
Ecological Informatics 78 (2023) 102384

Available online 25 November 2023
1574-9541/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A deep learning-based pipeline for whitefly pest abundance estimation on 
chromotropic sticky traps 

Luca Ciampi a,*, Valeria Zeni b, Luca Incrocci b, Angelo Canale b, Giovanni Benelli b, 
Fabrizio Falchi a, Giuseppe Amato a, Stefano Chessa c 

a Institute of Information Science and Technologies of the National Research Council of Italy (ISTI-CNR), Pisa, Italy 
b Department of Agriculture, Food and Environment of the University of Pisa, Pisa, Italy 
c Department of Computer Science of the University of Pisa, Pisa, Italy   

A R T I C L E  I N F O   

Keywords: 
Smart agriculture 
Smart farming 
Integrated pest management 
Computer vision 
Object counting 
Visual counting 

A B S T R A C T   

Integrated Pest Management (IPM) is an essential approach used in smart agriculture to manage pest populations 
and sustainably optimize crop production. One of the cornerstones underlying IPM solutions is pest monitoring, a 
practice often performed by farm owners by using chromotropic sticky traps placed on insect hot spots to gauge 
pest population densities. In this paper, we propose a modular model-agnostic deep learning-based counting 
pipeline for estimating the number of insects present in pictures of chromotropic sticky traps, thus reducing the 
need for manual trap inspections and minimizing human effort. Additionally, our solution generates a set of raw 
positions of the counted insects and confidence scores expressing their reliability, allowing practitioners to filter 
out unreliable predictions. We train and assess our technique by exploiting PST - Pest Sticky Traps, a new 
collection of dot-annotated images we created on purpose and we publicly release, suitable for counting 
whiteflies. Experimental evaluation shows that our proposed counting strategy can be a valuable Artificial 
Intelligence-based tool to help farm owners to control pest outbreaks and prevent crop damages effectively. 
Specifically, our solution achieves an average counting error of approximately 9% compared to human capa-
bilities requiring a matter of seconds, a large improvement respecting the time-intensive process of manual 
human inspections, which often take hours or even days.   

1. Introduction 

Digitalization and automatization have become customary practices 
in various domains, encompassing industries, entertainment, environ-
ment, and overall human well-being. The agricultural and the ecological 
sectors are not excluded from this trend. Smart agriculture, also called 
smart farming or digital agriculture in the literature, represents the 
advancement of precision agriculture (Kamilaris et al., 2016) and holds 
the potential to revolutionize food management and production by 
addressing the strategic challenges of this area concerning productivity, 
food security, environmental impact, and sustainability. Specifically, it 
aims to convert traditional agriculture techniques into innovative solu-
tions that leverage Information and Communication Technologies (ICT) 
such as machine learning, automated image processing, unmanned 
aerial vehicles, unmanned ground vehicles, and wireless sensor net-
works (Kamilaris et al., 2016; Mahmud et al., 2023; Moazzam et al., 

2023; Tian et al., 2020). 
An essential strategy in farm management is Integrated Pest Man-

agement (IPM), which aims to control pest populations effectively. An 
effective IPM tool can prevent crop damage (Lamichhane et al., 2016) 
and suggest corrective measures to avoid pests from causing significant 
problems, keeping the use of pesticides only to levels that are ecologi-
cally justified,1 and consequently minimizing risks or hazards to humans 
and the environment. On the other hand, recent trends are revisiting the 
IPM paradigm, focusing more on ecological aspects and putting the 
environment as a pivotal element (Dara, 2019), keeping and supporting 
the natural stability of the agro-ecosystem (Tshernyshev, 1995), e.g., by 
increasing biodiversity and creating habitat for natural enemies, without 
using chemical compounds. One of the pillars underpinning IPM solu-
tions is monitoring insects, mites, and other living organisms near the 
crops, identifying them accurately to ensure adequate control decisions 
and actions. In practice, chromotropic sticky traps are among the most 
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common methods utilized by farm owners to assess pest population 
densities. However, trap inspections are labor-intensive, subjective, 
costly, and prone to high error rates due to human susceptibility to 
factors like fatigue, visual illusions, and boredom (Barbedo, 2014). This 
opens the door for automated solutions within the realm of smart 
agriculture. 

This paper proposes an automated counting pipeline based on data- 
driven Artificial Intelligence (AI), specifically Deep Learning (DL), for 
estimating the number of pests in images of sticky chromotropic traps. 
Our approach follows a modular paradigm and is model-agnostic: 
differently from most existing works that employ specific object de-
tectors, the module responsible for counting can be implemented with 
recent SOTA methodologies, not only detection-based but also relying 
on regression. Its output is then fed into downstream modules that 
produce unified outputs expressing localization and confidence scores of 
the counted insects. The required data was collected by taking digital 
camera pictures of the traps placed in insect hot spot locations at the 
University of Pisa (Italy). Subsequently, images were annotated by 
putting dots over the centroids of the trapped insects of interest; dotting 
emulates the natural human technique for counting objects (at least 
when the number of objects is greater than the subitizing range), and it 
represents the golden standard concerning the labels needed for the 
supervised training of deep learning models for the counting task 
(Lempitsky and Zisserman, 2010). We name this collection of images 
PST - Pest Sticky Traps and publicly release it (Ciampi et al., 2023). To 
the best of our knowledge, it is the first publicly available dot-annotated 
dataset specifically tailored for counting pests on sticky trap images, and 
it represents another novel contribution of our work. In this setting, we 
experiment with several approaches: our best-performing solution ach-
ieves an average counting error of approximately 9% compared to 
human capabilities while requiring mere seconds for computation, in 
contrast to the hours or days needed for manual human inspections. 

In summary, the main contributions of this work are listed in the 
following.  

• We propose a deep learning-based pipeline to automatically estimate 
pest populations present on chromotropic sticky trap pictures. The 
proposed solution is modular and model-agnostic, allowing for 
seamless integration of subsequent models from the literature into 
the proposed pipeline, and therefore capable of encompassing all 
counting strategies; furthermore, it works in the wild, i.e., any pre- 
processing strategy of the pictures is needed, such as preliminary 
segmenting the region outlining the traps from the background.  

• Our proposed pipeline, despite the upstream counting approach, can 
also produce a set of localization providing the raw positions of the 
counted insects and associated confidence scores expressing their 
reliability, thus permitting practitioners to filter out unreliable 
predictions.  

• We introduce PST - Pest Sticky Traps, a collection of dot-labeled 
images depicting sticky traps where pests have been trapped; it 
represents the first dataset specifically tailored for counting insects 
freely available to the scientific community (Ciampi et al., 2023), 
suitable for training and testing deep learning models in recognizing 
and counting whiteflies.  

• We conduct an extensive experimental evaluation of the proposed 
pipeline considering several counting approaches, ranging from 
detection-based techniques to regression methodologies; differently 
from most existing works that assessed models' performance only in 
terms of detection, we exploit pure counting metrics and also some 
hybrid evaluators that simultaneously consider the object count and 
the estimated raw locations of them, showing that our counting 
strategy can be a reliable AI-based IPM tool. 

We organize the rest of the study as follows. We report related work 
in Section 2. We illustrate the proposed dataset in Section 3. In Section 4, 
we describe the methodology, while in Section 5, we outline the per-
formed experiments discussing the obtained results. Finally, Section 6 
concludes the research. The code and other resources are publicly 
available at https://ciampluca.github.io/sticky_trap_ 

pest_counting/. 

2. Related works 

We report a comprehensive review of previous studies that are 
relevant to our research. Specifically, we explore works related to the 
counting task in a broad sense, as well as approaches designed explicitly 
for detecting and estimating the number of insects from images. 

2.1. Counting objects in images 

Object counting is one of the more challenging tasks in computer 
vision, offering a plethora of practical applications. Some examples 
range from counting vehicles (Ciampi et al., 2022b; Guerrero-Gómez- 
Olmedo et al., 2015) or counting cells (Ciampi et al., 2022a; Xie et al., 
2016) to estimating the number of trees (Putra et al., 2022), plant leaves 
(Bhagat et al., 2022) or people (Benedetto et al., 2022; Liu et al., 2019). 
State-of-the-art performances are achieved by exploiting supervised 
deep learning approaches that basically follow two main strategies: 
counting through detection and counting through regression. The 
former, exemplified by works like (Amato et al., 2019; Hsieh et al., 
2017), mandates preliminary identification of individual object in-
stances. In contrast, regression-based techniques (Arteta et al., 2016) 
learn a mapping between image feature representations and the number 
of objects present in the scene, circumventing explicit localization of 
object instances. This can be achieved directly or through estimating a 
target map, such as a density or segmentation map representing a real or 
integer-valued (non-linear) function, respectively. Regression methods 
have demonstrated particular efficacy in densely populated scenarios 
where occlusions often obstruct object visibility. However, a limitation 
is their failure to furnish precise localization of objects within the scene. 

2.2. Insect detection and counting 

Recently, AI and, specifically, DL techniques have supplanted 
traditional computer vision approaches for pest detection, as seen in 
works such as (Costa et al., 2023; Kasinathan et al., 2021; Sun et al., 
2017). Notable deep learning solutions designed specifically for 
detecting pests in images of sticky traps include (Wang et al., 2021), 
(Nieuwenhuizen et al., 2018), (Khalid et al., 2023), and (Li et al., 
2021a). These works presented three approaches based on popular ob-
ject detectors like YOLOv4 (Bochkovskiy et al., 2020), YOLOv8 (Jocher 
et al., 2023), and Faster R-CNN (Ren et al., 2017), where the authors 
experimented with datasets of sticky traps containing bounding box 
annotations for whiteflies and other arthropods. For comprehensive 
surveys on pest classification and detection in images, references (Li 
et al., 2021b; Lima et al., 2020) can be consulted. 

Additionally, within the existing literature, numerous deep learning- 
based approaches claim to address the specific challenge of pest 
counting. For instance, in (Ding and Taylor, 2016), the authors proposed 
an automatic detection framework for localizing and counting pests 
from pictures of field traps via a classifier applied to local windows at 
different positions within the entire image. The experimental evaluation 
has been conducted using a commercial codling moth dataset. Similarly, 
(Sun et al., 2018) introduced a network based on the RetinaNet object 
detector (Lin et al., 2017) for detecting and counting red turpentine 
beetles in images of pheromone traps. The results are obtained by testing 
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the model on a bounding box-annotated dataset with a relatively small 
number of insects per image (approximately six on average). In another 
work (Partel et al., 2019), Partel et al. proposed an automated system 
utilizing an AI-based approach running on an Nvidia TX2 board to 
detect, classify, and count the Asian citrus psyllid, Diaphorina citri 
Kuwayama (Hemiptera: Liviidae), through image acquisition and pro-
cessing in a citrus grove. Similarly, (Lins et al., 2020) introduced a 
method for detecting and classifying Rhopalosiphum padi (L.) (Hemi-
ptera: Aphididae) using hand-crafted computer vision techniques for 
localization and deep learning for classification. Additionally, Li et al. 
(Li et al., 2019) proposed a pipeline based on the Faster R-CNN detector 
(Ren et al., 2017) for detecting and counting agricultural pests in im-
ages, while (Wang et al., 2022) employed a similar architecture for 
counting apple pests on sticky boards. Finally, in (She et al., 2022), a 
YOLO-based object detector is exploited for counting fruit fly pests in 
orchards on trap bottles. However, all these methods fall under the 
counting-by-detection strategy, relying on object detectors. It is impor-
tant to note that while these works evaluate detection performance, they 
do not extensively analyze counting metrics, despite counting being the 
primary task for which they were designed. 

Only a few works directly address counting analysis or employ 
alternative approaches not based on detectors. For example, Zhong et al. 
(Zhong et al., 2018) and Rustia et al. (Rustia et al., 2020) proposed 
cascade approaches using the YOLOv1 (Redmon et al., 2016) and 
YOLOv3 (Redmon and Farhadi, 2018) object detectors, followed by a 
support vector machine and a multi-class convolutional neural network- 
based classifier, respectively, to localize and count various types of in-
sects automatically. Their methodologies are evaluated in terms of mean 
counting accuracy using non-publicly available collections of sticky trap 
images. Finally, (Bereciartua-Pérez et al., 2022; Bereciartua-Pérez et al., 
2023) presents a regression-based approach using a Fully Convolutional 
Regression Network (FCRN) inspired by (Xie et al., 2016) to count 
whiteflies in eggplant leaves through density map estimation. The 
evaluation is performed using counting metrics, again, on a non-publicly 
available dataset. 

In this work, we propose a counting pipeline that estimates the 
number of whiteflies by analyzing images of sticky traps. Differently 
from most existing works (Ding and Taylor, 2016; Li et al., 2019; Li 
et al., 2021a; Lins et al., 2020; Nieuwenhuizen et al., 2018; Sun et al., 
2018; Wang et al., 2021), we provide a detailed analysis in terms of 
counting metrics. We leverage counting golden standard evaluators and 
hybrid metrics that consider both the number of insects and their esti-
mated locations within the images. Additionally, our approach includes 
a model-agnostic module that can be implemented using various state- 
of-the-art deep learning algorithms. We evaluate several methods 
within the counting-by-detection strategy, encompassing different ob-
ject detectors used in previous works (Bochkovskiy et al., 2020; Lin 
et al., 2017; Redmon et al., 2016; Redmon and Farhadi, 2018; Ren et al., 
2017). Moreover, we assess regression-based techniques, which have 
been less explored in previous studies (Bereciartua-Pérez et al., 2022; 
Bereciartua-Pérez et al., 2023), for estimating pest populations. To 
evaluate our solution, we present a novel and challenging dataset that 
we publicly provide (Ciampi et al., 2023), contributing to the scientific 
community by establishing a baseline for reproducibility and compari-
son of results. 

3. The dataset 

Whiteflies (Hemiptera: Aleyrodidae) are notorious pests that pose a 
significant threat to numerous agricultural crops. They are recognized as 
a primary contributing factor to the decline in various greenhouse- 
grown vegetable crops (Farina et al., 2022). Specifically, they 
diminish plant health and production by directly collecting plant sap 
with their sucking stinging mouthparts and triggering the spread of 
sooty mold fungi by releasing sticky honeydew on fruits (Sekine et al., 
2022). Furthermore, they are not only responsible for direct damaging 

plants but also acting as vectors for several tomato viruses, such as the 
tomato yellow leaf curl virus (TYLCV) (Ramasamy and Ravishankar, 
2018; Tan et al., 2017). Hence, it is not surprising that we are witnessing 
an increasing interest in designing automated IPM solutions to monitor 
the population of these living organisms so that appropriate control 
decisions can be made. 

In this work, we collect and publicly release PST - Pest Sticky Traps 
(Ciampi et al., 2023), a novel dot-annotated dataset containing pictures 
of yellow chromotropic sticky traps specifically designed for training/ 
testing deep learning models to automatically count insects and estimate 
pest populations. Other collections of images depicting pest traps are 
already present in the literature (Bereciartua-Pérez et al., 2022; Bere-
ciartua-Pérez et al., 2023; Li et al., 2021a; Nieuwenhuizen et al., 2018; 
Sun et al., 2017; Wang et al., 2020; Wang et al., 2021; Zhong et al., 
2018). However, they are often not publicly available and are all spe-
cifically tailored for the pest detection task, i.e., they provide bounding 
box labels. Although it is possible to cast these data as suitable for 
counting, they inherit some limitations due to their original purpose. 
Indeed, the manual process of annotating bounding boxes demands 
more human effort than dotting, which is a more intuitive method to 
count objects (Lempitsky and Zisserman, 2010). As a consequence, most 
existing datasets exhibit just a tiny number of insects per-image (Sun 
et al., 2018; Wang et al., 2020), or they include tiles of the original 
images obtained after data pre-processing because pest annotations 
were more readily performed using smaller regions of interest, i.e., tiles 
contained lower numbers of insects than the full images (Li et al., 2021a; 
Nieuwenhuizen et al., 2018; Wang et al., 2021). On the other hand, the 
PST dataset is tailored for pest counting. It includes images of full sticky 
trap pictures that deep learning models can use in the wild, i.e., without 
needing any pre-processing step. Data is annotated with dots rawly 
localizing the insects, making possible the presence of single challenging 
images containing thousands of insects. In the following, we describe the 
data collection and curation phases. 

Data Collection. The traps have been preliminarily placed by some 
experts in several insect hotspot locations at the University of Pisa (Italy) 
during periods of time for which it was expected the presence of several 
species of whiteflies. Then, pictures were acquired using a Nikon D5300 
digital camera in natural light conditions at different times of the day to 
have heterogeneous scenarios in terms of different illuminations. Ulti-
mately, the dataset includes about 30 images with sizes of 4288× 2848. 

Data Curation. Images were manually annotated by some experts of 
the Department of Agriculture, Food and Environment of the University 
of Pisa (Italy) by putting a dot over each identified insect using the freely 
available LabelMe annotation tool.2 Specifically, we labeled insects as 
belonging to the category “whitefly” considering two different species, i. 
e., the sweet potato whitefly (Bemisia tabaci) (Gennadius) and the 
greenhouse whitefly (Trialeurodes vaporariorum) (Westwood). Among all 
the images, the number of insects dramatically varies from a few to some 
thousand per image, for a total of more than 17,000 labeled insects. We 
report detailed statistics about the dataset in Table 1, while, in Fig. 1, we 
provide some samples of it, together with zoomed areas of a single sticky 
trap showing different densities of captured insects. We divided the 
dataset into two splits: a training subset of 20 images for the model 

Table 1 
Dataset Statistics.We report some numerical characteristics of the proposed 
PST - Pest Sticky Traps dataset.  

#images image size #insects #insects/image 

avg min max 

28 4288 × 2848 17,005 607 1 3686  

2 https://github.com/wkentaro/labelme 
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Fig. 1. Dataset Samples. We report some samples of our PST - Pest Sticky Traps dataset, showing pictures gathered at different illuminations. We also depict in 
detail one sample, zooming some areas of it having different densities of captured insects and other contaminants accidentally glued, such as fluff and dust. Best 
viewed in electronic format. 

Fig. 2. The proposed counting pipeline. We design a Localization and Scoring Module that, from an input image I, produces (i) a set of 2D dot coordinates P, roughly 
localizing the detected insects, and (ii) a set of confidence scores S assigned to each of them. Specifically, it comprises a pest counting module PCθ based on deep 
learning techniques, a dot-generator module DG, and a score-generator module SG. We design, implement, and test the Localization and Scoring Module in various 
ways, aligning with the primary counting approaches found in the existing literature, namely counting through detection and counting through regression. By 
adjusting a customizable threshold, practitioners can effectively filter out unreliable predictions and obtain the final count of the detected insects. 
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training step and a test split with the remaining eight images for the 
model evaluation phase. Finally, it is worth noting that, even if we an-
notated only the pests belonging to the class “whitefly”, other insects 
were accidentally stucked in the traps, which represents an additional 
challenge - deep learning models should not count the latter insect 
species. Specifically, we found insects belonging to different orders, such 
as Lepidoptera, Hymenoptera, and Diptera (about 21, 7, and 113, 
respectively); furthermore, among hemipterans we also found insects 
belonging to families of Psyllidae, Aphidae, and Miridae (about 4, 14, 
and 22, respectively). Besides, about 80% of the images contain con-
taminants, such as dust, fluff, or leaves, accidentally glued over the 
sticky traps. Some samples of bycatches insects and contaminants can be 
found in Fig. 1 and Fig. 4. 

4. A deep learning-based pipeline for pest population estimation 

4.1. Overview 

We make the assumption to have a collection of N annotated images 
of chromotropic sticky traps denoted as X = (I1, P̂1),…,(IN, P̂N), where 
Ii indicates an image and P̂i⊂ℝ2 the associated set of annotations, i.e., 
the ground truth. Here, following the standards for the counting task, the 
latter corresponds to 2D point coordinates roughly localizing the insects 
to be counted within the image. 

Fig. 2 depicts a graphical overview of the overall proposed counting 
pipeline. Specifically, it comprises a Localization and Scoring Module that 
is fed with an image Ii, and it outputs a set Pi = {p1,…, pC} ∈ ℝ2 of 2D 
point coordinates roughly localizing the detected insects together with a 
set Si = {s1,…, sC} ∈ ℝ of confidence scores expressing their reliability. 
More in detail, this module comprises three components: (i) a pest 
counting module PCθ based on deep learning techniques, (ii) a dot- 
generator module DG, and (iii) a score-generator module SG. 

The pest counting module PCθ generates an estimation of the insect 
count within a given Region of Interest (RoI). It utilizes a deep learning 
technique that is trained by leveraging the data X . In this work, we 
implement PCθ using multiple networks that belong to the main 
counting strategies found in the literature. These strategies, as already 
mentioned in Section 2.1, include counting by detection, where we 
compute bounding boxes, and counting by regression, where we predict 
a target map. Specifically, for the regression-based approach, we explore 
two different methods that rely on distinct regressed target maps: 
counting by density estimation and counting by segmentation. Density 

maps represent the insect distribution, where each pixel indicates the 
“amount” of insects present at that specific location, while in segmen-
tation maps, each pixel is assigned to a specific object class, typically 
with zeros representing the background class. On the other hand, the 
dot-generator module DG receives the output from the preceding pest 
counting module PCθ. Its purpose is to generate the set of dot co-
ordinates P that provide an approximate localization of the detected 
insects within the Region of Interest (RoI). Hence, we design this module 
in three variations, each tailored to the specific characteristics of the 
upstream pest counting module PCθ. Subsequently, the score-generator 
module SG assigns a confidence score to indicate the level of reli-
ability for each prediction. This module enables users to eliminate pre-
dictions of poor quality and obtain the final count of identified objects. 
Once again, the design of this module aligns with the different formu-
lations of the upstream pest counting module PCθ. 

Below, we provide an overview of the three localization and scoring 
modules, which correspond to the three counting approaches they are 
built upon. Firstly, Section 4.2 describes the module that utilizes 
detection with bounding boxes. Secondly, Section 4.3 explains the 
module that relies on regression to density maps. Lastly, Section 4.4 
showcases the module that is based on regression to binary segmenta-
tion maps. 

4.2. Localization and scoring module based on detection with bounding 
boxes 

In the approach that utilizes detection with bounding boxes, the 
module PCθ consists of a state-of-the-art object detector that generates a 
set of bounding boxes to localize the predicted insects. Meanwhile, the 
final localization set P is created by the dot-generator module DG simply 
by computing the centers of these boxes. The confidence scores, finally, 
are provided natively by the detector and range from 0 to 1, representing 
the probability of an object being present within the bounding box. To 
train PCθ, labels are generated using squared bounding boxes centered 
on the ground-truth dots. The side length of the bounding boxes is fixed 
and determined in advance, considering the typical sizes of objects in the 
dataset. An example of a ground-truth sample can be seen in column b) 
of Fig. 3. 

In this paper, we utilize two different detectors implementing PCθ. 
The first one is Faster-RCNN (Ren et al., 2017), a widely used network 
that operates under a two-stage paradigm. The initial stage aims to 
generate region proposals – plausible areas containing objects – using 
predefined boxes referred to as anchors. The subsequent stage fine- 

Fig. 3. Generated ground-truth. Ground-truth required for the training phase is derived from dot labels by leveraging distinct procedures depending on the specific 
deep learning model PCθ being employed:: (i) bounding boxes are generated by creating squares centered over the dots with a fixed side length s, (ii) density maps are 
produced by overlaying Gaussian kernels Gσ centered at the dot positions, and (iii) segmentation maps are generated by superimposing dot-centered discs having 
radius r and splitting overlapping discs using a background ridge. The parameters s, σ, and r are constants that are established based on the standard object sizes 
prevalent in the images. Best viewed in electronic format. 
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tunes, categorizes, and assigns confidence scores to these regions. Spe-
cifically, we utilize the Faster-RCNN version with a ResNet-50 backbone 
(He et al., 2016). Henceforth, we will refer to this method as Det-FRCNN. 
On the other hand, our second detector is FCOS (Tian et al., 2019), a 
recently introduced fully convolutional network that follows a one-stage 
paradigm. It eliminates the need for anchor boxes and relies solely on 
post-processing techniques like non-maximum suppression, a popular 
procedure essential for removing redundant overlapping detections by 
merging bounding boxes that might belong to the same object (Fel-
zenszwalb et al., 2010; Ren et al., 2017). Consistently, we use the FCOS 
detector with a ResNet-50 backbone (He et al., 2016) and will refer to it 
as Det-FCOS. 

4.3. Localization and scoring module based on regression to density maps 

Using this approach, PCθ is designed as a density estimator, which is 
particularly effective for counting in densely populated scenarios. The 
objective is to learn a non-linear mapping between the input image's 
features and an associated density map Dmap. In this density map, each 
pixel represents the “amount” of objects present at that specific location, 
in accordance with the concept of density from both physical and 
mathematical standpoints. The number of objects C within the image I, 
or a sub-region of it Isub ⊆ I, is calculated by summing the pixel values 
within the considered area, i.e., C =

∑
p∈Isub

Dmapp . Given that an inherent 
drawback of this approach is its inability to achieve precise object 
localization, the responsibility of offering a rough positioning of the 
insects falls upon the dot-generator module DG, which analyzes the 
estimated density map, determining the x − y coordinates of the top-C 
local peaks with the highest values (Xie et al., 2016). Finally, the con-
fidence scores from the SG module are derived by considering the pixel 
values of these top-C local peaks. For training PCθ, the generation of 
ground-truth density maps involves overlaying Gaussian kernels Gσ 
centered on the ground-truth dot-annotated locations. The parameter σ, 
determining the Gaussian spread, is established based on the standard 
sizes of insects gauged in the dataset. An example of a ground-truth 
density map can be seen in column c) of Fig. 3. Specifically, PCθ is 
trained to minimize the mean squared error loss between the predicted 
and the ground-truth density maps. 

In this context, we use two density estimators to represent PCθ. The 
first one is the Congested Scene Recognition Network (CSRNet) (Li et al., 
2018), initially designed for crowd density estimation but subsequently 
adapted for counting other object categories such as cells (Xie et al., 
2016) and vehicles (Guerrero-Gómez-Olmedo et al., 2015). It employs a 
modified version of the well-known VGG-16 network (Simonyan and 
Zisserman, 2015) for feature extraction and utilizes dilated convolu-
tional layers (Yu and Koltun, 2016) to capture deeper saliency infor-
mation while maintaining the output resolution. We will refer to this 
method as Den-CSRNet. The second density estimator we employ is 
based on FCRN (Xie et al., 2016), a fully convolutional neural network 
initially used for cell counting and then applied to count whiteflies in 
eggplant leaves (Bereciartua-Pérez et al., 2022; Bereciartua-Pérez et al., 
2023). Henceforth, we will refer to this method as Den-FCRN. 

4.4. Localization and scoring module based on regression to segmentation 
maps 

In this approach, inspired by Falk et al. (Falk et al., 2018), we train 
PCθ to learn a non-linear mapping between the input image's features 
and an associated binary segmentation map Smap ∈ 0, 1. In this map, 
pixels with a value of one represent the objects of interest, while zeros 
correspond to the background. The segmentation map Smap is then 
thresholded and processed further to extract connected components. 

The dot-generator module DG generates the localization set P by 
computing the x-y coordinates of the centroids of these connected 
components. Finally, the confidence scores in S are calculated by the 
score-generator module SG. Each score value ranges from 0 to 1, cor-
responding to the maximum value within the connected components 
associated with each localized object. Following Falk et al. (Falk et al., 
2018), the ground-truth segmentation maps for training PCθ were 
created by superimposing a disc centered at the ground-truth locations 
and separating overlapping discs with a background ridge. The disc 
radius is fixed based on the typical insect sizes in the dataset. An 
example of a ground-truth segmentation map can be seen in column d) 
of Fig. 3. Specifically, PCθ is trained to minimize the weighted binary 
cross-entropy loss between the predicted and the ground-truth seg-
mentation maps, assigning more weight to the pixel along the ridges 
separating instances. 

In line with Falk et al. (Falk et al., 2018), we implement PCθ using a 
standard U-Net architecture (Ronneberger et al., 2015). We will refer to 
this approach as Seg-UNet. 

5. Experiments and results 

5.1. Overview 

We assess our methodology against the PST dataset described in 
Section 3. We utilize the training subset for the supervised learning step 
concerning PCθ, while the overall counting pipeline is evaluated on the 
test split. First, we investigate the counting ability of the proposed ap-
proaches using the counting golden standard evaluators: basically, we 
investigate the counting performance of our pipeline considering only 
the pest counting module PCθ. Then, we perform further experiments 
taking into account some hybrid metrics that simultaneously consider 
the count error and the estimated raw locations of the insects: essen-
tially, in this case, we consider the entire pipeline, i.e., the PCθ, DG, and 
SG modules. It is worth noting that The PCθ modules discussed in Section 
4 encompass various general counting strategies, including detection 
and regression. These strategies are drawn from state-of-the-art meth-
odologies for pest detection and counting, as mentioned in Section 2.2. 
Notably, many of these methodologies employ the same deep learning 
network, such as Faster R-CNN (Ren et al., 2017), which is adopted in 
constructing the PCθ module. Some other approaches, like (Bereciartua- 
Pérez et al., 2022; Bereciartua-Pérez et al., 2023) inspired by FCRN (Xie 
et al., 2016), and others like (Rustia et al., 2020; Sun et al., 2018; Wang 
et al., 2021; Zhong et al., 2018), which utilize similar architectures to 
(Tian et al., 2019), are also considered. Summarizing, this section aims 
to demonstrate, over the newly established scenario represented by the 
PST dataset, the effectiveness of our counting pipeline; taking advantage 
of the latter being model-agnostic, we test several general counting 
strategies that also enclose primary SOTA pest detection and counting 
approaches, performing an in-depth counting analysis. 

5.2. Experimental settings 

Training Setup. In the training phase, we partition the training data 
into two subsets: training and validation. To mitigate potentially un-
balanced sets arising from the varying insect numbers present in 
different images, we deviate from the typical per-image splitting 
approach. Rather, we embrace an alternative strategy. We vertically 
divide each image into halves, alternatingly assigning one portion to the 
training subset and the other to the validation set. 

We process images in the wild, i.e., without performing any pre- 
processing operation, such as segmenting the region representing the 
trap from the background. To address the challenge of large image sizes, 
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we break them down into smaller patches. Specifically, in the training 
stage, we randomly crop square patches (experimenting with various 
patch sizes, namely 256, 320, 480, 640, and 800 pixels), and we apply a 
simple augmentation strategy, flipping the patches horizontally and 
vertically with a 50% probability. On the other hand, during the vali-
dation phase, we divide the images of the validation split into regularly- 
spaced, overlapping patches, using the same size employed during 
training. We process these patches individually, reconstructing the 
overall output by combining the predictions from the patches, and 
subsequently, we calculate metrics over the complete image. For clarity, 
Fig. 2 provides a graphical representation of this procedure. In more 
detail, for the solution based on detection, we reconstruct the final 
global output using non-maximum suppression among the bounding 
boxes computed in the overlapping regions; about the solutions relying 
on regression to density and segmentation maps, we generate image- 
level maps by reassembling the patch-level maps and computing the 
average pixel values within the regions of overlap. 

Counting Analysis. In the initial set of experiments conducted to assess 
counting performance, we utilize standard counting benchmarks, which 
include Mean Absolute Error (MAE), Mean Squared Error (MSE), and 
Mean Absolute Relative Error (MARE). These metrics are defined as 
follows: 

MAE =
1
N
∑N

n=1

⃒
⃒
⃒cn

gt − cn
pred

⃒
⃒
⃒, (1)  

MSE =
1
N
∑N

n=1

(
cn

gt − cn
pred

)2
, (2)  

MARE =
1
N
∑N

n=1

⃒
⃒
⃒cn

gt − cn
pred

⃒
⃒
⃒

cn
gt

. (3)  

where N stands for the number of images belonging to the test split, 
while cn

gt and cn
pred refer to the ground truth and the predicted numbers of 

insects present in the n-th image, respectively. It's important to highlight 
that, due to the squaring of differences, the MSE places more weight on 
larger errors, including outliers. Conversely, the MARE also considers 
how the error relates to the total object count in the image. This metric 
holds particular significance in our PST dataset, where the insect count 
exhibits significant variation across images. 

Localization Analysis. While the MAE, MSE, and MARE serve as fair 
metrics for comparing counting performance and are considered the 
gold standard for this task, they can sometimes mask erroneous esti-
mations. The reason behind this is that they do not account for where the 

Table 2 
Evaluation of the Counting Performance. We show the obtained outcomes in terms of Mean Absolute Error (MAE), Mean Squared Error (MSE), and Mean Absolute 
Relative Error (MARE).  

Method MAE ↓ MSE ↓ MARE (%) ↓ 

Det-FRCNN (Ren et al., 2017) 65.750 8532.125 9.3 
Det-FCOS (Tian et al., 2019) 66.125 9328.500 9.6 
Den-CSRNet (Li et al., 2018) 179.875 110,914.875 76.1 
Den-FCRN (Xie et al., 2016) 126.500 49,710.625 60.5 
Seg-UNet (Falk et al., 2018) 80.375 12,853.625 10.7  

Fig. 4. Output sample of the best-performing counting module PCθ. We show an output sample produced by the PCθ module of the best-performing model, i.e., 
Det-FRCNN. We highlight the ground truth with green squares; furthermore, we indicate false positives in purple, false negatives in cyan, and true positives in red, 
connected via a thin blue line to the corresponding ground truth position. We also show some zoomed areas to highlight some errors due to contaminants (false 
positive in the left zoomed region) and very challenging to find whiteflies (false negative in the right zoomed region). Best viewed in electronic format. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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estimations are made within the images, thereby failing to capture 
localization errors. Consequently, models may achieve low MAE, MSE, 
and MARE values while still providing inaccurate predictions (for 
instance, many false positives and negatives in detection-based tech-
niques or misleading values in predicted density maps). Thus, relying 
solely on these counting metrics to select the best counting approach can 
lead to mistakes. To address this limitation and also consider the 
(coarse) localizations of the detected insects, we employ the Grid 
Average Mean Absolute Error (GAME) (Guerrero-Gómez-Olmedo et al., 
2015), a metric that simultaneously takes into account the object count 
and the estimated object locations. Precisely, GAME is calculated by 
dividing the image into 4L non-overlapping regions, where L represents 
the grid level. The metric sums the MAE computed in each sub-region, 
allowing for a more comprehensive assessment of the counting 
approach while incorporating information about the spatial distribution 
of the detected objects. Formally: 

GAME(L) =
1
N
∑N

n=1

(
∑4L

l=1
|cl

gt − cl
pred|

)

, (4)  

where the notation is the same as the one used for the MAE in Eq. 1. 
Notably, the MAE can be seen as a special case of the GAME when the 
parameter L is set to 0. Additionally, a higher value of L results in 
increased consideration of sub-regions, thereby imposing a stricter cri-
terion for the GAME metric. 

5.3. Results 

Counting Analysis. Table 2 presents the results of all the proposed 
approaches concerning their optimal combination of patch size and 
threshold values. Among the tested solutions, the detection-based ap-
proaches demonstrate the best performance. Specifically, Det-FRCNN 
achieved the top results across all three counting metrics. Notably, the 
obtained MARE value of 9.3% is particularly noteworthy, indicating 
reliable performance across all images, whether in “crowded” scenarios 
or those containing only a few insects. On the other hand, the density- 
based solutions exhibit more significant errors, especially struggling 
with the MARE metric. While they perform well in “crowded” contexts, 
they face limitations when applied to scenarios with a small number of 
objects. Finally, Seg-UNet achieved slightly inferior performance 
compared to Det-FRCNN and Det-FCOS, but it outperforms the density- 
based approaches, particularly concerning the MARE. For a visual 
illustration, Fig. 4 showcases an output sample of the best-performing 
model, i.e., Det-FRCNN. 

Localization Analysis. Table 3 presents the results obtained in terms of 
GAME, with L ranging from 1 to 5, for all the proposed approaches 
(again, concerning their optimal combination of patch size and 
threshold values). Once again, the detection-based approaches 

demonstrate superior performance, achieving the best results overall. 
Notably, Det-FRCNN remains the leading approach, although it is oc-
casionally surpassed by Det-FCOS for specific values of L. On the other 
hand, Den-CSRNet and Den-FCRN exhibit lower performance in local-
izing the counted insects, which aligns with the inherent limitation of 
density-based techniques in accurately localizing objects within the re-
gion of interest. Last, the segmentation-based approach sits between 
these two extremes, providing intermediate performance. 

Influence of patch size and threshold. In this section, we comprehen-
sively analyze the outcomes obtained by the two top-performing ap-
proaches, namely Det-FRCNN and Det-FCOS, while changing the patch 
size and the threshold on the generated confidence score. Fig. 5 illus-
trates the findings. Firstly, we observe that the performances of these 
two approaches are not notably affected by the patch size. In general, 
smaller patch sizes lead to slightly better results, albeit with increased 
processing overhead. However, the difference in performance between 
different patch sizes is not very pronounced. Hence, we recommend 
opting for larger patch sizes if there are any computational constraints, 
as it allows for a fair compromise between execution time and result 
reliability. Regarding the threshold used to filter out unreliable pre-
dictions, we find that it closely depends on the evaluation metrics 
adopted. However, Det-FCOS is particularly affected by low thresholds. 
This is due to its architecture, which does not rely on a preliminary re-
gions proposal stage, resulting in an abundance of bounding boxes that 
contain irrelevant object representations. 

6. Conclusion 

This paper introduced an AI-based tool to automatically count pests 
in pictures of sticky chromotropic traps gathered by smartphones or 
digital cameras. Accurately estimating pest populations is a crucial 
aspect of IPM strategies; however, existing procedures require signifi-
cant human effort to manually inspect traps placed in suspected insect 
hotspots, leaving room for automated processes. 

To this end, we proposed a flexible model-agnostic solution imple-
mented in several ways, covering all counting strategies and enclosing 
most of the existing SOTA pest detection and counting approaches. 
Furthermore, regardless of the adopted counting approach, our solution 
can also provide a coarse localization of the found insects and a confi-
dence score associated with the detected instances that practitioners can 
exploit to filter low-quality results. Additionally, for the first time, we 
conducted a comprehensive evaluation of counting performance, un-
likely most existing works that primarily focus on measuring detection 
capabilities. Our assessment has been conducted using the PST - Pest 
Sticky Traps dataset, a collection of dot-labeled images depicting sticky 
traps with whiteflies, which we have made freely available as an addi-
tional contribution. 

The results obtained indicate that, in this particular scenario, 

Table 3 
Evaluation of the Localization Performance. We report the obtained results using the Grid Average Mean absolute Error (GAME) (Guerrero-Gómez-Olmedo et al., 
2015), which considers both the counting error and the estimated positions of the objects. A higher value of L results in increased consideration of sub-regions, thereby 
imposing a stricter criterion for the GAME metric.   

GAME(L)↓ 

Method L = 1 L = 2 L = 3 L = 4 L = 5 

Det-FRCNN (Ren et al., 2017) 66.000 71.750 84.500 100.875 133.000 
Det-FCOS (Tian et al., 2019) 66.500 72.875 84.000 101.500 129.750 
Den-CSRNet (Li et al., 2018) 205.125 227.625 254.125 279.875 328.375 
Den-FCRN (Xie et al., 2016) 127.750 138.750 151.000 175.750 218.250 
Seg-UNet (Falk et al., 2018) 90.750 101.625 118.125 145.000 202.000  
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Fig. 5. Influence of patch size and threshold on best approaches. We present the outcomes concerning MAE, GAME, and MARE metrics for the top-performing 
methodologies, namely Det-FRCNN and Det-FCOS while changing the patch size and the threshold on the generated confidence score. 
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detection-based approaches yielded the most effective results, with an 
average counting error of approximately 9% compared to human ca-
pabilities, along with satisfactory localization precision. Notably, our 
solution can perform pest population estimation on sticky trap images 
within seconds, compared to the hours required for manual human in-
spections. Given that our solution is model-agnostic, i.e., it can easily 
incorporate subsequent models from the literature and still utilize the 
proposed pipeline, and that it works in the wild, i.e., any pre-processing 
strategy of the input images is needed, we deem it represents a valuable 
AI-based tool to help farm owners to control pest spread and implement 
effective, sustainable, IPM strategies. 
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