings of
the 2019 ACM SIGIR International Conference on Theory of Information Retrieval.
Santa Clara, CA, USA. 75–78.

Bruch, S., M. Zoghi, M. Bendersky, and M. Najork. (2019b). “Revisiting Approximate
Metric Optimization in the Age of Deep Neural Networks”. In: Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in Information
Retrieval. Paris, France. 1241–1244.

Buckley, C. and E. Voorhees. (2005). “Retrieval System Evaluation”. In: TREC: Experiment
and Evaluation in Information Retrieval. MIT Press. Chap. 3.

75

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2210.11934

Burges, C., T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullen-
der. (2005). “Learning to Rank using Gradient Descent”. In: Proceedings of the 22nd
international conference on Machine learning. ACM. 89–96.

Burges, C. J. (2010). “From RankNet to LambdaRank to LambdaMART: An Overview”.
Tech. rep. No. MSR-TR-2010-82.

Busolin, F., C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, and S. Trani. (2021).
“Learning Early Exit Strategies for Additive Ranking Ensembles”. In: Proceedings of the
44th International ACM SIGIR Conference on Research and Development in Information
Retrieval, Virtual Event, Canada. 2217–2221.

Cambazoglu, B. B., H. Zaragoza, O. Chapelle, J. Chen, C. Liao, Z. Zheng, and J. Degenhardt.
(2010). “Early Exit Optimizations for Additive Machine Learned Ranking Systems”. In:
Proceedings of the 3rd International Conference on Web Search and Web Data Mining
(WSDM). ACM. 411–420.

Cao, Z., T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. (2007). “Learning to Rank: from Pairwise
Approach to Listwise Approach”. In: Proceedings of the 24th International Conference
on Machine learning. ACM. 129–136.

Capannini, G., C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, and N. Tonellotto.
(2016). “Quality Versus Efficiency in Document Scoring with Learning-to-rank Models”.
Information Processing & Management. 52(6): 1161–1177.

Carterette, B., P. Bennett, D. Chickering, and S. Dumais. (2008). “Here or there”. Advances
in Information Retrieval: 16–27.

Chapelle, O. and Y. Chang. (2011). “Yahoo! Learning to Rank Challenge Overview”. In:
Proceedings of the Learning to Rank Challenge. 1–24.

Chapelle, O., T. Joachims, F. Radlinski, and Y. Yue. (2012). “Large-scale Validation and
Analysis of Interleaved Search Evaluation”. ACM Transactions on Information Systems.
30(1): 6.

Chapelle, O., D. Metlzer, Y. Zhang, and P. Grinspan. (2009). “Expected Reciprocal Rank
for Graded Relevance”. In: Proceedings of the 18th ACM conference on Information and
knowledge management. 621–630.

Chapelle, O., P. Shivaswamy, S. Vadrevu, K. Weinberger, Y. Zhang, and B. Tseng. (2011).
“Boosted Multi-task Learning”. Machine learning. 85(1-2): 149–173.

Chen, M., Z. Xu, K. Weinberger, O. Chapelle, and D. Kedem. (2012). “Classifier cascade for
minimizing feature evaluation cost”. In: Artificial Intelligence and Statistics. 218–226.

Chen, R.-C., L. Gallagher, R. Blanco, and J. S. Culpepper. (2017). “Efficient Cost-Aware Cas-
cade Ranking in Multi-Stage Retrieval”. In: Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in Information Retrieval. Shinjuku,
Tokyo, Japan. 445–454.

76

Chen, T., M. Zhang, J. Lu, M. Bendersky, and M. Najork. (2022). “Out-of-Domain Seman-
tics to the Rescue! Zero-Shot Hybrid Retrieval Models”. In: Advances in Information
Retrieval: 44th European Conference on IR Research, ECIR 2022, Stavanger, Norway,
April 10–14, 2022, Proceedings, Part I. Stavanger, Norway. 95–110.

Chen, T. and C. Guestrin. (2016). “XGBoost: A Scalable Tree Boosting System”. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. San Francisco, California, USA. 785–794.

Chuklin, A., I. Markov, and M. de Rijke. (2015). Click Models for Web Search. Morgan &
Claypool. isbn: 9781627056489.

Cohen, D., J. Foley, H. Zamani, J. Allan, and W. B. Croft. (2018). “Universal Approximation
Functions for Fast Learning to Rank: Replacing Expensive Regression Forests with
Simple Feed-forward Networks”. In: The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval. ACM. 1017–1020.

Cormack, G. V., M. D. Smucker, and C. L. Clarke. (2011). “Efficient and Effective Spam
Filtering and Re-ranking for Large Web Datasets”. Information Retrieval. 14: 441–465.

Culpepper, J. S., C. L. Clarke, and J. Lin. (2016). “Dynamic Cutoff Prediction in Multi-
stage Retrieval Systems”. In: Proceedings of the 21st Australasian Document Computing
Symposium. ACM. 17–24.

Cuturi, M., O. Teboul, and J.-P. Vert. (2019). “Differentiable Ranking and Sorting using
Optimal Transport”. In: Advances in Neural Information Processing Systems. Vol. 32.

Dai, Z. and J. Callan. (2019). “Deeper Text Understanding for IR with Contextual Neural
Language Modeling”. In: Proceedings of the 42nd International ACM SIGIR Conference
on Research and Development in Information Retrieval. Paris, France. 985–988.

Dai, Z., C. Xiong, J. Callan, and Z. Liu. (2018). “Convolutional Neural Networks for Soft-
Matching N-Grams in Ad-Hoc Search”. In: Proceedings of the 11th ACM International
Conference on Web Search and Data Mining. Marina Del Rey, CA, USA. 126–134.

Dang, V., M. Bendersky, and W. B. Croft. (2013). “Two-Stage learning to rank for informa-
tion retrieval”. In: Advances in Information Retrieval. Springer. 423–434.

Dato, D., C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R.
Venturini. (2016). “Fast Ranking with Additive Ensembles of Oblivious and Non-
Oblivious Regression Trees”. ACM Transactions on Information Systems. 35(2): 15:1–
15:31.

Dehghani, M., H. Zamani, A. Severyn, J. Kamps, and W. B. Croft. (2017). “Neural Ranking
Models with Weak Supervision”. In: Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval. Tokyo, Japan. 65–74.

77

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova. (2019). “BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding”. In: Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). 4171–
4186.

Diaz, F., B. Mitra, M. D. Ekstrand, A. J. Biega, and B. Carterette. (2020). “Evaluating
Stochastic Rankings with Expected Exposure”. In: Proceedings of the 29th ACM Inter-
national Conference on Information & Knowledge Management. Virtual Event, Ireland.
275–284.

Ding, S. and T. Suel. (2011). “Faster Top-k Document Retrieval Using Block-Max Indexes”.
In: Proceedings of the 34th International ACM SIGIR Conference on Research and
Development in Information Retrieval. Beijing, China. 993–1002.

Dredze, M., R. Gevaryahu, and A. Elias-Bachrach. (2007). “Learning Fast Classifiers for
Image Spam.” In: CEAS. 2007–487.

Efron, B., T. Hastie, I. Johnstone, R. Tibshirani, et al. (2004). “Least Angle Regression”.
The Annals of Statistics. 32(2): 407–499.

Formal, T., C. Lassance, B. Piwowarski, and S. Clinchant. (2022). “From Distillation to Hard
Negative Sampling: Making Sparse Neural IR Models More Effective”. In: Proceedings
of the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval. Madrid, Spain. 2353–2359.

Freund, Y., R. Iyer, R. E. Schapire, and Y. Singer. (2003). “An Efficient Boosting Algorithm
for Combining Preferences”. Journal of Machine Learning Research. 4(Nov): 933–969.

Friedman, J. H. (2001). “Greedy Function Approximation: a Gradient Boosting Machine”.
Annals of Statistics: 1189–1232.

Gallagher, L., R.-C. Chen, R. Blanco, and J. S. Culpepper. (2019). “Joint Optimization of
Cascade Ranking Models”. In: Proceedings of the 12th ACM International Conference
on Web Search and Data Mining. Melbourne VIC, Australia. 15–23.

Ganjisaffar, Y., R. Caruana, and C. V. Lopes. (2011). “Bagging Gradient-boosted Trees for
High Precision, Low Variance Ranking Models”. In: Proceedings of the 34th international
ACM SIGIR conference on Research and development in Information Retrieval. 85–94.

Gao, L. and J. Callan. (2021a). “Condenser: a Pre-training Architecture for Dense Retrieval”.
arXiv: 2104.08253 [cs.CL].

Gao, L. and J. Callan. (2021b). “Unsupervised Corpus Aware Language Model Pre-training
for Dense Passage Retrieval”. arXiv: 2108.05540 [cs.IR].

Gao, L., Z. Dai, and J. Callan. (2020). “Understanding BERT Rankers Under Distillation”.
In: Proceedings of the 2020 ACM SIGIR on International Conference on Theory of
Information Retrieval. Virtual Event, Norway. 149–152.

78

https://arxiv.org/abs/2104.08253
https://arxiv.org/abs/2108.05540

Geng, X., T.-Y. Liu, T. Qin, and H. Li. (2007). “Feature Selection for Ranking”. In:
Proceedings of the 30th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. Amsterdam, The Netherlands. 407–414.

Gigli, A., C. Lucchese, F. M. Nardini, and R. Perego. (2016). “Fast Feature Selection for
Learning to Rank”. In: Proceedings of the 2016 ACM International Conference on the
Theory of Information Retrieval. Newark, Delaware, USA. 167–170.

Gil-Costa, V., F. Loor, R. Molina, F. M. Nardini, R. Perego, and S. Trani. (2022). “Ensemble
Model Compression for Fast and Energy-Efficient Ranking on FPGAs”. In: Advances in
Information Retrieval. Springer. 260–273.

Gomes, B. (2017). “Our Latest Quality Improvements for Search”. url: https://www.blog.
google/products/search/our-latest-quality-improvements-search/.

Gordon, M., K. Duh, and N. Andrews. (2020). “Compressing BERT: Studying the Effects
of Weight Pruning on Transfer Learning”. In: Proceedings of the 5th Workshop on
Representation Learning for NLP. 143–155.

Guo, J., Y. Fan, Q. Ai, and W. B. Croft. (2016). “A Deep Relevance Matching Model for
Ad-Hoc Retrieval”. In: Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management. Indianapolis, Indiana, USA. 55–64.

Guo, J., Y. Fan, L. Pang, L. Yang, Q. Ai, H. Zamani, C. Wu, W. B. Croft, and X.
Cheng. (2020). “A Deep Look into Neural Ranking Models for Information Retrieval”.
Information Processing & Management. 57(6).

He, X., J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Herbrich, S. Bowers, et al.
(2014). “Practical Lessons from Predicting Clicks on Ads at Facebook”. In: Proceedings
of the 8th International Workshop on Data Mining for Online Advertising. 1–9.

Henzinger, M. R. et al. (2000). “Link Analysis in Web Information Retrieval”. IEEE Data
Engineering Bulletin. 23(3): 3–8.

Hinton, G. E., N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. (2012).
“Improving Neural Networks by Preventing Co-adaptation of Feature Detectors”. arXiv:
1207.0580 [cs.NE].

Hoerl, A. E. and R. W. Kennard. (1970). “Ridge Regression: Biased Estimation for
Nonorthogonal Problems”. Technometrics. 12(1): 55–67.

Hofmann, K., A. Schuth, S. Whiteson, and M. de Rijke. (2013a). “Reusing Historical
Interaction Data for Faster Online Learning to Rank for IR”. In: Proceedings of the 6th
ACM International Conference on Web Search and Data Mining. 183–192.

Hofmann, K., S. Whiteson, and M. de Rijke. (2013b). “Balancing Exploration and Ex-
ploitation in Listwise and Pairwise Online Learning to Rank for Information Retrieval”.
Information Retrieval. 16(1): 63–90.

79

https://www.blog.google/products/search/our-latest-quality-improvements-search/
https://www.blog.google/products/search/our-latest-quality-improvements-search/
https://arxiv.org/abs/1207.0580

Hofstätter, S., H. Zamani, B. Mitra, N. Craswell, and A. Hanbury. (2020). “Local Self-
Attention over Long Text for Efficient Document Retrieval”. In: Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval. Virtual Event, China. 2021–2024.

Huang, P.-S., X. He, J. Gao, L. Deng, A. Acero, and L. Heck. (2013). “Learning Deep
Structured Semantic Models for Web Search using Clickthrough Data”. In: Proceedings
of the 22nd ACM International Conference on Information & Knowledge Management.
ACM. 2333–2338.

Jagerman, R., Z. Qin, X. Wang, M. Bendersky, and M. Najork. (2022). “On Optimizing
Top-K Metrics for Neural Ranking Models”. In: Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information Retrieval. Madrid,
Spain. 2303–2307.

Järvelin, K. and J. Kekäläinen. (2000). “IR Evaluation Methods for Retrieving Highly
Relevant Documents”. In: Proceedings of the 23rd International ACM SIGIR Conference
on Research and Development in Information Retrieval. 41–48.

Jiang, D., K. W.-T. Leung, and W. Ng. (2016). “Query Intent Mining with Multiple
Dimensions of Web Search Data”. Proceedings of the 25th International Conference on
World Wide Web. 19(3): 475–497.

Jiao, X., Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and Q. Liu. (2020).
“TinyBERT: Distilling BERT for Natural Language Understanding”. In: Findings of the
Association for Computational Linguistics: EMNLP 2020.

Jin, X., T. Yang, and X. Tang. (2016). “A Comparison of Cache Blocking Methods for
Fast Execution of Ensemble-based Score Computation”. In: Proceedings of the 39th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. Pisa, Italy. 629–638.

Joachims, T. (2002). “Optimizing Search Engines using Clickthrough Data”. In: Proceedings
of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 133–142.

Joachims, T., L. Granka, B. Pan, H. Hembrooke, and G. Gay. (2005). “Accurately Interpret-
ing Clickthrough Data as Implicit Feedback”. In: Proceedings of the 28th International
ACM SIGIR Conference on Research and Development in Information Retrieval. 154–
161.

Joachims, T., A. Swaminathan, and T. Schnabel. (2017). “Unbiased Learning-to-rank with
Biased Feedback”. In: Proceedings of the 10th ACM International Conference on Web
Search and Data Mining. 781–789.

Johnson, J., M. Douze, and H. Jégou. (2021). “Billion-Scale Similarity Search with GPUs”.
IEEE Transactions on Big Data. 7: 535–547.

80

Jones, K. S., S. Walker, and S. E. Robertson. (2000). “A Probabilistic Model of Information
Retrieval: Development and Comparative Experiments: Part 2”. Information processing
& management. 36(6): 809–840.

Karpukhin, V., B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen, and W.-t. Yih.
(2020). “Dense Passage Retrieval for Open-Domain Question Answering”. In: Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).
6769–6781.

Ke, G., Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu. (2017).
“LightGBM: A Highly Efficient Gradient Boosting Decision Tree”. In: Proceedings of the
31st International Conference on Neural Information Processing Systems. Long Beach,
California, USA. 3149–3157.

Khattab, O. and M. Zaharia. (2020). “ColBERT: Efficient and Effective Passage Search via
Contextualized Late Interaction over BERT”. In: Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Retrieval. ACM.
Virtual Event, China. 39–48.

Kohavi, R., A. Deng, B. Frasca, T. Walker, Y. Xu, and N. Pohlmann. (2013). “Online
Controlled Experiments at Large Scale”. In: Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining. 1168–1176.

Kusner, M. J., W. Chen, Q. Zhou, Z. E. Xu, K. Q. Weinberger, and Y. Chen. (2014).
“Feature-Cost Sensitive Learning with Submodular Trees of Classifiers”. In: AAAI.
1939–1945.

Kveton, B., C. Szepesvari, Z. Wen, and A. Ashkan. (2015). “Cascading Bandits: Learning
to Rank in the Cascade Model”. In: International Conference on Machine Learning.
767–776.

Lassance, C. and S. Clinchant. (2022). “An Efficiency Study for SPLADE Models”. In: Pro-
ceedings of the 45th International ACM SIGIR Conference on Research and Development
in Information Retrieval. Madrid, Spain. 2220–2226.

Lettich, F., C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R.
Venturini. (2019). “Parallel Traversal of Large Ensembles of Decision Trees”. IEEE
Transactions on Parallel and Distributed Systems. 30(9): 2075–2089.

Li, C., A. Yates, S. MacAvaney, B. He, and Y. Sun. (2020). “PARADE: Passage Represen-
tation Aggregation for Document Reranking”. arXiv: 2008.09093 [cs.IR].

Lin, J., R. Nogueira, and A. Yates. (2021). “Pretrained Transformers for Text Ranking:
BERT and Beyond”. arXiv: 2010.06467 [cs.IR].

Lin, S.-C., J.-H. Yang, and J. Lin. (2020a). “Distilling Dense Representations for Ranking
using Tightly-coupled Teachers”. arXiv: 2010.11386 [cs.IR].

Lin, Z., J. Liu, Z. Yang, N. Hua, and D. Roth. (2020b). “Pruning Redundant Mappings
in Transformer Models via Spectral-Normalized Identity Prior”. In: Findings of the
Association for Computational Linguistics: EMNLP 2020.

81

https://arxiv.org/abs/2008.09093
https://arxiv.org/abs/2010.06467
https://arxiv.org/abs/2010.11386

Lindgren, E., S. Reddi, R. Guo, and S. Kumar. (2021). “Efficient Training of Retrieval
Models using Negative Cache”. Advances in Neural Information Processing Systems. 34:
4134–4146.

Ling, X., W. Deng, C. Gu, H. Zhou, C. Li, and F. Sun. (2017). “Model Ensemble for Click
Prediction in Bing Search Ads”. In: Proceedings of the 26th International Conference on
World Wide Web Companion. 689–698.

Liu, S., F. Xiao, W. Ou, and L. Si. (2017). “Cascade Ranking for Operational E-commerce
Search”. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. ACM. 1557–1565.

Liu, T.-Y. (2009). “Learning to Rank for Information Retrieval”. Foundations and Trends
in Information Retrieval. 3(3): 225–331.

Liu, W., P. Zhou, Z. Wang, Z. Zhao, H. Deng, and Q. Ju. (2020). “FastBERT: a Self-distilling
BERT with Adaptive Inference Time”. In: Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. 6035–6044.

Liu, Z., F. Li, G. Li, and J. Cheng. (2021). “EBERT: Efficient BERT Inference with Dynamic
Structured Pruning”. In: Findings of the Association for Computational Linguistics:
ACL-IJCNLP 2021. 4814–4823.

Long, B., O. Chapelle, Y. Zhang, Y. Chang, Z. Zheng, and B. Tseng. (2010). “Active
Learning for Ranking through Expected Loss Optimization”. In: Proceedings of the 33rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 267–274.

Luan, Y., J. Eisenstein, K. Toutanova, and M. Collins. (2021). “Sparse, Dense, and At-
tentional Representations for Text Retrieval”. Transactions of the Association for
Computational Linguistics. 9: 329–345.

Lucchese, C., C. I. Muntean, F. M. Nardini, R. Perego, and S. Trani. (2017a). “RankEval:
An Evaluation and Analysis Framework for Learning-to-Rank Solutions”. In: Proceedings
of the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval. Shinjuku, Tokyo, Japan. 1281–1284.

Lucchese, C., C. I. Muntean, F. M. Nardini, R. Perego, and S. Trani. (2020a). “RankEval:
Evaluation and Investigation of Ranking Models”. SoftwareX. 12: 100614. issn: 2352-
7110.

Lucchese, C., F. M. Nardini, S. Orlando, R. Perego, F. Silvestri, and S. Trani. (2016a).
“Post-Learning Optimization of Tree Ensembles for Efficient Ranking”. In: Proceedings
of the 39th International ACM SIGIR Conference on Research and Development in
Information Retrieval. Pisa, Italy. 949–952.

Lucchese, C., F. M. Nardini, S. Orlando, R. Perego, F. Silvestri, and S. Trani. (2018a).
“X-CLEaVER: Learning Ranking Ensembles by Growing and Pruning Trees”. ACM
Transactions on Intelligent Systems and Technology. 9(6).

82

Lucchese, C., F. M. Nardini, S. Orlando, R. Perego, and N. Tonellotto. (2015a). “Speeding up
Document Ranking with Rank-based Features”. In: Proceedings of the 38th International
ACM SIGIR Conference on Research and Development in Information Retrieval. ACM.
895–898.

Lucchese, C., F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini.
(2015b). “QuickScorer: A Fast Algorithm to Rank Documents with Additive Ensembles
of Regression Trees”. In: Proceedings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval. 73–82.

Lucchese, C., F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini. (2016b).
“Exploiting CPU SIMD Extensions to Speed-up Document Scoring with Tree Ensembles”.
In: Proceedings of the 39th International ACM SIGIR Conference on Research and
Development in Information Retrieval. Pisa, Italy. 833–836.

Lucchese, C., F. M. Nardini, S. Orlando, R. Perego, and S. Trani. (2017b). “X-DART:
Blending Dropout and Pruning for Efficient Learning to Rank”. In: Proceedings of the
40th International ACM SIGIR Conference on Research and Development in Information
Retrieval. Shinjuku, Tokyo, Japan. 1077–1080.

Lucchese, C., F. M. Nardini, S. Orlando, R. Perego, and S. Trani. (2020b). “Query-Level
Early Exit for Additive Learning-to-Rank Ensembles”. In: Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval. SIGIR ’20. Virtual Event, China: ACM. 2033–2036.

Lucchese, C., F. M. Nardini, R. Perego, S. Orlando, and S. Trani. (2018b). “Selective
Gradient Boosting for Effective Learning to Rank”. In: The 41st International ACM
SIGIR Conference on Research and Development in Information Retrieval. Ann Arbor,
MI, USA. 155–164.

Lucchese, C., S. Orlando, R. Perego, F. Silvestri, and G. Tolomei. (2013). “Discovering
Tasks from Search Engine Query Logs”. ACM Transactions on Information Systems.
31(3): 14.

Ma, X., K. Sun, R. Pradeep, and J. Lin. (2021a). “A Replication Study of Dense Passage
Retriever”. arXiv: 2104.05740 [cs.IR].

Ma, Z., K. Ethayarajh, T. Thrush, S. Jain, L. Y. Wu, R. Jia, C. Potts, A. Williams,
and D. Kiela. (2021b). “Dynaboard: An Evaluation-As-A-Service Platform for Holistic
Next-Generation Benchmarking”. In: Neural Information Processing Systems.

MacAvaney, S., S. Feldman, N. Goharian, D. Downey, and A. Cohan. (2020a). “ABNIRML:
Analyzing the Behavior of Neural IR Models”. arXiv. abs/2011.00696. url: https :
//arxiv.org/abs/2011.00696.

MacAvaney, S., C. Macdonald, and I. Ounis. (2022). “Streamlining Evaluation with ir-
measures”. In: Advances in Information Retrieval. Springer International Publishing.

83

https://arxiv.org/abs/2104.05740
https://arxiv.org/abs/2011.00696
https://arxiv.org/abs/2011.00696

MacAvaney, S., F. M. Nardini, R. Perego, N. Tonellotto, N. Goharian, and O. Frieder.
(2020b). “Efficient Document Re-Ranking for Transformers by Precomputing Term
Representations”. In: Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval. Virtual Event, China. 49–58.

MacAvaney, S., F. M. Nardini, R. Perego, N. Tonellotto, N. Goharian, and O. Frieder. (2020c).
“Expansion via Prediction of Importance with Contextualization”. In: Proceedings of the
43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval. 1573–1576.

MacAvaney, S., A. Yates, A. Cohan, and N. Goharian. (2019). “CEDR: Contextualized
Embeddings for Document Ranking”. In: Proceedings of the 42nd International ACM
SIGIR Conference on Research and Development in Information Retrieval. Paris, France.
1101–1104.

Macdonald, C., R. L. Santos, and I. Ounis. (2012). “On the Usefulness of Query Features
for Learning to Rank”. In: Proceedings of the 21st ACM International Conference on
Information and Knowledge Management. 2559–2562.

Macdonald, C., R. L. Santos, and I. Ounis. (2013). “The Whens and Hows of Learning to
Rank for Web Search”. Information Retrieval. 16(5): 584–628.

Mackenzie, J., J. S. Culpepper, R. Blanco, M. Crane, C. L. Clarke, and J. Lin. (2018).
“Query Driven Algorithm Selection in Early Stage Retrieval”. In: Proceedings of the
Eleventh ACM International Conference on Web Search and Data Mining. ACM. 396–
404.

Mackenzie, J., M. Petri, and A. Moffat. (2021). “Anytime Ranking on Document-Ordered
Indexes”. ACM Transactions on Information Systems. 40(1).

Malkov, Y. A. and D. A. Yashunin. (2016). “Efficient and Robust Approximate Nearest
Neighbor Search using Hierarchical Navigable Small World graphs”. arXiv: 1603.09320
[cs.DS].

Mallia, A., J. Mackenzie, T. Suel, and N. Tonellotto. (2022). “Faster Learned Sparse
Retrieval with Guided Traversal”. In: Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval. Madrid, Spain.
1901–1905.

Matsubara, Y., T. Vu, and A. Moschitti. (2020). “Reranking for Efficient Transformer-Based
Answer Selection”. In: Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval. 1577–1580.

McCarley, J. S., R. Chakravarti, and A. Sil. (2021). “Structured Pruning of a BERT-based
Question Answering Model”. arXiv: 1910.06360 [cs.CL].

Metzler, D. and W. B. Croft. (2007). “Linear Feature-based Models for Information Re-
trieval”. Information Retrieval. 10(3): 257–274.

Mikolov, T., K. Chen, G. S. Corrado, and J. Dean. (2013). “Efficient Estimation of Word
Representations in Vector Space”. arXiv: 1301.3781 [cs.CL].

84

https://arxiv.org/abs/1603.09320
https://arxiv.org/abs/1603.09320
https://arxiv.org/abs/1910.06360
https://arxiv.org/abs/1301.3781

Mitra, B. and N. Craswell. (2017). “Neural Models for Information Retrieval”. arXiv:
1705.01509 [cs.IR].

Mitra, B., F. Diaz, and N. Craswell. (2017). “Learning to Match using Local and Distributed
Representations of Text for Web Search”. In: Proceedings of the 26th International
Conference on World Wide Web. 1291–1299.

Mitra, B., S. Hofstätter, H. Zamani, and N. Craswell. (2021). “Improving Transformer-
Kernel Ranking Model Using Conformer and Query Term Independence”. In: Proceedings
of the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 1697–1702.

Mitra, B., E. Nalisnick, N. Craswell, and R. Caruana. (2016). “A Dual Embedding Space
Model for Document Ranking”. arXiv: 1602.01137 [cs.IR].

Moffat, A. and J. Zobel. (2008). “Rank-biased Precision for Measurement of Retrieval
Effectiveness”. ACM Transactions on Information Systems. 27(1): 2.

Mohan, A., Z. Chen, and K. Weinberger. (2011). “Web-search Ranking with Initialized
Gradient Boosted Regression Trees”. In: Proceedings of the learning to rank challenge.
77–89.

Molina, R., F. Loor, V. Gil-Costa, F. M. Nardini, R. Perego, and S. Trani. (2021). “Efficient
Traversal of Decision Tree Ensembles with FPGAs”. Journal of Parallel and Distributed
Computing. 155: 38–49.

Nardini, F. M., C. Rulli, S. Trani, and R. Venturini. (2022). “Distilled Neural Networks for
Efficient Learning to Rank”. IEEE Transactions on Knowledge and Data Engineering:
1–1.

Nguyen, T., M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder, and L. Deng. (2016).
“MS MARCO: A Human Generated MAchine Reading COmprehension Dataset”. Nov.

Nogueira, R. and K. Cho. (2020). “Passage Re-ranking with BERT”. arXiv: 1901.04085
[cs.IR].

Nogueira, R., Z. Jiang, R. Pradeep, and J. Lin. (2020). “Document Ranking with a Pre-
trained Sequence-to-Sequence Model”. In: Findings of the Association for Computational
Linguistics: EMNLP 2020. 708–718.

Nogueira, R. and J. Lin. (2019). “From doc2query to docTTTTTquery”.
Nogueira, R., W. Yang, K. Cho, and J. Lin. (2019a). “Multi-stage document ranking with

BERT”. arXiv: 1910.14424 [cs.IR].
Nogueira, R., W. Yang, J. Lin, and K. Cho. (2019b). “Document Expansion by Query

Prediction”. arXiv: 1904.08375 [cs.IR].
Onal, K. D., Y. Zhang, I. S. Altingovde, M. M. Rahman, P. Karagoz, A. Braylan, B. Dang,

H.-L. Chang, H. Kim, Q. Mcnamara, A. Angert, E. Banner, V. Khetan, T. Mcdonnell,
A. T. Nguyen, D. Xu, B. C. Wallace, M. Rijke, and M. Lease. (2018). “Neural Information
Retrieval: At the End of the Early Years”. Information Retrieval. 21(2–3): 111–182.

85

https://arxiv.org/abs/1705.01509
https://arxiv.org/abs/1602.01137
https://arxiv.org/abs/1901.04085
https://arxiv.org/abs/1901.04085
https://arxiv.org/abs/1910.14424
https://arxiv.org/abs/1904.08375

Oosterhuis, H. (2021). “Computationally Efficient Optimization of Plackett-Luce Ranking
Models for Relevance and Fairness”. In: Proceedings of the 44th International ACM
SIGIR Conference on Research and Development in Information Retrieval. ACM.

Oosterhuis, H., R. Jagerman, and M. de Rijke. (2020). “Unbiased Learning to Rank: Coun-
terfactual and Online Approaches”. In: Companion Proceedings of the Web Conference
2020. Taipei, Taiwan. 299–300.

Oosterhuis, H. and M. de Rijke. (2017). “Balancing Speed and Quality in Online Learning
to Rank for Information Retrieval”. In: Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management. ACM. 277–286.

Pang, L., J. Xu, Q. Ai, Y. Lan, X. Cheng, and J. Wen. (2020). “SetRank: Learning a
Permutation-Invariant Ranking Model for Information Retrieval”. In: Proceedings of the
43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval.

Petri, M., A. Moffat, J. Mackenzie, J. S. Culpepper, and D. Beck. (2019). “Accelerated Query
Processing Via Similarity Score Prediction”. In: Proceedings of the 42nd International
ACM SIGIR Conference on Research and Development in Information Retrieval. Paris,
France. 485–494.

Ponte, J. M. and W. B. Croft. (1998). “A Language Modeling Approach to Information
Retrieval”. In: Proceedings of the 21st annual international ACM SIGIR conference on
Research and development in information retrieval. 275–281.

Pradeep, R., R. Nogueira, and J. Lin. (2021). “The Expando-Mono-Duo Design Pattern
for Text Ranking with Pretrained Sequence-to-Sequence Models”. arXiv: 2101.05667
[cs.IR].

Prokhorenkova, L., G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin. (2018). “CatBoost:
Unbiased Boosting with Categorical Features”. In: Proceedings of the 32nd International
Conference on Neural Information Processing Systems. Montréal, Canada. 6639–6649.

Qin, T., T.-Y. Liu, and H. Li. (2010). “A General Approximation Framework for Direct
Optimization of Information Retrieval Measures”. Information Retrieval. 13(4): 375–397.

Qu, Y., Y. Ding, J. Liu, K. Liu, R. Ren, W. X. Zhao, D. Dong, H. Wu, and H. Wang.
(2021). “RocketQA: An Optimized Training Approach to Dense Passage Retrieval for
Open-Domain Question Answering”. In: Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies. 5835–5847.

Radlinski, F. and T. Joachims. (2005). “Query Chains: Learning to Rank from Implicit
Feedback”. In: Proceedings of the 11th ACM SIGKDD International Conference on
Knowledge Discovery in Data Mining. ACM. 239–248.

Radlinski, F., R. Kleinberg, and T. Joachims. (2008). “Learning Diverse Rankings with
Multi-armed Bandits”. In: Proceedings of the 25th International Conference on Machine
Learning. 784–791.

86

https://arxiv.org/abs/2101.05667
https://arxiv.org/abs/2101.05667

Raffel, C., N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and
P. J. Liu. (2020). “Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer”. Journal of Machine Learning Research. 21(140): 1–67.

Rasolofo, Y. and J. Savoy. (2003). “Term Proximity Scoring for Keyword-based Retrieval
Systems”. Advances in Information Retrieval: 79–79.

Robertson, S., H. Zaragoza, and M. Taylor. (2004). “Simple BM25 Extension to Multi-
ple Weighted Fields”. In: Proceedings of the 13th ACM International Conference on
Information and Knowledge Management. 42–49.

Salton, G. and C. Buckley. (1988). “Term-weighting approaches in automatic text retrieval”.
Information Processing & Management. 24(5): 513–523.

Sanh, V., L. Debut, J. Chaumond, and T. Wolf. (2020). “DistilBERT, a Distilled Version of
BERT: Smaller, Faster, Cheaper and Lighter”. arXiv: 1910.01108 [cs.CL].

Santhanam, K., O. Khattab, J. Saad-Falcon, C. Potts, and M. Zaharia. (2022a). “ColBERTv2:
Effective and Efficient Retrieval via Lightweight Late Interaction”. In: Proceedings of the
2022 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. 3715–3734.

Santhanam, K., J. Saad-Falcon, M. Franz, O. Khattab, A. Sil, R. Florian, M. A. Sultan,
S. Roukos, M. Zaharia, and C. Potts. (2022b). “Moving Beyond Downstream Task
Accuracy for Information Retrieval Benchmarking”. arXiv: 2212.01340 [cs.IR].

Scells, H., S. Zhuang, and G. Zuccon. (2022). “Reduce, Reuse, Recycle: Green Information
Retrieval Research”. In: Proceedings of the 45th International ACM SIGIR Conference
on Research and Development in Information Retrieval. Madrid, Spain. 2825–2837.

Schwartz, R., G. Stanovsky, S. Swayamdipta, J. Dodge, and N. A. Smith. (2020). “The
Right Tool for the Job: Matching Model and Instance Complexities”. In: Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics. 6640–6651.

Severyn, A. and A. Moschitti. (2015). “Learning to Rank Short Text Pairs with Convolu-
tional Deep Neural Networks”. In: Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM. 373–382.

Shen, Y., X. He, J. Gao, L. Deng, and G. Mesnil. (2014). “Learning Semantic Representations
using Convolutional Neural Networks for Web Search”. In: Proceedings of the 23rd
International Conference on World Wide Web. ACM. 373–374.

Soldaini, L. and A. Moschitti. (2020). “The Cascade Transformer: an Application for Efficient
Answer Sentence Selection”. In: ACL.

Sorokina, D. and E. Cantú-Paz. (2016). “Amazon Search: The Joy of Ranking Products”.
In: Proceedings of the 39th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 459–460.

Sparck Jones, K. (1972). “A Statistical Interpretation of Term Specificity and its Application
in Retrieval”. Journal of documentation. 28(1): 11–21.

87

https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/2212.01340

Strubell, E., A. Ganesh, and A. McCallum. (2019). “Energy and Policy Considerations for
Deep Learning in NLP”. In: Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics. Florence, Italy. 3645–3650.

Swezey, R., A. Grover, B. Charron, and S. Ermon. (2021). “PiRank: Scalable Learning
To Rank via Differentiable Sorting”. In: Advances in Neural Information Processing
Systems. Ed. by M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan.
Vol. 34. 21644–21654.

Szummer, M. and E. Yilmaz. (2011). “Semi-supervised Learning to Rank with Prefer-
ence Regularization”. In: Proceedings of the 20th ACM International Conference on
Information and Knowledge Management. 269–278.

Tang, J. and K. Wang. (2018). “Ranking Distillation: Learning Compact Ranking Models
With High Performance for Recommender System”. In: Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. 2289–
2298.

Tang, X., X. Jin, and T. Yang. (2014). “Cache-conscious Runtime Optimization for Ranking
Ensembles”. In: Proceedings of the 37th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR). 1123–1126.

Tax, N., S. Bockting, and D. Hiemstra. (2015). “A Cross-benchmark Comparison of 87
Learning to Rank Methods”. Information Processing & Management. 51(6): 757–772.

Taylor, M., J. Guiver, S. Robertson, and T. Minka. (2008). “SoftRank: Optimizing Non-
Smooth Rank Metrics”. In: Proceedings of the 2008 International Conference on Web
Search and Data Mining. Palo Alto, California, USA. 77–86.

Thakur, N., N. Reimers, A. Rücklé, A. Srivastava, and I. Gurevych. (2021). “BEIR: A
Heterogeneous Benchmark for Zero-shot Evaluation of Information Retrieval Models”. In:
35th Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2).

The Guardian. (2017). “Google tells Army of ’Quality Raters’ to Flag Holocaust denial”.
url: https://www.theguardian.com/technology/2017/mar/15/google-quality-raters-
flag-holocaust-denial-fake-news.

Tonellotto, N. and C. Macdonald. (2021). “Query Embedding Pruning for Dense Retrieval”.
In: Proceedings of the 30th ACM International Conference on Information and Knowledge
Management. Virtual Event, Queensland, Australia. 3453–3457.

Tseng, P. et al. (1988). “Coordinate Ascent for Maximizing Nondifferentiable Concave
Functions”.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I.
Polosukhin. (2017). “Attention is All You Need”. In: Proceedings of the 31st International
Conference on Neural Information Processing Systems. Long Beach, California, USA.
6000–6010.

88

https://www.theguardian.com/technology/2017/mar/15/google-quality-raters-flag-holocaust-denial-fake-news
https://www.theguardian.com/technology/2017/mar/15/google-quality-raters-flag-holocaust-denial-fake-news

Vinayak, R. K. and R. Gilad-Bachrach. (2015). “DART: Dropouts meet Multiple Additive
Regression Trees”. In: Proceedings of the 18th International Conference on Artificial
Intelligence and Statistics. Ed. by G. Lebanon and S. V. N. Vishwanathan. Vol. 38.
Proceedings of Machine Learning Research. San Diego, California, USA: PMLR. 489–497.

Wang, L., J. Lin, and D. Metzler. (2011). “A Cascade Ranking Model for Efficient Ranked
Retrieval”. In: Proceedings of the 34th International ACM SIGIR Conference on Research
and Development in Information Retrieval. Beijing, China. 105–114.

Wang, L., J. J. Lin, and D. Metzler. (2010a). “Learning to Efficiently Rank”. In: Proceeding
of the 33rd International ACM SIGIR Conference on Research and Development in
Information Retrieval. 138–145.

Wang, L., D. Metzler, and J. Lin. (2010b). “Ranking Under Temporal Constraints”. In:
Proceedings of the 19th ACM International Conference on Information and Knowledge
Management. Toronto, ON, Canada. 79–88.

Wang, M., X. Xu, Q. Yue, and Y. Wang. (2021a). “A Comprehensive Survey and Exper-
imental Comparison of Graph-Based Approximate Nearest Neighbor Search”. Proc.
VLDB Endow. 14(11): 1964–1978.

Wang, S., S. Zhuang, and G. Zuccon. (2021b). “BERT-Based Dense Retrievers Require
Interpolation with BM25 for Effective Passage Retrieval”. In: Proceedings of the 2021
ACM SIGIR International Conference on Theory of Information Retrieval. Virtual
Event, Canada. 317–324.

Xia, F., T.-Y. Liu, J. Wang, W. Zhang, and H. Li. (2008). “Listwise Approach to Learning
to Rank: Theory and Algorithm”. In: Proceedings of the 25th International Conference
on Machine Learning. Helsinki, Finland. 1192–1199.

Xie, Y., H. Dai, M. Chen, B. Dai, T. Zhao, H. Zha, W. Wei, and T. Pfister. (2020).
“Differentiable Top-k with Optimal Transport”. In: Advances in Neural Information
Processing Systems. Vol. 33. 20520–20531.

Xin, J., R. Tang, J. Lee, Y. Yu, and J. Lin. (2020). “DeeBERT: Dynamic Early Exiting
for Accelerating BERT Inference”. In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics.

Xin, J., R. Tang, Y. Yu, and J. Lin. (2021). “BERxiT: Early Exiting for BERT with Better
Fine-Tuning and Extension to Regression”. In: Proceedings of the 16th Conference of
the European Chapter of the Association for Computational Linguistics: Main Volume.
91–104.

Xiong, C., Z. Dai, J. Callan, Z. Liu, and R. Power. (2017). “End-to-End Neural Ad-Hoc
Ranking with Kernel Pooling”. In: Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval. Shinjuku, Tokyo,
Japan. 55–64.

89

Xiong, L., C. Xiong, Y. Li, K.-F. Tang, J. Liu, P. Bennett, J. Ahmed, and A. Overwijk.
(2021). “Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text
Retrieval”. In: International Conference on Learning Representations.

Xu, C. and J. McAuley. (2022). “A Survey on Model Compression and Acceleration for
Pretrained Language Models”. arXiv: 2202.07105 [cs.CL].

Xu, J., W. Zhou, Z. Fu, H. Zhou, and L. Li. (2021). “A Survey on Green Deep Learning”.
arXiv: 2111.05193 [cs.CL].

Xu, J. and H. Li. (2007). “AdaRank: a Boosting Algorithm for Information Retrieval”.
In: Proceedings of the 30th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 391–398.

Xu, Z., M. J. Kusner, K. Q. Weinberger, and M. Chen. (2013). “Cost-sensitive Tree of
Classifiers”. In: Proceedings of the 30th International Conference on International
Conference on Machine Learning - Volume 28. Atlanta, GA, USA. I-133–I-141.

Ye, T., H. Zhou, W. Y. Zou, B. Gao, and R. Zhang. (2018). “RapidScorer: Fast Tree
Ensemble Evaluation by Maximizing Compactness in Data Level Parallelization”. In:
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. 941–950.

Yilmaz, E. and S. Robertson. (2009). “Deep versus Shallow Judgments in Learning to
Rank”. In: Proceedings of the 32nd international ACM SIGIR Conference on Research
and Development in Information Retrieval. 662–663.

Yin, D., Y. Hu, J. Tang, T. D. Jr., M. Zhou, H. Ouyang, J. Chen, C. Kang, H. Deng,
C. Nobata, J.-M. Langlois, and Y. Chang. (2016). “Ranking Relevance in Yahoo Search”.
In: Proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery and
Data Mining.

Yue, Y., J. Broder, R. Kleinberg, and T. Joachims. (2012). “The k-armed Dueling Bandits
Problem”. Journal of Computer and System Sciences. 78(5): 1538–1556.

Yue, Y. and T. Joachims. (2009). “Interactively Optimizing Information Retrieval Systems as
a Dueling Bandits Problem”. In: Proceedings of the 26th Annual International Conference
on Machine Learning. 1201–1208.

Zamani, H., M. Bendersky, D. Metzler, H. Zhuang, and M. Najork. (2022). “Stochastic
Retrieval-Conditioned Reranking”. In: Proceedings of the 2022 ACM SIGIR International
Conference on the Theory of Information Retrieval. Madrid, Spain.

Zhan, J., J. Mao, Y. Liu, J. Guo, M. Zhang, and S. Ma. (2021). “Jointly Optimizing Query
Encoder and Product Quantization to Improve Retrieval Performance”. In: Proceedings
of the 30th ACM International Conference on Information and Knowledge Management.
Virtual Event, Queensland, Australia. 2487–2496.

90

https://arxiv.org/abs/2202.07105
https://arxiv.org/abs/2111.05193

Zhan, J., J. Mao, Y. Liu, J. Guo, M. Zhang, and S. Ma. (2022). “Learning Discrete
Representations via Constrained Clustering for Effective and Efficient Dense Retrieval”.
In: Proceedings of the 15th ACM International Conference on Web Search and Data
Mining. Virtual Event, AZ, USA. 1328–1336.

Zhan, J., J. Mao, Y. Liu, M. Zhang, and S. Ma. (2020). “RepBERT: Contextualized Text
Embeddings for First-Stage Retrieval”. arXiv: 2006.15498 [cs.IR].

Zhang, Y., C. Hu, Y. Liu, H. Fang, and J. Lin. (2021). “Learning to Rank in the Age of
Muppets: Effectiveness–Efficiency Tradeoffs in Multi-Stage Ranking”. In: Proceedings of
the 2nd Workshop on Simple and Efficient Natural Language Processing. 64–73.

Zhao, W. X., J. Liu, R. Ren, and J.-R. Wen. (2022). “Dense Text Retrieval based on
Pretrained Language Models: A Survey”. arXiv: 2211.14876 [cs.IR].

Zheng, Z., H. Zha, T. Zhang, O. Chapelle, K. Chen, and G. Sun. (2008). “A General
Boosting Method and its Application to Learning Ranking Functions for Web Search”.
In: Advances in Neural Information Processing Systems. 1697–1704.

Zhuang, H., Z. Qin, S. Han, X. Wang, M. Bendersky, and M. Najork. (2021). “Ensemble
Distillation for BERT-Based Ranking Models”. In: Proceedings of the 2021 ACM SIGIR
International Conference on Theory of Information Retrieval. Virtual Event, Canada.
131–136.

Zhuang, S. and G. Zuccon. (2021). “TILDE: Term Independent Likelihood MoDEl for
Passage Re-Ranking”. In: Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval. Virtual Event, Canada. 1483–
1492.

Zhuang, S. and G. Zuccon. (2022). “Fast Passage Re-ranking with Contextualized Exact
Term Matching and Efficient Passage Expansion”. In: Workshop on Reaching Efficiency
in Neural Information Retrieval, the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval.

91

https://arxiv.org/abs/2006.15498
https://arxiv.org/abs/2211.14876

	1 Introduction
	1.1 The importance of efficiency
	1.2 Efficiency considerations beyond latency
	1.3 Efficient and effective ranking
	1.4 About this monograph

	2 Learning to Rank: A Machine Learning Formulation of Ranking
	2.1 Ranking datasets
	2.2 Ranking metrics
	2.3 Learning objectives
	2.4 Hypothesis classes

	3 Efficiency Challenges in Learning to Rank
	3.1 Efficient inference
	3.2 Efficient training

	4 Tree-based Learning to Rank
	4.1 GBRTs and learning to rank
	4.2 The prominance of tree-based learning to rank

	5 Training Efficient Tree-based Models
	5.1 Optimizing inference efficiency while learning
	5.2 Mixed optimization strategies of inference efficiency
	5.3 Open challenges and future directions

	6 Efficient Inference of Tree-based Models
	6.1 Efficient traversal of decision forests
	6.2 Approximate prediction by partial evaluation
	6.3 Efficient cascades
	6.4 Open challenges and future directions

	7 Neural Learning to Rank
	7.1 Representation-based models
	7.2 Interaction-based models
	7.3 Transformer-based models

	8 Efficiency in Neural Learning to Rank
	8.1 Early exit strategies
	8.2 Knowledge distillation and neural compression
	8.3 Dense retrieval
	8.4 Open challenges and future directions

	9 Discussion and Open Challenges
	9.1 Stochastic cascades
	9.2 Retrieval of hybrid vectors
	9.3 A multi-faceted view of efficiency
	9.4 Designing multidimensional leaderboards

	Acknowledgements
	References

