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Abstract: Imaging plays a key role in the clinical management of Coronavirus disease 2019 (COVID-19)
as the imaging findings reflect the pathological process in the lungs. The visual analysis of High-
Resolution Computed Tomography of the chest allows for the differentiation of parenchymal abnor-
malities of COVID-19, which are crucial to be detected and quantified in order to obtain an accurate
disease stratification and prognosis. However, visual assessment and quantification represent a
time-consuming task for radiologists. In this regard, tools for semi-automatic segmentation, such as
those based on Convolutional Neural Networks, can facilitate the detection of pathological lesions by
delineating their contour. In this work, we compared four state-of-the-art Convolutional Neural Net-
works based on the encoder–decoder paradigm for the binary segmentation of COVID-19 infections
after training and testing them on 90 HRCT volumetric scans of patients diagnosed with COVID-19
collected from the database of the Pisa University Hospital. More precisely, we started from a basic
model, the well-known UNet, then we added an attention mechanism to obtain an Attention-UNet,
and finally we employed a recurrence paradigm to create a Recurrent–Residual UNet (R2-UNet). In
the latter case, we also added attention gates to the decoding path of an R2-UNet, thus designing an
R2-Attention UNet so as to make the feature representation and accumulation more effective. We
compared them to gain understanding of both the cognitive mechanism that can lead a neural model
to the best performance for this task and the good compromise between the amount of data, time, and
computational resources required. We set up a five-fold cross-validation and assessed the strengths
and limitations of these models by evaluating the performances in terms of Dice score, Precision, and
Recall defined both on 2D images and on the entire 3D volume. From the results of the analysis, it can
be concluded that Attention-UNet outperforms the other models by achieving the best performance
of 81,93%, in terms of 2D Dice score, on the test set. Additionally, we conducted statistical analysis
to assess the performance differences among the models. Our findings suggest that integrating the
recurrence mechanism within the UNet architecture leads to a decline in the model’s effectiveness for
our particular application.

Keywords: COVID-19; segmentation; deep learning; convolutional neural networks; UNet; attention
mechanism; recurrency

1. Introduction

Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syn-
drome Coronavirus 2 (SARS-CoV-2), has led to a global health crisis of pandemic pro-
portions. The SARS-CoV-2 infection can result in mild symptoms affecting the upper
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respiratory tract, similar to other viral respiratory diseases, but it can also rapidly lead to se-
vere pneumonia [1]. Consequently, its quick progression highlights the critical significance
of early diagnosis.

Conventional Reverse Transcription-Polymerase Chain Reaction (RT-PCR) was the
only way to detect the disease in the early months of the pandemic, but it may produce
false negative results (low sensitivity), especially in the early stages of infection, when the
viral load is too low and insufficient cellular material may be present in the sample for
effective virus detection [2].

To overcome the major limitations of RT-PCR, High-Resolution Computed Tomogra-
phy (HRCT) of the chest has been adopted as an alternative technique to visually detect
viral infections, especially in compromised, hospitalized patients ([3,4]). In Figure 1, two
distinct diseased patterns are indicated: an area of increased attenuation and hazy density
on the lung lobes, known as Ground Glass Opacity (GGO), and many bilateral areas of
Consolidation, which are portions of typically compressible lung tissue that are filled with
fluid instead of air [5,6]. The accurate detection of these two distinct abnormal features
is the main goal of HRCT, since detecting and quantifying such findings in terms of lung
involvement is a key step in identifying significant information for the classification of the
disease even in patients with a negative RT-PCR test [7]. However, as can be seen in Panel
(a) of Figure 1, the patterns are scattered with undefined contours and often present little
contrast to the surrounding healthy tissue.

Figure 1. Manifestations of COVID-19-infected regions on an HRCT of a confirmed patient. Panel
(a) shows the original grey-level intensities, while in Panel (b) the infected regions are manually
enhanced by radiologists (GGO in blue and Consolidation in red).

Indeed, the segmentation of HRCT images, which means the manual delineation and
quantification of the pathological lung regions from the imaging data, was revealed to
be a challenging and time-consuming task, not only for this reason, but also due to the
high number of cases to report, the magnitude of the imaging data, and the similarity of
COVID-19 patterns with other types of pneumonia [8]. A modern solution to this challenge
is the integration of automated segmentation using Artificial Intelligence (AI), specifi-
cally methods based on Deep Learning (DL) [4,9] and Convolutional Neural Networks
(CNNs) [10–12].

Although there are ad hoc models developed for COVID-19, such as Inf-Net and
Semi-Inf-Net by Fan et al. [13], nCovSegNet of Liu et al. [14], and LungINFseg in [15],
the best results for segmentation of these pathological zones were obtained from UNet
variants. In fact, many researchers have developed UNet-based models to detect COVID-
19-related infections with very promising results (for example, in [16,17]). In [18], a UNet-
based framework for COVID-19 segmentation exploiting a novel connectivity promoting
regularization loss function was proposed. Even in the MICCAI-endorsed challenge
on COVID-19 segmentation, all top 10 models were UNet-based: among all, the best
performing model was a high-resolution UNet with extensive data augmentation and
instance normalization ([19]).
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Many variants of UNet have emerged from its success, including the UNet with atten-
tion (Attention-UNet) [20], the Recurrent Residual convolutional UNet (R2-UNet) [21], and
the Recurrent and Residual convolutional UNet with attention (R2-Attention UNet) [22].

Generally speaking, the attention mechanism enables a DL model to selectively focus
on relevant regions, improving its ability to identify and segment structures of interest
in complex and varied images. The attention modules embedded in CNNs generate
attention maps that highlight the importance of different spatial locations in the feature
maps, improving the overall sensitivity to subtle and dispersed features and enhancing the
capability to handle variations in the size, shape, and appearance of structures.

Regarding medical image segmentation, one of the earliest applications of the attention
mechanism in CNNs was for segmentation of the pancreas in CT images, but still, new
UNet-based architectures incorporating attention modules are used for segmentation of
MRI images, e.g., for segmentation of a brain tumor [23] or an aneurysm [24], and CT
images, e.g., for liver [25] and lung detection.

As far as the segmentation of COVID-19 HRCT data is concerned, various examples
of attention mechanisms embedded in UNet models can be found in the literature as
well. In [26], the authors used an attention mechanism by introducing attention gates in
the network, designing Attention Gate-Dense Network-Improved Dilation Convolution-
UNet (ADID-UNet). In [27], spatial and channel attention modules were incorporated.
Furthermore, other solutions aimed at reducing the false positive rate used the attention
mechanism, for example, by applying a dilated dual attention mechanism (D2A-UNet) [28]
or a combination of attention with a boundary loss function to deal with small and unbal-
anced data [29]. Other novel models born to segment COVID-19 infections with a UNet
architecture and attention mechanism were proposed in [30,31]. The former used a UNet-
like pyramid encoder and an Attention-UNet-like double decoder to design PDAtt-UNet to
segment COVID-19 infections and lungs, while the latter consisted of a modified UNet that
combines the squeeze-and-attention and dense atrous spatial pyramid pooling modules to
fuse global context and multi-scale information.

Recurrent and residual mechanisms are two important architectural components that
have been integrated into CNNs for medical image segmentation.

The recurrent mechanism is designed to capture sequential patterns in data. In fact,
while traditional CNNs are primarily designed for grid-like data, recurrent mechanisms
allow for the network to maintain and update a hidden state that can carry information
across different parts of the input sequence. This can be useful for capturing long-range
dependencies in images with structures and patterns that span large spatial areas, enabling
the model to consider contextual information across the entire image. Moreover, recurrent
connections can be used to iteratively refine predictions, especially when dealing with
complex structures or fine details.

The residual mechanism introduces shortcut connections that bypass one or more
layers in the network to address the vanishing gradient problem. In addition, residual
connections allow for the network to reuse features from earlier layers, aiding in the
learning of hierarchical representations. This is valuable in medical images where different
levels of abstraction may be necessary for obtaining accurate segmentation.

When dealing with medical image segmentation, combining recurrent and residual
mechanisms can be a powerful strategy, leveraging both sequential dependencies and the
ability to train deep networks effectively. These hybrid architectures aim to capture both
spatial and sequential information, improving the model’s ability to handle the complexities
of medical images.

Even though early experiments were performed with recurrence and residual modules
embedded in an UNet-based model for some medical image tasks, such as blood vessel
segmentation of retina, skin, and lung segmentation [21], the potential of R2 networks in
COVID-19 pattern detection has not been extensively investigated in the literature, and
only a few studies have shown promising but preliminary results, both in segmentation [32]
and classification (ProgNET) [33].
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Similarly, the combination of recurrence, residual and attention mechanisms (R2-
Attention UNet) applied to COVID-19 segmentation remains an almost unexplored topic; in
fact, only residual networks with attention (thus without recurrence) have been successfully
applied to this challenging topic (for example, Residual Attention U-Net [34] and CARes-
UNet [35]).

Given the potential of R2 and attention networks, the lack of peer-reviewed compar-
ative articles in the literature is a major limitation in the selection of the most promising
model for future studies. Some works have been concerned with providing a review of the
existing architectures mentioned above and their application, such as in [36] and in [37].
Several DL models on COVID-19 image segmentation were compared in [38], but none
included either attention or recurrence and residual mechanisms. In fact, to the best of our
knowledge, no one has developed a rigorous comparison with a k-fold cross-validation
scheme, a pre-processing workflow, and an evaluation process with several exhaustive 2D
and 3D metrics between these three computational mechanisms and the simple UNet that
can be associated with human cognitive mechanisms aimed at understanding complex im-
ages.

In addition, as shown in Table 1, most analyses use public databases that are limited
in size, both in terms of patients and number of labeled images (e.g., [27,28,32]). Moreover,
some works on COVID-19 segmentation have no cross-validation (e.g., [17–28,33]), and
result in high values of the Dice score if evaluated on small datasets.

Table 1. Main information about literature papers on COVID-19 segmentation.

Reference Dataset: n. Patients (n. Images) Cross-Validation Results (Dice Score)

[13] Inf-Net: >40 (100)
Semi-Inf-Net: 20 (1600)

No
Inf-Net: 68.2%
Semi-Inf-Net: 73.9%

[14] 60 (4630) No 68.43%
[15] 20 (1800+) No 80.34%
[16] 40 (100) N 92.46%
[17] 20 No 82%
[18] 49 (929) No 86%
[19] >661 (295) No 75.4% (first ranked)
[26] >69 (1838) No 82%
[27] 69 (473) No 83.1%
[28] 38 (1745) No 72.98%
[29] >69 (3000 data augmentation) Yes 76%
[30] 219 (5199) No 77.60%
[31] >40 (1963) Yes 86.96%
[32] >40 (100) Yes 77.15%
[33] 60 (110) No 93.4%
[34] 60 (600 data augmentation) Yes 94%
[35] >230 (32,714) Yes 77.6%

In this work, we compared the performances of UNet, R2-UNet, Attention-UNet, and
R2-Attention UNet on the binary segmentation of COVID-19 infections. This comparison
was carried out using a novel dataset of 90 HRCT volumetric scans and (corresponding
to 90 patients and 26,683 images) of patients diagnosed with COVID-19. The dataset was
collected within the regional project “OPTIMIZED —An Optimized Path for the Data Flow
and Clinical Management of COVID-19 Patients”, funded by the Tuscany region. The
project, started in 2021 and still ongoing, aims to create an optimized pathway for the data
flow and clinical management of COVID-19 patients, based on imaging, hematological and
clinical data. On the HRCT imaging data collected within the project, we trained and tested
the mentioned UNet variants under equal computational resources by setting up a five-fold
cross-validation and assessing the strengths and limitations of these models in terms of the
Dice score, Precision, and Recall considering both the single 2D images extracted from the
volumes and the whole 3D volumes of each patient.
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The paper is organized as follows: in Section 2, we present the dataset we used in this
work and the methodology we followed to customize, train, test, and compare the different
architectures; then, in Section 3, the experimental setup and results are described. Finally,
Section 4 discusses and concludes the paper.

2. Data and Methods

The data and methods described in this section are briefly summarized in Figure 2. In
Section 2.1, we report on the provenance and characteristics of the internal and external data
used in our experimental activities. Next, in Section 2.4, we describe the customized models
that we developed, paying particular attention to the main components of each architecture.
Finally, in Sections 2.5 and 2.6, we describe both the training and cross-validation schemes
and the metrics chosen for the evaluation of performances (Section 2.6).

Figure 2. Schematic summary of the pipeline we followed: We started by describing the internal and
external datasets, then moved on to the description of the models before showing the training and
test set-up.

2.1. Data

The following subsections elucidate the dataset employed in this study, utilized for
training, validation, and testing of the models.

“OPTIMIZED” Dataset

Between February 2021 and April 2022, the Optimized project gathered 90 HRCT
volumetric scans of 90 patients diagnosed with COVID-19 at the Pisa University Hospital,
including 22 retrospective cases (hospitalized between June and September 2020) and
68 prospective cases (hospitalized between February 2021 and April 2022).

The Ethical committee verified the study’s compliance with the Standards of Good
Clinical Practice of the European Union and with the ethical principles expressed in the
Declaration of Helsinki, as stated in the consent for publication signed by each patient
enrolled in the project (approval code 19275, approval date: 25/02/2021). After being
collected, each HRCT scan underwent an anonymization process in order to remove all the
personal information associated with the patient.

The dataset consists of a total of 26,683 2D slices extracted from all volumes, each with
a resolution of 512 × 512 pixels per image.

In Table 2, the main data characteristics, expressed as median values and interquartile
ranges (IQR), are reported.

As for ground truths, we obtained segmentation masks as an agreement among three
expert radiologists, two of whom had five years of experience and one had more than
ten years of experience. The process consisted essentially of three main steps. First of all,
preliminary segmentation masks were provided by one of the two youngest radiologists.
He used UIP-net [39], which is an encoder–decoder convolutional neural network trained
from scratch for the segmentation of typical radiological patterns of Idiopathic Pulmonary
Fibrosis (IPF). Since both IPF and COVID-19 manifest with interstitial lung abnormalities in
chest CTs, the radiologist used segmentation provided by UIP-net as a preliminary mask to
facilitate his manual work. Once the masks from UIP-net were obtained, he proceeded with
the second step by manually refining the results and adding consolidations. The resulting
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segmentation masks were then checked by the second youngest radiologist who confirmed
and corrected in case of error the segmentation provided by his colleague. To carry out
this operation, they both used 3D Slicer (https://www.slicer.org (accessed on 15 December
2023) ), an open-source software for visualization, segmentation, registration, and analysis
of biomedical images. The third phase consisted of the final review of the masks provided
by the two radiologists by the senior radiologist, which produced our final ground truth
consisting of a single binary mask containing both GGO and consolidation masks shown in
Figure 1.

Table 2. OPTIMIZED Dataset characteristics.

Characteristics Median [IQR]

Number of slices 296 [279–315]
Number of diseased slices 218 [203–246]

Healthy slices over diseased slices (%) 45.36% [19.31–48.28%]
Ground truth area (mm2) 428.93 [4.33–25.81]

Ground truth volume (mm3) 640852.6 [262534.03–1253504.56]
Pixel spacing (mm) 0.68 [0.62–0.72]

Slice thickness (mm) 1.44 [1.34–1.50]
Slice dimensions 512 × 512

2.2. Data Normalization and Augmentation

To remedy the intrinsic variability in image acquisition and intensity values among
different scanners and settings, we followed image normalization procedures, thus enabling
the direct comparison of image data retrieved from diverse sources (see Figure 3).

First, we transformed the DICOM pixel values into Hounsfield units (HU) to account
for the physical properties of the tissues and establish a common scale across all the images,
since HU is a scale used in CT imaging to quantify radiodensity. To transform DICOM pixel
values to HU, we accessed the DICOM pixel values (PV) from the image data and extracted
the DICOM Rescale Slope (Rsl) and Rescale Intercept (Rint) included in the metadata
information. These parameters are necessary for the linear transformation from DICOM
pixel values to HU we performed using the following formula:

HU = PV × Rsl + Rint. (1)

This linear transformation scales the pixel values to Hounsfield Units based on DICOM
metadata.

Once transformed, we applied clipping to restrict the HU values within a specific
range, [−1000HU; +1000HU], encompassing the gray-level spectrum from lung signal to
bone density, thus eliminating values outside the range of our interest, to guide the network
attention to the correct gray-scale range. This means that we set all pixels that had HU
values greater than +1000 to +1000 and all pixels lesser than −1000 to −1000. This step
was essential for ensuring the stability of the models, particularly when confronted with
variations in image intensity scaling.

Finally, we rescaled the obtained HU values to fit within the normalized range of [0, 1]
in order to speed up model convergence and to guarantee its stability during training. The
rescaling operation was performed according to the following Equation (2):

Irescaled = lb +
(I − Imin)

Imax − Imin
× (ub − lb). (2)

In Equation (2), lb and ub represent, respectively, the lower and upper bounds of the
range of values in which the pixels are to be rescaled (in this case lb = 0 and ub = 1), while
Imin and Imax are the current minimum and maximum values of pixels in the image.

https://www.slicer.org
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Figure 3. An example of (a) an image from the internal and (b) the external dataset. The two images
are distinguished by gray-level distributions (c); thus, a preliminary step consisting of a histogram
matching operation was necessary (d).

Regarding data augmentation, we used a horizontal flip on the fly, which is a state-
of-the-art technique that allows us application of data augmentation in real time during
training of the model. This reduces the need for storage, allows for dynamic augmentation
where the augmentation parameters are randomized for each batch, adding more variability
to the training data, and, finally, increases efficiency because on-the-fly data augmentation
can be more computationally efficient, particularly when working with large datasets.

We applied the horizontal flip in order to perform a rigid transformation compatible
with the view of our data, which was the axial one. To achieve that, we reversed the order
of the columns of each image, thus producing a mirrored version of the original image
along the vertical axis (i.e., from right to left). In this way, we doubled the number of
samples provided to each model during the training since we applied data augmentation
only on the images belonging to the training set, therefore keeping those of validation and
test sets unchanged.

2.3. UNet Architecture

UNet is a Fully Convolutional Network (FCN) designed for medical image segmenta-
tion composed of an encoder and a decoder that offer it its distinctive U-shaped structure
(Figure 4a).
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Figure 4. Schematics of the UNet-based models trained and tested in this work: UNet (a), R2-UNet
(b), Attention-UNet (c), and R2-Attention UNet (d).

For this study, the architecture was customized. The input layer took as input a gray-
scale 2D image with 512 × 512 pixels. The encoding path involved repeated application
of two 3 × 3 convolutions, each followed by a Rectified Linear Unit (ReLU) activation
and a max pooling operation. This process doubled the number of feature maps for each
convolutional layer along the down-sampling path, ranging from 32 to 256 maps.

Along the decoding path, starting from 256 maps, each 2 × 2 convolutional layer
halved the number of feature maps. At each stage of the decoding path, skip connections
were employed to pass the features from the encoder to the corresponding decoder path
through concatenation. This allowed the recovery of spatial information lost during down-
sampling operations. After concatenation, the resulting feature maps underwent two
consecutive 3 × 3 convolutions, each followed by a Rectified Linear Unit (ReLU) activation.

The sigmoid activation function was used for the last convolutional layer, consisting
of a 1 × 1 convolution used to map each feature vector to the desired number of classes,
thus returning a 512 × 512 map as the binary mask discriminating the diseased tissue from
the healthy one.

In Table S1, in Supplementary Materials, we reported the transformation functions
layer by layer of the UNet architecture.

2.4. UNet-Derived Models

An overview of architecture objects of comparison used in this work, which are
sourced from UNet, is given in the next subsections. We describe the Recurrent Residual
Convolutional Neural Network based on UNet (R2-UNet) in Section 2.4.1, the UNet with
the addition of attention gates (Attention-UNet) in Section 2.4.2, and finally the Recurrent
Residual Convolutional Neural Network based on UNet with the addition of attention
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gates (R2-Attention UNet) in Section 2.4.3. In addition, the main components of the
several models are described in order to highlight their contribution to the standard UNet
architecture.

2.4.1. R2-UNet Architecture

We obtained R2-UNet by adding recurrent residual convolutional blocks, explained
in the following paragraph, at each stage of the architecture of UNet (Figure 4b). We set
R2-UNet so that it takes as input data single-channel, gray-scale, 2D images with 512 × 512
pixels. The depth of the encoder and the decoder path was set equal to 3.

As mentioned above, every stage of the encoding and decoding paths consists of
a recurrent residual convolutional block with three recurrent convolutional layers, each
performing a convolution followed by ReLU activation function. To increase the ability of
the model to integrate contextual information, residual connections were added to each
recurrent convolutional layer, with a number of discrete time steps equal to 2, in order to
recursively process the input only once at each stage. The recurrent residual convolutional
blocks and their functioning are described in detail in the following paragraph.

In Table S2, in Supplementary Materials, we reported the transformation functions
layer by layer of R2-UNet architecture.

Each recurrent residual convolutional block consists of two recurrent convolutional
layers that evolve over two discrete time steps T. This means that each recurrent convo-
lutional layer performs T convolutions followed by ReLU activation function. We set T
equal to 2; thus, at time step t = 0, only the input of the block is convoluted; for t = 1, the
convolution is with concatenation, which represents residual connection of the block input
and the result of the previous step; see Equation (4). Finally, the output of the entire block
consists of the concatenation between the input of the recurrent residual block and the
output of the last recurrent convolutional layer (i.e., at time step t = 1) (see Equation (3)).

Formally, considering the ul input sample in layer l of the recurrent residual block
and a pixel located at (i, j) in an input sample on the kth feature map in the recurrent
convolutional layer, output zijk at time step t, if t > 0, of the recurrent convolutional layer
can be expressed as follows:

zijk(t) = w f
k × u(i,j)

l (t) + wr
k × u(i,j)

l (t − 1) + bk. (3)

In the equation, u(i,j)(t) and u(i,j)(t − 1) denote the feed-forward and recurrent input,
respectively, which are the vectorized patches centered at (i, j) of the feature maps in the
current and previous layers, respectively. w f

k and wr
k denote the feed-forward and recurrent

weights, respectively, and bk is the bias. The output of the last recurrent convolutional layer
zijk(t) is activated by a ReLU function, f (zijk(t)), and the output ul+1 of the entire recurrent
residual convolutional block, given the input of the block ul , can be expressed as follows:

ul+1 = ul + f (zijk(t)). (4)

2.4.2. Attention-UNet Architecture

We included Attention Gates in the decoding path of the UNet architecture (as de-
scribed in more detail below) in order to identify the salient image regions and amplify their
influence while suppressing the irrelevant and confusing information. This was performed
to enforce a more focused use of feature maps. As in the previous cases, Attention UNet
takes as input data single-channel, gray-scale, 2D images with 512 × 512 pixels, and the
depth of both the encoder and the decoder paths was set equal to 3.

In Table S3, in Supplementary Materials, we reported the transformation functions
layer by layer of Attention-UNet architecture.

An AG is put on each skip connection that passes the feature maps from a down-
sampling layer to the corresponding upsampling one (see Figure 4c). It is used to prune
irrelevant and noisy activations in the stack of feature maps (i.e., the light blue one) that are
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concatenated with the feature maps obtained by upsampling those of the previous layer
(i.e., the light gray one).

For example, considering layer (v), the corresponding AG takes in input the features
maps of the previous layer (iv) and those from the corresponding downsampling one (iii).
These stacks of features are first convoluted with a 1 × 1 kernel to shrink all the maps
into a stack with a fixed size Nf with Nf computed as a quarter of the number of feature
maps of (iv) so as to match, after the concatenation, the number of feature maps of (iv).
Then, they are concatenated and passed through a ReLU activation layer and convoluted
again with kernel 1 × 1 × 1 to obtain a single mask containing attention coefficients for
each pixel. Attention coefficients tend to have significant values in target regions and small
values in background ones, so as to improve the accuracy of segmentation. After that,
they are passed through a sigmoid activation layer. The resulting mask is used to multiply
element-wise the feature maps from (iii).

2.4.3. R2-Attention UNet Architecture

Inspired by the work of Zuo and colleagues [22], to obtain R2-Attention UNet, we
modified the architecture of UNet by inserting recurrent residual convolutional block (see
Figure 4d) at each stage of the architecture, and AGs on the stages of the decoding path. As
for R2-UNet and Attention-UNet, R2-Attention UNet took as input data single-channel,
gray-scale, 2D images with 512 × 512 pixels, and the depth of the encoder and the decoder
path was equal to 3.

Every stage of the encoding and decoding paths consists of a recurrent residual convo-
lutional block with three recurrent convolutional layers, each performing a convolution
followed by ReLU activation function. Recurrent connections were added to each recurrent
convolutional layer.

In Table S4, in Supplementary Materials, we reported the transformation functions
layer by layer of R2-Attention UNet architecture.

2.5. Training and Cross-Validation Scheme

For all the models, we selected the binary cross-entropy as a loss function, and the
Adam Optimizer was used as the optimization algorithm with a learning rate equal to
0.001, the exponential decay rates for the moving average of the gradient equal to 0.9 and
the squared gradient equal to 0.999. The batch size was set to 5.

The training run on Keras (version 2.3.1) and TensorFlow frameworks (version 1.14.0)
was coded in Python 3.6. All experiments were performed under Windows 10 OS on a
machine with CPU Intel(R) Core(TM) i7-10700F CPU @ 2.90GHz, GPU NVIDIA GeForce
GTX 1650, and 32 GB of RAM.

We set the number of epochs to 80 and saved the trained models at each epoch to test
their performance afterward. Specifically, we implemented early stopping by calculating
the validation loss after each epoch and defining a patience (i.e., the number of epochs to
wait before stopping training if no improvement in performance is found on the validation
set) equal to 20. Then, after saving the weights at each epoch, for each model, we ran the
test by loading the saved weights at the epoch when the model reached the lowest loss on
the validation set out of 20 epochs.

In order to make the training independent from the data split, we performed a k-fold
cross-validation on the dataset described in Section 2.1. There were 90 patients in total, 18
patients in each fold. We chose k = 5, and we set up the k-fold cross-validation so that each
patient was either in the validation or the training set. In addition, because the average
volume of the diseased regions can vary greatly between cases, we stratified them based on
the average area of the diseased regions, expressed in mm3. In this way, the stratification
ensures that for each fold there is a proportional number of cases with diseased regions of
different sizes. We trained each model on 3 folds, validated it on 1 fold, and then tested it
on the leftover fold.
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2.6. Evaluation Metrics

To analyze the performance of the networks, we decided to use metrics defined on
slices (2D) as well as on the entire volume (3D). In fact, the problem addressed is charac-
terized by high heterogeneity of the images to be segmented, alternating between those
without pathology (about 30%, usually concentrated at the apices and bases of the lungs)
and others in which lesions involve most of the lungs. Next to the most commonly used
2D metrics, 3D metrics provide comprehensive information on the predictive capabilities
of a model.

The 2D metrics we used were the 2D Dice Score (DS), 2D Precision (Pr) and 2D
Recall (Re):

DS =
2|Pm ∩ GTm|
|Pm|+ |GTm|

=
2TP

FP + 2TP + FN
, (5)

Pr =
|Pm ∩ GTm|

|Pm|
=

TP
TP + FP

, (6)

Re =
|Pm ∩ GTm|

|GTm|
=

TP
TP + FN

, (7)

where Pm is the Predicted Mask, GTm the Ground Truth Mask, TP the True Positive
(i.e., |Pm ∩ GTm|), FP the False Positive, and FN the False Negative.

The number of slices corresponding to anatomical areas above and below the region
of interest, i.e., that including the lungs, can vary greatly. For this reason, we expressed
the 2D scores also at the patient level, as suggested in [40]. We named these scores the 2D
Aggregated Dice score, the 2D Aggregated Precision, and the 2D Aggregated Recall.

The 3D metrics used were the 3D Dice Score (DS), the 3D Precision (Pr), and the 3D
Recall (Re). The latter were defined as 2D counterparts, but the predicted and ground truth
masks were obtained by combining the 2D masks into a 3D volume.

Due to the high skewness of the distributions of the scores calculated on the predictions
(see section 3 ), none of them follow a Gaussian. Therefore, we reported all the results as
medians and the corresponding (25–75%) percentile range.

To compare the predictive capabilities of the models, we took advantage of the fact
that the scores were calculated using the same k-fold partitioning, so we could evaluate
the results at the patient level. Thus, we used a nonparametric paired test for location, the
Wilcoxon paired signed-rank test.

3. Results

In this section, we describe the obtained results. In Section 3.1, we show the trends of
the loss function during the training of each model. In Section 3.2, we report the values
of the metrics chosen for the evaluation of model performance and the statistical analysis
performed on them.

3.1. Convergence

As shown in Figure 5, UNet and Attention-UNet reached convergence much faster
than R2-UNet and R2-Attention UNet. Furthermore, up to the 25th epoch, the latter two
models exhibited very unstable loss function trends on both the training and the validation
set before reaching convergence.

Regarding the median convergence epoch (i.e., the early stopping epoch), UNet and
Attention-UNet show similar behavior since their training stopped at the 15th epoch.
Instead, both R2 networks require a higher number of epochs to reach convergence (R2-
UNet stopped at the 43th and R2-Attention UNet at the 38th epochs).
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Figure 5. Loss function trends in relation to the number of epochs during the training of the models.
The continued dark and light orange line represents, for each epoch, the median loss value over the
5 folds on the training and validation sets, respectively. The dotted line represents the mean trend of
the loss function on the validation set for each epoch. Finally, the shaded area in orange represents
the range of epochs within which we implemented early stopping as described in Section 2.5.

Both the increase in the median number of epochs before convergence and the time
required to conclude a single epoch for R2 networks lead to significantly different conver-
gence times compared to UNet and Attention-UNet. The minutes needed to end an epoch
for UNet, Attention-UNet, R2-UNet, and R2-Attention UNet are, respectively, 12, 13, 23,
and 25. Consequently, the median convergence times for UNet and Attention-UNet are
comparable (180 and 195 (+8.3% compared to UNet) minutes, respectively). Vice versa,
R2-UNet has a median convergence time of 989 min (+449% compared to UNet) while
R2-Attention UNet has a median convergence time of 950 min (+427% compared to UNet).

Another major difference between the models is the heterogeneity of performance
and early stopping epochs among the different folds. UNet and Attention-UNet have
small interquartile ranges (IQR five and three epochs, respectively) proving a very similar
behavior among the folds. On the contrary, R2-UNet has an IQR of 9 epochs and R2-
Attention-UNet has an IQR of 28 epochs. This discrepancy between folds could reflect a
greater need for data for more complex networks. i.e., those with a recurrence mechanism.
The total training times are 16 h, 17 h and 30 min, 31 h, and 33 h and 33 min for UNet,
Attention-UNet, R2-UNet, and R2-Attention UNet, while the inference times are 21 min,
16 min, 19 min, and 17 min, respectively. In Table 3, the training and inference times are
shown, as well as the memory consumption for both RAM and GPU.

Table 3. Training and inference times and memory usage (in terms of RAM and maximum GPU
consumption) for each model.

UNet Attention-UNet R2-UNet R2-Att UNet

Training Time 16 h 17 h 30 min 31 h 33 h 30 min
Inference Time 21 min 16min 19 min 17 min
Trainable parameters 1,946,305 1,978,900 5,973,889 6,006,484
RAM consumption 3.16 GB 3.99 GB 11.67 GB 12.50 GB
Maximum GPU
consumption 1.28 GB 2.24 GB 5.20 GB 6.40 GB
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3.2. Quantitative Results and Comparisons

Performance analysis in the literature is usually performed on the basis of 2D Dice
score calculation on all images included in the test set, without grouping the patients
included in the test set for each fold. Therefore, for a more consistent comparison with the
literature, we first calculated the 2D Dice score on all images in the test set. In Table 4, we
report the median and IQR values of the score, thus showing that Attention-UNet reached
the maximum value of 81.93%

Table 4. Median values and IQR of 2D Dice score computed on all the images of the test set. In green
is the maximum value.

2D Dice Score

UNet 81.88% [63.73–91.63%]
Attention-UNet 81.93% [64.17–91.65%]
R2-UNet 72.38% [32.3–87.05%]
R2-Attention UNet 60.40% [0–84.46%]

To more thoroughly evaluate the performance of each model, we next calculated all
the metrics described in Section 2.6. We obtained each value in Table 5 by first calculating
the medians on the scores of all the slices for each patient in the test set, and then the
median on all the values obtained.

In Table 5, Attention-UNet shows the maximum values, for both 2D and 3D Precision,
reaching, in the latter case, 92.09%. The values of the Dice score, both 2D and 3D, obtained
by Attention-UNet are also the highest among all, the maximum of which is reached in the
3D case, with 79.86%. Regarding the maximum values of 2D and 3D Recall, the former is
reached by UNet, the latter by R2-UNet.

Table 5. Values of metrics for evaluating the performances of the models obtained by grouping the
test set per patient at each fold. Highlighted in green are the maximum values for each metric, with
an underline for the highest value of all metrics. All the values are expressed as median [IQR].

Dice Score
2D

Precision
2D

Recall
2D

Dice Score
3D

Precision
3D

Recall
3D

UNet 72.05
[64.23–78.15]

85.45
[78.55–90.63]

73.59
[65.77–80.97]

78.77
[73.20–85.27]

88.52
[80.89–94.66]

76.95
[67.60–84.42]

Att
UNet

72.43
[65.25–78.08]

86.82
[80.46–93.06]

73.52
[65.11–80.20]

79.86
[73.35–85.62]

92.09
[83.25–95.99]

73.64
[64.45–84.05]

R2
UNet

63.11
[50.97–71.13]

79.00
[63.90–86.98]

72.40
[59.48–84.58]

72.27
[59.08–82.10]

81.12
[54.87–89.66]

78.47
[64.76–83.65]

Att+R2
UNet

54.17
[29.41–68.39]

75.47
[56.51–85.65]

60.60
[43.47–73.17]

67.42
[37.42–81.28]

78.03
[49.93–90.16]

59.96
[27.27–79.19]

In Figure 6, a visual representation of the scores shown in Table 5 is given, emphasizing
that for the 2D Dice score, Precision and Recall, and 3D Precision, the dispersion of the
R2-UNet and R2-Attention UNet scores is greater than that obtained from the UNet and
Attention-UNet models.

To statistically compare differences in model performance and better understand
the impact of adding each component and mechanism (e.g., AG for attention, residual
connection for recurrence) to the basic UNet architecture, one at a time, we compared the
following:

1. UNet and Attention-UNet to evaluate the impact of adding the attention mechanism
in the UNet;
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2. UNet with R2-UNet to evaluate the impact of adding the recurrent mechanism in
the UNet;

3. UNet with R2-Attention to evaluate the impact of adding both the attention and the
recurrent mechanism in the UNet;

4. Attention-UNet with R2-Attention UNet to evaluate the effect of adding recurrence in
a UNet model that already had attention;

5. R2-UNet with R2-Attention UNet to evaluate the effect of the addition of the attention
in a UNet model that already had a recurrence.

Figure 6. Violin plots representing the median values and the interquartile ranges for 2D aggregated
Dice score, Precision and Recall, and 3D aggregated Dice score, Precision, and Recall. Given the
significant skewness of the distributions, we indicate that the scores follow a non-normal distribution,
thus we choose to apply the Wilcoxon Signed-Rank test for non-parametric data to evaluate the
significance of the differences in performance between the models.

Given the non-normality of data distribution shown in Figure 6 where it is evident
that the distributions have a significant skewness, we applied the Wilcoxon Signed-Rank
test for non-parametric data on the 3D metrics, i.e., on the 3D Dice score, 3D Precision, and
3D Recall.

In Figure 7, we represent the results of the analysis mentioned above, also summarized
in Table 6.

Figure 7. Representation of the results of statistical analysis. The arrows with three different colors
indicate the direction of improvement of three different metrics, i.e., yellow for 3D Dice Score, light
orange for Precision, and dark orange for Recall. The dotted lines represent non-significant differences.
In the boxes placed on each arrow, the difference in percentage is shown, and the p-value.
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Table 6. Results of statistical analysis. The values in each cell represent the percentage increase in the
metric. In red are highlighted the values with no significance.

3D Dice Score 3D Precision 3D Recall

UNet vs. Attention-UNet (1) 0.04% 1.34% 1.51%
UNet vs. R2-UNet (2) 6.19% 5.32% 0.86%

UNet vs. R2-Attention UNet (3) 6.21% 6.98% 8.09%
Attention-UNet vs. R2-Attention UNet (4) 6.44% 8.39% 6.37%

R2-UNet vs. R2-Attention UNet (5) 1.85% 0.66% 9.55%

The results show that the difference in 3D Dice score is not significant between UNet
and Attention UNet and between R2-UNet and R2-Attention UNet. Regarding 3D Precision,
only the difference between R2-UNet and R2-Attention UNet is not significant. Finally, the
difference between UNet and R2-UNet is not significant in terms of 3D Recall.

Finally, in Figure 8, we report the 3D Dice scores of each model for each patient, along
with the relative Gaussian Process regressions, that are represented as a function of disease
volume (expressed in cm3), calculated on the ground truth.

It is first inferred that there were some patients who are misclassified by all networks,
particularly those with the lowest diseased volumes. Then, UNet and Attention-UNet
obtained values greater than 50% on those patients for whom the disease volume was
greater than 100 cm3. Also, R2-UNet obtained 3D Dice score values greater than 50%,
but on patients with a disease volume greater than 1300 cm3. Finally, R2-Attention UNet
worked generically much worse; in particular, there were numerous patients with 3D Dice
scores close to 0%. These cases were mostly concentrated, but not limited, to low-volume
lesions, i.e., smaller than 1000 cm3.

Figure 8. 3D Dice score of each model, and on each patient. The yellow squares represent the values
obtained from the UNet, the orange circles those from the Attention-UNet, the pink triangles from the
R2-UNet, and finally the lilac rhombuses from the R2-Attention UNet. The curves are the Gaussian
Process regressions on the 3D Dice score represented as a function of the volume of the disease. The
coloured areas visually represent the 95% confidence interval of the respective curve. Finally, the
horizontal dotted line reports the threshold of a Dice score equal to 50%, enhanced to better show
those patients on which the models performed the worst.

3.3. Ablation Study

To provide a thorough understanding of the functionality and performance of the
R2-UNet, Attention-UNet, and R2-Attention UNet architectures, we carried out an ab-
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lation study that clarified how individual contributions of each component impact the
overall performance.

To perform the ablation study, all models were evaluated by removing the peculiar
components, namely recurrent, residual blocks for R2-UNet, attention gates for Attention-
UNet and recurrent, residual blocks with attention gates for R2-Attention UNet, one at
a time.

More precisely, for an initial assessment in the case of R2-UNet, we placed the recurrent,
residual blocks R1 and R2 in Stages (iv) and (v) of Figure 4. Then, we removed the residual
block in Stage (v), evaluating the performance with only the recurrent, residual block R1 in
Stage (iv).

Concurrently, we adopted a similar approach to the Attention-UNet model by first
training and testing the network with AGs A1 and A2 on Stages (iv) and (v) of Figure 4,
and then only with A1 on Stage (iv).

Finally, for R2-Attention-UNet, we first added two recurrent, residual blocks R1 and
R2 with AGs A1 and A2 in Stages (iv) and (v), and then we put only the recurrent and
residual block R1 in Stage (iv), with one AG A1.

We trained and tested each model on the entire dataset, without performing five-fold
cross-validation, and we presented the numerical values of the 2D Dice score for each
model in Table 7.

Table 7. Median values and interquartile ranges of 2D Dice score of each model under ablation study.
The maximum values for each model are highlighted in green.

Model 2D Dice Score

UNet 79.51% [63.31–91.33%]
Attention-UNet with A1 76.43% [41.80–87.81%]
Attention-UNet with A1 and A2 82.20% [58.59–91.90%]
Attention-UNet with A1, A2, and A3 83.14% [60.99–91.82%]
R2-UNet with R1 68.85% [59.37–90.95%]
R2-UNet with R1 and R2 69.43% [21.66–83.79%]
R2-UNet with R1, R2 and R3 73.61% [28.98–87.33%]
R2-Attention UNet with R1&A1 72.38% [28.82–85.77%]
R2-Attention UNet with R1&A1 and R2&A2 70.51% [64.37–92.34%]
R2-Attention UNet with R1&A1, R2&A2, and R3&A3 57.17% [23.09–83.96%]

4. Discussion and Conclusions

In this work, we evaluated the performance of four distinct UNet-based Convolutional
Neural Networks (CNNs), namely UNet, R2-UNet, Attention-UNet, and R2-Attention
UNet, using the novel OPTIMISED project dataset comprising 90 COVID-19 patients. We
investigated whether integrating advanced mechanisms, such as attention and recurrence,
could enhance the accuracy of segmenting the typical disease infections. Thus, the consid-
ered CNNs differed only by the presence of attention and recurrence and were invariant for
all other hyperparameters (e.g., number of trainable parameters, number of layers, pooling
strategies). In order to compare the performance at the patient level, the models were
trained using the same five-fold cross-validation scheme. Evaluations were based on a
combination of traditional (e.g., 2D Dice score) and ad hoc segmentation scores (e.g., 3D
Dice score, aggregated 2D scores) to mitigate the effects of patient variability.

This rigorously structured analysis offered us an in-depth view of the strengths and
weaknesses of each model. First of all, Attention-UNet emerges as the best performing
model for the task of binary segmentation of COVID-19 infections. Remarkably, it achieved
superior performance, reaching a value of over 80% for the 2D Dice score, with a conver-
gence time of approximately 3 h. On the contrary, the recurrence mechanism seems to
deteriorate the performance in terms of each of the chosen metrics (reduction from −7% to
−21%). From the point of view of convergence time and computational resources required,
recurrence has disproportionate computational loads compared to the results obtained,
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leading not only to an increase of about +400% in the time required for convergence com-
pared to UNet but also to a memory load exceeding 11 GB. This imbalance underscores the
inefficiency of incorporating recurrent mechanisms for the COVID-19 binary segmentation
task, revealing the need for more streamlined and efficient approaches.

Lastly, the recurrence mechanism leads to an overestimation of the amount of disease
(also visible in Figure 9). This overestimation significantly impacts the Dice scores, reducing
them to below 50% for both R2 and R2-Attention UNet, especially when the amount of the
disease is low. This tendency to overestimate disease is further evident in Precision values,
both 2D and 3D, derived from R2 and R2-Attention UNet, which fall below those obtained
by UNet and Attention-UNet.

Figure 9. Visual comparisons between the ground truths (green) and the predictions (yellow) of
UNet, R2-UNet, Attention-UNet, and R2 Attention-UNet. The red circles contain the areas where the
models overestimated the disease.

Furthermore, in our comprehensive ablation study, we systematically investigated
the impact of attention gate positioning within the architecture of an Attention U-Net for
the analyzed task. Our findings reveal a crucial insight into the optimal configuration of
attention mechanisms. Remarkably, the results demonstrate that superior performance
is achieved when attention gates are placed at every stage in the decoding path. This
placement ensures that the network effectively captures and leverages long-range depen-
dencies, thereby enhancing the model’s overall performance. On the contrary, examination
of recurrent mechanisms elucidated a distinct phenomenon. Specifically, the inclusion
of attention gates at each stage within the recurrent mechanism in R2-Attention UNet
exacerbates performance degradation. This counterintuitive observation underscores the
nuanced interplay between attention mechanisms and recurrent architectures, highlighting
the importance of thoughtful design choices in the pursuit of optimal model performance.

The better performance of attention with respect to recurrence in the analyzed task
may be due to the fact that attention can adaptively weigh different parts of the image based
on their relevance to the task while capturing complex patterns and relationships within
it. On the contrary, recurrence may struggle to capture complex spatial dependencies and
may require more complex architectures than UNet to model intricate patterns effectively,
especially in COVID-19 segmentation since the disease is sometimes randomly spread over
the entire image. From the point of view of computational load, since recurrence operates
sequentially, the processing of one part of the image at a time may require longer training
and inference times. Moreover, recurrent mechanisms may need to store information about
the entire sequence, leading to higher memory requirements.

To summarize, for this task, these results emphasize that it is effective to adapt a simple
framework to the size and the nature of the data and to avoid more complex architectures.
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However, a limitation of our work is the fact that the analysis was applied only to the
OPTIMISED project dataset, which currently includes a total of 90 patients. The lack of an
external independent test set was addressed by the use of a rigorous k-fold cross-validation,
which can provide an estimate of the generalization capability of the models. A second
minor limitation regards the use of binary segmentation models which only a focus on
distinguishing diseased tissues from healthy ones. Whereas this classification approach
is sufficient to correctly define diagnosis and prognosis, adding a multi-class strategy to
differentiate between GGO and consolidations could improve the assessment of disease
severity more than binary quantification of disease. Indeed, in clinical practice, radiologists
need to quantify each individual pattern because, on the one hand, the presence of GGO
is often associated with early or mild disease, and on the other hand, consolidations may
indicate more severe lung tissue involvement such that the lungs may be irreversibly
compromised.

Our upcoming study will center on the integration of additional data and an external
validation procedure into a unique framework based on Attention-UNet, with optimal
capability to generalize on unseen data, starting from the limits and outcomes produced
in this work. In fact, we will add more sophisticated components to Attention-UNet’s
architecture to enable the transition from binary to multi-class segmentation of COVID-19
infections, as we discovered that the attention mechanism performs better than the others
for the binary segmentation of COVID-19-related infections. Moreover, we will define ad
hoc GANs to generate more synthetic data in an effort to increase data variability.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jimaging1010000/s1, Table S1: transformation functions layer by
layer of the UNet architecture; Table S2: transformation functions layer by layer of the R2-UNet
architecture; Table S3: transformation functions layer by layer of the Attention-UNet architecture;
Table S4: transformation functions layer by layer of the R2-Attention UNet architecture.
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