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Abstract—In Non-Terrestrial Networks (NTNs), where LEO
satellites and User Equipment (UE) move relative to each
other, Line-of-Sight (LOS) tracking,and adapting to channel
state variations due to endpoint movements are a major
challenge. Therefore, continuous LOS estimation and channel
impairment compensation are crucial for a UE to access a
satellite and maintain connectivity. In this paper, we propose
a Actor-Critic (AC)-Reinforcement Learning (RL) framework
for traffic scheduling in NTN scenarios where the channel state
is non-stationary due to the variability of LOS, which depends
on the current satellite elevation. We deploy the framework
as an agent in a Multi-Path Routing (MPR) scheme where
the UE can access more than one satellite simultaneously to
improve link reliability and throughput. We study how the
agent schedules traffic on multiple satellite links by adopting
the AC version of RL. The agent continuously trains based on
variations in satellite elevation angles, handoffs, and relative
LOS probabilities. We compare the agent retraining time with
the satellite visibility intervals to investigate the effectiveness of
the agent’s learning rate. We carry out performance analysis
considering the dense urban area of Chicago, where high-rise
buildings significantly affect the LOS. The simulation results
show how the learning agent selects the scheduling policy when
it is connected to a pair of satellites. The results also show that
the retraining time of the learning agent is up to 0.1 times the
satellite visibility time at certain elevations, which guarantees
efficient use of satellite visibility.

Index Terms—NTN, Satellites, Link Prediction, Reinforce-
ment Learning, Actor-Critic, Multipath.

I. INTRODUCTION

NTNs, including Low Earth Orbit (LEO) satellite constel-
lations, Unmanned Aerial System (UAS), and High Altitude
Platforms (HAPs) have been identified as promising techno-
logies to provide ubiquitous connectivity [1] in the future
generation Internet. For this reason, the Third Generation
Partnership Project (3GPP) [2] has included NTNs among
the supporting technologies for the extension of the terrestrial
fifth-generation (5G) into the sixth-generation (6G) mobile
networks. NTNs can be exploited to meet the requirements
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of emerging technologies such as ubiquitous Artificial In-
telligence (AI) and Industrial IoT (IIoT) for application
use cases like remote monitoring, goods delivery, connected
autonomous vehicles (CAVs), and high-speed transportation
(trains, aircraft). However, the main challenge in New-Radio-
NTN integration is the communication between the UE and
the satellite, because it requires the LOS. In dense urban sce-
narios, high-rise buildings or tall infrastructures can severely
affect LOS communication due to signal blockage and reflec-
tion phenomena. Communication in LOS between satellites
and UE becomes even more challenging in scenarios where
the satellite and the UE are moving relative to each other
because, in these scenarios, the LOS probability changes
with the satellite elevation angle. Therefore, continuous LOS
estimation techniques are paramount for the UE to access the
satellite and maintain connectivity. This paper proposes an
RL-based agent to self-learn link selection in non-terrestrial
networks with Multi-Path Routing (MPR) in dense urban
scenarios. MPR allows a UE with multiple radios to set up
multiple satellite connections to improve reliability and data
rate [3], [4] even when the performance of the single link is
degraded in terms of LOS. We assume a non-stationary LOS
probability due to the continuous variation of the satellite
elevation angle. In such scenarios, a reliable LOS estimation
model allows the UE to select a link or more links to maxi-
mize an objective, such as limiting the End-to-End (E2E) loss
while using minimal bandwidth. To this end, we adopt the
AC version of the RL, which guarantees good performance
with continual learning for non-stationary LOS probability
that underlies our system. We analyze the latency of the agent
in recovering from an abrupt change in the LOS of one or
more links. The changes of LOS are the consequence of the
satellite visibility period, which depends on both the satellite
elevation angle and the latitude of the UE. In [5], the authors
present a theoretical model that estimates the probability of
a Cloud-Free LOS (CFLOS) in satellite links based on the
elevation angle of the slant link and the altitude of ground
stations. Sun et al. [6] propose a Maximum-Likelihood-
based technique for Non-Line-of-Sight (NLOS) detection
using Global Navigation Satellite System data. In [7], authors



propose an empirical model for LOS probability estimation
for satellite and HAPs communications. In contrast to these
physical and empirical methods, we propose an RL-based
model for non-stationary scenarios in which LEO satellites
continuously move changing their elevation angles and the
relative LOS with the UE. In addition, our model allows
a UE to estimate the traffic scheduling policy for multiple
satellites, i.e., accounting for multiple parallel transmissions.
Regarding MPR techniques, the authors in [8] propose a
Deep-Q RL-based scheduler for bandwidth allocation at a
WiFi Access Point (AP), to meet the Quality of Service
(QoS) requirements of various user applications. Again, in
[9] authors propose an AC-based scheduler for Multi-Path
air-to-ground multimedia delivery in cellular-assisted-UAV
communication. Wu et al. [10] propose Peekaboo, an RL-
based MPR scheduler implemented in Multipath-QUIC to
address WiFi and cellular channel heterogeneity.

Unlike these works, our proposed model provides link
selection and flow protection in NTN, guaranteeing link
resilience while avoiding encoding/decoding overhead and
retransmission delays, which are introduced when using
techniques such as forward error correction (FEC) [11] and
automatic repeat request (ARQ). This is of utmost impor-
tance because round-trip delay is an unavoidable bottleneck
in satellite communications, especially for real-time applica-
tions.

The main contributions of our work can be summarized
as follows:

• We provide a learning-based framework for selecting
an optimal MPR-based policy according to the time-
varying satellite elevation angle. We also provide a
mechanism for reliable estimation of non-stationary
LOS probability.

• Including MPR capabilities in our transmission policy,
we allow the UE to transmit on multiple satellite links
to improve link availability and data rates and minimize
end-to-end (E2E) loss.

The rest of the paper is organized as follows: Section II
describes our system model. Section III presents the problem
formulation and the AC agent. In Section IV, we describe
the simulation setup. Simulation results are presented and
discussed in section V. Section VI concludes the paper and
sets the direction for future research.

II. SYSTEM MODEL

Figure 1 shows the reference scenario considered in this
paper. We study LOS estimation and link selection in the
presence of dual connectivity in NTNs with simultaneous
use of two radios as envisioned by the 3GPP [2]. In this
architecture, the LEO satellites are equipped with the gNB-
Distributed Unit (DU) [12], while the Centralized Unit (CU)
is located on the ground. We consider a scenario in which the
satellites and an Unmanned Aerial Vehicle (UAV) equipped
with two UEs are moving relative to each other. We consider

Fig. 1: Reference Scenario: A UE (UAV) accessing two
satellites in an NTN in a dense urban environment.

the StarLink satellite system with a mass constellation of
3,000 LEO satellites. The UE can connect to two satellites
simultaneously. According to [13], a satellite in the con-
stellation moves in a circular orbit with inclination ι at an
altitude h, and the orbit radius rS = rE+h, and the satellites
move independently of each other. The same authors in [13]
defined γ(θ):

γ(θ) = cos−1 ((rE/rS) · cos(θ)− θ) , (1)

as the central angle between the earth station, the UE in this
case, and the locus of the trajectory points of the satellite
corresponding to elevation angle θ, with θmin ≤ θ ≤ θmax.
For any single point of the satellite’s locus, the maximum
elevation angle θmax determines the visibility time of the
satellite and the distribution of the elevation angles in the
visibility region [13]. The visibility region is defined as the
smallest angle γ(θmax) for which the satellite is visible from
the UE along its whole trajectory. Therefore, given the UE
latitude ϕ0, the probability for a satellite in its trajectory to be
visible from the UE can be determined from the Probability
Density Function (PDF) of θmax, denoted by:
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G(θmax)

K
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π
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The PDF in (2) may assume different shapes, according to

ι, ϕ0, and γ(θmax) as detailed in [13]. For space limitations,



we will only account for the PDF of elevation angles consid-
ering the points of the satellite’s trajectory in the visibility
region. The authors in [13] derive this PDF fΘ(θ) as the
marginalization of the joint probability fΘ,Θmax

(θ, θmax),
defined as in the following equation:

fΘ(θ) =

∫ θmax

θ

fΘ,Θmax
(θ, θmax)dθmax (3)

where θmin ≤ θ ≤ θmax and

fΘ,Θmax
(θ, θmax) =

G(θ)sin(γ(θ))√
cos2(γ(θmax))− cos2(γ(θ))

·

fΘmax
(θmax)∫ θmax

θmin

fΘmax
(x) · cos−1

(
cos(γ(θmin))

cos(γ(x))

)
dx

Therefore, the satellite visibility interval from a UE at a
given latitude as the elevation angle varies from θi to θj , is
given by [13] as:

Tθi,θj =

∫ θj

θi

2

ωS − ωEcos(ι)

cos−1

(
cos(γ(θi))

cos(γ(x))

)
· fΘj (x)dx (4)

The satellites move in different orbits at different speeds.
According to 3GPP [2], the LOS probability changes with
the changing satellite elevation angle. In general, the LOS
probability increases with elevation, reaching a maximum
at Nadir (90◦) when the satellite is above the UE if it is
in the orbital plane of the satellite. In dense urban areas, the
LOS probability is lower, especially at low altitudes, because
the signal is obstructed by and reflected from high-rise
buildings. Consequently, the AC agent must learn whether
to schedule traffic transmission on any one link, or on both
links simultaneously (for redundancy) according to a given
Quality of Service (QoS) requirement and according to the
estimate of LOS probability model of the two links as the
satellites change their elevation angles. The Discrete Markov
Chain (DMC) channel model derived in [14], characterizes
the LOS/NLOS transition probabilities at specific elevation
angles θ of the satellite in the range θ ∈ [15◦, 165◦] with an
interval of 10◦.

The transition probabilities in [14], were derived using ray-
tracing simulations using a map of Chicago downtown with
an area of 1070 m x 1070 m, an average building height of
150 m, and a maximum building height of 526m. Using the
link state transition probabilities provided in [14], we model
the state transition matrices for two independent satellites
at selected elevation angles, as explained later in Section IV.
We then use these matrices to create Markov link state traces
for training our model. Since connectivity with the satellite
requires the LOS, we assume successful traffic reception only
if there is LOS. We assume that the AC agent receives some
feedback reports as in [3], indicating the reception status and,
consequently, recording the link state.

III. PROBLEM FORMULATION

LOS estimation on multiple links can be formulated as
a Markov Decision Process (MDP). Specifically, it is mod-
elled as a Partially Observable Markov Decision Process
(POMDP) [15] because, to the agent, the environment is not
fully observable; the RL agent can only observe the link(s) it
has selected out of all the available links. Moreover, the pat-
tern underlying the state variations is unknown to the agent.
So, the agent tries to learn the state variation probabilities
using its past observations. A POMDP is defined by the tuple
{S,A, P (st+∆t|st, at), rt}, where S is the states space of
the system, and A denotes the actions space to achieve the
optimal choice. For the easy of notation, we shall use S
also to denote the agent’s observations. P (st+∆t|st, at) is the
probability of being in state st+∆t ∈ S after a time interval
∆t conditioned by the action at ∈ A and the state st ∈ S;
and rt is the immediate reward due to the action at that
leads to state transition from st to st+∆t. In the following,
we describe the POMDP for our problem, where we assume
that the UE can select a subset of the N available satellite
links to which it is connected.

1) States Space: We assume the state of a link as a binary
variable {LOS,NLOS}, and formally define the state of
the link n = 1 . . . N at time t as follows:

snt =

{
+1 if snt = LOS

−1 otherwise

The N links dynamically change their states between
LOS and NLOS, according to their own transition
matrix Tn as defined in [14]. So, we can define the
link states space as the set of the vectors S = {st | st =
[s1t, . . . , sNt]}

2) Actions: The action constitutes the choice of the
appropriate transmission pattern; that is, a subset of
the N links. The actions space is the set of vectors
A = {at |at = [ρ1t, . . . , ρNt]} where ρnt = 1 indicates
that the n-th link is selected, and ρnt = 0 otherwise,
for n = 1 . . . N . In this case study, we assumed to have
a pair of radio interfaces, i.e. N = 2, which leads to
having an actions space A = {[0, 1], [1, 0], [1, 1]}.

3) Reward : The immediate reward rt is defined as a
penalty to the agent that is proportional to the loss of
the transmitted data as in the following equation:

rt =

{ c
∥at∥1

if σ = 0

1
σ otherwise,

where ∥at∥1 is the 1-norm of the selected action,which
is equal to the number of the selected links and c is
a negative constant to provide a penalty to the learning
agent. This first term, penalizes more the use of a single
link when there are losses and encourages the use of
double transmissions to overcome the losses. σ is the



total number of received packets. σ = 0 means that all
the traffic sent is lost marking an E2E loss event. The
term 1

σ is meant to conserve bandwidth by discouraging
the use of multiple transmissions in favourable link
conditions.

The Actor-Critic Agent

Figure 2 shows the architecture of the AC learning
agent that achieves the optimization goal through the policy
π(at|st). The actor, A with parameters θa updates this policy
using the feedback from both the environment (observed
system) and the critic C with parameters θc, which estimates
the state-action value. The policy function π(at|st) can be
represented as a parameterized function whose parameters
can be estimated by using different techniques, such as
Neural Networks (NN). The actor updates the optimal policy
by maximizing the total reward discounted by the parameter
ξ, according to the following optimization function:

π∗(at|st) = argmax
at

E
[ ∞∑
t=0

ξtrt(st, at)
]
. (5)

The critic, on the other hand, evaluates the goodness of
the updated policy by estimating the state-action function
Qπ(st, at). Also, in this case, the action-state function at
the critic can be represented as a parameterized model. The
estimation of the future state-action values is performed by
using the target-critic network as follows:

Qπ(st+∆t, at+∆t) = E
[
rt + ξ Q̂π(st+∆t, at+∆t)

]
. (6)

The target-critic is used in order to overcome the critic
instability caused by frequent updates. The actor can use
the feedback coming from the critic to achieve the optimal
policy by using the method described in [16]. Instead, we
adopt the solution described in [17] for the AC proposed
in this work, which involves the evaluation of the Temporal
Difference (TD) error, given by:

δ = rt + ξQ̂π(st+∆t, at+∆t)−Qπ(st, at) (7)

The actor and the critic networks are respectively updated
according to the following loss functions:

∆A = −βδ lnπ(at|st), (8)

∆C = αδ2, (9)

where β and α are learning rates for the actor and the critic
respectively. The target critic network is updated with a soft-
update method as:

θnewc, targ. = α θoldc, targ. + (1− α)θc, (10)

where θc and θc,targ are parameters for the critic and the
target critic networks respectively.

We implemented the actor and the critic networks using
TensorFlow-2 and Keras libraries with ADAM optimizer in a
fully connected Multi-layer Perceptron Neural Network (NN)

of 3 hidden layers, 64 neurons per hidden layer, learning rates
β = 10−4 for the actor and α = 5 · 10−4 for the critic and
the discount factor ξ = 0.96.

Fig. 2: Architecture of the Actor-Critic Learning Agent.

IV. SIMULATION SETUP

We simulated the UAV-Satellite transmission with dual
connectivity, where a UAV uses two UEs to connect to two
different satellites. The goal of the simulation is to train
our learning agent, to estimate the LOS model of the two
satellites and the optimal policy for selecting appropriate
links (transmissions policy) while tracking the elevation
angles of the satellites. The channel model used to create
the dataset to train our learning agent was obtained using
the DMC reported in [14] in which transition probabilities
are given at specific elevation angles θ, which account for an
interval of ±5◦ in the range θ ∈ [15◦, 165◦] with a step of
10◦. We use only the probabilities for dense urban from [14]
for this work. As explained in Section I, the LOS probability
changes according to the elevation angle. Therefore, the
learning agent must continuously track the variation of the
LOS of the two satellites as a function of the elevation
angles. To this end, using a satellite tracker1, two pairs of
Starlink satellites visible from Chicago downtown in a given

1https://satellitemap.space

Fig. 3: Elevation angles of the pair of satellite connected to
the UE in different contexts.



period of a day were selected: (NORAD-49769, NORAD-
48563) and (NORAD-52487, NORAD-47637). Then we
selected from [14] the relative channel models associated
with the relative elevation angles (θ1, θ2) for each pair of the
selected satellites. These satellites were selected because they
provide two clear handoff events, i.e. from NORAD-49769
to NORAD-48563 and from NORAD-52487 to NORAD-
47637, each showing an abrupt change that forces the learn-
ing agent to retrain its model. Note that the two handoffs
don’t happen simultaneously, since the two radio interfaces
are independent of the other. The selected pairs of angles
and the two handoff events are shown in Figure 3. Figure 4

Fig. 4: Probability that a satellite is visible from a UE at
given satellite elevation angles at Chicago’s latitude.

shows the probability mass function of the satellite visibility
at given elevation angles, evaluated using equation (3) as
compared to the empirical values achieved from the real
dataset collected by the satellite tracker during a window
of 15 mins (the maximum allowed).

Using the selected pairs of angles, and the corresponding
transition probabilities in [14], we constructed state transition
matrices for each satellite for each pair of elevation angles,
obtaining a total of 10 transitions of context, i.e., at each
range of angles, we transition to a different channel model.
The dataset contains 120K records, with each of the selected
elevation angles having records proportional to the satellite
visibility time at that angle.

V. PERFORMANCE EVALUATION

This Section provides a proof of concept of how the RL
agent performs and can address a non-stationary channel
model by retraining its parameters after either moderate angle
elevation variations or abrupt changes, e.g., due to handoffs.
We do not wish to go into the merits of how the satellite
sequences are selected to perform the handoffs, which may,
instead, be the subject of future studies to determine an
optimal policy that addresses the handoffs to mitigate the
abrupt change and reduce the learning phases.

Figure 5 shows the total discounted rewards achieved by
the agent in a sequence of contexts characterized by different
colours. We present the median and the 25 and 75 percentiles

Fig. 5: Total discounted rewards achieved at different
elevation angles.

of the reward. The smooth semi-plateaus within the coloured
strips show the steady states achieved by the model within
the context. These results show how the agent dynamically
detects the change of the satellite elevation angle, which
triggers the change of the LOS probability. The relative
movements of the respective satellites have been plotted in
Figure 3 that, analogously to Figure 5, shows the sequence
of contexts, the relative elevation angles, and two handoff
events.

Figure 6 shows the categorical distribution of the AC
agent and the optimal policy for transmitting with satellite
1, 2, and with both satellites 1, 2 in the different contexts;
that is, P (1), P (2), and P (1, 2), respectively. According to
the channel model provided by 3GPP for dense urban areas
[18] and [14], the higher the elevation angle, the higher the
LOS probability. It is evident from Figure 6 that in all the
contexts, when the two satellites are not at the same elevation
angle, link 1 connects to satellites at higher elevation angles
compared to link 2, which means that link 1 has a higher
LOS probability. It can be seen that our model can detect this
pattern and transmit more on link 1 than on link 2. However,
since the elevation angles in Chicago are not so high for
the selected satellites, the learning agent probes significantly
two links simultaneously w.r.t. a single link to overcome the
NLOS probability. We compare the categorical distributions
of the AC agent to those obtained by the optimal policy
in which the system knows in advance the channel model,
and thus, the relative prediction is optimal. It can be seen
that even in non-stationary conditions, the AC agent is able
to achieve a quasi-optimal scheduling policy without any
modeling. Figure 5 also shows the average time it takes the
agent to retrain the NN model after a change of elevation
angle juxtaposed to the relative context duration. As already
said, this is of utmost importance to optimally utilize the
satellite visibility time. It was found out that, on average, to
update the NN parameters and achieve a local steady state of
the reward function, the RL agent requires 2K iterations of
the DMC which is equivalent to 0.1x the satellite visibility
time at a given elevation angle, which guarantees efficient



Fig. 6: Categorical distribution for multi link scheduling with AC vs. optimal scheduling at different elevation angles.

utilization of satellite visibility.

VI. CONCLUSION

In this work, we have presented an Actor-Critic RL agent
for LOS estimation in non-stationary conditions relying on
multi-link NTNs in dense urban environments. Simulation
results have shown that the learning agent has a performance
similar to an optimal policy with total knowledge of the chan-
nel model in estimating the LOS probabilities of multiple
satellite links and in selecting the suitable scheduling policy
for the selection of the links. The use of multiple links is
for increasing resilience to E2E loss, reliability, data rate,
and throughput, and thus, to improve QoS. In this work,
we outlined the handoffs between LEO satellites with real
traces from the Starlink constellation that lead to an abrupt
change in the elevation angles w.r.t. the user equipment.
In future research, we plan to deepen the analysis of the
handoffs policies and look at the integration of both ground
and terrestrial segments.
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ato, “Actor-critic scheduling for path-aware air-to-ground multipath
multimedia delivery,” in 2022 IEEE 95th Vehicular Technology
Conference:(VTC2022-Spring). IEEE, 2022, pp. 1–5.
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