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Abstract—Recent advancements in conversational agents are
leading a paradigm shift in how people search for their information
needs, from text queries to entire spoken conversations.
This paradigm shift poses a new challenge: a single question may

lack the context driven by the entire conversation. We propose
and evaluate a framework to deal with multi-turn conversations
with the injection of commonsense knowledge. Specifically, we
propose a novel approach for conversational search that uses
pre-trained large language models and commonsense knowledge
bases to enrich queries with relevant concepts. Our framework
comprises a generator of candidate concepts related to the context
of the conversation and a selector for deciding which candidate
concept to add to the current utterance to improve retrieval
effectiveness. We use the TREC CAsT datasets and ConceptNet
to show that our framework improves retrieval performance by
up to 82% in terms of Recall@200 and up to 154% in terms
of NDCG@3 as compared to the performance achieved by the
original utterances in the conversations.
Index Terms—conversational systems, query expansion, common-

sense knowledge, KBs, information retrieval

I. INTRODUCTION

Conversational agents, powered by recent advancements in
language understanding, are drawing considerable attention. A
reason for their success is that they are driving a paradigm
shift from a “ten blue links” page to a question-answer spoken
dialogue interaction, where the assistant provides answers to
questions posed by the user. We capitalize on this paradigm
shift and propose and evaluate a framework to engineer accurate
conversational responses even when context within an utterance
is lacking.
This paradigm shift poses interesting challenges. Utterances

in a conversation, when looked at singularly, may lack the
context emerging from the entire conversation. Several works
in the literature show how to effectively propagate the context
of the discussion to each utterance, improving the retrieval
performance of the conversational search system. This is
achieved by identifying terms previously mentioned in the
conversation to profitably expand the current utterance [1]–[4],
or by completely rewriting the utterance with a fine-tuned
seq2seq neural model [5]–[8]. For instance, QuReTeC [2] is
a system based on Bi-LSTM model for query resolution that
selects the valuable terms in context to enrich the query. On
the other hand, CQR [9] is a rule-based approach to solve
coreference and omissions with a finetuned GPT-2 model in a
few-shot setting to generate decontextualized queries.
Complementary to these approaches, we exploit commonsense

knowledge from external knowledge bases to identify possible

concepts that can enrich an utterance and help improve the
overall performance of conversational search systems. We
claim that using commonsense knowledge is a step forward
in the current literature because the state-of-the-art rewriting
techniques work at a “term” level, i.e., they enrich the
utterance by adding important terms present in the context
of the conversation. There are even cases, as shown in our
experiments, where relevant concepts might not have been
previously mentioned in the conversation but can be definitively
inferred from the context. These concepts are valuable as they
add novel and useful information to the dialogue, e.g., from
a sentence like “how do genes work?” we can generate the
concept “dna snippet”. Our goal is to exploit the capabilities
of pre-trained language models and commonsense knowledge
bases to improve conversation understanding and enrich the
utterance with relevant concepts that may improve the retrieval
performance of a conversational search system.
In the past, a significant body of literature showed the

importance of correctly identifying and exploiting entities [10],
i.e., nodes of a network that can be found as fragments of text
and that represent a specific person, place, etc. We advance
this approach by exploiting commonsense knowledge concepts,
i.e., wider entities that represent common things or actions of
the world without the need of being named, instead of single
terms within the conversational utterance enrichment process.
We first show that using concepts for enriching utterances

is effective for the retrieval performance of a conversational
search system. Furthermore, we propose a novel framework
that exploits the concepts inside a conversation and an exter-
nal knowledge source to generate commonsense knowledge
expansions based on ConceptNet Numberbatch [11].
Our framework exploits the concepts inside a conversation

and an external knowledge source to generate commonsense
knowledge. It includes the following elements:
1) A generator for commonsense knowledge concepts based

on Numberbatch embeddings, which uses both query and
conversation context;

2) A selector for deciding which candidate concept to add to
the current utterance to improve retrieval effectiveness.

We, via an extensive experimental assessment, demonstrate the
advantage of the proposed approach on the basis of the results
of reproducible experiments conducted with TREC CAsT 2019,
2020, and 2021 datasets. Moreover, we tested the proposed
approach with two state-of-the-art rewriting systems confirming
the effectiveness also in this setting.



Finally, we performed a reranking phase with an LLM
(MonoT5) to observe how our approach impacts the end-to-end
performance of a state-of-the-art retrieval system.
The remainder of the paper is organized as follows. In Section

II, we overview related work. In Section III, we introduce our
commonsense knowledge framework for expanding utterances
in conversational search. In Section IV, we present the
experimental setup used to validate our proposal. The results of
our experiments are presented in Section V. Finally, in Section
VI, we conclude and outline some future lines of investigation.
To enable reproducibility and foster expansion, our entire
framework will be publicly available upon publication.

II. RELATED WORK

a) Conversational Query Rewriting: Conversational infor-
mation retrieval systems retrieve only a select few of the
most relevant documents or passages for a given query while
provided with only limited available information found within a
conversational query, also referred to as utterance. A commonly
used approach to improve accuracy capitalizes on question
rewriting.
The recent release of ChatGPT, based first on GPT-3.5, and the

following release of the GPT-4 [12] that powers both ChatGPT
and the Bing search engine poses new challenges in the field,
allowing users to perform complex tasks and to submit complex
queries. Nonetheless, the size and availability of the models
still represent a limit, and we need more feasible ways to treat
conversational data.
A proposed way is to address multi-turn dialogues by training

a Transformer model that can address co-reference resolution
and omissions and rewrite the query by analyzing syntactic
relations and references among previous utterances.
Another approach is to create different modules to address

different linguistic features in the conversations and then apply
a neural re-ranker based on the BERT model to improve the
rank of retrieval results [3]. Song et al. [13] train a rewriting
neural model on data taken from the intelligent assistant AliMe
for the Chinese language after classifying all the words in the
data based on their role.
Others propose a rule-based approach to solve co-reference

and omissions and then exploit fine-tuned models such as GPT-
2 in a few-shot setting to generate a de-contextualized query [9].
Similarly, [7] train a Transformer model using GPT-2 weights
to rewrite queries to improve retrieval on TREC CAsT 2019
datasets.

[14] focus on an importance estimation model that evaluates
the relevance of every word in each utterance, extracting
keywords, measuring utterance ambiguity, and expanding
queries with elements selected from previous turns. Finally,
they train a Text-To-Text Transfer Transformer (T5) for query
rewriting. [1] released a modified version of TREC CAsT 2019,
CAsTUR1, to fine-tune a BERT model to recognize the most
critical utterances related to the current one, showing promising
results.

[4] create a pipeline that classifies utterances based on their
references and then enriches them, based on how they were

1https://github.com/aliannejadi/castur

classified, extracting valuable information from the proper
context. [15] propose Teresa, a transformer-based model for
conversational query rewriting that uses a self-supervised
approach to address phenomena such as co-reference and
ellipsis. More recently, [16] released Queen, a two-module
model that locates all the occurrences of co-reference and
ellipsis and then resolves them by rewriting the query with
Bert and RoPE [8]. [17] propose an Utterance Rewriting system
to apply over chatbots’ textual data to improve performances
on Natural Language Inference tasks such as contradiction
detection by solving ellipsis and anaphoras. More recently,
[18]researched a way to exploit LLMs such as ChatGPT
to rewrite Utterances. Finally, [19] propose a reinforcement
learning approach to improve system capabilities. They use a
Conversational Question Answering system as teacher and a
Query Rewriting model as student to increase both the quality
of QA and QR models.

b) Knowledge Base for Conversational Search: In the last
years, the focus on knowledge bases and their applications in
Natural Language Processing tasks has increased. For instance,
[20], propose a method to incorporate KB content in a question
generation system by training two models, one for predicting
relations among entities extracted from the text and the other
to generate a tail for a subject-relation tuple. The output is fed
to a seq2seq model to generate the new question.

c) Our Contribution: The majority of the earlier efforts rely
on transformer-based models to rewrite the utterance by address-
ing phenomena such as ellipsis and anaphora and to exploit the
context. In this framework, we propose expanding utterances in
conversational search by exploiting commonsense knowledge.
Our proposal does not actively rewrite the utterances as other
methods in literature do. Thus, as assessed by our experiments,
the framework can be effectively used in combination with
different approaches for query rewriting to generate even more
refined utterances.

III. COMMONSENSE KNOWLEDGE FOR CONVERSATIONAL
SEARCH

Our goal is to understand whether we can inject external
commonsense knowledge into an utterance to provide the
original data with phenomenological information related to
the content of the query and the context of the conversation.
We define a multi-turn conversation U to be a sequence

of utterances asked by a user to a conversational assistant,
i.e., u1, . . . , uN . Let ui ∈ U be the current utterance, while
u1, . . . , ui−1 denote the previous utterances of the same
conversation. In the following, we refer to u1, . . . , ui−1 as
context. Previous studies show that the context is of paramount
importance to deliver high-quality answers as it is a good
indicator of the topical evolution of the multi-turn conversation.
Given utterance ui, the goal of a conversational search system
is to retrieve a ranked list of documents from a document
collection to effectively answer ui by also keeping track of
the context u1, . . . , ui−1. Our hypothesis is that automatically
enriching the utterance with commonsense knowledge from an
external source can improve retrieval performance, even in the
absence of any other transformation or rewriting of the query.

https://github.com/aliannejadi/castur
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Fig. 1. Architectural diagram of the framework for exploiting commonsense
knowledge in conversational search. The described system takes an utterance
as input, a nominal chunk extractor selects the nouns, Θ finds the top-k most
similar entities, Ψ selects the best one for retrieval, and Λ adds it to the
utterance. The retriever uses the new utterance to retrieve a list of results,
which is then reordered by the reranker.

To validate our hypothesis, we propose a novel framework
composed of three main components:

1) a commonsense knowledge generator
Θ(u1, . . . , ui−1, ui) 7→ Ek that takes the context
and the current utterance to generate a set of k candidate
commonsense knowledge expansions, e1, . . . , ek ∈ E

2) an expansion selector Ψ(u1, . . . , ui−1, ui, e1, . . . , ek) 7→
E that selects among the k candidate commonsense knowl-
edge expansions the one having the highest likelihood
of being useful, ê ∈ {e1, . . . , ek} given the utterance ui

and its context u1, . . . , ui−1, in terms of a given quality
metric

3) an utterance enrichment operator Λ(ui, ê), that takes
the current utterance and the selected commonsense
knowledge expansion and produces ûi, i.e., the utterance
enriched with ê.

Formally, we propose to inject commonsense knowledge into
the conversational search domain by using the combination of
the three components below:

ûi = Λ(ui,Ψ(u1, . . . , ui−1,Θ(u1, . . . , ui−1, ui)))

In Figure 1 we show the pipeline using an example. Following,
we describe the three components composing our framework.

a) Commonsense Knowledge Generator: The commonsense
knowledge generator Θ produces a list of candidate expansions
enriching the current utterance ui given its context u1, . . . , ui−1.
The generation process employs external knowledge bases to
overcome the per-term generation inaccuracies exemplified by
state-of-the-art query rewriting approaches. While this module
is agnostic with respect to the knowledge base employed, we
resort to using ConceptNet 2 [11] as the knowledge base for

2https://conceptnet.io/

generating external commonsense knowledge. Specifically, Θ
generates commonsense knowledge expansions taking as input
the nominal chunks extracted from the ui and its context
u1, . . . , ui−1. In other words, this step looks for entities in the
text to derive closely related concepts that can improve the
representation of the concept.
Towards this aim, composed noun chunks, e.g., breast cancer,

are key in driving an effective expansion generation. For this
reason, the nominal chunks identification selects both the
composed instances and single ones. The extracted nominal
chunks are matched on the knowledge from ConceptNet to
see if they are present, and, if so, to select the top k most
similar concepts for each one. In Section IV, we describe the
implementation details behind the generation of the expansions.

b) Expansion Selector: The expansion selector Ψ is a crucial
component of our architecture. Starting from the candidate
expansions e1, . . . , ek ∈ E obtained by the commonsense
knowledge generator Θ, it selects the one with the highest
contribution in improving effectiveness when added to the
utterance ui. We consider two different instances of Ψ.

• Ψoracle, where the expansion selector knows in advance
the contribution that each candidate expansion brings to
the utterance, and it selects the one with the highest
contribution.

• Ψclassifier, where the expansion selector does not know
in advance the contribution of each candidate expansion.
Here, we employ state-of-the-art machine learning tech-
niques to learn classifiers that, given the current utterance
ui, the context u1, . . . , ui−1, and a candidate expansion
ek, predicts if ek is an effective expansion for ui or not.

c) Utterance Enrichment Operator: The utterance enrichment
operator Λ is the third component of our architecture. It
produces the final enriched utterance ûi starting from the
selected expansion ek and the current utterance ui. Without
loss of generality, we define Λ to be the string concatenation
operator that produces ûi by appending ek to ui.

IV. EXPERIMENTAL SETUP

We now present the datasets and experimental setup used to
validate our commonsense knowledge framework for conversa-
tional search.

a) Conversational Datasets: We use the TREC CAsT 2019,
2020, and 2021 datasets with their corresponding evaluation
topics and qrels, i.e., judgments made by humans as to
whether a document is relevant to an utterance. For 2019,
and 2020 TREC CAsT tracks, the collection consists of
MS-MARCO [21], TREC CAR [22], and WAPO and has
38,636,520 passages. For 2021, the collection consists of MS-
MARCO, KILT [23], and WAPO with 9,679,979 documents
in total. The TREC CAsT collections are provided with an
evaluation dataset for each year. The datasets are composed
of a total of 1,203 utterances divided into 131 conversations.
Every conversation is divided into dialogical turns representing
only the user part of the conversation, accompanied by an id
indicating the document of provenance of the response. Except
for the 2019 dataset, they come with three versions of the
utterance, the raw utterances, the automatically rewritten, and

https://conceptnet.io/


the manually rewritten (e.g. raw utterance: ”How do you know
when your garage door opener is going bad?”; manual rewritten
utterance: ”How do you know when your garage door opener
is going bad?”; automatic rewritten utterance: ”How do you
know when your garage door opener is going bad?”; manual
canonical result id: ”MARCO 5498474” ).
Finally, qrels files, ”judgments made by humans as to whether

a document is relevant to an information need (i.e., topic)”,
enable evaluation.
As relevance judgments are available only for a subset of

the conversations provided, we focus our experiments on this
subset, composed of 659 utterances in 77 conversations.

b) Commonsense Knowledge Datasets: We select Concept-
Net 3 as an external knowledge source, a semantic network in
which every node is a concept, e.g., dog, use of devices, making
toast etc., and where the concepts are linked through relations,
e.g., RelatedTo, UsedFor, AtLocation, etc. Specifically, we
employ the Numberbatch word embeddings a dataset of
conceptual representations of ConceptNet nodes, built using
word2vec , GloVe , and OpenSubtitles 2016.
The Numberbatch vocabulary is composed of a total of
516,782 entries. We exploit Numberbatch by extracting the
conceptual representation of all the noun chunks present in the
conversational utterances and for each noun chunk, the top-25
most similar embeddings.

c) Baselines: We compare our commonsense knowledge
framework against two baselines provided by TREC. In fact,
TREC CAsT conversations come with:

• Raw utterances, informal sentences uttered by a user,
representing the real case scenario, often characterized
by anaphora or ellipsis, in which the context is implicit
rather than explicit.

• Manual utterances, well-formed sentences, manually
rewritten by humans that explicitly mention the context
from the conversation, making questions self-explanatory.

The TREC CAsT 2020 and 2021 datasets are provided with
manually rewritten utterances, while for 2019 we use the
manually rewritten utterances provided by [4].
Furthermore, we also select two state-of-the-art query rewriting

approaches on which we test our framework, QuReTeC [2], a
query resolution that rewrites adding terms from the context,
and CQR [9] which uses GPT-2 to generate decontextualized
queries. Our goal though is not to overcome them but to assess
whether our system, at its early stage, can be compared with
them.

d) Reproducibility: The code and models used in our experi-
ments are publicly available in our github: https://github.com/
hpclab/conv-common-sense.

A. Framework Setup

We now describe how we instantiate the Commonsense
Knowledge Framework. We first explain how we exploit
Numberbatch within the commonsense knowledge generator θ.
We then describe the technical choices behind the expansion
selectors presented.

3https://github.com/commonsense/conceptnet5/

a) Retrieval settings: We index the TREC CAsT collections
using PyTerrier [24] and search them with the DPH weighting
model [25]. We evaluate the recall metric computed on the
top-200 retrieved documents (R@200) and the Normalized
Discounted Cumulative Gain [26] computed on the top-3 results
(NDCG@3). We preliminarily preprocess the utterances with
a default tokenizer, remove stopwords, and stem tokens using
Porter’s English stemmer.

b) Commonsense Knowledge Generator: As previously men-
tioned, we use Numberbatch embeddings as the learned
representation of ConceptNet within Θ, to identify the external
commonsense knowledge aiming at expanding the raw—
unprocessed—utterances. Specifically, we employ SpaCy to
process both the current utterance and the context to extract
all nominal chunks present in the text. We then search
Numberbatch for the vector representation of the extracted
concepts and retrieve the top-25 similar ones using cosine
similarity.

Sim(A,B) = cos(α) =
A ·B

∥A∥2 ∥B∥2
(1)

The generated expansions from Numberbatch are used to
evaluate to which extent this new external knowledge overlaps
with the knowledge contained in manually-rewritten utterances
compared to the raw ones. The main question here is the
following: Is Θ able to identify important concepts, namely
those manually added in the rewritten version of an utterance?
If so, we claim that Numberbatch helps in identifying relevant
concepts, important to give the right context to the utterance.
We perform this preliminary analysis by extracting the nominal
chunks also from the manually-rewritten utterances. By com-
paring the two sets, we observe an overlap of 72.80%. This
confirms that commonsense knowledge helps identify relevant
expansions.
The result above is achieved by generating expansions for an

utterance given the context, i.e., all the previous utterances of
the conversation for which we are generating expansions. We
also test the commonsense knowledge generation by employing
only the current utterance without the context. In this case,
the coverage drops to 39.74%. This result also confirms that
context drives the conversation itself.
In the majority of cases, we notice that the extracted expansions

are semantically related, and in many cases, they are also
constituted by words of different roots (e.g. semolina and
granary bread from flour), concepts that could be beneficial
during the retrieval phase, especially for approaches based on
bag-of-words.

c) Expansion Selector (Ψoracle): To evaluate the impact of
the generated expansions, we query the index with the raw
utterances in the CAsT collections, expanded with each one
of the candidates. The results of this preliminary test show
that 18.07% of the expanded utterances increase R@200 with
respect to the original—raw—utterances, while in only 10.58%
of the cases the expansions decrease R@200.
Finally, we assess if the generated expansions are novel

knowledge from ConceptNet or if they are concepts already
available in the conversation. To this end, we select for each

https://github.com/hpclab/conv-common-sense
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https://github.com/commonsense/conceptnet5/


utterance the expansion maximizing the recall, and we observe
that 88.96% of the expansions are novel, i.e., concepts that
never appeared in the conversation before. This confirms
that our intuition on expanding utterances with commonsense
knowledge is a promising idea. Hereinafter, we call Ψoracle the
optimal expansion selector which chooses for each utterance
the candidate expansion maximizing the metric of interest, i.e.,
R@200 or NDCG@3.

d) Expansion Selector (Ψclassifier): This expansion selector
mimics the behavior of Ψoracle, via a learned classifier. To train
the classifier we label all the expansions improving R@200
(NDCG@3) for the original—raw—baseline as positive and
all the ones that worsen R@200 (NDCG@3) as negative. We
train Ψclassifier by using a pre-trained language model, such
as BERT [27]. In detail, we train a BERT-based sentence pair
classifier that, given the context, the current utterance, and a
candidate expansion, predicts to which class the input belongs.
To learn the classifier, we introduce two types of input:

• context and query + expansions (CQ+E): we use the
concatenation of the context and the current utterance
as the first sentence and the candidate expansion as the
second one;

• context + query and expansion (C+QE): we use the
context as the first sentence, while the current utterance
and the candidate expansion are concatenated to be the
second one.

We learn the sentence pair classifier using the ktrain 4 library.
We perform k-fold validation with k=5. Furthermore, because
the number of negative examples in the training set is higher
than the positive ones, we balance the training data both with
one positive, Balanced for each negative example and with one
positive example for every three negative ones, Unbalanced.
We also tune the learning rate by performing a grid search to
find the optimal parameter value for each dataset. Moreover, we
use a validation set randomly generated from the training data
during learning to early terminate the training when overfitting
is detected.

V. RESULTS AND DISCUSSION

Our experiments address the following research questions:
RQ1: Can injecting external commonsense knowledge help a
conversational search system?
RQ2: How can we automatically select the best commonsense
knowledge concepts to increase retrieval performances?

a) RQ1: Per Section IV-A, we inject commonsense knowl-
edge into user utterances to better specify the meaning of the
sentence. The goal is to find whether adding the best concepts
to our conversational search system improves effectiveness.
To answer RQ1, we use the previously described oracles

and report the results in Table I. As shown in the table our
ΨoracleR@200 selector achieves an average R@200 of 0.473 as
compared to 0.286 for the original utterances and an average
NDCG@3 of 0.295 as compared to 0.162 of the original—
raw—utterances, i.e., an 82% relative improvement. For what
concerns the ΨoracleNDCG@3 oracle, we observe that the

4https://github.com/amaiya/ktrain

gain for the NDCG@3 obtains an average value of 0.411,
interestingly high considering that the raw utterance baseline
achieves an NDCG@3 of 0.162 while the manual one 0.400.
Without rewriting, merely adding one highly-relevant concept,
our oracle almost doubles the results with respect to R@200
and goes even higher if selecting by NDCG@3, increasing
by 154% if compared with the raw utterances. It is worth
noting that the two improvements achieved by ΨoracleR@200

and ΨoracleNDCG@3 are statistically significant according to
the paired t-test with p-value < 0.05.
Thus, we affirm RQ1; adding commonsense knowledge to

conversations can improve the retrieval effectiveness of a
conversational search system.

b) RQ2: As seen in RQ1, our system can improve retrieval
performance up to 154% if it always chooses the best candidate
concepts. However, trying all possible combinations to choose
the best is not feasible in practice. Thus, we propose Ψclassifier,
an expansion selector model for predicting the best candidate.
All the instances of the classifier are discussed in Section IV-A.
In Table II, we report metrics for each trained classifier

computed on the averaged k-fold test sets. We report the
accuracy, the F1-score, and the ratios of true positives and neg-
atives. The top four rows present the results for the classifiers
trained to maximize R@200; the bottom four rows present the
results obtained when maximizing NDCG@3. On four different
configurations for each of the selected retrieval metrics (R@200
and NDCG@3), the best-performing models are obtained
with a balanced or unbalanced training set depending on the
maximizing goal. Furthermore, we report the true positive (TP)
and true negative (TN) rates, corresponding to the accuracy
calculated by considering only positive and negative examples
separately. Regarding accuracy, we achieve 0.893 and 0.862
for CQ+E R@200 and CQ+E NDCG@3, respectively. We note
that the best-performing models in the testing phase are not
necessarily the best-performing ones in a real-case scenario;
due to the k-fold training and the average of the models’
performances.
In Table I, we show the top two models’ performances

evaluated in a retrieval scenario for MAP@1000, Reciprocal
Rank (RR), P@3, P@1, NDCG@3, and R@200. The top
two rows are the utterances of the evaluation dataset: Manual
and Raw. The following rows are the results obtained with
the trained classifiers maximizing R@200 and NDCG@3; the
bottom two rows illustrate the results obtained by the two
oracles. We use the four models in inference and test the
positively predicted expansions to enrich the raw utterances
that are then submitted to the retrieval pipeline. As seen, all
the best-performing models are trained using both balanced
and unbalanced datasets, which did not give us any particular
suggestion on the best way of training for our setup. We will
further investigate this as part of future work.
In Table III, we report the results obtained evaluating our

system in an automatic query rewriting scenario using the
CQR and QuReTeC baselines for Mean Average Precision
@1000, Reciprocal Rank, P@3, P@1, NDCG@3, and R@200.
CQR and QuReTeC are the original baselines; below them,
the next four rows, are the two expanded with the oracles,

https://github.com/amaiya/ktrain


TABLE I
RETRIEVAL RESULTS FOR UTTERANCE ENRICHMENT FOR THE TOP-TWO PERFORMING CLASSIFIERSIN BOLD, WE REPORT THE BEST RESULTS ACHIEVED
FOR EACH METRIC. WE MARK STATISTICALLY-SIGNIFICANT IMPROVEMENTS (PAIRED t-TEST, p-VALUE < 0.05) WITH RESPECT TO THE PERFORMANCE OF

THE RAW UTTERANCES WITH THE SYMBOL ▲.

Type MAP@1000 RR P@3 P@1 NDCG@3 R@200

Manual Utterances 0.299▲ 0.675▲ 0.563▲ 0.549▲ 0.400▲ 0.598▲
Raw Utterances 0.123 0.333 0.256 0.225 0.162 0.286

CQ+ER@200 (Balanced) 0.172▲ 0.455▲ 0.358▲ 0.347▲ 0.238▲ 0.364▲
CQ+ER@200 (Unbalanced) 0.161▲ 0.419▲ 0.314▲ 0.306▲ 0.197 0.359▲
C+QER@200 (Balanced) 0.170▲ 0.451▲ 0.339▲ 0.347▲ 0.230▲ 0.374▲
C+QER@200 (Unbalanced) 0.171▲ 0.454▲ 0.345▲ 0.347▲ 0.226▲ 0.390▲

CQ+ENDCG@3 (Balanced) 0.162▲ 0.423▲ 0.339▲ 0.306▲ 0.216▲ 0.342▲
CQ+ENDCG@3 (Unbalanced) 0.169▲ 0.449▲ 0.351▲ 0.353▲ 0.236▲ 0.369▲
C+QENDCG@3 (Balanced) 0.161▲ 0.450▲ 0.345▲ 0.347▲ 0.235▲ 0.340▲
C+QENDCG@3 (Unbalanced) 0.137 0.400▲ 0.299 0.283 0.194 0.323▲

ΨoracleR@200 0.220▲ 0.528▲ 0.439▲ 0.399▲ 0.295▲ 0.473▲
ΨoracleNDCG@3 0.195▲ 0.675▲ 0.545▲ 0.601▲ 0.411▲ 0.370▲

TABLE II
PERFORMANCES OF THE CLASSIFIERS LEARNED FOR EXPANSION

SELECTION. IN BOLD, WE HIGHLIGHT THE BEST RESULTS ACHIEVED
WITHIN EACH GROUP OF CLASSIFIERS.

Model Accuracy F1-score TP Rate TN Rate

R@200

CQ+E (Balanced) 0.893 0.892 0.889 0.899
CQ+E (Unbalanced) 0.885 0.619 0.905 0.644
C+QE (Balanced) 0.733 0.530 0.738 0.538
C+QE (Unbalanced) 0.843 0.328 0.849 0.496

NDCG@3

CQ+E (Balanced) 0.742 0.704 0.753 0.783
CQ+E (Unbalanced) 0.862 0.418 0.877 0.415
C+QE (Balanced) 0.780 0.754 0.741 0.847
C+QE (Unbalanced) 0.838 0.351 0.853 0.379

both NDCG@3 and R@200; at the end, namely the bottom
four rows, we present the two baselines expanded with our
trained classifiers. We use the queries rewritten by each baseline,
released by the authors, and evaluate them. Successively,
we apply our framework to both the baselines, testing them
with the expansions provided by the oracles and by the best-
performing classifier for each objective metric. The classifiers
used to expand the baselines are C+QER@200 (Balanced)
and CQ+ENDCG@3 (Balanced) for the CQR baseline, and
CQ+ER@200 (Unbalanced) and C+QENDCG@3 (Balanced)
for QuReTeC. As shown, when considering the oracles, we
improve the results of both baselines. Our classifiers overcome
the results obtained with the best-performing rewritings of
the CQR systems. The most interesting results are the ones
regarding ΨoracleNDCG@3, which provided a notable boost to
the retrieval results increasing the best-performing baseline
(“CQR”) by 28% in terms of P@1. Also, we can observe
how our framework applied to the CQR baseline, managed to
increase most of the metrics in a statistically-significant way,
which means that in a first-stage retrieval approach, it can be
beneficial to combine the two methods. More interestingly,
when combined with the oracle, CQR becomes the overall
winning method even if the initial QuReTeC baseline performs
better than plain CQR. We also note that CQR + ΨR@200

and QuReTeC + ΨNDCG@3 achieve statistically-significant

improvements on two critical metrics for conversational search,
i.e., RR and P@1, at the expense of metrics computed at
longer cutoffs such as MAP@1000 and R@200, which are less
relevant for conversational search, especially after re-ranking.
These results suggest that it can be beneficial to expand in

such a way to achieve better retrieval results. Additionally,
we believe that it would be interesting to develop a similar
approach with an end-to-end neural model that could take into
account different linguistic features. Likewise, we observe that
the distance with the Manual baseline (Table I) is still high in
terms of R@200, but we should consider that no rewriting was
made during our testing; we added a single entity to the current
utterance to significantly increase the retrieval capabilities.
Consequently, injecting commonsense external knowledge

can boost query “understanding”, retrieving the appropriate
information and answering RQ2.

c) Reranking with MonoT5: After observing the improve-
ments when adding expansions selected with our framework,
we perform a second-phase reranking using the MonoT5 model
[28], whose implementation is publicly-available in Pyterrier5.
In Table IV, we report the results of the reranking phase

for the same metrics reported in the previous tables. The top
two rows are the results obtained by the original queries of
the evaluation dataset; the next two rows present the results
obtained by the rewritings of the two baselines. The remaining
rows present the results obtained expanding the two baselines
with our framework, respectively with the oracles first and then
with the best classifiers, both for NDCG@3 and R@200.
We can observe that, except for the QuReTeC baseline

expanded with the R@200 best classifier, we managed to
increase the performances of the baselines for what concerns
P@3, P@1, and NDCG@3. These small cutoff metrics are more
representative of the goodness of the system after reranking.
For instance, by expanding the CQR baseline with the best
NDCG@3 classifier, we managed to increase the P@1 by
4.11%, NDCG@3 by 2.65%, and Reciprocal Rank by 3.34%.
Finally, we observe that the baselines expanded using the
oracles manage to increase the respective original performance

5https://github.com/terrierteam/pyterrier t5

https://github.com/terrierteam/pyterrier_t5


TABLE III
RESULTS OBTAINED USING OUR FRAMEWORK WITH THE BASELINES REWRITTEN UTTERANCES. IN BOLD, WE REPORT THE BEST RESULTS ACHIEVED FOR
EACH METRIC. WE MARK STATISTICALLY-SIGNIFICANT PERFORMANCE GAIN/LOSS (PAIRED t-TEST, p-VALUE < 0.05) OF OUR CORRESPONDING METHODS

W.R.T. THE ORIGINAL QURETEC [2] AND CQR [9] BASELINES WITH THE SYMBOLS ▲ AND ▼, RESPECTIVELY.

Type MAP@1000 RR P@3 P@1 NDCG@3 R@200

CQR [9] 0.246 0.592 0.482 0.468 0.334 0.520
QuReTeC [2] 0.250 0.625 0.516 0.491 0.349 0.546

CQR+ΨoracleR@200 0.270▲ 0.648▲ 0.538▲ 0.520▲ 0.366▲ 0.571▲
CQR+ΨoracleNDCG@3 0.243 0.702▲ 0.574▲ 0.601▲ 0.419▲ 0.514

QuReTeC+ΨoracleR@200 0.255 0.652 0.536 0.520 0.365 0.552
QuReTeC+ΨoracleNDCG@3 0.238 0.692▲ 0.547 0.584▲ 0.392▲ 0.533

CQR+ΨR@200 0.253 0.642▲ 0.507 0.520 0.355 0.542
CQR+ΨNDCG@3 0.237 0.604 0.482 0.486 0.336 0.515

QuReTeC+ΨR@200 0.238▼ 0.631 0.497 0.514 0.335 0.525▼
QuReTeC+ΨNDCG@3 0.230▼ 0.648 0.495 0.549▲ 0.341 0.519▼

TABLE IV
RETRIEVAL RESULTS OBTAINED AFTER PERFORMING RERANKING WITH THE MONOT5 MODEL IN BOLD, WE REPORT THE BEST RESULTS ACHIEVED FOR
EACH METRIC. UNDERLINED THE BEST RESULTS ACHIEVED BY OUR MODELS. WE MARK STATISTICALLY-SIGNIFICANT PERFORMANCE GAIN/LOSS (PAIRED

t-TEST, p-VALUE < 0.05) OF OUR METHODS WITH RESPECT TO THE ORIGINAL QURETEC [2] BASELINE WITH THE SYMBOLS ▲ AND ▼.

Type MAP@1000 RR P@3 P@1 NDCG@3 R@200

Manual Utterances 0.382 0.885 0.767 0.827 0.605 0.669
Raw Utterances 0.173 0.464 0.389 0.399 0.279 0.330

CQR [9] 0.328 0.778 0.676 0.705 0.528 0.591
QuReTeC [2] 0.344 0.785 0.687 0.687 0.533 0.616

CQR + ΨoracleR@200 0.348▲ 0.801 0.705 0.717 0.549 0.632▲
CQR + ΨoracleNDCG@3 0.326 0.768 0.686 0.659 0.531 0.593

QuReTeC + ΨoracleR@200 0.347 0.791 0.699 0.694 0.542 0.625
QuReTeC + ΨoracleNDCG@3 0.335 0.788 0.672 0.688 0.519 0.601▼

CQR + ΨR@200 0.330 0.800 0.665 0.728 0.530 0.599
CQR + ΨNDCG@3 0.331 0.804 0.698 0.734 0.542 0.589

QuReTeC + ΨR@200 0.330▼ 0.786 0.680 0.688 0.532 0.593▼
QuReTeC + ΨNDCG@3 0.330▼ 0.798 0.686 0.711 0.535 0.590▼

for what concerns P@3 and NDCG@3, but in some cases,
perform worse than when expanding using our classifier. This
suggests that in some cases, the expansion is considered as
“noise” by MonoT5. This leaves us with the possibility of further
increasing the retrieval metrics and training more complex
models for expansion selection and suggests that one should
further explore different utterance enrichment operators (Λ).
In particular, considering that LLMs are trained on natural
language, i.e., in most cases, well-formed sentences, devising
a new enrichment operator that better integrates the expansion
in the utterance could result in even better results.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a novel way of expanding utterances with external
commonsense knowledge to increase the retrieval capabilities of
conversational systems. We introduced a theoretical framework
exploiting commonsense knowledge in conversational search.
Our framework comprises a knowledge generator (Θ), an ex-
pansion selector (Ψ), and an utterance enrichment operator (Λ).
We discussed the different roles of each framework component
and showed how to generate commonsense entities related to
conversational utterances using Numberbatch embeddings. We
also trained an expansion selector on best and worst-performing

expansions in various combinations to produce a total of eight
models fine-tuned over a BERT-based transformer model.
Using the TREC CAsT datasets, we demonstrated statistically-

significant improvements of up to 82% over the original—
raw—utterances when considering R@200 and up to 154%
for NDCG@3. We tested our method with two state-of-the-art
systems showing a gain in retrieval capabilities for a first-stage
retrieval with the DPH weighting model. Finally, we performed
a reranking with the MonoT5 model managing to increase
the retrieval metrics and observing that the combination of
our framework together with state-of-the-art ones can further
improve the retrieval phase.
In future work, we want to experiment with mixing other

state-of-the-art rewriting techniques with our commonsense
knowledge framework. Moreover, some of the limits of our
approach come from the fact that the Numberbatch embeddings
are not always able to encode text which is not in the vocabulary.
These limits can be overcome by using a neural model to
encode commonsense knowledge bases. We also intend to
contribute in this direction by learning neural representations
for commonsense knowledge that allows for building a more
effective concept generation. Additionally, we tried using only
one generated entity for each utterance. We plan on expanding



the research, to concatenate not only on different entities
generated by Numberbatch but also to join different models to
provide other knowledge sources.
Finally, the utterance enrichment operator Λ for the presented

experiments was a simple concatenation of the selected
expansion. We believe that a more sophisticated approach
to generating a grammatical sentence expansion could be
beneficial for LLMs trained on natural language.
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