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1 INTRODUCTION

The increasing availability of high-dimensional data stored in the form of time series such as elec-
trocardiogram records, stock indices, motion sensors data, and so on, contributed to the diffusion
of a wide range of time series classifiers [6, 80] in a variety of essential applications, ranging from
the identification of stock market anomalies to the automated detection of heart diseases. The
rising interest in this topic is confirmed by two surveys [6, 80] in which different kinds of univari-
ate and multivariate time series classification models are tested and compared. The most common
baseline, to which all other models are compared, is k-Nearest Neighbors (KNN) [59, 85, 97], usu-
ally paired with the Euclidean distance, Dynamic Time Warping (DTW) [72] or others [8, 98].
Transformation-based classifiers are also becoming very relevant, extracting different kinds of
features from entire time series like BOSS [81] and WEASEL+MUSE [82], or sub-intervals like
CIF [67], RISE [26] and FIT [60]. Further, the surveys focus both on traditional ensemble-based ap-
proaches like HIVE-COTE [63] and more recent deep learning-based models like ResNet [39] and
TapNet [96]. Rocket [17], and its faster version MiniRocket [18], are regarded as the current best-
performing state-of-the-art models. They use random convolutional kernels to quickly classify
univariate and multivariate time series and have the best trade-off between speed and accuracy.
The drawback of most of these models lies in their complexity, which makes them black-boxes
and causes the non-interpretability of the internal decision process for humans [22]. However,
when it comes to making high-stakes decisions, such as clinical diagnosis, the explanation aspect
of the models used by Artificial Intelligence (AI) systems becomes a critical building block of a
trustworthy interaction between the machine and human experts. Meaningful explanations [75]
of time series classification would augment the cognitive ability of domain experts, such as med-
ical doctors, to make informed and accurate decisions and better support Al accountability and
responsibility in the decision-making.

A line of research exploring interpretable, transparent-by-design, and efficient time series clas-
sifiers is based on shapelets [95]. Shapelet decision trees [95] and shapelet transforms [62] extract
shapelets from the time series of the training set by selecting subsequences with high discrimina-
tory power and exploiting them for the classification process. Alternative approaches for mining
discriminatory subsequences are the Matrix Profile [14] and SAX approximation [57, 83]. Unfor-
tunately, in terms of accuracy and stability, all such methods lag far behind black-box time series
classifiers, particularly in the presence of noisy data [25].

In this paper, we investigate the problem of black-box explanation for time series classifiers. We
propose LASTS (Local agnostic subsequence-based Time series explainer), an explainable
AI (XAI) method unveiling the logic of any black-box classifier operating on time series. Given a
time series X labeled with class § by a black-box b, LASTs returns an explanation e composed of
three parts that reveal the reasons for the opaque model’s decision via different representations.
First, a saliency-based explanation highlights the most important parts of the time series, which are
responsible for driving the black-box towards the outcome 7j or away from it. Second, an instance-
based explanation composed by a set of exemplar and counterexemplar time series. Exemplars are
instances classified with the same label of X and highlight common parts responsible for the clas-
sification. On the other hand, counterexemplars are instances similar to X but with a different
label and provide evidence of how the time series should be “morphed” for being classified with a
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Time Series Explanations
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Fig. 1. An illustrative example of explanations obtained with LASTS. The black time series on the left is
explained by (i) a saliency map, highlighting relevant and irrelevant points, (ii) an instance-based explanation,
in which exemplars and counterexemplars can be compared, and (iii) by a rule-based explanation, showing
interesting present and absent subsequences.

different label. Third, a factual and counterfactual rule-based explanation reveals the reasons for the
classification through logic conditions expressed as subsequences that must (or must not) be con-
tained in the time series in order to obtain (or not) the outcome . We emphasize the importance
counterfactual components of the explanation of LASTSs, i.e., counterexemplars and counterfactual
rules, which are becoming essential ingredients in XAI methods [3, 12, 89]. While factual, direct
explanations such as decision rules [53], and feature importance [64, 78], are crucial for under-
standing the reasons for a certain prediction, a counterfactual reveals what should change in a
given instance to obtain a different classification outcome [89]. Counterfactuals are useful because
they facilitate reasoning about the cause-effect relationships between observed features and clas-
sification outputs.

This work generalizes the approach proposed in [37] as a modular framework that is able to
explain any black-box classifier for univariate and multivariate time series, also extending it in sev-
eral Ways.1 In line with recent studies on XAI [64, 78], we tackle the time series black-box outcome
explanation problem by deriving a local explanation to understand the behavior of the black-box
in the neighborhood of the instance to explain [36]. Inspired by [34, 37], we develop a unified, mod-
ular framework and overcome many state-of-the-art limitations. First, we propose a novel neigh-
borhood generation strategy (cFs) to generate consistent synthetic time series. For this purpose,
we exploit autoencoders [40] for generating, encoding, and decoding a local neighborhood com-
posed of exemplar and counterexemplar instances. Second, we present a novel way of generating a
saliency map that does not require performing arbitrary time series segmentations, usually needed
in competitor approaches [38, 64]. This saliency map provides a quick and immediate assessment
of the crucial points of the time series for the classification, allowing a better understanding of the
most critical observations. Third, we use the shapelet [62] and SAX [61] transformations paired
with a local surrogate tree for designing meaningful rule-based explanations, useful and easy to
understand [33], which are based on interpretable time series subsequences.

Thus, the explanation e returned by 1asTs has the unique characteristic of being simultane-
ously saliency-based, rule-based, and instance-based. Further, it explains the black-box decision
by exploiting three different data granularities, i.e., time points, subsequences, and entire time se-
ries, contrary to other state-of-the-art XAI approaches, which are typically limited to one of the
three [87]. The benefit of having heterogeneous explanations is that they can be adopted in various
contexts to convey the reasoning behind a black-box decision to different types of users through
multiple alternative forms. Figure 1 shows an illustrative example of the explanations provided
by LASTS. First, the saliency-based explainer highlights the most significant or relevant points in
a time series, providing a high-level understanding of key elements within the data. Such a tool

I This work extends “Explaining Any Time Series Classifier” presented at the IEEE International Conference on Cognitive
Machine Intelligence (CogMI) 2020 [37].
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could be useful for decision-makers or executives who need to understand key points of a time
series prediction but do not have the time or need to investigate the finer details, such as project
managers attempting to understand key progress markers or setbacks in a project timeline. Ex-
emplars and counterexemplars are used in the instance-based explanation to present a complete
data picture. They may be most useful for users seeking a comprehensive understanding of the
data or experimenting with “what-if” scenarios: for example, strategists and planners interested
in what happened and what could have happened in different circumstances. Finally, rule-based
explainers provide explanations based on the presence or absence of specific subsequences in the
data. Deciphering these patterns can have practical implications. For example, compliance officers
tasked with detecting fraudulent activities in financial transactions must recognize specific pat-
terns that indicate irregularities. Similarly, engineers monitoring production processes may look
for operational anomalies that have specific shapes.

It is important to highlight the inherent heterogeneity of these explanations, each deriving from
different methodologies and each offering unique insights into the time series data. This is both a
strength and a challenge. On the one hand, it is a strength because each type of explanation com-
plements the others by highlighting different aspects of the time series data. On the other hand, it
poses a challenge as not all explanations are equally suited to represent all aspects of the data. For
instance, saliency-based explainers are excellent at spotlighting the most significant points within
a time series, providing a condensed understanding of key elements. However, their representation
method, focused on what is present in the data, limits their ability to signify the importance of pat-
terns not contained within the data. Conversely, due to their focus on the presence or absence of
specific sequences, subsequence-based explainers can effectively highlight both existing patterns
and the significance of absent ones, thus offering a different lens through which to view the data.
Hence, a comprehensive understanding of the time series data necessitates amalgamating these
heterogeneous explanations. By employing a diverse set of explainer types, the strengths of one
can compensate for the limitations of others, ensuring a complete and nuanced understanding of
the time series data. Each type of explanation, therefore, is not just a standalone analytical tool
but an integral component of a comprehensive explanatory system. Overall, the effectiveness and
relevance of each explainer type are contingent on multiple factors, such as the complexity of the
time series data, the specificity of the questions posed, and the user’s technical comprehension
and individual needs. The primary advantage of using LASTS, as compared to separately adopt-
ing competitor explainers, is that all explanations, even though they are produced by different
approaches, come from the same original source: the autoencoder.

To the best of our knowledge, LAsTS is the only model-agnostic approach able to return a set of
heterogeneous explanations, offering an in-depth understanding of the local decision of the black
box. We present a wide experimentation, testing different alternatives to the proposed approach.
We empirically demonstrate that LAsTs provides faithful, stable, useful, and really understandable
explanations by benchmarking it against state-of-the-art competitors on 15 time series datasets [64,
79].

To summarize, the main contributions of this work are:

e alocal, model agnostic, framework for explaining time series classifiers: LASTS can explain
the prediction of any univariate and multivariate time series classifier;

e a heterogeneous set of explanations for time series classification: a saliency map,
subsequence-based factual and counterfactual rules, exemplar and counterexemplar time
series instances;

e a quantitative evaluation on several datasets: LASTs is evaluated on univariate and multi-
variate datasets and against state-of-the-art competitors, demonstrating the effectiveness of
each part of the explanations.
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The rest of the paper is organized as follows. Section 2 discusses related works. Section 3 for-
malizes concepts used to design LAsTS, which is then described in Section 4. Section 5 presents the
experiments. Section 6 summarizes our contribution, its limitations, and future research directions.

2 RELATED WORK

Research on black-box explanation has recently received much attention [1, 36]. This growing in-
terest is driven by the idea of incorporating opaque classifiers accompanied by explainers into Al
systems, allowing the coexistence of high performance and explainability [68]. XAl approaches can
be categorized according to many aspects [9]. First, a common taxonomy differentiates between
ante-hoc, i.e., directly interpretable white-box models, and post-hoc explainability approaches,
which explain black-box models after training without changing their underlying structure. XAI
approaches can be further divided into model-specific if they exploit knowledge of the internal
structure of the black-box and model-agnostic if they do not. Moreover, local XAI approaches pro-
vide explanations for a specific instance of the dataset, while global approaches explain the logic of
the black-box as a whole. Finally, XAI approaches can be categorized depending on their explana-
tion output. Many kinds of explanations exist, depending on the specific task, the problem domain,
and most of all, the kind of data under analysis [9]. In our setting, i.e., time series classification,
explanations can be divided into time-step-based, e.g., saliency maps, when they focus on the impor-
tance of each observation towards the classification output, subsequence-based when they explain
the classification outcome using discriminative patterns of the time series, or instance-based, e.g.,
prototypes or counterfactuals, when they use whole time series to exemplify some salient property
of the data.

XAl for univariate and multivariate time series data is a rising topic in the literature, with a
plethora of approaches tackling the problem from different points of view. In the following, we fo-
cus on overviewing the most pertinent methods related to our work, i.e., post-hoc, model-agnostic,
and local XAI approaches. On this point, one cannot fail to mention LIME and SHAP. LIME [78] ran-
domly generates instances “around” the instance to explain, creating a local neighborhood. Then,
it trains a linear model on the neighborhood labeled with the black-box. The explanation consists
of the feature importance of the linear model. sHAP [64] connects game theory with local explana-
tions and overcomes LIME’s limitations, exploiting the Shapley values of a conditional expectation
function of the black-box providing the unique additive importance for each feature. Methods like
LIME and sHAP are thought for tabular data. However, if naively applied to time series classifiers,
they can provide a time-point-based explanation for time series classifiers, considering each point
as a separate feature [4]. Unfortunately, this procedure can work only on toy examples due to
computation costs and given that time series classifiers are usually robust w.r.t. perturbations on
single observations. Instead, a more involved approach is first to segment the time series and then
use each segment as a feature [37, 38, 70]; however, the choice of the segmentation and type of
perturbation is completely arbitrary. This paper proposes a saliency-based explanation that does
not require any segmentation or discretization of the dataset analyzed.

Regarding subsequence-based explanations, the vast majority of XAI approaches are model-
specific and usually extract patterns in the form of shapelets [95], or symbolic subsequences [61].
These subsequences with high discriminatory power are then used to transform the time-series
dataset into a simpler representation [62] which can be paired with white-box classifiers such
as decision trees or logistic regressors, guaranteeing an explanation for the decision. Given their
simplicity, these approaches are generally lacking in terms of accuracy. There are many works
in the literature aimed at improving the efficiency of the subsequence search using various opti-
mization techniques [41, 42, 47], or by learning subsequences via gradient descent [30], or by first
discretizing the time series using SAX [61] to speed up the search of greedy algorithms [56, 57].
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Model-specific methods like ADSNs [65] and XCNN [91] take a different approach instead, directly
generating patterns with adversarial learning to ensure their realism via a discriminator network.
We reiterate that, differently from the aforementioned methods, our approach is model agnostic.
We use subsequences to generate simple decision rules that explain the output of any black-box
in terms of logical conditions. To the best of our knowledge, there are only a handful of XAI ap-
proaches that output rules as explanations, such as Anchor [79], and RuleMatrix [69], but none of
them are tested on time series data.

Instance-based explanations are becoming more and more common in the literature. They ex-
emplify a model’s decision by providing salient and important instances that can directly explain
the black-box decision, i.e., prototypes, or indicate the minimal changes that result in a different
classification outcome, i.e., counterfactuals. Again, most of these approaches are model-specific,
like [45] which can generate counterfactuals for k-nearest neighbor and Random Shapelet For-
est [44] classifiers, or CEM [19], which uses an LSTM and a fully connected network to find the
minimal perturbations that change the model’s prediction. To the best of our knowledge, the only
model-agnostic instance-based approaches for time series are native guides [16], LatentCF++ [92]
and CoMTE [5]. Native guides extracts potential counterfactuals starting from the original dataset
and adapts them to generate novel ones. LatentCF++ uses generative models to create counterfac-
tual for Convolutional and LSTM networks. The main drawback of these approaches is that they
only work on univariate time series data, contrary to our proposal. COMTE can provide counterfac-
tual explanations for multivariate time series classification by computing the minimal number of
substitutions in order to change the predicted class of the original time series. Different from our
approach, CoMTE can explain only black-boxes that return a prediction as class probability, thus
precluding its applicability on widely used models like Rocket [17] and Minirocket [18] which are
commonly combined with a Ridge classifier. Also, in our approach, the perturbations are performed
in a so-called latent space to ensure the generation of a set of consistentcounterfactual instances.

3 SETTING THE STAGE

In this paper, we address the black-box outcome explanation problem [36] in the domain of time
series classification. We keep our paper self-contained by summarizing the key concepts necessary
to comprehend the proposed explanation method.

3.1 Time Series
A time series signal is defined as follows:

Definition 3.1 (Time Series Signal). A time series signal (or channel, dimension) x is a set of m
real-valued observations sampled at equal time intervals, x = {xy,...,x,} € R™.

A set of one or more time series signals forms a time series:
Definition 3.2 (Time Series). A time series X is a set of d signals, X = {x1,...,Xg4} € Rm¥d

When d = 1, the time series is univariate, while if d > 1 the series is multivariate. A Time Series
Classification (TSC) dataset is a set of time series with a vector of labels (or classes) attached.

Definition 3.3 (TSC Dataset). A time series classification dataset D = (X,y) is a set of n time
series, X = {X1,...,X,} € R™™*d <yith a set of assigned labels, y = {y1,...,y,} € N".

For a dataset D containing c classes, y; can take c different values. When ¢ = 2, D is a binary
classification dataset, while if ¢ > 2, then D is a multi-class classification dataset. In order to
ensure clarity and consistency in notation, we have adopted a tensor-like notation based on [52].
Lowercase letters are used to denote single scalar observations (e.g., x), while bold lowercase letters
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are used to denote vectors and individual signals of time series (e.g., x). Capital letters are used
to denote matrices and time series instances (e.g., X), and Euler script letters are used to denote
tensors and time series datasets (e.g., X). To indicate a specific observation in a time series dataset,
we use the notation x; j x, where i denotes the i th multivariate time series in the dataset, j denotes
the j*" time-step, and k denotes the k" signal of the time series. Although time series do not always
form a proper tensor since different channels can have different numbers of observations, we use
a unique symbol m to denote the length of the time series for simplicity of notation. When indexes
are not relevant, we omit them for better readability. We can now define the TSC problem as:

Definition 3.4 (TSC). Given a TSC dataset O, Time Series Classification is the task of training a
function f from the space of possible inputs to a probability distribution over the class values in

y.
The resulting TSC function f takes as input a time series X and returns 7 according to what f
learned, i.e., § = f(X). In general, § can either be a discrete label or the probability of X belonging

to a specific class. We use f(X) = y as a shorthand for {f(X) | X € X} = y. Typically, the
classifier f can be queried at will.

A common way to build classifiers in the time series domain is to use subsequences. In simple
terms, a subsequence is a continuous sample of observations from a time series. Formally:

Definition 3.5 (Subsequence). Given a signal x = {xy,...,x;,} of a time series X, a subsequence
s = {xj,...,xj+-1} of length [ is an ordered sequence of values such that 1 < j <m -1+ 1.

Subsequence-based classification approaches search for patterns that better discriminate the
dataset labels, i.e., they try to find those subsequences that are most dissimilar between instances
belonging to different classes. The two most common kinds of subsequences used for this purpose
are shapelets [95] and symbolic subsequences [61].

Shapelets. Typically, shapelet-based methods extract a set containing p-most discriminative
shapelets by minimizing an information gain-like metric. Once the most discriminative shapelets
are found, the Shapelet Transform [62] can be applied in order to transform the time series dataset
into a simplified representation. Formally:

Definition 3.6 (Shapelet Transform). Given a time series dataset X and a set S € R?*! containing
p shapelets, the Shapelet Transform, ¢, converts X € R™™*9 into a real-valued matrix T € R™ P,
obtained by taking the minimum distance between each time series in X, and each shapelet in S,
via a sliding-window, i.e., T = ¢(X).

As a note, the sliding-window distance is method-dependent, and it is calculated w.r.t. the signal
the shapelet was extracted from. In practice, the shapelet transform extracts the p-most discrimi-
native shapelets from a time series dataset and returns a new representation of the data where the
attributes represent the distances between each time series and the p shapelets. Hence, any classi-
fication algorithm can be used, potentially increasing the accuracy while reducing training time.

Symbolic Subsequences. Given that exhaustive subsequences search is computationally expen-
sive, a common approach is to first transform the time series into a simplified representation by
using SAX. The Symbolic Aggregate approXimation (SAX) algorithm [61] transforms time
series into sequences of strings. For each time series signal x = {x,...,x,} € R™, SAX uses
the Piecewise Aggregate Approximation (PAA) [46] to split it into w equally sized intervals
and averages the values of each interval. Then, the time series signal is discretized using a finite
set of symbols, i.e., an alphabet A. Formally, SAX(x) = X = {X1,...,%,} € AY, with |[A] > 1
being the number of symbols in the chosen alphabet. This approximation reduces running time
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while denoising the time series. Once the time series are converted to a symbolic representation,
the most discriminative symbolic subsequences can be found using different techniques. Similar
to the Shapelet Transform, the dataset can be transformed into a new representation, having as
features the extracted subsequences and as values 0 or 1 depending on the absence or presence of
subsequences inside the time series. Formally:

Definition 3.7 (Symbolic Subsequence Transform). Given a time series dataset X and a set S €
APXl containing p symbolic subsequences, the Symbolic Subsequence Transform, ¢, converts X €
R™m*d into a binary-valued matrix T € {0, 1}, obtained by checking if each subsequence in S
is contained or not in each time series in X, i.e., T = ¢(X).

For interpretability purposes, the symbolic subsequences can be easily mapped back to the original
segments of the time series. We emphasize that we use the same symbol ¢ to denote the symbolic
subsequence transform and the shapelet transform, given that they both convert a time series
dataset into a tabular representation with subsequences as features.

3.2 Types of Explanations

Given a not interpretable, i.e., black-box, time series classifier b and a time series X classified by
b,i.e., b(X) = 7, our aim is to provide an explanation e for the decision b(X) = ¢. More formally:

Definition 3.8 (Time Series Black-box Outcome Explanation Problem). Let b be a not interpretable
time series classifier, and X a time series whose decision §j = b(X) has to be explained, the time
series black-box outcome explanation problem consists in finding an explanation e € E belonging to
a human-interpretable domain E.

To build a complete, human-interpretable explanation in the time series domain, we consider
three kinds of explanations: saliency maps, examples, and decision rules.

Saliency Maps. Saliency maps are explanations that highlight the contribution of each feature
for the classification [36]. Formally, for time series:

Definition 3.9 (Saliency Map). Given a time series X a saliency map® = {¢11,... ¢dj x> .. dm.a} €
R™*4 contains a score @; k for every real-valued observation x; j of X.

In practice, the saliency map assigns an importance score to each observation in X depending on
its contribution to the classification output.

Examples. Examples, also called example-based (or instance-based) explanations, use whole
time series objects to add interpretability to classification models by providing a comparison of
the instance to explain with a salient time series. The two main different types of examples are
exemplar and counterexemplar instances [34, 37]. Exemplars, also called prototypes, are time series
that exemplify the main characteristics that influence the classifier’s decision. Formally:

Definition 3.10 (Exemplar). Given a classifier f, an instance X- is an exemplar if there is a set of
instances X’ C X represented by X-, and such that VX € X', f(Xz) = f(X).

The explanation is obtained by comparing the instance X for which we have the decision f(X) with
the exemplar X_ that represents it. Representation is usually formalized with a notion of similarity.
On the other hand, counterexemplars, also called counterfactual instances, are very similar w.r.t.
the instance to explain but are classified differently. The explanation is achieved by comparing the
minimal differences in shape that lead to a different classification outcome. Formally:

Definition 3.11 (Counterexemplar). Given a classifier f that outputs the decision § = f(X) for
an instance X, a counterexemplar consists of an instance X; such that the decision for f on X, is
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different from 7, i.e., f(X3) # 9, and such that the difference between X and X; is minimal, and
that X is plausible.

Minimality usually refers to a distance metric, while plausibility is assessed by checking if the
instance is not simply an adversarial example [29] and is semantically coherent with the dataset.

Decision Rules. Explainable Al methods increasingly simplify explanations to increase user
trust by ensuring they identify cause-effect relations between events [12]. In this sense, rule-based
explanations are arguably the most interpretable from a human standpoint as they allow the user
to understand the reason behind a classifier’s decision in terms of if-then statements. Formally:

Definition 3.12 (Decision Rule). Given an instance X, a decision rule is a function r : p — 4,
where the premise p is a set of logical conditions on feature values, and § = r(X) is the predicted
class value for X.

Decision rules are generated by rule-based classifiers or can be inferred by analyzing the splits of
decision trees. They can be naively applied to time series by considering observations as features.
In this case, a condition is in the form (j, k) € [vlow,vupl, Where (j, k) are the indexes identify-
ing the j'* time-step of the k" signal, and vigw, vyp € R are the lower and upper bounds on the
observation value. A time series X; is covered by the rule if every condition in p is true. A lo-
cal rule-based model rm can be used for explaining the black-box prediction for X if it imitates
sufficiently well its behavior, i.e., if rm(X) = b(X) and also for every X’ in the neighborhood of
X, rm(X") = b(X’). The definition of the neighborhood is method-dependent. A rule that directly
explains the prediction of a black-box is called a factual rule. In contrast, the rules obtained by min-
imally removing or adding conditions in the factual rule premises are called counterfactual rules.
Counterfactual rules are extremely useful for what-if analysis because they allow understanding
of the minimal variation that results in a different classification by the black-box. The most notable
rule-based XAI approaches for tabular data are Anchor [79], a model-agnostic method explaining
the behavior black-boxes with high precision factual rules, and LoRE [35], which generates the
local neighborhood via a genetic algorithm, trains a decision tree to then extract factual and coun-
terfactual decision rules. The first version of LASTS [37] extends LORE to univariate time series data,
generating rules that explain the decision of the black-box in terms of logical conditions based on
time series subsequences. In this case, the conditions in the premise refer to subsequences instead
of single time series observations, and the feature values represent the presence/absence of sub-
sequences inside the time series. We build upon this to extend the approach to multivariate time
series data.

3.3 Autoencoders in XAl

A standard autoencoder (AE) [40] is a type of neural network trained for learning a representa-
tion that reduces the dimensionality from m X d to k and captures non-linear relationships. An
encoder g : R™-RY, and a decoder h : RI—R™ are simultaneously trained with the objective
of minimizing the reconstruction loss. Starting from the encoding z = g(X), the autoencoder tries to
reconstruct a representation as close as possible to its original input X =~ h(z) = X. Autoencoders
learn to encode their input in a latent representation, which is usually of smaller dimensionality
and, therefore, simpler and easier to deal with, w.r.t. the original input. The latent space can also be
used to sample synthetic instances that can be decoded into completely new and unseen records.
In order to use autoencoders as generators, it is useful to have an encoder with a specific latent
distribution from which to sample. In this sense, the two leading solutions used in the literature are
Variational Autoencoders (VAEs) [51], which learn the parameters of a latent distribution, usu-
ally the mean and standard deviation of a Gaussian, or Adversarial Autoencoders (AAEs) [66],
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that use a GAN inspired approach [28], adding a discriminator in the network architecture, trained
to discriminate the latent distribution, constraining it to the desired form.

In order to support the generation of a good explanation, the autoencoder used in our proposal
needs to have some desirable properties:

(1) a known latent distribution to sample consistentsynthetic instances;

(2) a latent distribution that allows for the generation of meaningful neighborhoods around
sampled points [2];

(3) a latent space that has as few dimensions as possible, to facilitate the neighborhood
generation;

(4) good performances in the (i) reconstruction error and (ii) reconstruction accuracy, i.e., (i) the
reconstructed instances need to be similar to the original instances, and (ii) the autoencoder
must be good enough for the black-box to be able to predict the same class before and after
the autoencoding.

The first property can be ensured by using VAEs or AAEs. These are superior to traditional AEs as
generative models because they allow sampling from a known latent distribution. Usually, a VAE
is easier to train w.r.t. an AAE, given the former has to optimize only one loss function, while the
latter also has to consider the discriminator [34, 66]. For this reason, we adopt VAEs by default
as autoencoders for the proposed approach. The second property can be ensured by checking the
sampled instances with a discriminator or by using specific sampling techniques that minimize
the distribution mismatch [2] (Section 3.4). The third and fourth properties can be achieved with
hyperparameter tuning. In our setting, the reconstruction error is measured in terms of mean
squared error between the original instances and the reconstructed ones, recyyse = % X —X;)2.
The reconstruction accuracy is the percentage of instances in X that are correctly classified by the
black-box after being reconstructed by the autoencoder. Formally, rec,e. = %Z;’ﬂ 1y x)=b (i)

where 1 is a function which outputs 1 if the condition in the subscript is true and 0 otherwise.

3.4 Neighborhood Generation in XAl

Neighborhood generation, being a central issue in the definition of local surrogates, is an increas-
ingly studied topic in the domain of XAI [37, 64, 78]. Local surrogates mimic the local decision
boundary of a black-box for the single instance they are tasked to explain. In order to be able to
imitate the black-box, a representative neighborhood of the instance to explain has to be defined.
It should be composed of (i) similar, i.e., spatially close, instances having the same label as the
instance to explain (prototypes, exemplars), but it also should contain (ii) close instances having a
different label (counterfactual instances, counterexemplars, distractors). Post-hoc interpretability
approaches often rely on perturbations of the input data that query the black-box to understand
how its prediction changes. Two of the most notable examples are LIME [78] and sHAP [64]; how-
ever, the perturbation methods used by these models do not ensure the generation of realistic data.
Moreover, even if these approaches can be applied to time series data with some modifications,
they are not explicitly thought for it [34, 37, 54].

For time series data, it is often hard to generate a meaningful neighborhood in the manifest space
by directly perturbing the original instances because the risk of generating unrealistic adversarial
examples is relatively high. This is the main reason why generative models such as VAEs and
AAEs are increasingly used in this field [7, 34, 37, 43, 54, 74]. In fact, these models are usually
trained to produce a specific prior distribution in the latent space, typically a Gaussian. After the
training phase, they can be used as generators by sampling new instances or perturbing existing
ones. Perturbation techniques can greatly vary: from the usage of different sampling or searching
algorithms [74], to genetic approaches [34, 37], to gradient descent-based methods (7, 43]. Even if
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the technical aspects of these methods are very different, they all rely on autoencoders to generate
a suitable latent space to explore and analyze.

In [93], it is shown that latent space operations commonly used in the literature, such as instance
interpolation and vicinity sampling, induce a so-called distribution mismatch between the outputs
and the prior distribution the model was trained on. This is a delicate issue, given that decoders and
generators are usually trained on fixed priors and thus assume that their inputs will have statistical
properties that align with their distributions. For this reason, in [2] is proposed a Gaussian-matched
neighborhood generation function which avoids the sampling from latent space locations that
are highly unlikely given the prior distribution of the autoencoder, and allows the creation of
more consistent, i.e., higher quality synthetic instances. Given a latent space vector z € R? in
which each scalar entry is independently sampled from a standard Gaussian distribution, i.e., Vz €
z, z ~ N(0,1), a standard Gaussian (GA) vicinity sampling is defined as z;, = z + 6u with 0
being a scaling factor and u € R? a randomly sampled normal Gaussian vector. The Gaussian-
matched (GMm) operation is defined as zgy = zg,/V1 + 02. In [2] it is shown that this approach is
guaranteed to produce samples coming from a standard Gaussian distribution, i.e., samples that
are indistinguishable from randomly sampled instances from that distribution. The authors show
that this property is independent of the number of latent dimensions, and it is proven to work
even in high-dimensional latent spaces. Incorporating this operation into our framework helps to
reduce the distribution mismatch and generate a synthetic neighborhood that is more consistent,
resulting in samples that seem as if they were drawn from the original training set.

4 LOCAL AGNOSTIC TIME SERIES EXPLAINER

In this section we present LASTS, a Local Agnostic subsequence-based Time series explainer, solving
the black-box outcome explanation problem. Given a black-box b and a univariate or multivariate
time series X, the human-interpretable explanation e € E returned by 1asTs for the classification
7 = b(X) is composed by three parts: (i) a saliency map highlighting the most sensible part of
the time series, (ii) a set of exemplars and counterexemplars, and (iii) subsequence-based factual
and counterfactual rules. The saliency map highlights the observations that are most responsible
for a class change. Exemplars and counterexemplars illustrate time series classified with the same
and with a different outcome than X. They can be visually analyzed to understand the reasons for
the classification and make comparisons between X and them. Finally, the factual rule shows the
subsequences contained (and not contained) in X responsible for the class 7, and vice-versa, the
counterfactual highlights how the rule should change to have a different classification outcome.
The explanation returned by LAsTs satisfies the requirements of counterfactuability, usability, and
meaningfulness [12, 68, 75], and offers to the final user a multi-modal explanation unveiling the
reasons for the classification in different and complementary ways. A simple schema of LASTS can
be viewed in Figure 2.

Besides the black-box b and the time series X, LASTS requires a trained encoder g and decoder
h for modeling times series in a simplified representation. The explanation process of LASTS, de-
scribed in Algorithm 1 and in Figure 2, involves the following steps. First, LASTs encodes the time
series X in its latent representation z (line 1). Then, through the crs function detailed in Algo-
rithm 2, it searches for the closest instance to z having a different class, i.e., the closest counterex-
emplar z, (line 2). Once z. is found, LASTS generates a synthetic neighborhood Z around it using
the neighgen function, exploiting the distribution of the VAE (line 3). After that, the latent instances
are decoded and labeled using the black-box, i.e., ¥ = b(X ) (line 4). The decoded neighborhood
is used to get exemplar and counterexemplar time series (line 6), while the closest counterexem-
plar is used to compute the saliency map (line 5). The neighborhood is then represented as the
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Fig. 2. A schema of LAsTs. (left) the input of LASTS is composed of an instance X and the black-box prediction
for that instance, b(X). (bottom-right) the output of LASTS is an explanation e composed of a saliency map,
exemplars and counterexemplars, and factual and counterfactual decision rules. (top-right) LAsTs exploits
the latent encoding of a VAE to perturb the time series and generate a synthetic neighborhood around the
local decision boundary. Once decoded and classified by the black-box, these synthetic instances represent
meaningful exemplar and counterexemplar time series and are used to construct a saliency map. Finally,
interpretable subsequences are extracted from this neighborhood and used to train a decision tree surrogate,
from which the factual and counterfactual rules are inferred.

ALGORITHM 1: 1asTs(X, b, g, h)

Input :X - time series, b - black-box, g - encoder, h - decoder,
Output:e - explanation

1z « g(X); // encode X into the latent space
2 Zx « CFS(z,b, h) // find closest counterfactual instance to z
3 Z « neighgen(z,z+); // generate latent neighborhood
1 XX, X;& — h(Z), h(z), h(zz); y « b()%); // decode and classify neighborhood
5 & — extractSaliency(X,Xﬂ // extract saliency map
6 X:,X¢ — extractExamples(X,}?) // extract (counter)exemplar instances
7 Teg" (X’)A’)a // subsequence transform
8 dt « tree(T,V); // learn decision tree surrogate
9 T=, Ty & extractRules()Z, dt); // extract subsequence-based rules
10 return e = {P, (X:,X;e), (r=,r2)}; // return explanation

presence/absence of subsequences in a time series through the function ¢*, which extracts the
most discriminative subsequences and performs the subsequence transform ¢, obtaining the set T
(line 7). Finally, a decision tree dt is trained on (T, ¥) (line 8) and used to retrieve the subsequence-
based factual rule and counterfactual rules r—, r; (line 9). The explanation comprises the saliency
map, exemplar and counterexemplar instances, and the factual and counterfactual rules (line 10).
Details of each step are presented in the rest of this section.
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Fig. 3. Running example. (left) cylinder-bell-funnel instances. (right) time series X to explain and its recon-
structed version X.

ALGORITHM 2: cFs(z, b, h, ng)

Input :z - encoded version of X, b - black-box, h - decoder, n; - instances to search at each iteration
Output:z; - closest counterfactual to z

1 0 « Op; // init. threshold
2 Z « sample(z, ng, 0); // latent sampling around z
3 Zy —[]; // init. counterfactual set
4 while 32" € Z | b(h(Z')) # b(h(z)) do

5 0«—0/2; // decrease threshold
6 Z « sample(z, ns, 0); // latent sampling around z
7 Zys.add({z' € Z | b(h(Z")) # b(h(z))}); // store counterfactual instances
8 zy <« closest(z, Z3); // get closest counterfactual instance to z

9 return z;;

4.1 Latent Encoding

The time series X is passed to the encoder part of the VAE that compresses it into a so-called latent
representation z = g(X). The time series in Figure 3 is used as a running example. In our case, X
originally has 128 observations, and it is compressed in a bidimensional vector, z = [1.344, —2.005],
depicted in Figure 4 (left). The latent vector z can also be passed to the decoder to reconstruct the
original time series. Both X and its reconstructed version, X = h(z), are depicted in Figure 3 (right).
The original time series is much more noisy w.r.t. its reconstructed version. This suggests that the
autoencoder is able to capture the most relevant features of the time series for the classification,
i.e., its general shape, discarding the random noise.

4.2 Counterfactual Search

The second step of LAsTs is to find the closest counterfactual instance w.r.t. z. To perform this
search, LAsTs adopts an algorithm that iteratively samples latent instances around z, decodes them,
and checks their label using b. The counterfactual search algorithm (cFs) is reported in Algo-
rithm 2. cFs uses a function sample to sample a distribution of synthetic instances around z. The
function sample can theoretically be any sampling function, ranging from a pure random approach
like in LIME [78] to a genetic algorithm maximizing a fitness function like in LORE [33]. A good
generation function is fundamental to create consistentsynthetic instances by avoiding the afore-
mentioned distribution mismatch [2], i.e., the sampling from locations in the latent space that are
highly unlikely given the prior distribution of the autoencoder. We emphasize that we employ the
term “consistent” as mentioned in [2], i.e., as a synonym for probable, likely, or, in other words,
coherent with the autoencoder’s underlying distribution. Our aim is to convey that the generated
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Fig. 4. (left) generated latent neighborhood compared to a standard normal bivariate distribution. (right-top)
exemplar and (right-bottom) counterexemplar instances.

samples possess a similar distribution to that of the original training data. The first version of
LASTs presented in [37] uses the genetic approach of LORE; in the version presented in this paper,
LAsTs adopts by default a procedure inspired by the growing sphere algorithm proposed in [55].

cFs depends on a threshold 0 that decides the amount of space around z that the generated
neighborhood is going to occupy. This threshold can be the radius for a spherical random uniform,
as in the original growing sphere [55], or a scaling factor for a Gaussian distribution, as detailed in
Section 3.4. The goal of cFs is to systematically explore the latent space in order to find the instance
closest to z belonging to a different class, i.e., the closest counterfactual. The counterfactual search
is performed by iteratively generating a neighborhood Z around z, using the aforementioned sam-
ple function, and by checking if there is at least one counterfactual among the generated instances.
The presence of counterfactuals indicates that the sampled neighborhood is still crossing the de-
cision boundary; therefore, the threshold is halved, and the procedure loops until the sampling
function does not generate any counterfactual. We highlight that in this setting, the generation
happens in the latent space, while the presence of counterfactuals is checked in the time series
domain by decompressing the latent instances through h. At each step of the iteration, the cFs
algorithm stores all counterfactuals generated and, once out of the loop, it selects the closest one
to z, 1.e., Z4, as the best counterfactual. In the running example, the closest counterfactual instance
can be viewed in its latent form in Figure 4 (left).

4.3 Neighborhood Generation

The third step we detail is the generation of the neighborhood around z. using the function
neighgen. In principle, neighgen can be a different sampling function w.r.t. the sample function
used for the search. In Section 5, we experiment with different combinations of the two. The sam-
pling is performed extremely close to the black-box decision boundary; therefore, this synthetic
neighborhood contains, by construction, both a set of time series having the same class as z and a
set of time series having a different class, i.e., exemplars, Z_, and counterexemplars, Z_. (Figure 4,
left). The number of distinct counterexemplar classes is influenced by the final threshold, and in-
creases as 0 increases. Note that the sampling is performed in the latent space, while the labels
are retrieved by decoding the latent neighborhood and then applying the black-box function to
obtain its predictions. For ease of viewing, we depict all the counterexemplar instances with the
red color, independently of their specific class. Z is decoded and classified by the black-box into
X and X.. These instances represent the example-based explanation, showing how the decision
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Fig. 5. (left) examples of subsequences with identifiers. (right) subsequence-transformed dataset T. Each
column represents a time series. For each row, the cell is white for subsequences that are not contained,
green for exemplars, and red for counterexemplars.

of the black-box changes depending on the shape of the time series (Figure 4, right). Moreover,
by computing the absolute difference between the decoded closest counterfactual X, = b(z,), and
X = b(z), we can discover the time points for which a change in the values is more likely to modify
the decision of the black-box. Thus, the saliency map is defined as ® = |X — X|.

Figure 4 (left) shows the latent neighborhood Z highlighting in green the exemplar instances
labeled as bell, and in red the counterexemplar instances labeled with a different class value, in
this case cylinder. In gray is depicted a standard bivariate normal distribution, highlighting the
probability of hidden vectors in the latent space; formally Ny (g, ¥) with g = [0,0]7 and X = I,
where I, is a 2-dimensional identity matrix. For ease of viewing, we provide an explanation for an
instance at the edge of the distribution. The corresponding instances in the manifest space can be
viewed in the same figure to the right. The synthetic neighborhood sampled in the latent space
perfectly summarizes the separation of the different class values, unveiling a local decision bound-
ary that is easy to detect even with a simple classifier. Both Z- and Z,, forming the neighborhood,
densely surround z, helping to capture the black-box behavior locally around the closest decision
boundary to z. Note that z remains at the edge of the generated neighborhood by design because
our area of interest is the decision boundary and not the instance to explain itself.

4.4 Subsequence Extraction

Given the decoded local neighborhood X and y = b(X), LASTS extracts a set of subsequences S and
performs the subsequence transform ¢*, encoding time series into a space of presence/absence of
subsequences (line 7, Algorithm 1), as detailed in Section 3.1. Subsequences can be of many kinds;
in Section 5, we test both shapelet-based and SAX-based subsequences. Figure 5 presents an exam-
ple of SAX-based subsequences and a heatmap depiction of the transformed dataset. Each column
represents a time series in X. For each row, a colored cell indicates the presence of the correspond-
ing subsequence, while a white cell indicates its absence. The colored cells, green and red, indicate
the SAX subsequences contained by the exemplar and counterexemplar time series, respectively.
In some cases, we can observe a sort of complementarity. In other cases, a time series can simulta-
neously contain a combination of subsequences describing exemplars and counterexemplars.

4.5 Local Surrogate

Given T and y, LASTS trains a subsequence-based decision tree classifier dt that allows to identify
subsequence-based factual and counterfactual rules r—, r. (lines 8 - 9, Algorithm 1). LAsTS adopts
decision trees because factual and counterfactual decision rules can be naturally derived by fol-
lowing the root-leaf paths [33]. Figure 6 (bottom) reports the explanation rules for our example:
r= = {ss27 € X} — bell, rz = {s337 ¢ X} — —bell. The visual representation of the rules shows
the position of the subsequences that must be contained and those that must not be contained at
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Fig. 6. (top-left) synthetic neighborhood with exemplar and counterexemplar instances. (top-right) saliency
map highlighting the most sensible points for the classification. (bottom) factual counterfactual rule.

their best alignment with X. Looking at the rules, a user can truly understand the reasons for the
classification. In this case, the presence of an increasing pattern in the time series differentiates
between a bell instance and instances of other classes. In general, rules can be longer and include
an arbitrary number of contained and non-contained subsequences, depending on the complexity
of the classification task and the resulting surrogate tree.

4.6 Explanation

In summary, LASTS explains the prediction of a black-box b for a time series instance X. The final
explanation, e = {®, (X:,X¢), (r=,rz)}, is composed of three parts. First, a saliency map, ®, high-
lights the most important timesteps of the time series, i.e., those timesteps that, if changed, would
bring the prediction toward a different class. Second, a neighborhood composed of exemplar and
counterexemplar instances. Exemplars, X':, are instances close to X in the latent space, with the
same label as X. They are prototypes, showing the main characteristics of a specific class. On the
other hand, counterexemplars, X., are instances close to X in the latent space but classified by
the black-box differently and can help the user understand how the prediction of the black-box
changes by changing the shape of the time series consistently. Finally, the factual, r-, and coun-
terfactual, r4, rules logically explain the prediction of the black-box, both in direct and contrastive
ways, showing the minimum change in contained/not contained subsequences to modify the black-
box prediction. The complete explanation for our running example is presented in Figure 6.

5 EXPERIMENTS

We experiment with LAsTs both quantitatively and qualitatively. First, in Section 5.3, we compare
different alternatives for neighborhood generation and subsequence extraction on 4 univariate
datasets and 2 black-box models. Once the best framework combination is found, we benchmark
it on 15 datasets, 10 univariate and 5 multivariate, respectively, from the UCR and UEA time
series machine learning repositories®. Each part of the explanation returned by LAsTS is evalu-
ated. The instance-based part of the explanation is assessed through usefulness (Section 5.4). Then,
the saliency-based part of the explanation is tested w.r.t. stability, correctness and by running in-
sertion/deletion benchmarks against sHAP (Section 5.5). Furthermore, the rule-based part of the

https://www.timeseriesclassification.com/
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Table 1. Dataset Details, Autoencoder Performance in Terms of Reconstruction Accuracy and MSE, Rocket
Performance in Terms of Accuracy

DATASETS DETAILS AUTOENCODER ROCKET
name abbr.  ref. | Nyain  Niest Nexp m d C q  TeCmse  Te€Cacc acc
ArticularyWordRecognition ~ ART ~ [90] 275 300 50 144 9 25|32 0.492 0.95 0.99
Cylinder-Bell-Funnel CBF  [23] 268 84 36 128 1 3 2 1.067 1 1
Cylinder-Bell-Funnel-Multi CBM [23] 268 84 36 128 3 3 2 1.029 1 1
Coffee COF [11] 28 28 28 286 1 2 4 0.004 1 1
ECG200 EC2 [73] 100 100 50 9% 1 2 4 0.180 0.99 0.90
ECG5000 EC5 [27] 500 4500 50 140 1 5 2 0.138  0.98 0.95
ERing ERI [94] 30 270 50 65 4 6 | 16 0.513 0.98 0.99
GunPoint GUN [77] 50 150 50 150 1 2 4 0.054 1 1
ItalyPowerDemand ITA [48] 67 1029 50 24 1 2 2 0.066 0.96 0.97
Libras LIB [20] 180 180 50 45 2 15| 16 0.002 0.91 0.91
PenDigits PEN [21] 7494 3498 50 8 2 10 4 59.194 0.95 0.98
PhalangesOutlinesCorrect PHA  [15] | 1800 858 50 80 1 2116 0.002 0.98 0.84
Plane PLA [86] 105 105 50 144 1 7 2 0.033 1 1
Strawberry STR [13] 613 370 50 235 1 2 4 0.002  0.99 0.98
TwoLeadECG TWO [27] 23 1139 50 82 1 2 2 0.042 1.00 1.00

explanation is evaluated using fidelity, precision and coverage against a global SAX-based decision
tree surrogate (GLO-sAX) and against ANCHOR [79] re-adapted for time series (Section 5.6). Finally,
in Section 5.7, we propose two qualitative examples of the explanation of LASTs on one univariate
and one multivariate time series.

5.1 Datasets and Black-box Models

In Table 1, all the information about the datasets used for evaluating our approach is reported. The
training set Xirain is used both to train the black-box and the autoencoders. In principle, the dataset
used for the black-box training, Xy, and the dataset used for the autoencoder training, X, can be
different. However, due to the small dimensionality of some datasets, we set Xpp, = Xae = Xirain for
all the datasets, with the exception CBF and CBM which are synthetic, and their instances can be
sampled at will. The test set Xiest is used to benchmark both autoencoders and black-box models,
and to sample Xy, which is composed of a maximum of 50 instances to explain and evaluate.

To test different framework alternatives, we train and explain a ResNet [39] (REs) implemented
in keras according to [24], and a k-Nearest Neighbor [85] (KNN) baseline as implemented by
scikit-learn. Once the best framework setup is found, we choose as a black-box to explain
Rocket [17], as implemented by sktime, using the default parameters for the transform and a
RidgeClassifierCV as classification model. The ResNet comprises three residual blocks, each con-
taining three convolutional layers, a global average pooling layer, and a dense layer. The layers
inside each residual block have respectively 64, 128, 256 filters, of size 8, 5,3. We train REs with a
batch size of 16, monitoring the loss, with a patience parameter of 50 epochs. As optimizer, we
select Adam, with the default keras parameters: learning_rate = 0.001, f; = 0.9, f; = 0.999,
minimizing the sparse categorical crossentropy. For KNN we use the Euclidean distance and the k
parameter is selected via grid-search with k € [1, |Xpp|].

5.2 Implementation Details

In the following, we specify the implementation details adopted for each module of LAsTS®.

3Code available at github.com/fspinna/lasts
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Variational Autoencoder. As autoencoder, we adopt a VAE for the reasons discussed in Sec-
tion 3. For simplicity, we use the same network structure for all the datasets, i.e., a convolutional
autoencoder composed of 16 layers, 8 for the encoder, and 8 for the decoder. The number of filters
per layer is 8, and the kernel size is set to 3. The latent dimension is chosen on a dataset basis by
starting with ¢ = 2 and iteratively building autoencoders with an increasing value of g until the
accuracy for the reconstructed instances increases and reaches 0.90, but also keeping g < m/2.
As an activation function, we always use ReLU. As optimizer, we select Adam with default keras
parameters: learning_rate = 0.001, f; = 0.9, f; = 0.999, minimizing the Mean Squared Error
(MSE) with the Kullback-Leibler divergence regularization term. The VAEs are trained with a
batch size equal to 32, for a maximum of 8, 000 epochs, monitoring the validation loss with a pa-
tience of 500 epochs before halving the learning rate and a patience of 1,250 epochs before early
stopping. We measure the performance of the autoencoders through the reconstruction error be-
tween the original and reconstructed time series, in terms of Mean Squared Error (the lower, the
better), and in terms of accuracy of the classifiers on the reconstructed time series (the higher, the
better). Since the encoding operation in a VAE is stochastic, z can vary slightly. Therefore, to im-
prove the stability of the framework, X is encoded 1000 times, and the latent representation z is
chosen by checking the most similar reconstruction h(z) to X using the Euclidean distance. Given
a set of 1,000 encodings of X named Z’, z = arg min, ¢z dist(h(z’), X).

Neighborhood Generators. For the counterfactual search and neighborhood generation, we
experiment with four alternatives for the neighgen and sample functions of Algorithm 1 and Al-
gorithm 2: (i) Gaussian (GA) that samples a normal distribution around z scaling each vector by a
factor 0 as detailed in Section 3.4; (ii) Gaussian-matched (GMm) that is a Gaussian-based sampling [2]
that uses distribution matching transport maps to minimize the problem of distribution mismatch.
As in Gaussian, it samples the distribution around z scaling each vector by a factor 0 as detailed
in Section 3.4; (iii) Uniform Sphere (us) that samples a uniform sphere distribution around z with
radius 0; and (iv) Matched Uniform (mu) that combines a Gaussian-matched search to find the
closest counterfactual, and Uniform Sphere sampling to generate the neighborhood. In the first
three cases, the counterfactual search and the neighborhood generation use the same function,
i.e., sample = neighgen, while the last approach uses two different ones, i.e., sample # neighgen.

For the counterfactual search, we generate ns = 10,000 instances at each iteration, starting with
a threshold & = 2. Once the closest counterfactual is found, the neighborhood generation func-
tion neighgen is run with neighborhood size equal to N = 500 latent instances. If 0 represents a
radius, we perform the final sampling using as 6 the distance between z and z.. while if 6 repre-
sents a scaling factor, we take the last 6 used in the counterfactual search. In the last generation
step, we impose a balance between instance labels by oversampling the minority class. Moreover,
we compare these sampling functions against the genetic approach adopted in [37]. For the ge-
netic approach, we also generate N = 500 latent instances using the same parameters as in [37],
namely 10 generations, normalized Euclidean distance as the genetic fitness function, probability
of mutation equal to 0.5, probability of crossover equal to 0.7.

Subsequence-based Surrogates. We implement the function ¢* of Algorithm 1 in two ways
in order to test two different strategies to retrieve subsequences: SAX-based and shapelet-based.
To extract SAX-based subsequences, we use the SAX-SEQL algorithm illustrated in [57], which
extracts the p-most discriminative subsequences S for y, and then converts time series in a binary-
valued matrix T using the symbolic subsequence transform detailed in Section 3.1. Furthermore, to
extract shapelets-based subsequences, we adopt the LTS algorithm described in [30] that learns the
p-most discriminative shapelets S with respect to y via gradient descent. The time series dataset is
then converted to a simplified representation via the shapelet transform detailed in Section 3.1. In
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Table 2. Fidelity Comparison (Higher is Better)

i & Y > o > o > 2 < 2 =
=05 |8 3 5 2 £ 2 E Z|E 3
O z | 1 1 [} 1 1 [} 1 O o
=53 3§ 3 & & & 8 35|32 37
cgr | RES| 100100 1.00 100 1.00 1.00 100 100 100 | 1.00 094
KNN | 1.00 | .00 1.00 097 1.00 1.00 1.00 1.00 1.00 | 1.00 0.97
cop | RES|1.00 /093 093 093 1.00 093 100 100 100|075 089
KNN | 1.00 [ 0.93 1.00 093 1.00 096 1.00 1.00 1.00 | 0.89 0.89
£cy | RES| 098094 1.00 096 099 098 1.00 095 099|069 078
KNN | 0.97 [ 0.96 0.97 090 0.99 095 098 097 098|083 0.83
oy | RES | 098|082 098 078 0.98 084 098 080 098|093 090
KNN | 0.96 | 0.86 0.96 0.82 098 0.86 098 086 098 | 0.74 0.81

rk ‘4.38‘7.31 444 850 3.31 6.69 3.25 588 3.50 | 8.81 9.94
Top 3 performing models in bold.

order to have the same representation as in the SAX-subsequences alternative, the distances in T
are replaced with binary values using a threshold 7 such that V¢; ; € T if the distance t; ; < 7, t; ;
is replaced with 1 else with a 0. The distance threshold 7 is chosen via grid search by testing the
accuracy of the decision tree surrogate for every decile of the distribution of all the distances in
T. To further simplify the classification task of the local surrogate, we binarize the label vector by
considering only the predicted class of the instance to explain as 1 and all the others as 0. Therefore,
VY; €y, if §; = b(X), 9; is replaced with a 1 else with a 0.

5.3 LASTS Framework Alternatives Analysis

In the following, we analyze the effect of various alternatives in terms of neighborhood generation
and subsequence types on the explanation returned by LASTS.

We measure the performance in terms of fidelity, aiming to evaluate how good the explanation
model is at mimicking the black-box decisions. The fidelity (fid) is simply defined as the accuracy
between the prediction of the black-box and that of the explanation model [9]. In our setting,
we compare the prediction of the black-box for the explanation dataset, y = b(Xeyp), and y' =
{7'IVX € Xewp, §" = dt(c"(h(g9(X))))}, where dt is the local subsequence-based decision tree

learned for each X processed by LasTs. Formally, the fidelity is the percentage of times in which
1 n

§’ = §’,, i.e., ﬁd = " i=1 19:?’.

In [37], we showed that LAsTs is more faithful than a version of LAsTS using the same ran-
dom neighborhood generation adopted by LiME [78]. In the following, we compare the version of
LASTS proposed in [37] using the genetic-based neighborhood generation (named GEN-sHP) with
the alternatives of LASTS proposed in this paper by combining the various sampling strategies
for the neighborhood generation and types of subsequences. Besides, we show that extracting an
explanation from the local neighborhood of a given instance is a winning strategy compared to
an approach that builds a single global interpretable surrogate. Thus, we compare LASTS against
shapelet/SAX-based global decision tree (gdt) classifiers, namely GLO-sHP and GLO-SAX, trained on
Xbp. In this case, the fidelity is calculated as the accuracy between § = b(Xexp) and ' = gdt(Xexp)

To help readability, we provide the average ranking (rk) (lower is better) at the bottom of
each table, which is the average of the ranks of each method for all datasets and black-boxes.
Table 2 reports the values of the fidelity. We observe very high fidelity for all the approaches.
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Table 3. Comparison of Precision, Coverage, and Silhouette for Alternative Neighborhood Generations
and Types of Subsequences for the Explanation Returned by LAsTs for RES (Higher is Better)

| metric [ GA-SHP GA-SAX GM-SHP GM-SAX MU-SHP MU-SAX US-SHP US-SAX

pre,_ 0.998 1.000 0.999 1.000 0.999 1.000 0.999 1.000
pre,, 0.984 1.000 0.994 1.000 0.984 1.000 0.990 1.000
CBF | cov,_ 0.482 0.500 0.476 0.500 0.481 0.499 0.470 0.500
covy, 0.392 0.375 0.340 0.375 0.423 0.472 0.379 0.445

sil 0.306 0.306 0.303 0.303 0.342 0.342 0.342 0.342

pre,_ 0.870 0.998 0.866 0.998 0.884 0.998 0.912 0.996
pre,, 0.833 0.967 0.872 0.897 0.889 0.947 0.876 0.975
COF | cov,_ 0.476 0.441 0.498 0.458 0.458 0.482 0.460 0.481
covy, 0.368 0.058 0.372 0.039 0.358 0.039 0.389 0.076

sil 0.206 0.206 0.208 0.208 0.228 0.228 0.229 0.229

pre,_ 0.871 0.994 0.879 0.993 0.890 0.994 0.878 0.992
pre,, 0.829 0.920 0.838 0.882 0.828 0.888 0.842 0.885
EC2 | cov,_ 0.402 0.379 0.398 0.392 0.386 0.389 0.384 0.401
covy, 0.306 0.022 0.287 0.036 0.326 0.022 0.305 0.025

sil 0.147 0.147 0.145 0.145 0.160 0.160 0.160 0.160

pre,_ 0.863 0.999 0.860 0.998 0.884 0.999 0.888 0.999
pre,, 0.886 0.956 0.881 0.935 0.862 0.951 0.883 0.989
GUN | cov,_ 0.490 0.469 0.479 0.470 0.474 0.475 0.495 0.476
CoVy, 0.434 0.083 0.472 0.106 0.467 0.112 0.443 0.096

sil 0.289 0.289 0.284 0.284 0.319 0.319 0.322 0.322

pre,_ 7.500 2.000 7.000 2.875 5.750 2.000 5.750 3.125
pre,, 6.875 1.875 6.250 3.625 7.125 2.625 5.750 1.875
rk | cov,_ 3.000 6.500 3.500 4.875 6.125 4.000 5.250 2.750
covy, 3.250 7.000 3.750 6.250 2.500 5.250 3.000 5.000

sil 6.000 6.000 7.000 7.000 3.000 3.000 2.000 2.000

Best 3 models for each metric in bold.

However, the null hypothesis that all methods are equivalent is rejected (p—value < 0.01) from
the non-parametric Friedman over multiple datasets and black-boxes. We notice that the global
approaches GLo-sHP and GLO-sAx always have slightly lower values than the local alternatives
of LAsTs. Among them, the variants employing SAX-based dt generally have higher fidelity than
those using shapelet-based dt. Concerning the neighborhood generation options, results are very
similar even though MU seem to return slightly better results. We better elaborate on this fact in
the following paragraph.

The following test is to estimate the precision and coverage of the factual and counterfactual
rules (indicated as pre, _, pre,., COVy_, COVr,, respectively). The coverage is measured as the relative
number of time series that respect the factual/counterfactual rule premises in the neighborhood
X , while the precision is measured as the relative number of covered time series for which the
prediction outcome is correct. In addition, we measure also the cohesion and separation of the
neighborhoods X through the silhouette (sil) coefficient [85] with respect to the two clusters iden-
tified as X- and )@ [32]. Table 3 illustrates the average precision, coverage, and silhouette scores
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Table 4. Mean Running Time in Seconds (Lower is Better)
CBF COF EC2 GUN
. CFS 4.83 +£0.18 8.18 +£0.44 6.81 £ 0.54 7.47 £ 0.63
neighgen

GENETIC 55.57 £4.55 80.67 = 2.11 72.25+5.14  80.81 + 18.00

. SHP 60.02 £ 543 46.19 £5.24 47.33 £8.53 42.25 £7.85

s SAX 8.91 = 0.47 43.75 £ 9.33 13.04 = 2.61 12.63 + 2.14
GEN-SHP 115.59 £ 9.98 126.86 + 7.35 119.58 + 13.67 123.06 + 9.83

all MU-SHP tot | 64.85 +5.61  54.38 + 5.69 54.14 £ 9.07 49.72 + 8.48
MU-SAX tot | 13.74 £ 0.65 51.93 £9.77 19.85 +3.15 20.10 + 2.77

Best results in bold.

when applying LAsTs for explaining the REs classifier. For every metric, the higher the value, the
better the score. Again, we notice that SAX-based methods seem to perform better than shapelet-
based ones. More in detail, MU-sAX has always the highest pre,_, while Ga-sax is among the bests
for pre, . Factual coverage scores are, in general, quite close, while shapelet-based models usu-
ally have better counterfactual coverage. Finally, for the silhouette, the approaches using the uni-
form sphere neighgen function (Mu and us) perform better by quite a margin. In summary, we can
state that LASTS explanations obtained using SAX and uniform sphere or matched uniform are the
best ones. However, in the following, we only consider LasTs using SAX-based subsequences and
the MU neighborhood generation, unless otherwise specified, because the gm sampling does not
guarantee a perfectly centered neighborhood generation around the closest counterexemplar. This
problem can be detected by computing the Local Outlier Factor (LOF) [10] for z, as implemented
in sklearn.In particular, a LOF score of —1 indicates an outlier, while a score of 1 indicates an inlier.
In our tests LOF,y, = 1 for every dataset and for both black-boxes, while LOFsy € [—0.55,0.64],
indicating a higher degree of outlierness. Moreover, given that the radius of the uniform sampling
is, by construction, as small as possible, the problem of distribution mismatch in a Gaussian space
is minimized in most cases.

The time required by 1AsTs for the explanation is mainly affected by the crs algorithm, and
the subsequence transform (¢*). The cFs algorithm’s most expensive operations are the black-box
(b) and decoder (h) functions. They dominate the time complexity of all the sample functions de-
scribed in Section 4.3, which is only O(q), where q is the dimensionality of the latent vector z [88].
Following Algorithm 2, b and h must be repeated until no counterexemplar in the latent space is
found. Therefore, the worst-case scenario can appear when the latent encoding of z is extremely
close to the decision boundary, and we have to reduce the 0 parameter a great number of times.
This is extremely unlikely, and we found that in most of our tests, starting with 6 = 2, only a few it-
erations are needed to exit the loop, with the worst case not exceeding 20 iterations. In Table 4, we
report the average runtime and standard deviation for the two critical phases and for the complete
explanation process (all). We notice that on every dataset, the cFs strategy is one order of magni-
tude faster than the genetic one?. The subsequence extraction runtime is comparable only for the
Coffee dataset but, on average, is at least four times faster when using SAX instead of shapelets. In
conclusion, we notice that the complete explanation process is much faster in the novel version of
LAsTs when using SAX with respect to the one proposed in [37] and the current one when using
shapelets.

4We adopted Gaussian-matched sampling for this experiment for the cFs strategy. However, different sampling methods
do not significantly affect performance.
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Fig. 7. Usefulness benchmark. Mean and 95% confidence intervals of the 1-NN accuracy for all datasets,
varying the number of exemplars and counterexemplars used for training.

In summary, MU-sAX is the most well-rounded approach: (i) it generates a neighborhood of well-
separated exemplar and counterexemplar instances around the decision boundary, which contains
z as an inlier, (ii) it has excellent performance as a local surrogate, with high fidelity scores, factual
and counterfactual rules precision, and (iii) it ensures that the closest counterexemplar is sampled
from a “probable” portion of latent space, minimizing the distribution mismatch.

5.4 Instance-based Explanation Experiments

Since it is hard to validate the usefulness of the generated factual and counterfactual instances with
an experiment involving humans, inspired by [50], we tested their effectiveness with a memory-
based machine learning technique. This experiment gives an objective and indirect estimation of
the usefulness of exemplars and counterexemplars by checking how the performance of a simple
classifier changes by training it on an increasing number of instances. For each instance X € Xy,
we apply LAsTs, i.e., we encode X, find its closest counterexemplar, generate its latent neighbor-
hood, and decode it into X. From this synthetic dataset X , using the black-box to retrieve the
predicted labels, we extract n exemplars, i.e., n instances having the same class as X, and n coun-
terexemplars from each other class, i.e., n(c — 1) instances having a different class w.r.t. X. This
extraction is random and without replacement. Then, we use the selected exemplars and coun-
terexemplars to train a 1-Nearest Neighbor (1-NN), and we classify X. For each dataset, we
compare the classification performances on X with a 1-NN trained on real time series, n per class,
randomly selected from Xey, \ {X}. Specifically, n € {1,2,4,8,16} and the Euclidean distance is
used as a distance function. Figure 7 shows the accuracy of a 1-NN using an increasing number of
exemplars and counterexemplars as training. The plot aggregates the accuracy for each dataset at
each n, showing the estimate of the central tendency and the respective confidence interval. On
average, the performance of LAsTSs is higher and more constant, revealing that few exemplars and
counterexemplars are a good proxy for recognizing the classification outcome. On the other hand,
the accuracy of REAL increases more steeply on the various datasets with increasing n, meaning
that more exemplars and counterexemplars are necessary to distinguish the reasons for the classifi-
cation. Hence, we can state that exemplars and counterexemplars help in discovering the decision
boundary and in highlighting similarities and differences. This experiment shows that time series
must be carefully chosen, as LASTS does, in order to be suitable for class recognition.

5.5 Saliency-based Explanation Experiments

In these experiments, we compare LASTS with sHAP [64] employed to solve the time series black-
box outcome explanation problem as in [4]. Similar to the proposal in [71], we adapt SHAP to time
series classifiers by performing an adaptive segmentation [49] of the time series in order to divide
it into meaningful intervals that are used as features by sHAP. As is commonly done with images,
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Table 5. Saliency Map Deletion (Lower is Better), Insertion (Higher is Better), Stability
(Lower is Better)

‘ deletion | ‘ insertion 1 ‘ stability |

| LasTs SHAP |  LASTS SHAP |  LASTS SHAP

ART | 0.30 £0.20 0.30 +£0.26 | 0.35+0.23 0.30 +0.22 | 0.16 £ 0.04 0.32 + 0.04
CBF | 0.78 £ 0.17 0.75+0.23 | 0.72 +£0.25 0.78 £ 0.28 | 0.04 + 0.08 0.20 = 0.17
CBM | 0.82 £0.08 0.79+£0.18 | 0.90 +£ 0.11 0.73 £0.20 | 0.04 £ 0.04 0.31 + 0.09
COF | 0.47 £0.50 0.51 +£0.46 | 0.47 +0.50 0.48 £0.49 | 0.09 £ 0.03 0.16 + 0.09
EC2 | 0.74 £ 0.37 0.50 £0.26 | 0.79 +£0.28 0.92 £0.17 | 0.11 £ 0.06 0.27 + 0.13
EC5 | 0.64 +£0.37 0.71 £0.22 | 0.93 +£0.10 0.93 +£0.11 | 0.03 +0.03 0.27 = 0.13
ERI | 0.43 +£0.30 0.50 £ 0.30 | 0.41 +£0.29 0.39+0.31 | 0.19 £ 0.08 0.33 = 0.05
GUN | 0.64 £0.44 0.62+0.46 | 0.61 £0.48 0.60 +0.47 | 0.16 £ 0.06 0.30 + 0.20
ITA | 0.50 +£0.38 0.65+0.30 | 0.83 £0.19 0.73+0.26 | 0.07 £0.08 0.27 = 0.25
LIB | 0.33+0.23 0.26 £0.22 | 0.36 £0.23 0.22+0.18 | 0.23 £ 0.06 0.35+ 0.07
PEN | 0.51 £0.24 0.46 +£0.18 | 0.41 +£0.23 0.46 +£0.16 | 0.21 £ 0.10 0.38 + 0.15
PHA | 0.32 +0.41 0.48 £0.21 | 0.30 + 0.42 0.40 = 0.24 | 0.21 £ 0.05 0.32 £+ 0.22
PLA | 0.40 £ 0.28 0.40 = 0.33 | 0.36 +£ 0.36  0.45 + 0.27 | 0.06 = 0.06 0.17 £ 0.05
STR | 0.55+0.48 0.54 +£0.46 | 0.55+ 048 0.58 £0.44 | 0.14 +£0.07 0.11 +0.11
TWO | 0.49 +£0.47 0.59+0.39 | 0.59 £0.38 0.57 £0.42 | 0.10 £ 0.09 0.27 £ 0.13

rk 1.53 1.47 1.53 1.47 1.07 1.93

the absence of a feature is simulated via linear interpolation by connecting the observations before
and after the ablated segment.

A common strategy to validate a saliency-based explanation is to observe how the performance
of the black-box changes by adding/removing features in order of importance [76]. Regarding dele-
tion, the intuition is that removing the most important time-steps in a time series will force the
black-box to change its decision. On the other hand, the insertion evaluation adopts a complemen-
tary approach by starting from an “empty” time series and adding the most important time-steps.
From a practical standpoint, the removal of time-steps is approximated by taking the average of
the time series values. Time-steps are added/deleted in order of importance one by one, and the
black-box prediction is checked at each step. Insertion/deletion metrics are computed as AUC/md,
i.e., the Area Under the Curve of the line obtained by computing the accuracy of the black-box
after each insertion/deletion, divided by the total number of time-steps m of every dimension d of
the time series. For the insertion benchmark, we want the black-box performance to improve as
fast as possible; therefore, a high score is desirable. On the contrary, we expect a sudden drop in
performance for deletion benchmarks, resulting in a lower score. Results can be seen in Table 5.
For this benchmark, LASTS scores very similarly to sHAP, indicating that both methods are able to
indicate important observations of the time series.

Furthermore, we measure the stability of an explainer as its ability to produce a similar expla-
nation for close instances, i.e., given similar instances, their saliency map should also be similar.
In practice, given an instance X, we find its closest instance X’ in the latent space using the Eu-
clidean distance. Then, we compare their saliency maps using the Mean Absolute Error (MAE).
Intuitively, stable explanations should have lower MAE, while unstable explanations should have
a higher error. As can be seen in Table 5, LAsTS outperforms sHAP in stability for all but one dataset,
indicating its ability to give similar explanations for similar instances.
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Fig. 8. (left): ground truth of a synthetic model that classifies a time series using the highlighted blue sinu-
soidal pattern. (center): saliency map returned by LAsTs. (right): saliency map returned by sHAP.
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Fig. 9. Box-plots of correctness measured as MAE (lower is better).

Since it is impossible to know exactly if explanations are correct with real datasets and standard
black-box models, we use a synthetic experiment to check if the saliency maps obtained with ag-
nostic explainers match with custom-defined ground truths, i.e., to check if they are correct. To
perform this study, inspired by [31], we generate a univariate synthetic dataset having two classes.
Time series belonging to each class have a distinct and easily identifiable pattern that unequivocally
defines their class, plus some random noise. Then, we build a synthetic classifier that performs the
classification by only looking at the presence of these predefined patterns. The time-steps of the
time series that are checked by the synthetic model during classification are thus known, and the
ground truth is defined as a vector of length m with the value 1 if the pattern is present at a given
time-step and 0 otherwise. In other words, the only important points for the time series classifica-
tion have a value of 1, while the noise has a 0 value. Given a saliency-based explanation returned
as a vector of length m, we compare it with the ground truth by first normalizing it in the range
[0, 1] and then computing MAE between the ground truth and the normalized saliency vector. In-
tuitively, if the saliency vector correctly identifies important and irrelevant points, the MAE will
tend to 0. To improve the test’s significance, we perform it on six synthetic classifiers that use dif-
ferent random and continuous subsets of the original patterns. A comparison of the saliency maps
returned by LASTs and sHAP w.r.t. the ground truth is depicted in Figure 8, while box-plots of the
MAE for each dataset can be viewed in Figure 9. In general, LAsTs performs better, i.e., has a lower
median MAE in four of the six tests. Moreover, LAsTs has a lower standard deviation, indicating
that even its worst saliency maps are not that far from the ground truth. In general, we observe that
LASTs tends to give a more targeted and precise explanation, while sHAP tends to give importance
to more points in the time series, resulting in a very wide interquartile range for the MAE.

5.6 Rule-based Explanation Benchmarks

To the best of our knowledge, LasTs is the only local agnostic time series explainer that outputs
rules as an explanation. Thus, we decided to compare the factual and counterfactual rules returned
by rastTs with those of a global decision tree, as in Section 5.3, and also with ANCHOR [79]. In order
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Table 6. Precision (Higher is Better), Coverage (Higher is Better), and Length (Lower is Better) of Factual
and Counterfactual Rules

pre, 1 ‘ cov,_ 1 ‘ len,_ | ‘ pre,, 1 ‘ covy, 1 ‘ len,, |

o 2 Ble 2 Bl % E|lw Z2|le & |ao X
I3 %] = I3 %] = I3 %] o I3 %] I3 %] I3 1%}
" 1 " 1 " 1 [72] 1 wn | " 1
< Q IS < Q IS < o] e < o] < Q < o
= = Z = = 4 ._1 _ 4 ._1 _ = _ = =

) < O < Q < Q &) Q

ART | 0.92 0.66 - 0.30 0.04 - 4.70 10.36 - 0.78 0.54 | 0.09 0.04 | 492 11.04

CBF | 1.00 0.89 1.00 | 0.50 0.33 0.20 | 1.14 1.69 2.00 | 0.99 0.86 | 043 0.33 | 1.22 2.00
CBM | 0.99 097 1.00 | 046 0.33 0.18 | 1.33 1.67 2.00 | 096 0.95| 038 033 | 1.78 2.00
COF | 1.00 0.93 1.00 | 045 0.50 0.21 | 3.64 1.00 2.00 | 093 0.95| 0.01 050 | 3.96 1.00
EC2 | 0.99 084 1.00 | 043 036 0.13 | 384 196 236 | 094 0.65| 0.02 0.15 | 424 3.16
EC5 | 1.00 098 1.00 | 0.48 0.47 0.22 | 234 510 2.00 | 098 1.00| 0.11 0.01 | 2.80 5.14
ERI | 0.98 0.58 1.00 | 0.43 0.17 0.06 | 3.00 3.72 3.04 | 0.89 0.60 | 0.10 0.17 | 3.50 4.20
GUN | 0.99 094 1.00 | 0.44 050 0.13| 290 1.00 244 | 0.94 093 | 0.06 050 | 3.56 1.00
ITA| 099 080 1.00 | 046 0.37 0.19 | 238 248 214 | 094 054 | 0.12 0.11 | 3.26 2.58
LIB | 0.94 0.72 097 | 0.26 0.05 0.02 | 464 578 11.70 | 0.79 0.88 | 0.05 0.02 | 5.02 6.12
PEN | 0.94 0.88 0.99 | 0.33 0.02 0.04 | 246 10.26 4.12 | 0.85 0.25| 0.17 <0.01 | 3.44 10.76
PHA | 0.91 0.76 1.00 | 0.30 0.23 0.08 | 3.58 9.50 256 | 0.81 0.77 | 0.09 0.01 | 426 10.02
PLA | 1.00 092 1.00 | 049 0.13 0.08 | 1.98 432 354 | 099 091 0.12 0.12 | 2.28 492
STR | 0.99 090 1.00 | 0.38 0.43 0.12 | 3.76 2.02 248 | 091 0.84| 0.03 0.05 | 450 250
TWO | 1.00 096 1.00 | 0.43 050 0.10 | 2.06 1.00 292 | 093 096 | 0.15 050 | 296 1.00

rk [ 190 293 1.04|1.27 180 293|180 207 207 | 1.27 173|147 153 | 140 1.60

to adapt ANCHOR to time series, we consider each observation as a separate feature. As a note,
ANCHOR can return only factual rules whose conditions depend on single time series observations.
We use precision and coverage metrics to evaluate the goodness of a rule. Moreover, given that
simpler explanations are to be preferred, we also measure the length of the returned rules.

The results of precision, coverage and length for the factual rules returned by LAsTS, GLO-sAX
and ANCHOR are presented in Table 6. Regarding precision, ANCHOR is the clear winner in all but
one dataset. This result is not surprising given that ANCHOR, by definition, constructs rules that
are guaranteed to have a precision above 0.95. LASTS scores slightly lower, with a precision that
does not drop under 0.9, while GLO-5AX is the clear loser in this benchmark. The coverage metric
helps to show the whole picture of these benchmarks. LAsTs performs best, followed by GLo-sAax
and ANCHOR in last place. This indicated that while rules returned by ANCHOR are indeed slightly
more precise, they are also less generalizable, i.e., they cover a much lower number of instances.
Furthermore, as shown by the average lengths, factual rules returned by ANCHOR and GLO-5AX are
also considerably longer, i.e., more difficult to understand from a human standpoint. As a note,
ANCHOR is also extremely inefficient for longer time series, requiring hours of runtime to explain
a single instance. For this reason, completing the benchmarks for the ART dataset was impossible.
Regarding counterfactual rules, results are presented in Table 6. LASTS performs better than a global
surrogate in precision and length, tying in coverage. This experiment demonstrates that, while the
number of instances covered by the rules is comparable for the two methods, counterfactual rules
returned by LASTS are more precise, shorter, and thus easier to understand.

5.7 Qualitative Examples

This section shows qualitative examples from two real-world datasets, ECG5000 and Libras. Fig-
ure 10 presents an explanation of an instance from the ECG5000 dataset. ECG5000 contains 5,000
heartbeats belonging to five different classes, one corresponding Normal instances, and four cor-
responding to different kinds of Abnormal heartbeats. The instance we are trying to explain is
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Fig. 10. Explanation of the prediction of ROoCKET for an instance of the ECG5000 dataset. From left to right:
(top) instance to explain, exemplars, counterexemplars, (bottom) saliency map, factual rule and counterfactual
rule (shown over a counterexemplar).
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Fig. 11. Explanation of the prediction of RockeT for an instance of the Libras dataset. From left to right: (top)
instance to explain, exemplars, counterexemplars, (bottom) saliency map, factual rule and counterfactual rule
(shown over a counterexemplar).

correctly classified by ROCKET as Normal (Figure 10 top-left). By looking at the difference be-
tween exemplars and counterexemplars, we can clearly see that the main difference between
normal and abnormal instances is in the rightmost part of the time series, which is much lower
for abnormal time series, and presents an evident V-shape. More specifically, these abnormal
series belong all to the Premature Ventricular Contraction class. The saliency map confirms the
assessment deduced by the example-based explanation, highlighting only the last observations
of the time series. The rules show the other main difference between classes. The factual rule,
r= = {s221 € X A spe4 € X} — Normal, shows that normal instances contain subsequence syg4,
while the counterfactual rule, r. = {ss; € X A s34 &€ X} — Premature Ventricular Contraction,
shows that abnormal time series have a flatter shape, not containing sss. In general, we do not
expect the saliency map and the rules to cover the same exact areas because the saliency map only
highlights the parts of the time series that change the most between classes, whereas the rules
can be based on subsequences emphasizing even a small shape change from any part of the time
series.

In Figure 11, we present an explanation of a multivariate time series from the Libras dataset.
This dataset contains instances having two signals each, belonging to 15 classes that correspond
to different hand movements. The instance we are trying to explain is labeled as face-up curve, and
it is correctly classified by ROCKET. The example-based part of the explanation shows exemplars
and counterexemplars that are extremely similar to the naked eye. This means that even very small
changes in the time series shape can result in a change of prediction from the black-box. In this
sense, the closest instances belong all to class horizontal wavy. The most salient observations are
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highlighted in the saliency map and show that the top signal, and in particular the central sigmoidal
part, is the most relevant for the change in classification. This is also confirmed by the factual and
counterfactual rules, r- = {sq12 € X0 A S1026 € Xo A S1855 € X1 A Sp184 € X1} — face-up curve,
ryg = {5412 € X N S1026 € X0 N S1855 € X1 A S2184 € X1} — horizontal wavy. The rules show that the
most significant subsequence is sjg26, given that its presence/absence results in a change in class.
Figure 11 (bottom-right) shows a counterexemplar which contains s12, i.e., has a lower dip in the
central sinusoidal pattern w.r.t. X.

6 CONCLUSIONS

We have presented LASTS, alocal model-agnostic subsequence-based explainer that returns an easy-
to-understand explanation for univariate and multivariate time series classifiers. LASTs succeeds
in addressing the time series black-box outcome explanation problem, returning three different
kinds of explanations: a saliency map, examples, and decision rules. The saliency map highlights
the most important observations of the time series for the classification. Exemplar and counterex-
emplar instances can be compared to the time series to explain the black-box behavior. Finally,
subsequence-based decision rules allow an understanding of the logic of the classification, show-
ing the reasons for the outcome in terms of patterns that must and must not be contained. Exten-
sive experimentation shows that LASTS outperforms existing explainers in returning meaningful,
useful, faithful, and coherent explanations.

The proposed method has some limitations. Indeed, the subsequences-based rules do not con-
sider multiple alignments of the same shapelet at different time series points. On the other hand,
multiple occurrences could help better explain a predictive phenomenon. Also, technical and con-
ceptual extensions are possible. First, we would like to test LAsTS on longer and more complex,
real-world time series datasets while also extending it to different types of sequential data like
trajectories, text, and shopping transactions. Second, we would like to deepen the study of the
relationship between the latent and subsequence spaces. Third, we aim to empower the expla-
nations’ expressiveness and to enable higher levels of abstraction with grammar-based decision
trees [58]. Fourth, we also aim to explain the overall logic of a time series classifier by aggregating
the local subsequence-based rules into a global explanation model [84]. Finally, a human decision-
making task driven by LAsTs explanations could objectively evaluate the real effectiveness of the
explanations.
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APPENDIX
A NOTATION

Table 7. Summary of Notation

Data

X, X, x,x time series dataset, instance, signal, observation
Y.y, ¢ labels vector, value, number of unique labels

n,i number of instances in a dataset, instance index
m, j number of observations in a time series, feature index
d, k number of signals in a time series, signal index
S,s collection of subsequences, subsequence

p,l number, length of extracted subsequences
Models

fQ) generic function

b(-) black-box classifier

rm(-) rule-based classifier

dt(-) decision tree classifier

V.9 classifier prediction for a time series dataset, instance
Transform

(), T shapelet or subsequence transform, transformed dataset
X SAX-transformed time series signal

w number of intervals of PAA

A SAX alphabet

Autoencoder

g(-), h(:) encoder, decoder

q number of latent dimensions

0 latent vector scaling factor

u randomly sampled normal Gaussian vector

Z,Z latent encoding of a time series dataset, instance
X, X autoencoding of a time series dataset, instance
Explanation

E,e human-interpretable domain, explanation

D, ¢ saliency map, saliency value

Z_ 7 exemplar, counterexemplar time series encodings
Xo, Xe exemplar, counterexemplar time series dataset,
Z:, X2 best counterfactual latent vector, time series

T, te factual, counterfactual rule
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