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In two previous technical reports we described a tool that produces a so-
called spaghetti plot, i.e. a plot that is able to capture the trends of the sea surface
temperature (SST) in a chosen time interval and within a target area [3]; and the
formalization of spaghetti plots through the definition of two custom Python 3
classes [4].

In this report we outline an algorithm that uses SST data to detect and
classify mesoscale upwelling events. In particular, the algorithm (called Mesoscale
Events Classifier, MEC) takes as input the SST data organized as a SpaghettiData

dictionary and returns a map of the area of interest where the zones in which
the algorithm detects an event are highlighted and labelled with an event type.

As a case study, we focus on the problem of detecting and classifying meso-
scale events in the southwestern part of the Iberian peninsula, which is part of
the Iberian/Canary Current System (ICCS). More precisely, our area of interest is
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defined as the rectangle of the points with latitude between 35° and 40° N, and
longitude between 12° and 6° W.

1 Context: Upwelling events

The upwelling phenomenon is the upward vertical transport of cold, nutrient-rich
water from the depths to the ocean surface, mainly caused by the wind action
and the rotation of Earth. Upwelling zones can be identified by cool SST and
high concentrations of chlorophyll a.

The geomorphological peculiarities of the ICCS with respect to other up-
welling ecosystems (including the discontinuity given by the Gulf of Cádiz and
the nearby entrance of the Mediterranean Sea, as well as numerous topographical
features of the continental shelf, such as prominent capes and submarine canyons;
see Figure 1) affect the upwelling jet that runs southwards along the western coast
of Portugal, eventually reaching Cape St. Vincent (37°1’30” N, 8°59’40” W). The
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Figure 1: 3D rendering of the ocean floor in our region of interest. The depth scale has
been exaggerated to highlight the topographical features.

different behaviours of the upwelled water give rise to a variety of patterns that
can be seen in the SST maps obtained from satellite data. In particular, a visual
inspection of a large quantity of SST maps by expert oceanographers resulted in
the identification of four main recurring patterns in our area of interest, which

2



will be called E1, E2, E3 and E4. Table 1 contains a brief description of these
events, and Figure 2 shows some examples of their appearance in the SST maps.

Table 1: Description of the four main types of upwelling events in the southwestern part
of the Iberian peninsula.

Type Description

E1 a filament of cold water originating from the upwelling jet, going
westwards

E2 a filament of cold water going southwards, extending the upwelling jet
beyond Cape St. Vincent

E3 a stream of cool water that bends eastwards from the upwelling jet,
overtaking Cape St. Vincent and running along the southern coast of
the Iberian peninsula

E4 a warm countercurrent originating in the Gulf of Cádiz and running
westwards along the southern Iberian coast, eventually reaching Cape
St. Vincent and turning northwards
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Figure 2: The different types of patterns recognisable in SST maps (highlighted with a
white rectangle).

We say that a (mesoscale upwelling) event of type En occurs at a certain date
if the SST map of that date shows a pattern of type En. Notice that multiple
types of events may occur at the same date. The objective of MEC is to analyse
SST data in order to detect the occurrence of an upwelling event and classify it
into one of the four types.
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2 The algorithm

The workflow of the algorithm is sketched in Figure 3. A description of the MEC
core is already available in the literature (see for example [7; 9] for a general
presentation and [6] for a more in-depth explanation); in this document we recall
each part of the algorithm, focusing in particular on their technical aspects. For
all our experiments we implemented MEC in a Python environment—the source
code is available at https://github.com/ospapini/nautilos-T8.5-sst.

Data
selection

Data
organization

Statistics
computation

Classification
rules

Classification
output

MEC

(µ, σ, θ) (e1, e2, e3, e4)

Figure 3: Brief schematics of the MEC algorithm.

2.1 Data selection

As already mentioned in [3], two main sources of SST data have been taken into
consideration: the satellites of the Metop programme of EUMETSAT and the Aqua
satellite of NASA. More specifically, for our analysis we used data from the years
between 2009 and 2017. Table 2 outlines the main characteristics of these two
sources.

Both products cover the entire surface of Earth; we downloaded only the files
containing SST data within our area of interest, resulting in a dataset comprising
an average of 2–3 images per day. However, not all of them can be used in the SST
analysis: as shown in Figure 4, sometimes the radiometers on the satellites fail to
measure the radiation signal, for example due to an excessive cloud coverage,
resulting in large portions of the area with data either unreliable or completely
missing. Therefore, we selected and discarded some images depending on the
quantity of data available in them—in particular, the following criterion has been
chosen:
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Table 2: Main features of the satellite sources.

Institution Satellite Sensor
Resolution
(at nadir)

Temperature
accuracy

Binning
rate

Processing
level§a File format Source

EUMETSAT Metop-A/B§b AVHRR 1 km 0.01 °C 3 min L2P NetCDF-4 [2]

NASA Aqua MODIS 1 km 0.005 °C 5 min L2P NetCDF-4 [1]

§a In accordance with the Group for High-Resolution Sea Surface Temperature (GHRSST) data processing specification (see
https://www.ghrsst.org/ghrsst-data-services/products/, accessed on 29 June 2023).
§b The product uses data from Metop-A before 19 November 2016 and Metop-B after that date.

1. considering the declared spatial resolution of the products, we estimate to
have one data point every 0.01° in both latitude and longitude, thus about
300 000 points in the area;

2. among these, 91 346 correspond to coordinates on land (this number has been
computed with the help of Python’s global-land-mask module), so we obtain
an expected number of valid SST data points of 208 654;

3. we discard an image if the number of SST data points in it is less than 15% of
the expected number.
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Figure 4: Examples of varying quality of SST images from the Metop dataset.

2.2 Data organization

Once the NetCDF files have been acquired and selected, in the next step we extract
the SST data and organize them in a format suitable for the subsequent blocks
of the algorithm. MEC exploits both the spatial distribution and the temporal
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trend of the SST in the area of interest, therefore we will use the SST data in
the NetCDF files to create a dictionary of SpaghettiData objects (as described
in [4, Section 2]) with appropriate parameters. Recall that a SpaghettiData object
represents a georeferenced set of pairs

{(t1, SST1), . . . , (tn, SSTn)}

where tk is a timestamp and SSTk is a temperature value for each k = 1, . . . , n.
The process of generation of these sets has been described in detail in [6,

Section 4.1]; for the sake of completeness we report it again here. In the following,
we denote with T(t, φ, λ) the SST recorded at time t in the point with latitude
φ and longitude λ. Note that T(t, φ, λ) may not be defined for every t, φ and
λ—this depends on the data availability in the NetCDF files. Moreover we
consider the target area A = [φmin, φmax]× [λmin, λmax] and choose a time interval
τ = [tstart, tend].

1. Choose a resolution, i.e. a real number r > 0 such that the numbers ℓ =

(φmax − φmin)/r and m = (λmax − λmin)/r are integers. Divide the area A in
ℓ×m squares

ai,j = [φmin + ir, φmin + (i+ 1)r]× [λmin + jr, λmin + (j+ 1)r]

with i = 0, . . . , ℓ− 1 and j = 0, . . . ,m− 1.

2. For each satellite image with timestamp t ∈ τ, compute the spatial average of
the SST at time t in each square ai,j that contains a sufficient amount of data.
Formally, choose a data abundance threshold α > 0 and let

Xi,j(t) = {(φ, λ) ∈ ai,j | T(t, φ, λ) is defined}

i.e. the set of geographical points in ai,j that have a recorded SST in the image;
if #

(
Xi,j(t)

)
⩾ α, compute

T i,j(t) =
1

#
(
Xi,j(t)

) ∑
(φ,λ)∈Xi,j(t)

T(t, φ, λ),

otherwise leave T i,j(t) undefined.

3. Let t1, . . . , tN be the timestamps of the images belonging to the time interval
τ and, for each square ai,j, compute the time series

pi,j = {(tk, T i,j(tk)) | k = 1, . . . ,N s.t. T i,j(tk) is defined}.

Notice that ni,j = #
(
pi,j

)
may not be the same for all squares: once again it

depends on the quantity and the quality of SST data in the satellite images
with timestamps in the chosen time period.

6



In our case the target area has φmin = 35, φmax = 40, λmin = −12 and λmax = −6

(western longitudes are considered negative). After a careful analysis of different
choices for the parameters involved in the generation of the time series, the
following values have been selected:

• resolution r = 0.25° (so that our grid has ℓ = 20 and m = 24); in addition
to this being the typical spatial scale at which mesoscale patterns become
recognizable, a too small value of r requires too much computational effort for
the algorithm;

• time interval τ = 15 days, i.e. if we want to detect events occurring at time t0

we select images with timestamps in the interval [t0 − 15 days, t0]; once again
this represents the typical temporal scale at which the events appear and fade;

• data abundance threshold α = 100, which at the chosen resolution means that
the average SST in a square is not computed if there is less than about 16% of
the expected amount of data in that square.

Despite all the quality filters applied in the previous steps, the time series may still
show an erratic behaviour, with unrealistic peaks and valleys between consecutive
images. Therefore an additional regularization step is applied to all the time
series before proceeding to the next part of the algorithm.

We focused on two possible regularization methods for a time series. In the
following, let p = {(t1, SST1), . . . , (tn, SSTn)}.

1. The discard method consists of removing a pair (tk, SSTk) from p if SSTk is
too different from the SST values in a temporal neighbourhood of tk. More
precisely, let σ be the standard deviation of all the SST values in p, i.e.

σ =

√√√√ 1

n

n∑
k=1

(SSTk − µ)2

where µ is the average of the SST values

µ =
1

n

n∑
k=1

SSTk,

and choose a real number β > 0; for each k = 1, . . . , n compute the median
mk of the five values SSTk−2, SSTk−1, SSTk, SSTk+1 and SSTk+2 (for k = 0,
use only SST0, SST1 and SST2; for k = 1, use SST0, SST1, SST2 and SST3;
analogously for k = n − 1 and for k = n), then remove the pair (tk, SSTk)

from p if SSTk /∈ [mk − βσ,mk + βσ].
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2. The replace method consists of “smoothing” p by substituting SSTk with the
median of the SST in a temporal neighbourhood of tk. More precisely, for
each k = 1, . . . , n compute the median mk of the three values SSTk−1, SSTk

and SSTk+1 (for k = 0, use SST0, SST1 and SST2; analogously for k = n), then
replace the series p with p ′ = {(t1,m1), . . . , (tn,mn)}.

For our analysis we chose the discard method with β = 1.5.

2.3 Statistics computation

By plotting all the time series pi,j relative to a target area in a common time-
temperature reference system, we obtain a spaghetti plot (see [3]). These plots can
be visually analysed to recognise patterns in temperature trends associated with
mesoscale upwelling events, with positive results (see for example [5; 8]).

The SST time series also provide the data upon which the automatic analysis
of MEC is performed. The next step of the algorithm consists of extracting some
statistical features from the series pi,j that describe in a concise but meaningful
way the SST trend inside the squares ai,j in the considered time period. In
particular, for each series pi,j = {(tk, SSTk) | k = 1, . . . , ni,j} the following three
statistics are computed:

1. the temporal mean of pi,j,

µi,j =
1

ni,j

ni,j∑
k=1

SSTk;

2. the standard deviation of pi,j,

σi,j =

√√√√ 1

ni,j

ni,j∑
k=1

(SSTk − µi,j)2;

3. the linear regression coefficient of pi,j, denoted with θi,j and defined as the slope
of the straight line that better interpolates the points in pi,j, as computed by
NumPy’s polyfit method with deg equal to 1.

The units of measure are °C for µi,j and σi,j, and °C/day for θi,j. By a slight
abuse of notation, we will use the symbols µ, σ and θ as functions of the grid
squares, meaning that, for example, if a is a square, then µ(a) is the temporal
mean of the SST series associated with a, and analogously for σ and θ.

As we said before, the number of pairs in each series pi,j, denoted by ni,j in
the above formulas, is not the same for each square ai,j but varies depending
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on the quality and quantity of data in the NetCDF files within ai,j. Therefore
we consider ni,j as a fourth relevant feature and interpret it as a reliability index
for the final classification of the square ai,j, under the assumption that a larger
quantity of data present in the square implies a more faithful computation of the
values of the statistics relative to it, and in the end a more accurate classification.

Moreover, an additional quality check is preformed at this stage: an integer
threshold γ > 0 is chosen such that if ni,j ⩽ γ then no statistic is computed for
ai,j. Given the characteristics of our datasets and the choice of the parameter
τ in the previous step, we expect to have ni,j ≈ 30 for each square, so for our
analysis we chose γ = 4.

At code level, this step receives as input a dictionary of SpaghettiData and
returns four ℓ ×m NumPy’s masked arrays containing the values of µi,j, σi,j,
θi,j and ni,j (an entry is masked in an array if the statistic is not computed for
the square corresponding to that entry).

2.4 Classification rules

The set of classification rules is the core of the MEC algorithm: in this step the
computed statistical features are automatically analysed in order to identify the
squares in which an event is more likely to have occurred at the end of the
considered time period. In particular, in this step a vector ei,j = (e1, e2, e3, e4)

(for a better readability we don’t write the indices i and j of the components) is
assigned to each square ai,j, where for each k ∈ {1, 2, 3, 4} the number ek ∈ [0, 1]

represents a belief index for an event of type Ek to have occurred inside ai,j.
Each ek is computed through a series of conditional rules applied to the statistics
µ, σ and θ obtained in the previous step.

Remark. The rules have been handcrafted taking into consideration both the
chosen values of the parameters involved (e.g. resolution of the grid) and the
peculiarities of the ICCS upwelling ecosystem. It is possible to adapt the workflow
of MEC to perform detection and classification of mesoscale events in other
ecosystems, but a preliminary knowledge of the environment and the phenomena
occurring inside it is required in order to properly define the classification rules.

The rules used to compute ei,j for a square ai,j involve not only the values
µi,j, σi,j and θi,j of the statistics in ai,j, but also the values of µ, σ and θ for
other squares in the proximity of ai,j. Therefore, before showing the actual rules
we have to introduce some notation.

Let a be a square; its full neighbourhood Nfull(a) is the set of grey squares in
the following picture, where a is denoted with the ⋆ symbol (some of the squares
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may be missing in case a is located near the edges of the grid):

Nfull(a) = ⋆ (Reference compass:
N

E

S

W )

In the description of the rules, the squares of Nfull(a) have special subscripts that
identify them. The reference is the following diagram:

NN

NW N NE

WW W ⋆ E EE

SW S SE

SS

so, for example, aS denotes the square immediately south of a. This notation
extends also to the values of the statistics in those squares (e.g. the value σ(aSE)

will be denoted by σSE).
The square neighbourhood Nsq(a) is the set of squares adjacent to a:

Nsq(a) = ⋆

The basic neighbourhood Nbsc(a) is obtained from Nfull(a) by removing the two
squares aNE and aSW:

Nbsc(a) = ⋆

The land mask Land(a) is a boolean function that returns True if and only if a
is considered a “land” square (as opposed to “sea” square); the coast distance
Coast(a) is an integer-valued function that roughly estimates the distance of a
from the coastline in terms of grid units; if a is a land square then Coast(a) = 0,
otherwise

Coast(a) = 1+ min {Coast(b) | b ∈ Nsq(a)}.

Remark. The function Coast can be computed iteratively: first assign the value
0 to each land square and a special value “undefined” to each sea square, and
define a variable c = 1; then, for each sea square a with an undefined Coast
value, set Coast(a) = c if and only if there is at least a square b ∈ Nsq(a) such
that Coast(b) is non-undefined; finally increase c by 1 and repeat.

The values of Land(a) and Coast(a) for all squares a in our region of interest
are shown in Figure 5. With these two functions we can define two more
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Figure 5: Values of the Land and Coast functions for all the squares in our area of interest.
In particular, yellow squares have Land = true (and Coast = 0), and the number in a
square corresponds to the value of Coast for that square.

neighbourhoods of a square a: the sea neighbourhood Nsea(a), consisting of the
non-land squares in Nbsc(a):

Nsea(a) = {b ∈ Nbsc(a) | ¬Land(b)};

and the coastal neighbourhood Ncst(a) that contains the squares of Nsea(a) with
coast distance similar to Coast(a):

Ncst(a) =
{
b ∈ Nsea(a)

∣∣ ∣∣Coast(b) − Coast(a)
∣∣ ⩽ 1

}
.

The last two types of neighbourhood that we define are the geographical neighbour-
hoods NNW(a) and NSE(a) as the parts of Ncst(a) that are respectively at NW and
SE of a:

NNW(a) = Ncst(a) ∩ ⋆ NSE(a) = Ncst(a) ∩ ⋆

Finally, in the rules boxes only, if X is any (multi)set of numbers we will use the
symbol µ(X) to denote the arithmetic mean of its elements, to avoid a possible
confusion with the statistic µ introduced before.
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We are now ready to describe the procedure that defines the vectors ei,j. In
the following, all the notation refers to a fixed square a of the grid (the procedure
is repeated for all squares).

For each type of event k ∈ {1, 2, 3, 4}, define a score Sk initially set to 0; then
this score can modified by the rules listed in the boxes below. In particular, each
condition described in the “Trigger” columns is checked and, if it is verified,
the points listed in the “Effect” columns are added to the score relative to
the corresponding type of event. Notice that each box contains a preliminary
condition than can prevent the rules form being tested if there is no relevant SST
variation in a.

After all the conditions are checked, the four indices ek are computed from
the scores as ek = Sk/Mk, where Mk is the maximum score obtainable from the
square a for the type of event Ek. In particular, from the definition of the rules,
we have that M1 = M2 = 22 for all squares, whereas M3 and M4 depend on the
square a as follows:

M3 = 16+
∑

b∈Nsea(a)

nb where nb =

{
3 if b = aS or b = aE

2 otherwise,

M4 = 16+
∑

b∈Nsea(a)

nb where nb =

{
3 if b = aN or b = aW

2 otherwise.

At code level, this step receives as input the three arrays with the values of µ,
σ and θ for all the squares of the grid, and returns four more ℓ ×m NumPy’s
masked arrays, one for each type of event, with the values of ek.

Rules for E1
Apply only if there is a relevant variation of the SST in a, i.e.

θ(a) < −0.05 °C/day ^ σ(a) > 0.2 °C.

Rule Trigger Math. condition Effect

(1.1) SST of aE also decreases, before the SST of a θE < θ(a) +6 pts
(1.2) SST of aEE also decreases, before the SST of a θEE < θ(a) +3 pts
(1.3) SSTs of a, aE and aEE decrease sequentially (1.1) ^ (1.2) ^ θEE < θE +2 pts

(2.1) a is colder, on average, than the squares to its N µ(a) < µ(µNW, µN, µNE) +4 pts
(2.2) a is colder, on average, than the squares to its S µ(a) < µ(µSW, µS, µSE) +4 pts
(2.3) both previous rules are applied (2.1) ^ (2.2) +2 pts

(HV) High Variation — there is a significant variation of the SST
in a

θ(a) < −0.1 ^ σ(a) > 1 +1 pt
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Rules for E2
Apply only if there is a relevant variation of the SST in a, i.e.

θ(a) < −0.05 °C/day ^ σ(a) > 0.2 °C.

Rule Trigger Math. condition Effect

(1.1) SST of aN also decreases, before the SST of a θN < θ(a) +6 pts
(1.2) SST of aNN also decreases, before the SST of a θNN < θ(a) +3 pts
(1.3) SSTs of a, aN and aNN decrease sequentially (1.1) ^ (1.2) ^ θNN < θN +2 pts

(2.1) a is colder, on average, than the squares to its E µ(a) < µ(µNE, µE, µSE) +4 pts
(2.2) a is colder, on average, than the squares to its W µ(a) < µ(µNW, µW, µSW) +4 pts
(2.3) both previous rules are applied (2.1) ^ (2.2) +2 pts

(HV) High Variation — there is a significant variation of the SST
in a

θ(a) < −0.1 ^ σ(a) > 1 +1 pt

Rules for E3
Apply only if there is a relevant variation of the SST in a, i.e.

θ(a) < −0.05 °C/day ^ σ(a) > 0.2 °C.

Rule Trigger Math. condition Effect

(1) all SSTs of squares in Ncst(a) also decrease max {θ(b) | b ∈ Ncst(a)} < 0 +5 pts

(2.1) SSTs of NW squares decrease before the SST of a ∀b ∈ NNW(a) s.t. θ(b) < θ(a) +2 pts
(2.2) SSTs of SE squares decrease after the SST of a or

increase
∀b ∈ NSE(a) s.t. θ(a) < θ(b) +n pts§a

(3.1) a is warmer, on average, than the squares to its NW µ(a) > µ(NNW(a)) +4 pts
(3.2) a is colder, on average, than the squares to its SE µ(a) < µ(NSE(a)) +4 pts
(3.3) both previous rules are applied (3.1) ^ (3.2) +2 pts

(HV) High Variation — there is a significant variation of
the SST in a

θ(a) < −0.1 ^ σ(a) > 1 +1 pt

§a Here n = 3 for b = aS and b = aE, and n = 2 otherwise.
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Rules for E4
Apply only if there is a relevant variation of the SST in a, i.e.

θ(a) > 0.05 °C/day ^ σ(a) > 0.2 °C.

Rule Trigger Math. condition Effect

(1) all SSTs of squares in Ncst(a) also increase min {θ(b) | b ∈ Ncst(a)} > 0 +5 pts

(2.1) SSTs of NW squares increase after the SST of a or
decrease

∀b ∈ NNW(a) s.t. θ(b) < θ(a) +n pts§a

(2.2) SSTs of SE squares increase before the SST of a ∀b ∈ NSE(a) s.t. θ(a) < θ(b) +2 pts

(3.1) a is warmer, on average, than the squares to its NW µ(a) > µ(NNW(a)) +4 pts
(3.2) a is colder, on average, than the squares to its SE µ(a) < µ(NSE(a)) +4 pts
(3.3) both previous rules are applied (3.1) ^ (3.2) +2 pts

(HV) High Variation — there is a significant variation of
the SST in a

θ(a) > 0.1 ^ σ(a) > 1 +1 pt

§a Here n = 3 for b = aN and b = aW, and n = 2 otherwise.

2.5 Classification output

The final block of the MEC algorithm uses the data from the vectors ei,j to assign
one or more labels “Ek” to each square ai,j of the grid. The procedure is simple:
we define a priori a real number δ ∈ [0, 1] to be a detection threshold; for each
square ai,j, the algorithm computes E = max {e1, e2, e3, e4}, then

• if E ⩾ δ, ai,j gets the labels “Ek” for each k ∈ {1, 2, 3, 4} such that ek = E;

• otherwise, no label is assigned to ai,j.

In order to choose an appropriate value for δ (and in general to have a basis for a
first assessment of the MEC performance), we were given a ground truth dataset
by expert oceanographers, containing their classification of some mesoscale
events obtained directly from a visual examination of the SST maps. After some
experiments, we chose the value δ = 0.6 which seems to produce classifications
that better agree with the results of the visual inspections.

The last step of the classification process is a refinement of the labels through
the application of a geographical filter. In fact, a mesoscale event of a certain
type may only occur within a specific zone of our area of interest. Therefore
we defined four geographical masks (pictured in Figure 6), one for each type of
event, such that only the squares belonging to the Ek event zone may have the
“Ek” label. In particular, for each square ai,j and for each label “Ek” assigned to
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it, the algorithm checks if ai,j belongs to the Ek zone and removes the label if
this condition is not true.
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Figure 6: The four zones where a mesoscale event may occur.

At code level, this step of MEC receives as input the four arrays representing
the scores ei,j for each square ai,j and returns a single ℓ×m NumPy’s masked
array whose entries are integer numbers between 0 and 15 included. The (i, j)-th
entry of this array encodes the set of labels assigned to ai,j as a binary number;
in particular, if Li,j Ď {1, 2, 3, 4} is the set defined as

Li,j = {k | “Ek” is a label assigned to ai,j},

then the (i, j)-th entry is ∑
k∈Li,j

2k−1.

The array is then plotted using a custom script that involves matplotlib.pyplot’s
imshow method in combination with the geographical plot capabilities of the
cartopy module, resulting in a map with the labelled squares of the grid coloured
according to their label(s). In order to have an immediate feedback of the
reliability of the classification, each classified square displays also the percentage
of available data in the time series associated with it: the script receives as
an additional input the array with the numbers ni,j obtained in the “Statistics
computation” step and for each classified square computes the percentage as⌊ni,j

30
· 100

⌋
(once again assuming 30 images per day in a time interval of 15 days—notice
that this way it is possible to get percentages over 100%, since this is only a rough
estimate).
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3 An example

To better understand how MEC works, in this section we present an example of
a detection and classification performed by the algorithm. The chosen date t0 is
the 7th October 2017 at about 21:00 UTC.

The SST map of that date, coming from the Metop dataset, is shown in
Figure 7. In the picture we can see:

1. a cold filament at about 37.5° N extending for about one degree of longitude
between 9.5° and 10.5° W;

2. a warm current along the coast between 8° and 9° W.
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Figure 7: SST map of the area of interest at time t0.

If we analyse the SST maps of the days before t0 (Figure 8), we notice that the
SST behaviour in the two areas is consistent with two upwelling events of type
E1 and E4 respectively. Let’s see if MEC is capable of detecting them.

First of all, we retrieve the SST information from the NetCDF files. In this
example we will use data from the Metop dataset. For the time period of 15 days
before t0 there are 70 NetCDF files in the dataset, of which 32 are discarded
during the “Data selection” step. The remaining files are elaborated and their
SST data are organised in a dictionary of SpaghettiData objects. At this step we
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Figure 8: SST maps of the area of interest in some dates within 15 days prior to t0. We
can notice the process of formation of the cold water filament going westwards between
37° and 38° of latitude, as well as the warm current slowly replacing the cold water along
the southern coast. All times are UTC.

can produce some spaghetti plots of the areas where the events are supposedly
occurring, and indeed we find that the behaviour of the plots agrees with the one
expected (see Figure 9).

In the following steps MEC computes the values of the statistics µ, σ and θ

for all squares in the grid (Figure 10) and then the four events scores (Figure 11).
Finally the classification array is computed and plotted (Figure 12).

Let us analyse briefly the output of MEC in this case. First of all, the percent-
ages reported in the squares are quite high, so we may consider this classification
reliable; moreover the two types of events that appear in the final map correspond
to the types that we conjectured to have occurred in the considered time period.
A more careful look reveals that actually the location of the classified squares
does not match the one that we can infer by examining the SST maps—however,
by going a step back and looking at Figure 11, we notice that along the southern
coast of the Iberian peninsula there are many squares with high e4-score that just
barely miss the δ = 0.6 threshold.

Overall, we can consider MEC a tool that supports oceanographers by point-
ing out possible occurrences of upwelling events. This automatic process reduces
the time and effort spent on the visual analysis of the SST maps; additionally, it
provides a way to remove the subjectivity intrinsic in the researchers’ interpreta-
tion of the maps.

A thorough study regarding the MEC performances, that also takes into
account the peculiarities of the algorithm, can be found in [10].
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Figure 9: Spaghetti plots for two selected areas where two upwelling events seem to
occur. Each line in the plots on the right represents the SST trend in the square marked
with the same colour in the reference grid on the left.
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