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Abstract. With the increasing interest in augmented and virtual reality,
visual localization is acquiring a key role in many downstream applica-
tions requiring a real-time estimate of the user location only from visual
streams. In this paper, we propose an optimized hierarchical localization
pipeline by specifically tackling cultural heritage sites with specific ap-
plications in museums. Specifically, we propose to enhance the Structure
from Motion (SfM) pipeline for constructing the sparse 3D point cloud
by a-priori filtering blurred and near-duplicated images. We also study
an improved inference pipeline that merges similarity-based localization
with geometric pose estimation to effectively mitigate the effect of strong
outliers. We show that the proposed optimized pipeline obtains the lowest
localization error on the challenging Bellomo dataset [11]. Our proposed
approach keeps both build and inference times bounded, in turn enabling
the deployment of this pipeline in real-world scenarios.

Keywords: Localization · Camera Pose Estimation · Structure From
Motion · Egocentric Vision

1 Introduction

Virtual Reality (VR) is becoming a game-changing technology in many scenar-
ios – from gaming to medical applications – and is being increasingly applied to
the exploration and preservation of cultural heritage sites [12, 2]. Visual localiza-
tion is a critical task to enable stable and reliable VR applications on these sites,
where it can be used to enhance the visitor experience and receive contextualized
information about the visited rooms and observed artworks [14]. Furthermore,
visual localization is employed in other real-world applications – like in robot
navigation, mixed reality, and self-driving vehicles – becoming a critical com-
puter vision task. In recent years, a significant amount of research has focused
on developing deep learning-based methods to directly regress 3D camera co-
ordinates from raw images. However, such methods require extensive network
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Fig. 1: The considered image-based localization problem consists in localizing
a visitor of a museum from egocentric images collected through a wearable or
mobile device. The figure shows some examples from the dataset proposed in [11],
along with their positions in the map.

training time and resources. Furthermore, this expensive training should be per-
formed once for every scenario, limiting the applicability of these approaches to
real-world cases. Previous methods have proposed to use hierarchical localiza-
tion (HLOC) approaches leveraging global feature matching and Structure from
Motion (SfM) for fine-grained localization [15]. Despite their flexibility, these ap-
proaches have some known limitations in real environments, where image data
can be noisy or blurred, and the presence of strong outliers invalidates their
effectiveness.

In this paper, we propose an optimized pipeline for image-based localization
based on the hierarchical localization idea. We test it in a museum environment,
where the main downstream use case would be capturing user location through
wearable devices or smartphones to optimize the visitor experience (see Fig-
ure 1). Using a streamlined pipeline that discards blur images and duplicates,
we propose a method that constructs a sparse 3D point cloud from raw refer-
ence images in under a couple of minutes, surpassing by a large margin long
deep network training times and improving the HLOC framework by obtaining
a 20x boost on build times with limited localization degradation. The 3D point
model built using SfM allows us to perform both global image matching for
coarse-grained localization and local matching for fine-grained localization using
geometric camera pose estimation. One of the contributions proposed for miti-
gating the high variance of the geometric camera pose estimation is the fusion
of fine- and coarse-grained localization pipelines. The choice of the localization
method is simply driven by the estimated quality of the match between the query
image and the ones registered in the 3D point cloud. The proposed approach ef-
ficiently queries the 3D point model and achieves high accuracy with less than
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one-second latency on a standalone desktop computer embedded with a mid-end
graphic card, and it can be further engineered to run on portable localization
devices such as smartphones or smart glasses – particularly relevant in the con-
text of cultural sites. We evaluate the approach on four rooms from the Bellomo
dataset [11], and the results demonstrate the effectiveness and efficiency of our
proposed approach compared to current state-of-the-art methods.

To summarize, the main contributions are as follows:

– We propose a streamlined pipeline for efficiently and effectively constructing
a sparse 3D point cloud using SfM from raw references, leveraging on the
filtering of blurred and duplicated images.

– We employ both local and global localization outputs provided by the hierar-
chical localization pipeline to efficiently and effectively estimate the correct
location.

– We perform extensive experimentation on four rooms from the Bellomo
dataset, obtaining good accuracies with less than 1-second latencies.

2 Related Work

Localization methods based on classification rely on a discretization of the space
in cells and train a classifier to infer the correct cell from an input RGB image. In
this context, only the rough camera location is estimated, while its orientation
is not predicted. Seminal works [21] considered the problem of inferring the
room in which the user is located with classification approaches based on hand-
crafted features. More recent methods used Bag of Words representation [8, 4],
while others are based on CNNs [23]. Others [7, 13] performed classification-
based localization considering an open-set problem in which the camera may
also acquire images of new locations not initially included at training time.

Among the approaches based on camera pose estimation, a line of works
approximates the location of a test image assigning it the pose of the most
similar image in the training set, as predicted by image retrieval methods [1, 23].

Some methods treated camera pose estimation as a regression problem in
which camera coordinates are predicted directly from monocular images. Most
of these methods are based on a backbone CNN to extract features, later used
to regress the camera pose [9, 22]. Others predict relative camera pose [3, 10].
(i.e., the pose of a test image relative to one or more training images).

Localization methods based on local feature matchings are the most accu-
rate ones, as they directly link 2D local features extracted from the image to
3D scene coordinates. Matchings can be obtained with a descriptor matching
algorithm [17] or regressing 3D coordinates from image patches [16, 18].

Visual SLAM (Simultaneous Localization and Mapping) [6] is another widely
studied set of methods for acquiring the location of a moving agent using camera
sensors. However, SLAM makes assumptions quite different from our scenario
and may present problems in our specific use case. In particular, i) SLAM as-
sumes the environment is not known, while the model of our environment is
always available and contains some labeled ground-truth positions; ii) SLAM
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has known issues when the camera is abruptly shaken – which often happens if
the camera is from a smartphone or mounted on smartglasses iii) SLAM should
rely on separate localization methods if the video stream is discontinuous, due to
the so-called kidnapped robot problem. This problem may arise in our scenario,
where the device may be activated only when the visitor needs it.

Particularly related to this paper are hierarchical localization (HLOC) works
based on the combination of image retrieval approaches and geometric corre-
spondences [15]. These approaches are based on a database of localized images
for the first image retrieval step and the construction of a 3D model of the scene
through Structure from Motion (SfM) to perform accurate camera pose estima-
tion. Specifically, the work in [15] employs COLMAP [20] for performing SfM and
constructing a 3D point cloud from a set of pictures taken in the environment.
The method employs a monolithic approach, based on a shared CNN-based vi-
sual backbone, to produce both global descriptors through a NetVLAD head [1]
and local descriptors using the efficient SuperPoint decoder [5].

3 Method

We rely on the hierarchical localization framework presented in [15], and we
propose an optimized pipeline that obtains the best effectiveness and efficiency
in cultural heritage sites like museums. In fact, although this approach obtains
stable results, it adds some complexity that prevents its usability in real-time
real-world scenarios where acquired data are noisy and redundant. Following, we
describe in detail the improvements introduced in the pipeline to handle unclean
data and enhance the framework for use in a specific downstream scenario.

3.1 Model Building

Usually, SfM is exceedingly expensive, and the construction time increases with
the number of matching image pairs. To decrease the number of image matches,
the hierarchical localization framework allows employing only the most similar
images to a given one to check for local feature matches. This is done by per-
forming k nearest neighbor search using the NetVLAD [1] global feature. In the
experiments, we refer to the k used to build the model as kbuild. Even if beneficial,
this smart pair filtering procedure is often not sufficient for reaching competi-
tive localization performance and build times. With datasets like the Bellomo
dataset [11], where frames are sampled from a video acquired by a wearable
device, the quality of the acquired images is often limited. Specifically, many
frames from the video are blurred or near-duplicated. While near-duplication
mostly causes problems in efficiency due to the increasing number of less in-
formative images that have to be considered by SfM, frame blurring also has
disadvantages in reconstruction accuracy, given that blurred images cause many
false matches. Hence, we apply near-duplicate removal and blur image filtering
to optimize the model creation process. We show in the experiments how these
pre-processing steps help achieve higher performance and better efficiency.
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Near-duplicate removal. Near duplicate removal relies on the similarity
between low-level descriptors for finding almost identical keyframes. We can
reuse the NetVLAD global descriptor used during the first image search stage for
filtering out duplicated images at model construction time. This can be obtained
by scanning the list of vectors starting from the last element i = N − 1, and
finding if there is at least of the previous elements j < i such that S(i, j) >=
δduplicate, where S(·, ·) is the dot product in our case. If the above condition is
met, element i is marked as duplicate. Notice that with this formulation, the first
element i = 0 is never considered a duplicate, which makes sense in our scenario
where images are sequentially obtained from a real-time acquisition device.

Blur image filtering. We rely on a simple approach based on the variance
of the Laplacian of the image, which is computationally efficient and already
suffices for our goal. In particular, to find blurred images, given the Laplacian
of the pixel intensities I computed as L(x, y) = ∂2I

∂x2 + ∂2I
∂y2 , we can compute its

variance across all the image pixels Var[L] and check if this value is below a
certain threshold δb. We then keep all the images such that Var[L] > δb.

Model Geo-registration. SfM allows us to reconstruct a sparse point cloud
of the environment, but it cannot infer the scale of the model until some of
the points in the cloud are annotated with real-world coordinates. In order to
estimate the location error in meters, we need to infer the correct scale of the
point cloud. This can be achieved through the model geo-registration function
of COLMAP, which takes the 3D coordinates of a subset of registered images as
input and infers the model scale through a RANSAC estimator to be robust to
possible outliers. Theoretically, only three images are sufficient for geo-registering
a model. Nevertheless, usually, more images are used to diminish the effect of
possible imprecise ground-truth annotations. Specifically, in our scenario, we
used the 3D coordinates associated with the images in the training set to register
the models of each room in the dataset.

3.2 Localization

Differently from the model building pipeline, the localization phase should hap-
pen in real-time. In this phase, we do not a-priori filter images based on their
blurriness, as we could potentially ground every image in the 3D point cloud for
deriving the user location. Drawing inspiration from the hierarchical localiza-
tion method in [15], this method is based on a coarse-grained localization which
uses an image-similarity-based approach, and a fine-grained localization, which
instead relies on geometric pose estimation.

For coarse-grained localization, we employ k-nearest-neighbor search using
global features to search the images registered in the 3D point cloud more similar
to the query image. The images registered in the point cloud have been assigned
3D coordinates, so we can easily infer an approximate query location as follows:

xcoarse =
1

kinfer

kinfer∑
i=1

Xi, where X = {xi|i ∈ search(Vtrain, vq, kinfer)}, (1)
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where search(·, ·, ·) finds the indexes of the kinfer most similar images to vq in the
training image set Vtrain, and X is the set of locations of the nearest neighbors
registered images. Note that not all the training images are registered in the point
cloud. Therefore, in some cases, it may happen that the resulting set X is empty.
As it can be noticed, using kinfer = 1 we can simply localize the camera using the
coordinates of the nearest neighbor only. If kinfer > 1, we are instead computing
the centroid among the coordinates associated with the k-nearest-neighbors. We
experimentally show that kinfer = 1 works the best in our scenario.

Fine-grained localization in the HLOC framework depends on the results
from the coarse-grained method. Specifically, we employ k-nearest-neighbor search
using global features to search among the training images the ones registered in
the 3D point cloud more similar to the query image. Then, we can perform lo-
cal feature matching between the query image and the local features already
registered on the point cloud for the k images:

xfine = pose_estimation(M3D,M2D
q , I), (2)

where
{
M2D,M3D = {(M2D

i ,M3D
i )|i ∈ search(Vtrain, vq, kinfer)}

I = match(M2D,M2D
q )

(3)

M2D
i and M3D

i are the 2D and associated 3D coordinates of the found joints
in the kinfer neighboring images, M2D

q is the set of local features found in the
query image, and I is the set of local feature inliers. The pose_estimation(·, ·)
function is a COLMAP function3 which performs geometric pose estimation
using the matching 2D inliers to derive the actual pose, indicated as xfine. Note
that I could be empty either if there are no retrieved images registered in the
point cloud, or if there are no matching local features. In that case, the fine-
grained position cannot be estimated, but we show in the experiments that this
happens with an acceptable probability for a real-case scenario.

3.3 Mixing the Localization Outcomes

Although fine-grained localization has potentially higher accuracy, there may be
some strong outliers due to failures in the geometric pose estimation. For this
reason, we decided to prioritize the fine-grained over coarse-grained localization
only if the number of inliers (indicated as |I|) found from the local features
matching phase is above a certain threshold τ . We argue that the number of
matches is a good indicator of the quality of the fine-grained localization, and we
prove it empirically in the experimental evaluation. Therefore, the final estimated
position x is xcoarse if |I| < τ and xfine otherwise. The localization error is then
computed using the standard Euclidean distance with the ground-truth position
values xGT provided within the dataset: e = ||x− xGT ||2.

3 https://github.com/colmap/pycolmap/blob/master/estimators/absolute_pose.cc



Optimized Pipeline for Image-Based Localization 7

0 100 200 300 400
# inliers

10 2

100

102

104

Er
ro

r (
m

)

Location type
fine-grained
coarse-grained

(a) Distribution of localization errors de-
pending on the number of inliers for both
coarse- and fine-grained estimated poses.

5 20 35 50 100 150 200 250 300

10 2

10 1

100

101

102

103

104

Er
ro

r (
m

)

(b) Average localization error varying the
threshold on the number of considered in-
liers.

Fig. 2: Analysis of the effectiveness of the mixing between fine- and coarse-grained
pose estimations using the number of the inliers as the threshold.

4 Experiments

4.1 Dataset

The dataset used in this research has been introduced in [11]. It has been recorded
in the Bellomo Palace Regional Gallery, a museum located in Syracuse, Italy. To
capture the visitors’ experiences, the authors recorded 10 videos using a GoPro
Hero 4 wearable camera and Matterport 3D to create a 3D scan of the museum’s
environment. They selected four rooms within the museum to collect data, as
they contained a variety of items such as statues, paintings, and display cases,
which provide a representative sample of what a museum typically offers. The
videos were extracted into image sequences. The obtained images are divided
into three sets for training, testing, and validation. Specifically, all frames from
the first to sixth video are used as the training set, frames from the seventh and
eighth videos as the test set, and frames from the ninth and tenth videos as the
validation set. We consider all position estimations further away than 1000m
from the accessible area (far beyond the boundaries of a museum) as a failure in
localization and discard them before computing the average localization errors.

We run our method on a mid-end desktop computer equipped with an RTX-
2080Ti graphic card and an AMD Ryzen 7 1700 Eight-Core Processor.

4.2 Parameters Study

We run a preliminary analysis on the validation set to fix some of the system’s
hyper-parameters.

First, we focus on the model-building procedure for analyzing hyperparam-
eters like kbuild, δblur, δduplicate. The results from the exploration of different
build parameter configurations are reported in Table 1. We derive meaningful
values for δblur and δduplicate from their distribution on the validation set. The
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Fig. 3: Effect of hyper-parameters kinfer and τ on effectiveness and efficiency, on
the validation set.

Table 1: Mean location error and build times. Survived images are the images
that remained after the blur and near-duplicate filtration, while registered images
are the ones that were registered by COLMAP on the 3D point cloud.
δblur δduplicate kbuild Error (m) Time (s) survived

images (%)
registered
images (%)

70 0.45 10 1.96 60.1 35.2 33.1
70 0.45 15 1.48 75.7 35.2 33.5
90 0.45 10 1.28 48.8 30.6 28.7
90 0.45 15 1.54 60.0 30.6 29.2
90 0.55 10 1.19 72.5 43.3 41.3
90 0.55 15 2.23 118.0 43.3 41.7
0 1.0 10 0.78 1524.1 100.0 98.8

localization error, measured in meters, is averaged through a selected range of
values for the threshold τ and kinfer to give an overall estimate of the model’s
performance without a-priori setting any inference hyper-parameters. We leave
the results obtained without any filtering (δblur = 0, δduplicate = 1.0) as the
last row of the table. We can see how, using blur and near-duplicate filtering,
we can obtain overall comparable error values with this original approach, in
turn decreasing the build times with a speedup of more than 20x. Given its
effectiveness-efficiency ratio, we consider the model built with δblur = 90 and
δduplicate = 0.55 for further experiments on the inference parameters.

Next, we proceed by studying the hyper-parameters kinfer and τ . As previ-
ously hypothesized, while the advantage of fine-grained localization is the po-
tential high accuracy, there are some strong outliers due to geometric estimation
failures. This behavior is shown in Figure 2a. If we apply the thresholding for
deciding if either using fine-grained or coarse-grained localization outputs, we
notice in Figure 3b how we are able to diminish the number of outliers when the
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Fig. 4: Visualization of predicted with respect to ground-truth poses, projected
on the XY plane. Lines represent corresponding ground truth and predicted
poses. Pairs are colored with a gradient indicating the localization error (from
blue – small error – to red – large error).

threshold τ is increased. This, in turn, validates our hypothesis that a higher
number of inliers contributes to a better fine-grained localization. In Figure 3a,
we study how the localization error varies depending on the number of nearest
neighbors. In particular, the lowest error is achieved for kinfer ∈ [5, 10], for a rel-
ative small τ . This is reasonable since (i) too few or too many nearest neighbor
registered images can provide noisy local matches that degrade the fine-grained
geometric localization, and (ii) high thresholds τ inhibit the advantages intro-
duced by the fine-grained localization. Analyzing the plots, we decide to fix
kinfer = 5 and τ = 50 in the rest of the experiments.

In Figure 3b, we show how, varying kinfer, we also obtain different system
latencies, as the process of geometric position estimation becomes more and
more expensive with an increasing number of local feature matches. The choice
of kinfer = 10 keeps the response time below 0.8 seconds, enabling a sufficient
frame rate for localizing the user in real-time. The only drawback of keeping kinfer
low is that we have, on average, 2% of query images that cannot be localized due
to either (i) failure of coarse-grained localization – there are no images registered
in the 3D point cloud among the first kinfer found – (ii) failure of fine-grained
localization – there are no local features matches among the registered images
found among the first kinfer ones – or (iii) the estimated location is beyond 1000m
from the walkable area, which we consider a failure as well.

4.3 Results

We compare our method with the following state-of-the-art visual localization
approaches: i) a SIFT-based image retrieval approach, called Vote And Verify
[19], which tackles primarily image retrieval but enforces geometric verification
constraints; ii) the PoseNet approach [9], which directly regress pose using a
deep convolution network; iii) PAM-CAM [11], which also regresses the camera



10 N. Messina et al.

pose but using a more advanced deep network embodied with attention modules
and trained by employing a self-supervision approach.

We report the results using the hyper-parameters set as explained in Section
4.2. We report four different variants: i) only FG is the model only employing
fine-grained features matching, which downcasts the inference method to the
one proposed in the HLOC framework [15]; ii) only CG 1-nn and iii) only CG
5-nn are the models employing only coarse localization – i.e., the position of the
most-likely image registered in the 3D point cloud, using one nearest neighbor
and the centroid among the five nearest neighbors respectively; iv) FG + CG
is the final method employing both coarse-grained and fine-grained localization,
using the thresholding method explained in Section 3.2.

Final results are reported in Table 2a. All the methods we use for comparison
and reported in the table have been fine-tuned on the Bellomo dataset by the
authors in [11]. The proposed method outperforms all the other ones on this
challenging benchmark. Specifically, although either the FG or CG methods
alone cannot improve over the state-of-the-art, we obtained the best results when
employing both approaches jointly. These results prove that the non-regression-
based approaches relying on geometric verification can obtain the best results
by keeping the build (Table 1) and inference times (Figure 3b) bounded for
enabling real-time visitor localization. It is also interesting to note that 1-nn
in the CG configuration obtains the best results over the 5-nn one, probably
because the NetVLAD global features can retrieve with a high likelihood the
most relevant registered images as the first result. In Figure 2b, we also report
localization errors for all four rooms. The highest contribution to the error comes
from Room 4, probably due to scarce lighting and a big glass case in the middle,
which creates false positive matching among local features. However, the median
is far lower than the mean, suggesting that the relatively few outliers still have
a strong impact which should be further mitigated in future works.

In Figure 4, we show qualitative results of the estimated and ground-truth
position pairs in two rooms of the Bellomo dataset. Lines indicate corresponding
estimated and ground-truth positions. Some failure cases are particularly visible
in Figure 4a, where – due to failure in geometric estimation and retrieval of the
correct 1-nn image – some query images are associated with the wrong registered
camera. Apart from these edge cases, we can notice that the location is generally
estimated with good accuracy.

5 Conclusions

This paper proposes an efficient pipeline based on the Hierarchical Localization
(HLOC) framework for localizing egocentric video streams in interior cultural
heritage sites, such as museums. The proposed method overcame some of the
drawbacks of the original HLOC framework by filtering out uninformative visual
inputs – near-duplicated or blurred images – and proposing a smart aggregation
of localization information from both fine- and coarse-grained modules to miti-
gate the effect that strong outliers have in the geometric estimation. Thanks to
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(a) Results on the test sets, averaged
among the four different rooms.

Method Loc. error (m)

PoseNet (beta 100) 1.43
Vote-and-Verify 0.82
PAM-CAM 1.26

Our (only FG) 1.65
Our (only CG 1-nn) 1.16
Our (only CG 5-nn) 1.24
Our (FG + CG 1-nn) 0.62

(b) Localization error (mean and median,
in meters) for each of the four rooms.

R1 R2 R3 R4
mean 0.48 0.66 0.42 1.66
median 0.09 0.10 0.11 0.19

Table 2: Final localization results on the Bellomo dataset.

extensive experimentation on the challenging Bellomo dataset, we were able to
characterize the most influential factors affecting both fine- and coarse-grained
localization outcomes, obtaining state-of-the-art results with respect to other
approaches on the same dataset.

In future works, we plan to address 6D localization by including orientation
estimation, and we plan to substitute the SfM construction pipeline by employ-
ing Matterport 3D scans to estimate the position using the depth information
without relying on a 3D point cloud. This would further increase the efficiency
and the overall usability of the proposed localization framework.
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