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Abstract
Orthoptera are insects with excellent olfactory sense abilities due to their antennae richly equipped with receptors. This 
makes them interesting model organisms to be used as biosensors for environmental and agricultural monitoring. Herein, 
we investigated if the house cricket Acheta domesticus can be used to detect different chemical cues by examining the move-
ments of their antennae and attempting to identify specific antennal displays associated to different chemical cues exposed 
(e.g., sucrose or ammonia powder). A neural network based on state-of-the-art techniques (i.e., SLEAP) for pose estimation 
was built to identify the proximal and distal ends of the antennae. The network was optimised via grid search, resulting in a 
mean Average Precision (mAP) of 83.74%. To classify the stimulus type, another network was employed to take in a series 
of keypoint sequences, and output the stimulus classification. To find the best one-dimensional convolutional and recurrent 
neural networks, a genetic algorithm-based optimisation method was used. These networks were validated with iterated 
K-fold validation, obtaining an average accuracy of 45.33% for the former and 44% for the latter. Notably, we published and 
introduced the first dataset on cricket recordings that relate this animal’s behaviour to chemical stimuli. Overall, this study 
proposes a novel and simple automated method that can be extended to other animals for the creation of Biohybrid Intelligent 
Sensing Systems (e.g., automated video-analysis of an organism’s behaviour) to be exploited in various ecological scenarios.
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1 Introduction

In recent years, Artificial Intelligence (AI) has become a 
critical tool in various biological research fields, such as 
medicine [1], agriculture [2] and environmental monitoring 
[3]. Deep Learning, a subset of AI, has been instrumental in 
surpassing human performance in complex, time-consuming 
tasks [4]. This has enabled the development of new preci-
sion techniques that contribute to improving environmental 
sustainability, and with significant socio-economic implica-
tions [5].

The advent of such precision techniques through the 
application of Deep Learning has paved the way for the con-
struction of Biohybrid Intelligent Sensing Systems (BISSs), 
which represents an innovative approach to animal biosen-
sors that utilizes artificial intelligence to detect changes 
and analyze the environment. As a result, the integration of 
AI in biological research fields, such as medicine, agricul-
ture, and environmental monitoring, has led to significant 
advancements that have the potential to enhance the per-
formance of BISSs and ultimately lead to their automation 

 * Edoardo Fazzari 
 edoardo.fazzari@santannapisa.it

 Fabio Carrara 
 fabio.carrara@isti.cnr.it

 Fabrizio Falchi 
 fabrizio.falchi@cnr.it

 Cesare Stefanini 
 cesare.stefanini@santannapisa.it

 Donato Romano 
 donato.romano@santannapisa.it

1 The BioRobotics Institute, Sant’Anna School of Advanced 
Studies, Viale Rinaldo Piaggio, 56025 Pontedera, Italy

2 Department of Excellence in Robotics and AI, Sant’Anna 
School of Advanced Studies, Piazza Martiri della Libertà, 
56127 Pisa, Italy

3 Institute of Information Science and Technologies, National 
Research Council of Italy, via G. Moruzzi, 56124 Pisa, Italy

http://orcid.org/0000-0002-4570-4170
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-023-02009-y&domain=pdf


 International Journal of Machine Learning and Cybernetics

1 3

and optimization, highlighting the critical importance of this 
research area.

The development of animal biosensor systems is of para-
mount significance if we aim at comprehending the environ-
ment in a sustainable sound manner [6] due to the numerous 
advantages they offer in comparison to traditional analytical 
tools. These advantages include portability, rapidity, ease of 
use, and cost-effectiveness without the need for a manufac-
turing process, chemical or biological reagents, or any other 
processing for the analysis [7]. Biosensors take advantage 
of animals’ remarkable olfactory capabilities in detecting 
molecules in the atmosphere, with applications in numerous 
fields such as medical diagnosis [8], explosives detection 
[9] and narcotic detection [10], thus proving to be highly 
effective. The aforementioned studies needed an observer to 
monitor the behavior of the animal to make a diagnosis or 
detect any abnormalities. However, techniques that do not 
require user input are based on the direct reading of nerve 
stimuli from the animal, which is then subjected to analysis. 
As an example, [11] examined the signals from olfactory 
receptor neurons in the locust Schistocerca americana to 
ascertain if this insect could detect the smell of explosives 
and its concentration.

In this context, Animal Pose Estimation (APE) techniques 
using AI could represent a further step towards automating 
and optimizing animal biosensor systems. Technologies such 
as DeepLabCut [12] and SLEAP [13] enable the tracking of 
animal(s) movements and the generation of time sequences 
that are the key for the study of animal behavior. Further-
more, [14] improved the analysis of animals’ behaviors pro-
posing a deep variational embeddings-based model for iden-
tifying behavioral structures in animals, using the tracking 
sequences obtained from mice recordings without requiring 
supervised or a-priori human interference. Additionally, [15] 
proposed an architecture for behavioral classification based 
on a naïve Bayesian model to identify chickens’ behavior for 
diagnosing poultry diseases using the sequences obtained 
from the pose estimation. However, these approaches are 
limited to defining the vocabularies of motifs without pro-
viding any correlation with the animal’s response to envi-
ronmental stimuli.

To bridge this gap, this paper proposes a workflow based 
on pose estimation techniques to develop a BISS that can 
identify the type of response generated in the house cricket 
Acheta domesticus L. (Orthoptera: Gryllidae) by differ-
ent chemical cues. Unlike the previously cited study, the 
approach we used is non-invasive as the proposed technique 
exploits machine learning to analyze video-recordings of the 
cricket’s antennae movements.

House crickets possess significant mechanosensory and 
chemosensory organs [16]. However, to the best of our 
knowledge, the automatic association between antennae 
movements and odor recognition in crickets has not been 

explored so far. Although studies on insect antenna move-
ments related to odor recognition have been conducted (i.e., 
ants), none of them included artificial intelligence techniques 
[17]. The issue with ants or other small insects is that their 
antennae are thin in comparison to crickets, whose antennae 
are significantly more elongated and therefore more easily 
discernible to the human eye, which increases the likelihood 
of being detected by automated pose estimation techniques. 
Moreover, crickets’ antennae have been demonstrated to be 
highly dynamic and responsive [18], allowing for a higher 
probability of acquiring dynamic tracking sequences than 
insects with shorter antennae and limited mobility.

This research develops a workflow based on artificial 
intelligence techniques that can identify the type of response 
exhibited by crickets when exposed to certain chemical stim-
uli by considering their antennae’s movement. This initial 
approach is intended to lay the groundwork for the crea-
tion of Biohybrid Intelligent Sensing Systems that are fully 
autonomous, eco-friendly, and sustainable. These systems 
will use computer vision and sequence processing tech-
niques and will only require cameras and a few other elec-
tronic components, thus having minimal impact on the envi-
ronment. The main contributions of this work are three-fold: 

1. We present a streamlined workflow for mapping ani-
mal movements to stimuli, offering a straightforward 
approach to understanding the relationship between the 
two.

2. We introduce a novel fitness function designed to con-
struct neural networks in scenarios with limited samples 
and a high risk of overfitting on the validation set. This 
innovative approach addresses the challenge of achiev-
ing desirable results on the validation set while main-
taining suboptimal performance on the training set.

3. To the best of our knowledge, we are the first to publish 
a dataset specifically focused on crickets, enabling pre-
cise pose estimation from high-resolution videos.

As an additional contribution, the code and dataset used are 
available online (see section 5).

2  Materials and methods

2.1  Materials and dataset

Adult crickets (Acheta domesticus) used in this study were 
obtained from an e-commerce site and maintained at the 
Institute of BioRobotics in Pontedera, Italy, at a tempera-
ture of 22 ± 1 ◦ C, 55 ± 5% relative humidity, and 12:12h 
light:dark photoperiod. Of the 200 crickets purchased, 69 
were selected for the experiment based on size (10-15 mm) 
and visible antennae (not injured), so that movement analysis 
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could be conducted. To ensure that the crickets did not have 
a behavioral bias after interacting with a stimulus, only one 
video was taken for each cricket.

Individual crickets were placed in a closed Petri dish 
(112.5 mm in diameter) with one of the following three 
stimuli placed on a piece of paper: nothing (control case, C), 
solution of water and sucrose powder (sucrose case, S), and 
cake ammonia (ammonia case, A). 0.05 grams of each sub-
stance was used. 23 videos were recorded for each stimulus, 
resulting in a balanced dataset of 3 hours, 37 minutes, and 56 
seconds. Each recording was longer than 3 minutes and com-
prised two parts: the first minute (from 0 to 59 seconds) was 
regarded as the “settling in” period, while the “interaction 
period” began from minutes 1 to 3. An iPhone 14 Pro was 
used to record the Petri dish, set to "Most Compatible" and 
1080p at 30fps to demonstrate that professional video cam-
eras are not necessary to obtain videos suitable for scientific 
experiments. To reduce the reflection of the smartphone on 
the Petri dish, a light panel placed in direct current at 0.11A 
and 16V was used. The smartphone was placed at a distance 
of about 150mm to capture the entire width of the Petri dish. 
Figure 1 shows the setup used to carry out the recordings. 
Despite the use of the light panel, a problem of reflection 
persisted when crickets were close to the wall of the Petri 
dish, resulting in a reflection on their legs and antennae on 
the wall creating a possible confusion for the pose estima-
tion task. Figure 2(a) shows a cricket in a situation where 
the antennae make a reflection on the wall of the petri dish. 
Figure 2(b), Figure 2(c) and Figure 2(d) show crickets in the 
case when the stimulus is C, S, A, respectively.

To the best of our knowledge, this is the first public data-
set containing crickets recordings.

2.2  Dataset preprocessing

Prior to identifying the location of the antennae, a pre-
processing step was performed on the recorded videos to 
extract the “interaction period.” In order to ensure uni-
formity in measurement across all videos, the frame rate 

was reduced to 29 FPS, which was the lowest among all 
the videos. This crucial step allowed for the standardiza-
tion of video length. The interaction period was then iden-
tified between frames 1740 (29x60) and 5220 (29x180), 
resulting in a total of 3480 frames per video. Furthermore, 
to center the petri dish and standardize its position in all 
videos, the videos were reformatted from 1920x1080 to 
1080x1080. This resizing eliminated any extraneous pixels 
from outside the petri dish that may have had the potential 
to interfere with the neural network’s learning process for 
pose estimation. All data processing was performed using 
Python on a MacOS Ventura 13.2 with 6-core i5 proces-
sors clocking at 3.9GHz and an iMac with (2*4) G RAM.

Fig. 1  (a) shows an illustra-
tion of the setup employed 
for recording the crickets. (b) 
shows the real setup in our lab

Fig. 2  The image presented in (a) illustrates the scenario in which a 
reflection occurs between the cricket and the wall of the Petri dish. 
On the other hand, (b), (c), and (d) depict the visual representation of 
the stimuli C, S, and A, respectively
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2.3  Cricket pose estimation

For each video analyzed, a pose estimation technique was 
employed to accurately identify five significant points of 
interest: the cricket’s head and the proximal and distal ends 
of both the left and right antennae. This task was accom-
plished by utilizing SLEAP [13], the state-of-the-art method 
for Animal Pose Estimation (APE), in order to streamline 
the labeling process and construct the neural network. To 
assess the model’s ability to generalize, two datasets were 
created by iteratively labeling subsets of the videos to form 
training and validation sets. Subsequently, a grid search was 
carried out to optimize the model’s parameters. Finally, the 
most effective model was utilized to predict the locations 
of the keypoints for each frame of all the videos, yielding a 
sequence of data indicating their precise locations.

2.3.1  Human‑in‑the‑loop labeling

To generate the labels required for the SLEAP [13] training 
process, we executed the methodology proposed by [19], 
which highlighted that using a human-in-the-loop strategy 
for label creation along with network predictions signifi-
cantly reduces human-only labeling time. The process is 
illustrated in Figure 3 and includes an initial labeling phase 
where we labeled 210 frames from 42 distinct videos (14 
for each stimulus, with 5 frames per video) for the training 
set and 60 frames from 12 other videos (4 for each stimulus, 
again with 5 frames per video). We subsequently trained a 
model with a UNet backbone [20] using these sets by apply-
ing the parameters specified in Table 1, and implementing 
data augmentation by rotating the image between -180 and 
180 degrees, as recommended by [13] for top viewpoint 
recordings. We utilized the model generated to predict 20 
new frames for each video to augment both the training and 
validation sets. Before creating the datasets to be utilized for 
the following network training, we corrected the predicted 
frames.

In order to compare each iteration of labeling and train-
ing, we fixed the validation set at 300 frames after the ini-
tial iteration and never increased it again. This allowed us 
to evaluate the validation set for different iterations and 
determine if additional labeling was necessary to enhance 
our model. A total of 8 iterations were carried out, which 
resulted in a total of 5460 frames used for the training set 
before we observed no further increase in the mean Average 
Precision (mAP) relative to the validation set.

2.3.2  Grid search for parameter optimization

After obtaining the training test consisting of 5460 frames, 
corresponding to 390 frames for 42 videos, a grid search was 
executed to determine the optimal configuration of hyperpa-
rameters that would enable more precise keypoints detection. 
To streamline this process and reduce the time taken, only 
the hyperparameters that had the greatest potential to impact 
the network were chosen: input scaling, max stride, and the 
number of filters. Input scaling was tested with values of 0.7, 
0.8, 0.9, and 1.0, as an increase in this value can decrease the 
likelihood of finer features, such as the distal ends of cricket 

Fig. 3  Illustration of the complete workflow followed in this arti-
cle. The workflow can be broadly divided into two parts, with the 
first part defined as Human-in-the-Loop Pose Estimation, wherein a 
model is trained to estimate the position of the antennae. The second 

part involves the use of a genetic algorithm to determine the optimal 
model architecture for classifying the behavioral interactions, which 
is subsequently evaluated using Iterated K-fold validation

Table 1  Hyperparameters 
used for the network during 
the Human-in-the-Loop pose 
estimation phase

Hyperparameter Value

Max stride 64
Filters 64
Filters rate 2
Middle block True
Up interpolate True
Sigma 2.5
Output stride 2
Input scaling 0.7
Batch size 8
Epochs 400
Plateau min. delta 1e-08
Plateau patience 20
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antennae that are characterized by 4 ± 1 pixels in width, being 
removed by downsampling the image. The max stride was 
tested with values of 32 and 64, where a larger value resulted 
in a larger receptive field but also increased the number of 
trained parameters in the network. The number of filters was 
tested with values of 32 and 64, which signifies the initial num-
ber of filters present in the first block of the UNet encoder [20]. 
A higher number of filters can enhance the representational 
abilities of the network, but it can also increase memory usage 
and runtime. The training and subsequent operations described 
in this article were carried out using an NVIDIA A100 GPU 
with 40GB of GPU memory housed within a DGX A100.

2.3.3  Performance metric for pose estimation

To evaluate network performance, we utilized the mean 
Average Precision (mAP) metric as described in SLEAP 
[13]. This metric is based on the Object Keypoint Similarity 
(OKS) scores introduced by [21], which measure the similar-
ity between ground truth (GT) and predicted object keypoints. 
The mAP metric involves classifying each pair of GT and pre-
dicted instance as a true positive (TP) or false positive (FP) 
based on the OKS score, using predetermined thresholds of 
0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95. For 
each threshold, precision is calculated as TP/(TP + FP), with 
predictions sorted by their OKS and cumulative TPs and FPs 
determined for each prediction. From these partial TPs and 
FPs, recall and precision values are derived for each pair of 
GT and predicted instance. Subsequently, a set of 101 recall 
thresholds with even spacing from 0 to 1 is defined, and the 
best precision value for samples below each recall threshold is 
obtained, resulting in 101 precision values. The average preci-
sion is then computed as the mean of all 101 precision values. 
This process is repeated for all ten OKS thresholds, and the 
final mAP is obtained as the average of the average precision 
overall thresholds.

The OKS was coded in its standard form:

In the calculation of OKS, the ground truth and predicted 
instance coordinates are denoted as X and X̂ , respectively, 
for an instance with N nodes. The visibility of each node is 
indicated by �i , with a value of 0 if the node is missing from 
the ground truth instance. The inner term of the OKS score 
expresses the distance between the predicted and ground 
truth coordinates as the posterior of a Gaussian distribution 
with two scaling terms: � and �i . Specifically, � denotes the 
bounding box area occupied by the GT instance, while �i is 
the uncertainty factor, which is set to 0.025 for all measure-
ments, equivalent to the uncertainty in labeling human eyes 
[13].

(1)OKS(X, X̂) =

N�
i=1

exp
�
−

‖Xi − X̂i‖22
2𝛼𝜎2

i

�
𝛿i

� N�
i=1

𝛿i)
−1

2.4  Stimuli classification network

Once the pose estimation model had been trained, the next step 
was to classify the obtained sequences to predict the type of 
interaction (i.e., control, sucrose, ammonia). To achieve this 
task, we utilized neural network techniques related to pro-
cessing sequences. Specifically, we developed two types of 
architectures: one based on one-dimensional convolution [22], 
and the other based on Recurrent Neural Networks (RNNs) 
that employed Long Short-Term Memory (LSTM) layers 
[23] and Gated Recurrent Unit (GRU) layers [24], in addi-
tion to bidirectional layers [25]. In this section, we describe 
how the sequences were preprocessed and shaped, the strategy 
employed to autonomously create the networks using a genetic 
algorithm, and how the performance of the obtained networks 
was evaluated.

2.4.1  Sequence preprocessing

After pose estimation, each video was converted into 
sequences that can be characterized by a shape (keypoints, 
frames), where the number of keypoints is fixed at 10, denot-
ing the positions on the x- and y-axes of the head, right and 
left proximal and distal ends of the antennae. The number 
of frames in a sequence is equal to the interaction period, 
which is set to 3480. Due to the presence of NaN values in 
the sequences, a filling strategy was applied to handle missed 
values for a certain keypoint at a particular position t:

Due to the presence of NaN values in the sequences, a fill-
ing strategy was applied to handle missed values. For a certain 
missing keypoint at a frame t, the following equation defines 
how it is filled:

In Equation 2, k identifies the first subsequent frame from 
the frame t with a non-NaN value for the keypoint under 
consideration. We also addressed the case where the value 
for t = 0 is NaN by setting it to the first subsequent non-NaN 
value for that specific keypoint.

The sequences were then centered on the head by moving 
it to the center of the Cartesian plane and translating the other 
points appropriately. This operation allows for the focus on 
the movement of the antennae, breaking the relation with the 
position of the cricket inside the Petri dish. After this trans-
formation, the head-related values within the sequences were 
set to zero and subsequently removed, resulting in sequences 
with a shape of (8, 3480).

(2)vt =
�vt+k + vt−1

1 + �
, � = 1∕k
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2.4.2  Genetic algorithm for neural network construction

In a study conducted by [26], it was demonstrated that the 
utilization of genetic algorithms to search for optimal archi-
tectures in one-convolutional models resulted in the devel-
opment of highly accurate prediction models at a relatively 
lower cost when compared to other approaches, such as 
greedy, Bayesian, hyperband or random for network search.

This genetic approach can be described in the following 
recursive sequence [27]:

• Initialization. An initial population was randomly gener-
ated with a size of 250 individuals, i.e., chromosomes, 
to trade off execution time and convergence [28]. We 
distinguished in two types of chromosomes based on 
our objective, either constructing one-convolutional or 
recurrent neural network. The chromosomes that com-
prise the one-convolutional network are constructed with 
a series of 56 real-coded genes divided in two blocks. 
The first block consists of six genes repeated five times 
to indicate: (1) whether the convolutional block is present 
(0 if absent, 1 if present); (2) the number of filters for 
the one-convolutional layer (ranging from 16 to 1024); 
(3) the presence of the batch normalization layer (0 if 
absent, 1 if present); (4) the activation function to be used 
(0: sigmoid, 1: swish, 2: tanh, 3: relu, 4: gelu, 5: elu, 6: 
leaky relu); (5) the presence of dropout (0 if absent, 1 
if present); and (6) the dropout rate (ranging from 0 to 
0.5, with consideration only given to multiples of 0.05). 
Subsequently, a gene is used to indicate the type of con-
nection between the convolutional and fully connected 
layers, with a value of 0 indicating Flatten and 1 
indicating GlobalAveragePooling1D. The second 
block, also repeated five times, comprises five genes that 
indicate: (1) whether the fully connected block is present 
(0 if absent, 1 if present); (2) the number of units (rang-
ing from 3 to 512); (3) the activation function to be used; 
(4) the presence of dropout; and (5) the dropout rate. 
The chromosomes that comprise the RNN, on the other 
hand, consist of 50 real-coded genes. On the other hand, 
the RNN chromosomes consist of 50 real-coding genes 
with a slightly different configuration. The first block, 
also repeated five times, includes five genes that signify 
the presence of the RNN block, the use of a bidirectional 
layer, the type of RNN (LSTM or GRU), the number of 
units (16 to 1024), and the activation function. Unlike the 
one-convolutional network, there is no need for a gene 
related to the connection between convolutional and fully 
connected layers in the RNN.

• Evaluation. In a genetic algorithm, the evaluation is per-
formed through a objected function called fitness func-
tion. In our experiment, we proposed the following fit-
ness function that requires maximization: 

 where a stands for “if the training or validation accura-
cies are less or equal than 1 over the number of classes, 
or the training accuracy is less than the validation accu-
racy”; b stands for “if the training accuracy is less than 
0.1”; c stands for “no convolutional or RNN layers are 
present”. The decision to devise a fitness function, as 
opposed to solely minimizing the validation loss, stems 
from the recognition that in experiments with limited 
data and inherent complexity, such as ours, it is possible 
for a model to achieve a validation loss that is similar 
to, or even lower than, models with better validation 
accuracy and exceeding that of random guessing. To 
address this challenge, the fitness function was con-
structed to consider the training accuracy, providing 
an additional metric for assessing the network’s qual-
ity. Higher training accuracy values yield fitness values 
closer to those derived from the validation loss, indi-
cating a type of network quality that can be utilized in 
subsequent genetic algorithm iterations. Moreover, the 
train_accuracy<val_accuracy check is incor-
porated to prevent the genetic algorithm from overfitting 
on the validation accuracy, which may impede the ability 
to generalize effectively and harm the training. Lastly, we 
verify if the training accuracy value is below 0.1 and set 
a default value in such cases. This measure was taken to 
avoid any false indications of good models using the first 
case in Equation 3.

• Selection. The selection algorithm implemented in the 
genetic algorithm is tournament selection [29], which 
operates by randomly selecting a fixed number of indi-
viduals, in our case two, from the population and subse-
quently choosing the most fit individual from this group 
to add to the mating pool. Moreover, in addition to tour-
nament selection, the genetic algorithm also employs 
elitism as a selection strategy. This strategy involves 
preserving the top 10 individuals from the current popu-
lation in the succeeding generation. The use of elitism 
ensures that the most exceptional individuals are given 
the opportunity to pass on their favorable traits to future 
generations, which enhances the chances of achieving the 
desired solution.

• Crossover. The genetic algorithm’s crossover algorithm 
is bounded Simulated Binary Crossover (bSBX), a 
bounded variant of Simulated Binary Crossover (SBX) 
introduced by [30]. The probability value of crossover is 
set to 0.9.

• Mutation. The function applied for mutation is bounded 
polynomial mutation with a probability value of 0.5, a 

(3)fit(gene) =

⎧⎪⎨⎪⎩

−10 ⋅ (1 − train_accuracy) if a

−15 if b

−20 if c

−val_loss O∕W
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mutation operator that utilizes a polynomial function 
for probability distribution and is bounded to restrict the 
extent of the changes in the chromosome’s value.

• Termination. Each genetic algorithm applications ran for 
50 epochs before terminating.

To enhance the efficiency of the genetic algorithm execution, 
a function was developed to verify whether a constructed 
model had been previously trained, thereby avoiding redun-
dant computations. Each model was trained for 400 epochs 
with a batch size of 8, utilizing the Adam optimizer [31] 
with an initial learning rate of 1e-4. SLEAP’s default learn-
ing rate decay strategy was adopted, incorporating a patience 
of 20 epochs and a minimum delta of 1e-8. To counteract 
the risk of overfitting, early stopping was employed, termi-
nating the training process when the validation loss failed 
to decrease for 50 epochs. In addition, data augmentation 
techniques were applied, including the addition of Gauss-
ian noise.

2.4.3  Performance metric for classification

To assess the performance of the neural network classifiers 
constructed by the genetic algorithm, accuracy was cho-
sen as the evaluation metric. As our dataset is balanced, 
accuracy, defined by Equation 4, provides a measure of the 
model’s ability to correctly classify or predict the output 
based on a given set of inputs. Expressed as a percentage, 
higher values indicate better performance.

Once the optimal models were identified for both the convo-
lutional and RNN cases using the genetic algorithm, iterated 
K-fold validation was employed to evaluate their effective-
ness. To account for the limited data available, the dataset 
was randomly shuffled and split into training and validation 
sets, with K-fold validation executed multiple times using a 
number of iterations set to 10 and k set to 4. This approach 
ensures an accurate assessment of the model’s performance, 
with the final score calculated as the mean of the accuracies 
achieved across each K-fold validation run.

3  Results

3.1  Pose estimation results

To determine the optimal configuration of parameters for 
our experiment, we utilized the grid search approach out-
lined in subsubsection2.3.2. Table 2 displays the results of 
the model testing process, which indicates that the model 

(4)Accuracy =
TP

Total number of predictions

with a maximum stride of 64, a filter count of 64, and input 
scaling set to 1.0 achieved the highest validation mAP score 
of 0.837392.

3.2  Performance of the generated classifiers

The implementation of genetic algorithms for the develop-
ment of convolutional and recurrent neural networks resulted 
in the generation of two distinct structures. The convolu-
tional neural network (CNN) was composed of a convolu-
tional layer featuring 821 filters, followed by a batch normal-
ization layer and a hyperbolic tangent activation layer. This 
was then followed by another convolutional layer containing 
821 filters and an exponential linear unit (ELU) activation 
layer. A dropout layer with a rate of 0.2 was then introduced, 
followed by a final convolutional layer comprising of 483 
filters and a hyperbolic tangent activation layer. The output 
of the convolutional layers was flattened, and no fully con-
nected layers were present except for the softmax classifier 
for the output. On the other hand, the recurrent neural net-
work (RNN) was structured as a bidirectional LSTM layer 
with 707 units and an ELU activation function, followed 
by a gated recurrent unit (GRU) layer with 660 units and 
a leaky rectified linear unit (ReLU) activation function. A 
bidirectional GRU layer with 469 units and a leaky ReLU 
activation function was then added, followed by a dense 
layer with 138 units and a Gaussian error linear unit (GELU) 
activation function. A dropout layer with a rate of 0.2 was 
then inserted, followed by a dense layer comprising of 150 
units and a leaky ReLU activation function. The validation 
accuracy of the CNN and RNN models was 58.33% and 
50%, respectively.

Table 2  Grid search results for pose estimation

Max Stride Filters Input scaling Train mAP Val mAP

32 32 0.7 0.837606 0.776263
32 32 0.8 0.825532 0.782753
32 32 0.9 0.825385 0.764668
32 32 1.0 0.845399 0.800341
32 64 0.7 0.864492 0.795866
32 64 0.8 0.865248 0.809098
32 64 0.9 0.863264 0.799638
32 64 1.0 0.885996 0.829130
64 32 0.7 0.824700 0.748723
64 32 0.8 0.843466 0.775747
64 32 0.9 0.777974 0.643496
64 32 1.0 0.849048 0.793634
64 64 0.7 0.867076 0.804768
64 64 0.8 0.805469 0.732222
64 64 0.9 0.863854 0.808308
64 64 1.0 0.892736 0.837392
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The outcomes of the identified models resulting from 10 
iterations of the 4-fold validation are delineated in Table 3. 
These outcomes are juxtaposed with the baseline results 
obtained through the utilization of distinct one-convolutional 
ResNet (RN) architectures. This comparison serves to accen-
tuate the enhancements achieved through the employment 
of the genetic algorithm. Our developed cnn and rnn models 
exhibit mean accuracy values of 45.33% ± 5.85% and 44% 
± 6.6%, respectively. This indicates a marginal superior-
ity of the generated CNN over the RNN. In contrast with 
the ResNet models, our models exhibit greater robustness 
across all iterations, consistently avoiding instances where 
the mean accuracy value equates to the random guess of 
0.33, denoting chance-level accuracy with respect to the 
number of classes.

4  Discussion

In this study, Animal Pose Estimation (APE) and genetic 
algorithms were employed to predict the type of interac-
tion between a cricket (Acheta domesticus) and three pos-
sible stimuli (i.e., nothing, sucrose or ammonia powders). 
The genetic algorithms were utilized with chromosomes 
representing the architecture of possible convolutional and 
recurrent neural networks. The pose estimation network was 
obtained using SLEAP, and it achieved high mean average 
precision (mAP) results in detecting the head, proximal, 
and distal antenna ends. However, some difficulties arose 
when detecting the distal ends, particularly when the crick-
ets were positioned near the wall of the Petri dish, caus-
ing overlapping and reflection issues. Figure 4 depicts two 
frames where our model misplaced one of the distal ends 
alongside the corresponding correct keypoint location. The 
correct location was determined by analyzing the previous 
and subsequent frames to understand the movements of the 
antennae. Although SLEAP does not use temporal informa-
tion, it could be valuable in improving detections in situa-
tions where overlapping and occlusions are frequent. To this 
aim, recent research in APE has been directed towards the 
development of neural networks leveraging that information 
[32], but proposing simpler models with respect to the one 
here employed in order to limit the computational power 
required for training. As for our pose estimation model 

hyperparameters, their high values indicate the complexity 
of the task at hand. This is highlighted by the input scal-
ing value, which indicates that no downscaling operation 
was employed to preserve all information from the pixels, 
underscoring the challenges associated with detecting subtle 
features such as the distal ends of the antennae.

On the contrary, the classification task yielded less sat-
isfactory results. Unlike the literature surrounding human 
pose estimation and movement comprehension [33, 34], the 
one-convolutional neural network produced better average 
results in our study than the commonly used RNNs. The 
suboptimal performance of the classification task could be 
attributed to the animals’ limited attention span and behav-
ioral variations, which pose challenges in utilizing them as 
biosensors [7]. Despite this limitation, it is noteworthy that 
animal training could be a crucial component to incorporate 
prior to the pose estimation phase, particularly when access-
ing animals’ innate desire to detect specific substances, such 
as in our case. Animal training is commonly conducted in 
biosensor development [7, 35], and [36] provides examples 

Table 3  Mean accuracy values 
for each iteration of the 10 
Iterated 4-fold validation, and 
the average of all the iteration. 
(RN stands for ResNet)

Model Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6 Iter 7 Iter 8 Iter 9 Iter 10 Avg

cnn 0.58 0.40 0.37 0.48 0.52 0.45 0.43 0.45 0.43 0.42 0.45
rnn 0.60 0.38 0.36 0.36 0.47 0.48 0.43 0.45 0.40 0.45 0.44
RN18 0.46 0.41 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.35
RN34 0.38 0.33 0.33 0.33 0.41 0.33 0.38 0.33 0.33 0.33 0.35
RN50 0.33 0.33 0.36 0.33 0.33 0.33 0.33 0.33 0.45 0.36 0.36

Fig. 4  Two examples in which the model has erroneously labeled the 
distal ends of the antennae. The top one showcases an occurrence in 
which the model has erroneously identified a frame by misplacing the 
right and left distal ends in a single location. The one below depicts 
the visibility of the right antenna’s distal end, which, despite this fact, 
has still been incorrectly positioned by the network. This anomaly 
may be attributed to the resemblance in shapes and black markings of 
the other limbs
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of this approach using crickets, which could be tested in our 
possible future research.

Despite the results obtained, our proposed automated 
workflow for the development of Biohybrid Intelligent 
Sensing Systems (BISS) holds great potential for a vari-
ety of applications. Firstly, the proposed workflow can be 
applied to different scenarios, making it a versatile solu-
tion not limited to crickets. Secondly, it has the potential to 
address certain limitations associated with the use of ani-
mal biosensors. These limitations include the introduction 
of errors stemming from human observation and interpreta-
tion, which can be avoided through the automated work-
flow, thereby facilitating method standardization. Thirdly, 
the proposed workflow uses only recordings without the 
need for the installation of devices connected to the animal, 
making it a non-invasive and ethical alternative. Lastly, the 
use of lifeforms in the proposed workflow results in a longer 
maintenance break compared to other technological systems, 
providing a more efficient solution that requires less frequent 
maintenance [37].

5  Conclusion

In conclusion, the presented research is characterised by 
a dual-part workflow used to correlate crickets’ antennal 
movement to specific stimuli (i.e., ammonia, A, and sugar, 
S, powders) , where the initial phase involves the utilisation 
of pose estimation techniques. This phase employs SLEAP, 
leveraging a U-Net backbone, to accurately determine the 
antennae’s positions. The subsequent phase integrates 
genetic algorithms, facilitating the construction of unique 
one-convolutional and recurrent neural networks. These net-
works are adeptly tailored to address the intricate classifica-
tion task at hand. Remarkably, the outcomes of this study are 
juxtaposed against ResNet (RS) one-convolutional models, 
showcasing the inherent potential of genetic algorithms in 
conquering intricate challenges. Through the employment 
of genetic algorithms, we’ve achieved models that are both 
more robust and precise compared to well-established archi-
tectures, underscoring the efficacy of this approach.

In the realm of animal biosensors, a burgeoning fascina-
tion spans across diverse domains, encompassing agricul-
ture, medicine, and environmental surveillance. Within this 
context, our research presents a pivotal endeavour towards 
shaping a workflow that bridges animal behaviour with 
chemical cues, culminating in the establishment of Bio-
hybrid Intelligent Sensing Systems (BISS). The practical 
manifestation of our workflow unfolds through the explora-
tion of cricket antennae movement, responding to specific 
stimuli-ammonia and sugar powders. This exploitation of 
their inherent olfactory prowess underscores the viability 
of this approach. Notably, our study pioneers the release of 

a groundbreaking dataset, housing cricket recordings tai-
lored for pose estimation analyses. This endeavour serves as 
a cornerstone, charting the course for forthcoming research 
ventures in this domain. The implications of our findings 
could transcend their immediate scope, resonating broadly 
across the landscape. The path we tread paves the way for the 
evolution of animal biosensors and bioindicators, rooted in 
deep learning paradigms and proficient in extracting insights 
exclusively from recordings. This methodology holds the 
promise of nurturing ethical and ecologically sound research 
practices, circumventing invasive methodologies and toxic 
substances.
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