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ABSTRACT
Information Retrieval (IR) and Recommender Systems (RSs) tasks

are moving from computing a ranking of final results based on

a single metric to multi-objective problems. Solving these prob-

lems leads to a set of Pareto-optimal solutions, known as Pareto

frontier, in which no objective can be further improved without

hurting the others. In principle, all the points on the Pareto fron-

tier are potential candidates to represent the best model selected

with respect to the combination of two, or more, metrics. To our

knowledge, there are no well-recognized strategies to decide which

point should be selected on the frontier in IR and RSs. In this pa-

per, we propose a novel, post-hoc, theoretically-justified technique,

named “Population Distance from Utopia” (PDU), to identify and

select the one-best Pareto-optimal solution. PDU considers fine-

grained utopia points, and measures how far each point is from

its utopia point, allowing to select solutions tailored to user pref-

erences, a novel feature we call “calibration”. We compare PDU
against state-of-the-art strategies through extensive experiments

on tasks from both IR and RS, showing that PDU combined with

calibration notably impacts the solution selection.
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• Information systems→ Recommender systems; Retrieval
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1 INTRODUCTION
Many tasks in Information Retrieval (IR) and Recommender Sys-

tems (RSs) involve the optimization of multiple objective functions.

As an example, consider the IR task of diversifying search results
where, given a user query, we require the IR system to return a list

of results that are both relevant for the user and diverse concerning
the possible “facets” of the query [40]. Addressing this task asks

for designing a two-objective ranking function comprehensively

maximizing both the relevance and the diversity of the result list.

The same considerations can be made in RSs. Despite the accuracy

of recommendation being considered the gold measure to assess the

quality of suggestions, over the last years, RSs have been required

to meet other beyond-accuracy metrics to avoid obvious [46] and

unfair [51] recommendations. Therefore, the choice of a recom-

mendation model and its setting entail several criteria leading to a

trade-off among them, resulting in a non-trivial challenge.

Multi-Objective Optimization (MOO) recently attracted several

interesting IR and RS contributions [15, 41, 51]. MOO deals with

Pareto optimality, i.e., the identification of solutions where no objec-

tive can be further improved without damaging the others. Pareto-

optimal solutions are in turn collected in the so-called Pareto Fron-
tier, a set of (possibly infinite) non-dominated solutions.

Existing approaches for MOO can be classified into two cate-

gories: i) heuristic search and, ii) scalarization. In the first category,

multi-objective evolutionary algorithms are used to ensure that

the emerging solutions are not dominated by each other, even if

they can still be dominated by Pareto-optimal solutions not vis-

ited by the algorithm [6, 39]. In the second category, scalarization

methods aggregate multiple objectives into one objective, possi-

bly guaranteeing Pareto optimality. Scalarization approaches can

exploit model aggregation techniques combining the output of dif-

ferent models trained on the single objectives. Alternatively, label
aggregation techniques combine the labels of the training samples

a priori, and the optimization is performed using the aggregated

labels. Aggregation techniques may involve the setting of the im-

portance or priority of the different objectives by weighting each

objective through a scalar function (e.g., Linear Scalarization [31],

Weighted Chebyshev [27]). Conversely, some techniques work by

constraining the objectives of the problem, e.g., 𝜖–Constraint [17]

leading to a unique non-dominated solution.

Pareto optimality is commonly achieved bymany different Pareto-

optimal solutions. However, IR and RS MOO tasks generally require
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identifying a single Pareto-optimal solution to be deployed in the

system. To the best of our knowledge, no strategies specifically

tailored to IR and RS tasks have been previously proposed [51]. The

state-of-the-art techniques from MOO theory are in fact aimed at

identifying a set of Pareto-optimal solutions, without addressing

the problem of post-hoc choosing one among the—possibly many—

solutions identified for the IR and RS tasks. Indeed, many works

in the IR and RS literature, although exploiting the techniques dis-

cussed above, do not either: i) consider the problem of selecting a

single best solution to the multi-objective problem or, ii), discuss

the criteria adopted to select a single Pareto-optimal solution [53].

In this paper, we fill this gap by introducing “Population Dis-

tance from Utopia” (PDU), a novel post-hoc flexible strategy for

selecting one—best—Pareto-optimal solution among the ones lying

in the Pareto frontier for IR and RS tasks. PDU relies on the observa-

tion that the Pareto-optimal point coordinates are an aggregation—

usually the mean—of the model performance for each sample, i.e.,

queries in IR and users in RS, on multiple objectives. PDU exploits

the notion of “Utopia point” as the ideal optimization target. Dif-

ferently from the methods from MOO theory, which are devised

to solely consider the mean performance values when selecting

a single Pareto-optimal solution, PDU is designed to set a utopia

point for each sample of the dataset. This feature allows choosing

a solution not only based on the “global” performance achieved by

the IR/RS model, but also in a more fine-grained resolution that now

considers multiple quality criteria that are expressed on a sample

level. We call this feature “calibrated” selection. In detail, the novel

contributions of this paper are:

• We formally introduce PDU as a novel technique that allows one

to select, in a principled way, the best Pareto-optimal solution

previously identified by a state-of-the-art MOO technique.

• We provide a thorough comparison of PDU against state-of-the-

art selection strategies. The analysis shows that PDU is the only

selection method that allows identifying a “calibrated” solution,

i.e., based on ideal targets expressed on a sample level.

• We experimentally compare PDU against state-of-the-art strate-

gies on well-known IR and RS tasks by exploiting public data.

The results show that, unlike other methods, PDU can iden-

tify Pareto-optimal solutions regardless of their position on the

frontier. Moreover, PDU calibration can lead to the selection of

significantly different trade-offs.

• We release a GitHub repository
1
for our implementation of PDU

and the state-of-the-art competitors as well as the data used in

the experiments to allow a full reproducibility of the results.

2 MULTI-OBJECTIVE OPTIMIZATION
AMulti-Objective Optimization Problem (MOOP) [31] is defined as:

min

x
f (x) = {𝑓1(x), 𝑓2(x), . . . , 𝑓𝑘 (x)}

subject to x ∈ X.
(1)

The vector x ∈ R𝑛 is formed by 𝑛 independent variables called

decison variables. The set X ⊆ R𝑛 , generally known as feasible set,
is defined by a set of equality and inequality constraints such as

{x | 𝑔 𝑗 (x) ≤ 0, 𝑗 = 1, 2, . . . , 𝑙 ; ∨ℎ𝑖 (x) = 0, 𝑖 = 1, 2, . . . , 𝑒}. The vector
of functions f(·) is composed by 𝑘 ≥ 2 scalar objective functions

1
https://github.com/sisinflab/Selection-Pareto-Optimal-Solutions-IR-RS

𝑓𝑖 : X → Rwith 𝑖 = 1, . . . , 𝑘 . In multi-objective optimization, the

space R𝑘 is known as objective function space.

Pareto Optimality. In a MOOP, since typically there is no single

global solution, it is impossible to determine a set of points that all

fit a predetermined definition for an optimum. Hence, it is usually

adopted the concept of Pareto optimality which leverages on the

Pareto dominance relation [47]. A vector x★ Pareto-dominates vector

x, denoted by x★ ≺ x, if and only if ∃ 𝑗 ∈ {1, . . . , 𝑘} | 𝑓𝑗 (x★) <

𝑓𝑗 (x) and 𝑓𝑖 (x★) ≤ 𝑓𝑖 (x) ∀𝑖 ∈ {1, . . . , 𝑗 − 1, 𝑗 + 1, . . . , 𝑘}. We also

write that, a solution x★ ∈ X is Pareto optimal if there does not

exist another solution x ∈ X such that f (x) ≺ f (x★). In other words,

a point is Pareto optimal if there is no other point that improves

at least one objective function without hurting another one. Then,

solving the problem in Equation (1) means finding the solutions

x ∈ X such that their images f (x) are not Pareto-dominated by any

other vector in the feasible set. The set of non-Pareto-dominated

solutions 𝑃★ ⊆ X is called Pareto-optimal set in the feasible set,

that is formally defined as 𝑃★ := {x★ ∈ X|¬∃ x ∈ X s.t. x ≺ x★}.
The image of the Pareto-optimal set 𝑃★ in the objective function

space is called the Pareto frontier, i.e., 𝑃𝐹★ := {f (x★) | x★ ∈ 𝑃★}.
Utopia and Nadir Points. Once a solution 𝑃★ for the problem in

Equation (1) is obtained, the decision-making process requires the

selection of a single optimal solution from the Pareto frontier. Gen-

erally, the utopia point helps to implement this process [31]. A point

f ⋄ ∈ R𝑘 is a utopia point if and only if f ⋄𝑖 = minx f𝑖 (x) | x ∈ X ∀𝑖 ∈
{1, 2, . . . , 𝑘}. Generally, the utopia point is the ideal point in R𝑘 that

is unattainable. Hence, a common approach consists in reaching

the closest solution to the utopia point as the best one, where, in

most of the cases, the term closest refers to the solution which mini-

mizes the Euclidean distance to the utopia point. However, it is not

necessary to restrict closeness to the case of a Euclidean norm [31].

Along with the utopia point, the nadir point also helps select a

solution from the Pareto frontier. Dually to the utopia point, the

nadir point represents the point in the objective function space

having the worst possible values for each objective. A point f △ ∈
R𝑘 is a nadir point if and only if f △𝑖 = maxx f𝑖 (x) | x ∈ X ∀𝑖 ∈
{1, 2, . . . , 𝑘}. Compared to the utopia point, determining the nadir

point can be challenging, even for simple problems [26].

3 BACKGROUND
3.1 Selection Strategies
The Pareto frontier consists of a set of equally optimal solutions.

Some methods to select a single Pareto-optimal solution assume

the existence of a decision maker [25]. These methods are known

as Multi-Criteria Decision Making (MCDM) strategies, where a

decision-maker has knowledge of the preferences (hierarchy) among

the objectives. However, decision-makers do not always know how

to weigh the different objectives [5]. Moreover, in some cases, the

complexity of the problem makes it difficult for a human decision-

maker to evaluate and compare different options comprehensively.

Conversely, mathematical methods can provide consistent, objec-

tive, and impartial decision-making approaches. In this work, we

focus and outline mathematical strategies for selecting a solution

from the Pareto frontier, i.e., strategies applicable in the absence of

“a priori knowledge” that can feed an MCDM strategy.
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3.1.1 Knee Point. The Knee Point [5] strategy aims to identify a

knee of the Pareto frontier. The rationale is that solutions different

from the knee point would exhibit limited improvement for one

objective and a substantial deterioration for the others. As described

by Branke et al. [5], these strategies were born as a variation of

multi-objective evolutionary algorithms to find the knee regions on

the Pareto frontier. Consequently, when other algorithms compute

the Pareto Frontier, the extracted knee region may not have a knee-

featured shape, thus making this strategy less convenient. Several

methods to identify the knee point are proposed in the literature,

mainly differing for the number of objectives.

Angle-based method (A-KP). When dealing with two objectives,

the reflex angle between the slopes of the two vectors through

a point 𝐵 = (𝑥𝑖 , 𝑦𝑖 ) and its two neighbors, i.e., 𝐴 = (𝑥𝑖−1, 𝑦𝑖−1)

and 𝐶 = (𝑥𝑖+1, 𝑦𝑖+1), on the Pareto Frontier can be considered as

an efficient indication of whether the point can be classified as

a knee [5]. The Pareto-optimal point having the maximum reflex
angle computed from its neighbors is considered the knee [12]. If no
neighbor to the left (right) is found, a vertical (horizontal) line is

used to calculate the angle. Even though this method is efficient in

a two-dimensional scenario, it becomes impractical for more than

two objectives, especially for the choice of neighbors.

Utility-basedmethod (U-KP).A valid alternative to overcome the

limitation of the angle-based method is adopting a marginal utility

function. Let us consider a set of 𝑛 objective functions 𝑓 (·) and𝑚
sets of 𝑛 uniformly distributed weights w, with 𝑤𝑖 ∈ [0, 1] such

that

∑
𝑖 𝑤𝑖 = 1 [5]. The resulting utility function is then 𝑈 (x,w) =∑

𝑖 𝑤𝑖 · 𝑓𝑖 (𝑥). The Pareto-optimal solution having the minimum

utility value for most weight configurations is the knee point.

3.1.2 Hypervolume. The Hypervolume [54] strategy was first in-

troduced to compare the quality of different Pareto frontiers [14].

However, by computing the hypervolume of each solution on the

Pareto frontier, this strategy can be straightforwardly exploited to

select the best solution from the set [53]. Given a Pareto-optimal

solution x★ ∈ R𝑘 , a reference point r ∈ R𝑘 , and the Lebesgue

measure 𝜆, the hypervolumeHV of x★ with respect to r is:

HV = 𝜆({x ∈ R𝑘 | x★ ≺ x ≺ r}). (2)

TheHV value is the volume of the hypercube determined by the

solution x★ and the reference point r. The Pareto-optimal point
having the maximum hypervolume is the selected one.

3.1.3 Other Techniques. Other simpler techniques that have been

used for selecting a solution from the Pareto frontier are the Eu-
clidean Distance and the Weighted Mean [34, 50]. The Euclidean

Distance (ED) is computed between each solution on the Pareto

frontier and the utopia point: 𝐸𝐷(x★) = |f(x★) − f ⋄ |. The Pareto-
optimal point having the minimum Euclidean distance is the selected
solution. Instead, the Weighted Mean (WM) requires setting the

importance of each objective through a set of weights. Among all
the Pareto-optimal points, the point maximizing the weighted mean
corresponds to the selected solution.

3.2 Related Works on MOO for IR and RS
Previous works investigate the introduction of multiple criteria in

IR systems, e.g., in web search and recommendation [10, 11, 21,

44, 45, 49], and product search [22, 29]. Carmel et al. [9] propose

Stochastic Label Aggregation (SLA), a technique that perform label

aggregation by randomly selecting a label per training example.

In RS, Lin et al. [28] propose a scalarization based Pareto-Efficient

Learning-To-Rank (PE-LTR) framework by deriving the conditions

for the weighted sum weights that ensure the solution to be Pareto

efficient. In the RS area, MOO techniques are routinely exploited for

optimizing multiple fairness criteria beyond relevance. Ge et al. [15]

propose a fairness-aware RS based onmulti-objective reinforcement

learning, simultaneously optimizing clickthrough rate (CTR), as

a signal for relevance, and item exposure, as a signal for fairness.

Moreover, Wu et al. [51] employ scalarization to optimize accuracy

along with both provider and consumer fairness. Naghiaei et al. [32]

also integrate fairness constraints from a consumer and producer-

side into a re-ranking approach.

4 POPULATION DISTANCE FROM UTOPIA
Driven by the goal of overcoming the limitations of the other meth-

ods in a principled way for IR and RSs, we propose PDU (Population

Distance from Utopia), a selection strategy taking into account the

distance of the query/user metrics from the utopia point.

Our intuition starts from the observation that in a search and/or

recommendation scenario, the Pareto frontier is populated by points

representing aggregated results (usually, they represent the average

value) on metrics referring to a set of experiments. For instance, in

a RS setting, we could have a frontier representing the values of two

metrics: nDCG, to measure the accuracy of the model, and Intralist
Diversity (ID), to measure the diversity in the list of recommended

items. Each point on the frontier may represent the corresponding

values of nDCG and ID for a specific configuration of the hyperpa-

rameters. It is worth noticing that these values are computed as the

value of the given metric averaged on all the system users. Suppose

we focus instead on the point representing the single user. In that

case, we may also reconsider the notion of utopia point in this more

fine-grained view and adapt it to generalize with respect to the sin-

gle user. The same observations hold in a search setting where we

have queries instead of users. The questions leading our proposal

are then: i)What happens if we focus our analysis on the original
points instead of their aggregated representation? ii) Can we char-
acterize each of these fine-grained points and exploit a generalized
definition of utopia point that considers even the single user/query?
We start by defining a generalized version of the utopia point.

A point f ◦ in the objective function space R𝑘 is a generalized
utopia point if and only if f ◦𝑖 = h𝑖 (x) | x ∈ X ∀𝑖 ∈ {1, 2, . . . , 𝑘}. In
our definition, ℎ𝑖 is a function that considers the characteristics

of the original data and returns a desired but unattainable utopia

value for the 𝑖-th metric. For a (non-generalized) utopia point 𝑓 ⋄ ,
we have h𝑖 = minx f𝑖 (x). Its definition can be driven both by system

or dataset properties and by the choices of the system designer.

For instance, in Section 5.1, we define ℎ2 (see Equation (14)) to

quantify the users’ popularity tendencies stemming from their past

interactions with the items in a recommendation scenario.

Given a Pareto-optimal solution x★ ∈ R𝑘 , we can assume that it

is the image of an aggregation function applied to a set of𝑚 points

x𝑗 in R
𝑘
, with 𝑗 ∈ {1, . . . ,𝑚}. In our previous example, the points

represent the values of the pairs ⟨𝑛𝐷𝐶𝐺, 𝐼𝐷⟩ (with 𝑘 = 2) for the𝑚

 

2015



CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Vincenzo Paparella, Vito Walter Anelli, Franco Maria Nardini, Raffaele Perego, and Tommaso Di Noia

users in the system. Suppose a generalized utopia point f ◦𝑗 ∈ R𝑘 ,
with 𝑗 ∈ {1, . . . ,𝑚}, is associated to each point x𝑗 .

Definition 4.1. The Population Distance from Utopia (PDU) is:

PDU = log

(
𝑚∑︁
𝑗=1

𝑒(f ◦𝑗 , x𝑗 )
2

)
, (3)

where 𝑒 : R𝑘 → R is an error function that satisfies the conditions

of identity, symmetry, and triangle inequality. The Pareto-optimal
point having the minimum PDU is the selected solution. The error
function 𝑒(·) is parametric, i.e., we can set any error or distance

metric as 𝑒(·), like Euclidean distance or mean squared error.

Derivation. Let us consider an objective function space R𝑘 ,
where 𝑘 is the number of objectives, and a dataset D of 𝑚 sam-

ples (users/queries). For each sample, we suppose to know the best

possible value of each objective. Then, we can associate each sam-

ple with a 𝑘-dimensional vector f ◦𝑗 , with 𝑗 ∈ {1, . . . ,𝑚}, which
constitutes its generalized utopia point in the objective function

space R𝑘 . We use F = {f ◦𝑗 | 𝑗 ∈ {1, . . . ,𝑚}} to denote the set of

all the generalized utopia points referring to the𝑚 samples. Let

us now consider a model 𝜂 that returns 𝑘 objectives performance

values for each sample in D. As before, each sample corresponds

to a 𝑘-dimensional vector x𝑗 , with 𝑗 ∈ {1, . . . ,𝑚}, which repre-

sents the model performance for that sample in R𝑘 . We denote

P = {x𝑗 | 𝑗 ∈ {1, . . . ,𝑚}}. Thus, each sample 𝑗 is represented by f ◦𝑗
and x𝑗 in the objective function space: the closer the points, the

better the model 𝜂 performs. Let us introduce an error function

𝑒 : R𝑘 → R satisfying the conditions of identity, symmetry, and

triangle inequality. The error of the model 𝜂 on the 𝑗-th sample is

𝑒(f ◦𝑗 , x𝑗 ). By supposing the error term follows the IID property, it

has a Gaussian distribution with mean 𝜇 = 0 and variance 𝜎2
, i.e.,

𝑒(f ◦𝑗 , x𝑗 ) ∼ N (0, 𝜎2
), whose probability density function is:

𝑝(𝑒(f ◦𝑗 , x𝑗 )) =

1

√
2𝜋𝜎

exp

(
−
𝑒(f ◦𝑗 , x𝑗 )

2

2𝜎2

)
. (4)

We can note that if f ◦𝑗 and x𝑗 are close, the exponent part of

Equation (4) tends to 1, and the probability increases while tending

to 0 when the two points are far apart and the probability decreases.

Then, we compute the error probability density function of the

error for the entire datasetD. We observe that themodel𝜂 has some

parameters Θ. Hence, P can be expressed as a function 𝑔 of the

parameters Θ: P = 𝑔(Θ). Then, a vector x𝑗 ∈ P can be rewritten as

x𝑗 = 𝑔(Θ)𝑗 . By assuming the samples to be independent, we obtain

the following expression for the likelihood function:

𝑝(𝑒(F, 𝑔(Θ))) =

𝑚∏
𝑗=1

𝑝(𝑒(f ◦𝑗 , 𝑔(Θ)𝑗 )). (5)

Since f ◦𝑗 is the (generally unattainable) output we desire to have,

we are interested in finding the parameters Θ for the model 𝜂

such that the likelihood function 𝑝(𝑒(F, 𝑔(Θ))) is the highest. As the

logarithmic function is increasing monotone, it does not modify

the maximum positions. Hence, we can compute the log-likelihood

instead of the likelihood to simplify calculations:

log 𝑝(𝑒(f ◦𝑗 , 𝑔(Θ))) = log

𝑚∏
𝑗=1

𝑝(𝑒(f ◦𝑗 , 𝑔(Θ)𝑗 )) (6)

= 𝑚 log

1

√
2𝜋𝜎
− 1

2𝜎2

𝑚∑︁
𝑗=1

𝑒(f ◦𝑗 , 𝑔(Θ)𝑗 )
2 . (7)

At this point, we explicit the variance term 𝜎2
. Since we have sup-

posed that the error term 𝑒(f ◦𝑗 , x𝑗 ) has a Gaussian distribution with

𝜇 = 0, the variance 𝜎2
is defined as

∑𝑚
𝑗=1

𝑒(f ◦𝑗 ,𝑔(Θ)𝑗 )
2

𝑚 . By introducing

this term in Equation (7), we obtain that the log-likelihood is:

(8)

log𝑝(𝑒(f ◦𝑗 , 𝑔(Θ))) = 𝑚 log

1

√
2𝜋

√︃
1

𝑚

∑𝑚
𝑗=1

𝑒(f ◦𝑗 , 𝑔(Θ)𝑗 )
2

− 1

2

𝑚

∑𝑚
𝑗=1

𝑒(f ◦𝑗 , 𝑔(Θ)𝑗 )
2

𝑚∑︁
𝑗=1

𝑒(f ◦𝑗 , 𝑔(Θ)𝑗 )
2

= −𝑚 log(

√
2𝜋 ) +𝑚 log𝑚 − 1

2

log

(
𝑚∑︁
𝑗=1

𝑒(f ◦𝑗 , 𝑔(Θ)𝑗 )
2

)
− 𝑚

2

. (9)

By supposing to train the model 𝜂 on the same dataset D with

several configurations of Θ, the terms depending on the dataset

size𝑚 and the constant 1/2 in Equation (9) can be removed as they

are constant when choosing the highest log-likelihood. Hence, the

only variable quantity among the different log-likelihoods is:

− log

(
𝑚∑︁
𝑗=1

𝑒(f ◦𝑗 , 𝑔(Θ)𝑗 )
2

)
. (10)

Therefore, we are looking for the model𝜂 with parameters Θ having

the maximum value of the term in Equation (10):

max

[
− log

(
𝑚∑︁
𝑗=1

𝑒(f ◦𝑗 , 𝑔(Θ)𝑗 )
2

)]
. (11)

Finally, this remainder term can be easily rewritten with a positive

sign as long as we choose the configuration of Θ for the model 𝜂

having the minimum value for this quantity:

min

[
log

(
𝑚∑︁
𝑗=1

𝑒(f ◦𝑗 , 𝑔(Θ)𝑗 )
2

)]
= min

[
log

(
𝑚∑︁
𝑗=1

𝑒(f ◦𝑗 , x𝑗 )
2

)]
. (12)

□

4.1 Calibrated PDU
PDU allows setting a generalized utopia point for each sample of

the dataset, i.e., queries and users in an IR or RS scenario, respec-

tively. This feature allows choosing a solution not only based on the

“global” performance achieved by the IR/RSmodel, but also in amore

fine-grained resolution that now considers multiple quality criteria

expressed on a sample level. We call such feature calibration since

it can be usefully exploited in specific scenarios, e.g., personaliza-

tion in RS, where it is possible to define generalized utopia points

according to individual users’ preferences. These generalized utopia

points can be fixed apriori, e.g., they can be identified by the system

designer or computed through functions that numerically quantify

the users’ tendencies, similarly to what has been done in previous

 

2016



Post-hoc Selection of Pareto-Optimal Solutions in Search and Recommendation CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

works regarding calibrated recommendations [20, 35, 42]. We refer

to this feature as Calibrated-PDU (C-PDU).

4.2 Feature Comparison
In Section 3.1, we have presented the most-used techniques to

choose a single best solution belonging to a Pareto frontier. How-

ever, as also stated by Wu et al. [51], there is no consensus on

the strategy to solve this task in the IR and RS communities. Not

surprisingly, all methods have some advantages and limitations,

leading to a lack of an ideal strategy [26]. Hence, a comparison of

the features provided by PDU and state-of-the-art techniques is

needed. Specifically, we identify some desirable features the tech-

niques should have. Table 1 discusses the main properties of PDU
and other state-of-the-art techniques. First, the strategy should
be suitable even when dealing with more than two objectives.
In this regard, the angle-based knee point is the only ineffective

method. Second, the strategy should not need any additional
knowledge. Most techniques require additional problem infor-

mation, i.e., the reference point (HV), the (generalized) utopia

point (ED, PDU), and a weights set (WM). Since the results of a

given strategy can largely depend on such information, a fair strat-

egy should require as less additional information as possible. The

weights should be set by a decision-maker with deep knowledge

of the hierarchy among the objectives. In contrast, the reference

and the (generalized) utopia points are ordinarily intrinsic to the

problem. Despite some common practices (e.g., nadir point) [26],

it has been shown that determining a reference point r forHV is

generally more challenging [18, 26], and a badly defined reference

point can lead to inconsistent evaluation results [24]. Indeed, hav-

ing a reference point slightly different from the nadir point could

lead to incongruous evaluation, as experimentally demonstrated

by Ishibuchi et al. [19]. Therefore, the utopia point is the most ef-

fortlessly additional information that can be exploited for this task.

Third, the strategy should not require to scale the range of the
objectives. Scaling may be needed for strategies whose calculation

involves objective blending, i.e. U-KP, ED, WM, and PDU. When

the objectives have different scales, the bigger the range of an ob-

jective, the bigger its contribution to the selection of a solution.

However, the choice of scaling the objectives is left to the system

designer. Fourth, the strategy should be deterministic. The U-
KP strategy requires randomly extracting a set of weights from a

uniform distribution. This could potentially affect the consistency

and reproducibility of results. Fifth, the strategy should equally
promote the solutions despite their position on the Pareto
frontier. The strategies blending the objectives are not biased to

select solutions based on particular Pareto frontier regions. This is

not true for theHV strategy that tends to promote the solutions

on the concave region of a Pareto frontier.

Final Observations and Calibration. To summarize, none of the

strategies own all the properties. However, some considerations

can be made. A-KP and U-KP are characterized by huge drawbacks.

The former can be utilized only in contexts considering two ob-

jectives. The latter is nondeterministic. Furthermore, none of the

techniques is able to select a solution irrespective of its position on

the Pareto frontier and to be independent of scaling the objective

ranges before calculation simultaneously. In this regard, a system

Table 1: Overview of the properties of PDU and other selec-
tion strategies. The symbols ✓ (✗,—) indicate that the method
has (does not have, could not have) the specified property.

Method A-KP U-KP HV ED WM PDU

Suitable With >2 Objectives ✗ ✓ ✓ ✓ ✓ ✓
No Additional Knowledge ✓ ✓ r f ⋄ w f ◦
No Scaling before Calculation ✓ — ✓ — — —
Deterministic ✓ ✗ ✓ ✓ ✓ ✓
Equal Treatment of PF Regions ✗ ✓ ✗ ✓ ✓ ✓
Calibration ✗ ✗ ✗ ✗ ✗ ✓

designer could prefer to adopt a technique able to fairly choose a

solution despite its position on the Pareto frontier (as done by U-KP,
ED, WM, and PDU). Indeed, scaling the objectives can be easily

performed with a simple operation such as min/max normalization.

Furthermore, this operation is subject to the system designer, who

can consider the objectives range in specific applications. Concern-

ing the additional knowledge problem, only A-KP and U-KP do

not need supplementary information. However, as stated before,

they are characterized by main drawbacks. Then, such additional

knowledge is required. Among the remainder techniques, PDU and

ED exploit easier-to-define additional material, i.e., the utopia point.

By looking beyond, the proposed PDU allows us to define a

utopia point for each sample in the dataset. While the other ap-

proaches exploit only aggregated models’ performance, PDU opens

to a novel “calibrated” way to select one—best Pareto-optimal solu-

tion tailored to individual sample characteristics. To the best of our

knowledge, this is the first attempt to introduce this kind of feature

in the task of Pareto-optimal solutions selection strategy.

From now on, when no confusion arises, we will use utopia point
to refer also to a generalized utopia point.

5 EXPERIMENTAL EVALUATION
We now present an experimental evaluation based on public data

that aims at answering the following research questions:

RQ1: How do PDU and other state-of-the-art selection strategies

behave w.r.t. the discussed properties? (see Section 4.2)

RQ2: How does the distribution of the points composing the points

on the Pareto frontier influence the selection of a solution?

RQ3: How does the calibration feature impact the selection of a

solution?

5.1 Experimental Scenarios
Driven by the observation that, in IR and RS settings, the Pareto

frontier is populated by points representing aggregated results, we

analyze the selection strategies in these two settings.

Information Retrieval Scenario. Concerning the IR scenario,

we focus on an ad-hoc search task by dealing with the efficiency /

effectiveness / energy-consumption trade-off of query processing

in IR systems based on machine-learned ranking models [7]. IR sys-

tems heavily exploit supervised techniques for learning document

ranking models that are both effective and efficient, i.e., able to re-

trieve within a limited time budget high-quality documents relevant

to users’ queries. State-of-the-art learning-to-rank models include

ensembles of regression trees trained with gradient boosting algo-

rithms, e.g., LambdaMART [7, 52], and deep neural networks, e.g.,
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NeuralNDCG [37]. Since ranking is a complex task and the training

datasets are large, the learned models are complex and computa-

tionally expensive at inference time. The tight constraints on query

response time thus require suitable solutions to provide an optimal

trade-off between efficiency and ranking quality [8, 16, 30].

In this scenario, we use the LambdaMART [7, 52] implementa-

tion available in LightGBM [23] to train ranking models based on

ensembles of regression trees and Neural Networks (NN) trained in

Pytorch [36] following the optimization methodology proposed in

[33]. The models are trained on MSN30K [38], a public and widely-

used dataset for learning to rank. The evaluation employs 11 Lamb-

daMART and 5 Neural Networks ranking models, each tested on the

6,306 queries of the MSN30K test set. We measure the ranking qual-

ity of each model in terms of average nDCG@10 (𝑓1), and average

ranking time (seconds per document) (𝑓2). For the LambdaMART

configurations, we also measure the average energy consumption

(Joules per document) (𝑓3). The average ranking time of each model

has been measured by using QuickScorer [30], while energy con-

sumption has been measured by using the Mammut library [13].

Efficiency experiments are performed on a dedicated Intel Xeon

CPU E5-2630 v3 clocked at 2.4 GHz in single-thread execution.

QuickScorer is compiled using GCC 9.2.1 with the -O3 option.

In this IR experimental scenario, we focus on selecting the best
efficiency/effectiveness trade-off for query processing.

Recommendation Scenario. Concerning the RS scenario, we

consider two of the main problems of recommendation algorithms,

i.e., the accuracy of the recommendations and the tendency to over-

suggest popular items. Often, the ability of RS to provide accurate

recommendations is competing with the capability of including

long-tail items in such suggestions [32], inducing a trade-off. Hence,

we consider two objectives. We compute the Recall@10 (𝑓1) to
measure the accuracy of suggestions and the average percentage

of items in the long-tail (APLT) [2] (𝑓2) to measure to what extent

a RS can recommend unpopular items:

𝐴𝑃𝐿𝑇 =

1

|U𝑡 |
∑︁

𝑢∈U𝑡

|{𝑖, 𝑖 ∈ (L𝑢 ∩ Φ)}|
|L𝑢 |

, (13)

where |U𝑡 | is the number of users in the test set, L𝑢 is the list of

recommended items to user𝑢, and Φ is the set of long-tail items. The

higher the metric, the higher the number of niche items suggested.

Specifically, we interpret APLT from two perspectives, identify-

ing two experimental scenarios. On the one hand, we assess APLT

from provider-side fairness. The provider side fairness can be quan-

tified as the models’ ability to expose items to users evenly [1, 2,

51]. Indeed, the over-recommendation of popular items, i.e., the

so-called unfairness of popularity bias, may be felt as unfair by

providers who get long-tail items under-represented in the sugges-

tions. Hence, in this scenario, the goal is to choose a model that

promotes relevant items without affecting niche items’ visibility.

In this first RS experimental scenario, we focus on selecting the best
recommendation model dealing with multiple objectives.

On the other hand, we evaluate APLT from the final user point

of view. Indeed, certain users may prefer to consume popular items,

while others niche items. Consequently, exclusively recommending

mainstream items would hurt the experience of long-tail users,

and vice versa. The approach of calibrated recommendation has

shown a valuable solution toward this direction of research [35, 42].

A recommendation list is calibrated concerning popularity when

the set of items it covers matches the user’s profile in terms of

item popularity [3]. Inspired by the concept of popularity-based

calibrated recommendation, for each user, we compute the values

of the APLT target (𝑓2) stemming from their popularity profile.

To this end, we compute the user-level APLT utopia values using

the weighted combination of mean and standard deviation method

described by Jugovac et al. [20]. We consider the set of users U,

the set of items I, and the mean number of transactions 𝑇 in the

training set. For each item 𝑖 ∈ I, we assess its popularity 𝑝𝑜𝑝𝑖 by

counting the number of transactions the item is involved in. For

each user𝑢 ∈ U, we define the set Γ𝑢 = {𝑝𝑜𝑝𝑖 |𝑢 interacted with 𝑖}.
We quantify the user 𝑢 popularity tendencies as 𝑝𝑜𝑝𝑢 = 𝛼 · 𝜇 (Γ𝑢 ) +

𝛽 · 𝜎 (Γ𝑢 ), where 𝛼 and 𝛽 are set to a fixed value of 1 as done in

[20], 𝜇 (·) and 𝜎 (·) are the mean and standard deviation operators,

respectively. The higher is 𝑝𝑜𝑝𝑢 , the most user 𝑢 has consumed

mainstream items in her past interactions. Finally, we normalize

𝑝𝑜𝑝𝑢 and compute the APLT utopia value for each user:

𝑓 ◦
2

= ℎ2(𝑢) =

𝑝𝑜𝑝Ψ − 𝑝𝑜𝑝𝑢
𝑝𝑜𝑝Ψ − 𝑝𝑜𝑝Φ

, (14)

where Φ and Ψ are the sets composed by 𝑝𝑜𝑝𝑖 values such that 𝑖 is

one of the less and most 𝑇 consumed items, respectively. With this

normalization, the higher is 𝑓 ◦
2
, the less popular is the user profile.

In this second RS experimental scenario, we show how important a
calibrated technique is for choosing the best recommendation model
dealing with multiple objectives.

In the two experimental scenarios presented for RS, we exploit

the EASE
𝑅
recommendation model [43], which works like a shal-

low autoencoder. This model is characterized by a single hyper-

parameter to tune, i.e., the L2-norm regularization (𝜆). Nevertheless,

it has been shown that it often outperforms other state-of-the-

art recommender systems [4]. Specifically, we explore the hyper-

parameter 𝜆 by training 48 configurations on the book-domain

dataset Goodreads [48] (18,892 users, 25,475 items, and 1,378,033

transactions) and on the music-domain dataset Amazon Music [4]
(14,354 users, 10,027 items, and 145,523 transactions). We split the

datasets following the 70-10-20 hold-out strategy. Thus, the evalua-

tion of this scenario employs 48 solutions on the objective function

space, each tested on the remaining users of the test set (18,070 of

Goodreads, and 14,354 of Amazon Music).

5.2 Experimental Methodology
The different hyperparameter configurations introduced before,

for the two IR and RS settings, generate solutions in the objec-

tives function space for each specific experimental scenario. Once

the Pareto-optimal solutions that compose the Pareto frontier are

identified, we select one by applying PDU and the other selection

strategies we analyzed in this work. The selected solutions are then

analyzed according to the features introduced in Section 4.2. More-

over, we investigate in detail how the formulation of PDU and its

calibration feature influence the choice of the one—best solution

by looking at the distribution of points composing that solution.

We refer to the reference point and the utopia point with r and f ◦,
respectively. Furthermore, we use the Euclidean distance as 𝑒(·) in
the formulation of PDU, to have an immediate comparison with 𝐸𝐷
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Figure 1: Pareto-optimal solutions for the IR and RS scenarios. The colored shapes represent the best—Pareto-optimal—point
selected by the strategies under evaluation.

Table 2: LambdaMART selected solutions for the IR scenario. The objectives are accuracy (nDCG), efficiency (Seconds), and
energy consumption (Joules).

Models Objectives Selection Strategies

Trees Leaves nDCG ↑ Seconds ↓ Joules ↓
Accuracy / Efficiency Accuracy / Efficiency / Energy

PDU ↓ HV ↑ U-KP↑ 𝐸𝐷 ↓ 𝑊𝑀 ↑ PDU ↓ HV ↑ 𝑈 ↑ 𝐸𝐷 ↓ 𝑊𝑀 ↑

300 32 0.5179 18.0544 × 10
−5

10.8515 × 10
−5

7.4953 3.2612 × 10−7 107 0.4821 0.1295 7.4960 2.9236 × 10−10
85 0.4821 0.0863

300 64 0.5212 54.0393 × 10
−5

31.7795 × 10
−5

7.4837 3.0924 × 10
−7

102 0.4788 0.1303 7.4904 2.1097 × 10
−10

93 0.4788 0.0868

500 64 0.5225 91.9204 × 10
−5

54.5946 × 10
−5

7.4799 2.4323 × 10
−7

103 0.4775 0.1306 7.4996 1.1044 × 10
−10 102 0.4775 0.0870

878 64 0.5228 150.355 × 10
−5

89.4260 × 10
−5 7.4768 1.1328 × 10

−7
98 0.4772 0.1307 7.5289 0.1198 × 10

−10 102 0.4772 0.0870

to assess the impact of the points distribution composing a solution.

Tables 2, 3, and 4 report the results for the solutions chosen by at

least one strategy. For the sake of completeness, the reader may

find the complete sets of results in the GitHub repository. The best

values for each metric are in bold, while the arrows indicate if better

stands for lower ↓ or higher ↑ values.
Experimental settings for the IR scenario. A nadir point cannot

be established for the IR scenario because two of the objectives, i.e.,

efficiency and energy consumption, are not bounded in the opposite

direction of the optimization target. For this reason, we define the

reference point by slightly worsening the worst values reached

by the optimal solutions available. By doing so, we end up setting

r = (0.5, 0.00002, 0.001) forHV . Moreover, we set f ◦ = (1, 0, 0) for
𝐸𝐷 , and for each sample in the dataset in PDU. For what regards
WM, we equally treat the objectives by setting each weight to 0.5.

Finally, in this scenario, we do not apply any normalization to the

objective values achieved with the different models.

Experimental settings for the RS scenario. Differently from the

IR scenario, a nadir point can be established here because the two

objectives under consideration, i.e., Recall and APLT, are bounded.

We thus set r = (0, 0) for HV , and f ◦ = (1, 1) for 𝐸𝐷 . As before,
we give equal importance to the objectives in WM by setting each

weight to 0.5. Concerning PDU, we set 𝑓 ◦
1

= 1 for each sample

utopia point as wewant all users to have accurate recommendations.

Instead, we set 𝑓 ◦
2

= 1 in the first RS experimental scenario, while

we compute specific values of 𝑓 ◦
2
for each user as in Equation (14) in

the second RS experimental scenario. Finally, in both RS scenarios,

we apply a min-max normalization to the objectives.

We first divide the results discussion according to both IR and

RS scenarios for RQ1 and RQ2. Then, we answer RQ3 by exploiting

the second RS scenario.

5.3 Performance Comparison (RQ1)
IR scenario. We answer RQ1 by first focusing on the IR scenario.

The results for this scenario are summarized in Tables 2 (Lamb-

daMART) and 3 (Neural Networks). The plots in Figures 1a and 1c

show the Pareto-optimal points selected by the different techniques

for the cases considering two and three objectives regarding the

LambdaMART models, respectively. Figure 1b shows the points

selected in the case of the Neural Networks models.
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Regarding the two-objective case, we observe that the methods

blending the objectives (PDU, ED, WM) select the same Pareto-

optimal solution lying on the boundary of the Pareto frontier for

both families of models, thus maximizing the accuracy at the cost of

efficiency. In contrast,HV chooses an inner solution of the Pareto

frontier in both cases, i.e., more efficient models, that however show

a significantly lower performance in terms of nDCG compared to

the selection provided by PDU (0.5225 vs. 0.5179 for LambdaMART,

and 0.5185 vs. 0.5144 for the Neural Network). It is worth noting

that, in this case, no transformation has been applied to the scale

of the objectives, and the values of the Pareto solutions for what

regards the efficiency scale lead the points to be closer to the utopia

value 𝑓 ◦
2

= 0. If a min/max normalization is applied to the objective,

PDU still selects the same solution. Another essential implication

arising from this analysis is that, in this scenario, we cannot es-

tablish the nadir point, making challenging the definition of the

reference point. Consequently, this potentially leads to different

results based on how we define the reference point. Indeed, as we

push the reference point away from the Pareto frontier,HV selects

a boundary solution, as done by PDU. In light of the above results,

we observe that if the information related to the nadir point is

unavailable, the definition of the reference point can strongly affect

the selection of the final solution. Moreover, if the reference point

is estimated by looking at the collection of the considered solutions,

i.e., by slightly increasing the worst values reached by them,HV
promotes the solution in the middle. Indeed, the definition of the

reference point in such a way makes the volume of those solutions,

computed as in Equation (2), higher than any other. Thus, HV
unequally considers the remaining points lying on the boundaries

of the Pareto frontier. Finally, it is worth highlighting that U-KP,
although reported in Figures 1a and 1b, is not deterministic. Indeed,

by executing this method several times, it may choose different

points as the weights of the utility function (see Section 3.1.1) are

randomly extracted from a uniform distribution.

Moving to the three-objective formulation of the IR scenario for

the LambdaMART models, Figure 1c shows that when introducing

the energy consumption objective, the methods tend to choose a

more efficient model than the one selected in the two-objectives

scenario. As before, PDU and ED tend to maximize the accuracy

with respect to HV that still select solutions in the middle. The

three-dimensional scenario confirms two behaviors observed in the

two-dimensional one. First, the solution selected byHV depends

on the chosen reference point since it is not possible to define a nadir

point. Second, U-KP still exhibits a non-deterministic behavior.

Finally, we claim that PDU and ED perform the most convenient

selection from a qualitative perspective. By looking at Tables 2 and 3,

we see that they choose the models with higher values of nDCG

for all IR cases. Indeed, both efficiency and energy consumption

objectives are closer to their respective utopia values. This means

that more complex models, chosen by PDU and ED, guarantee
considerable improvement in ranking accuracy at a small reduction

of efficiency and energy consumption. Conversely,HV chooses

models that exhibit a considerable decrease in terms of nDCG.

RS scenario. For the first RS experimental scenario, we report the

results achieved in Table 4 for the Goodreads dataset (Figure 1d)

and for the Amazon Music dataset (Figure 1e). For both datasets, we

Table 3: Neural Networks selected solutions in the IR scenario.
The objectives are accuracy (nDCG) and efficiency (Seconds).

Models Objectives Selection Strategies

L1 L2 L3 L4 nDCG ↑ Seconds ↓ PDU ↓ HV ↑ U-KP↑ 𝐸𝐷 ↓ 𝑊𝑀 ↑

100 50 50 10 0.5144 3.3003 × 10
−6

7.5069 2.4099 × 10−7 221 0.4856 0.1286

200 100 100 50 0.5185 1.0476 × 10
−5 7.4959 1.7598 × 10

−7
204 0.4815 0.1296

Table 4: EASE𝑅 selected solutions (forGoodreads andAmazon
Music) in the RS scenario with Recall and APLT objectives.
For APLT, the higher the better refers to the provider side.

Models Objectives Selection Strategies

𝜆 Recall ↑ APLT ↑∗ PDU ↓ C-PDU ↓ HV ↑ U-KP↑ 𝐸𝐷 ↓ 𝑊𝑀 ↑
Goodreads

0.3 0.0384 0.0485 10.4113 10.0898 0.1861 × 10
−2

55 0.8546 0.2699
0.5 0.0433 0.0443 10.4066 10.0829 0.1919 × 10−2

16 0.7761 0.2686

1 0.0503 0.0363 10.4098 10.0819 0.1826 × 10
−2

0 0.7191 0.2546

60 0.0822 0.0108 10.4126 10.0706 0.0885 × 10
−2

86 0.9651 0.2556

90 0.0827 0.0096 10.4134 10.0711 0.0791 × 10
−2 101 0.9938 0.2510

Amazon Music

0.3 0.0632 0.1976 10.0104 9.8604 0.1249 × 10
−1

79 0.9524 0.2608

1 0.0683 0.1898 10.0147 9.8628 0.1295 × 10−1
49 0.8074 0.2819

10 0.0853 0.1313 10.0784 9.9160 0.1120 × 10
−1

4 0.6177 0.2896
80 0.0955 0.0766 10.1268 9.9570 0.0731 × 10

−1 89 0.9780 0.2542

notice that two well-separated clusters characterize the Pareto fron-

tier. On the one hand, in Goodreads the EASE
𝑅
configurations with

lower L2 norm (𝜆) values, which belong to the top-center cluster,

account for the accommodation of the objectives. In contrast, the

second cluster (bottom-right), i.e., 𝜆 between 10 and 100 in Table 4,

maximizes Recall at the expense of the exposure of the items (lower

values of APLT). On the other hand, in Amazon Music, these two

clusters of configurations follow the opposite behavior. On the one

side, the configurations with 𝜆 between 0.2 and 1 maximize APLT

at the detriment of Recall (top-left cluster). On the other side, the

remaining configurations do not promote either Recall or APLT

(bottom-right cluster). In this scenario,HV suffers less from the

problem of promoting solutions in the center of the Pareto frontier.

Indeed, differently from the IR scenario, here it is possible to define

the nadir point as a reference point because we know the lowest

bounds (0 for both APLT and Recall). Consequently, even though

HV selects an inner solution in the Goodreads case, it chooses a

point that tends to maximize APLT for the Amazon Music dataset.

PDU follows the behaviour ofHV when selecting the solutions

for both datasets. By considering that it selects an outer point of the

Pareto frontier in the IR scenario, this endorses the ability of PDU
to equally promote the available solutions despite their positioning

on the Pareto frontier.WM and ED select a solution belonging to

the top-center cluster in Goodreads and to the bottom-right cluster

in Amazon Music, thus enhancing the trade-off between accuracy

measured in terms of Recall and items exposure in both cases. Fi-

nally, U-KP still exhibits a nondeterministic performance.

To answer RQ1 we conclude observing that PDU overcomes some
limitations ofHV and U-KP competitors. Indeed, PDU selects one—
best—Pareto-optimal solution regardless of its position on the Pareto
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frontier in a deterministic way. Moreover, it exploits the concept of
Utopia point as additional information. Such a concept is more conve-
nient to use than the reference point used inHV , since, depending
on the problem addressed, the nadir point is difficult to be defined.

5.4 Impact of the Points Distribution (RQ2)
We now answer RQ2 by investigating the impact on selecting the

distribution of the points that compose a solution on the Pareto

frontier. Indeed, PDU is the only strategy considering these points

in a more fine-grained resolution. This analysis is done on both

the IR (Tables 2 and 3) and RS (Table 4) scenarios. To this end, we

remember that we have set 𝑒(·) as the Euclidean Distance in the

formulation of PDU (Equation (3)). Hence, even if both PDU and

ED rely on the Euclidean distance, they work differently in the two

experimental scenarios. This observation provides insights on the

impact of the points distribution on the selection.

RS scenario. PDU and ED choose different solutions for both RS

datasets. In this regard, the user data points’ distribution in the ob-

jective function space plays a crucial role. To confirm this fact, we

compute the users points’ mean Euclidean distances to the utopia

point of both solutions. Results confirm that the EASE
𝑅
config-

uration selected by PDU has a lower value of average Euclidean

distance, i.e., 1.3498 for 𝜆 = 0.5, w.r.t. the configuration chosen by

ED, i.e., 1.352 for 𝜆 = 1. The same impact is observed regarding the

Amazon Music dataset. Here, PDU and 𝐸𝐷 select different configu-

ration models having 𝜆 = 0.3 and 𝜆 = 10, respectively. As before, the

EASE
𝑅
configuration selected by PDU (𝜆 = 0.3) has a lower value

of average Euclidean distance, i.e., 1.2361 than the configuration

chosen by ED (𝜆 = 10), i.e., 1.279.

IR scenario. Concerning the IR two-objectives cases, PDU and

𝐸𝐷 choose the same solution for both LambdaMART and Neural

Networks models. When introducing energy consumption as the

third objective for the LambdaMART models, 𝐸𝐷 still selects the

same configuration with 878 trees and 64 leaves. Conversely, PDU
chooses a more efficient model (300 trees and 64 leaves). Once more,

the query points’ mean Euclidean distances to the common utopia

point of the model selected by PDU are lower than the ones of the

model chosen by 𝐸𝐷 (0.4813 vs. 0.4945).

To conclude, the answer to RQ2 is that the distribution of the points
composing a solution with respect to a common utopia point has a
significant impact on the final selection. This is an important fact, as it
paves the way to defining selection strategies that take the distribution
of the points into account while performing a selection that can be
done in a more—fine-grained—sample-level way.

5.5 Impact of Calibration on the Selection (RQ3)
Finally, we analyze the impact of the calibration introduced for PDU
using the second RS scenario, where we aim to tailor the selection

according to the users’ item popularity tastes. To this end, we assess

the selection performed by Calibrated-PDU (C-PDU).
Starting from the Amazon Music dataset, the average of the

APLT utopia values computed with Equation (14) (0.83) reveals

that the dataset’s users generally prefer less popular items. Indeed,

C-PDU selects the EASE
𝑅
model with 𝜆 = 0.3. This solution lies

on the top-left cluster of Figure 1e, by maximizing APLT with a

loss of Recall. In this case, C-PDU behaves similarly to PDU and

HV . Moving to the Goodreads dataset, it is characterized by users

with more mainstream tastes, since the average of the APLT utopia

values is equal to 0.65. Surprisingly, C-PDU is the only strategy

among the ones tested selecting a model configuration belonging

to the bottom-right cluster in Figure 1d where the solutions achieve

higher accuracy values without promoting APLT and following

the mainstream users tastes — along with U-KP that, however, has

a non-deterministic behavior. These experimental results already

qualitatively show the impact of defining a utopia point for each

user on the final selection, since C-PDU is the only strategy to

capture the users’ popularity profiles for both datasets. We deepen

the analysis further by considering the model configurations cho-

sen by PDU and C-PDU for Goodreads, i.e., 𝜆 = 0.5 and 𝜆 = 60,

respectively. We observe that, although the model with 𝜆 = 0.5

performs better on average APLT, the model with 𝜆 = 60 has a

lower variance of the mean absolute error (0.036 for 𝜆 = 60 vs. 0.039

for 𝜆 = 0.5) between the utopia values and the model performance

values for each user. This indicates that C-PDU selects the model

that generally follows better the users’ popularity profile. In ad-

dition, this model provides more accurate recommendations on

average. Hence, C-PDU chooses the model that performs better in

terms of accuracy and also tailors the popular tastes of the users.

To conclude, the answer to RQ3 is that the calibration feature
of PDU allows dealing with the ideal targets for each sample. This
confirms that calibration is a viable way to move the selection of the
Pareto-optimal solution to a more fine-grained resolution that can
lead to significantly different choices in terms of the trade-off selected.

6 CONCLUSIONS AND FUTUREWORK
In this work, we proposed PDU, a novel, theoretically-justified post-
hoc technique to select one—best—Pareto-optimal solution among

the ones lying in the Pareto frontier in search and recommendation

scenarios. To our knowledge, PDU is the only selection technique

in the literature that can be “calibrated”, i.e., it can choose the best

Pareto-optimal solution based on ideal targets expressed on single

queries or users. We comprehensively compared the properties

of PDU with those of competitor techniques. We conducted an

extensive experimental evaluation focusing on both IR and RS sce-

narios, showing that the formulation and the calibration feature

of PDU have a notable impact on the solution’s selection. In the

future, we will explore PDU by exploiting other distance metrics

(e.g., Chebyshev and Manhattan). Moreover, it could be interesting

to perform online A/B tests to assess the impact of the calibrated

selection. Finally, this work could open to the formulation of a

new loss function based on the PDU derivation, to directly train a

ranking model on multiple objectives simultaneously.
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