
Information and Software Technology 167 (2024) 107373

A
0

F
M
a

b

c

A

D
o
.
e

M
6
6

K
F
I
F
I
S

1

c
a
F
t
t
t
w
a
c
f
t
w
b
t
i

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

lakiness goes live: Insights from an In Vivo testing simulation study
orena Barboni a,c, Antonia Bertolino b, Guglielmo De Angelis a,∗

IASI–CNR, Rome, Italy
ISTI–CNR, Pisa, Italy
University of Camerino, Camerino, Italy

R T I C L E I N F O

ataset link: https://github.com/IASI-SAKS/gr
ucho/releases/tag/FastJsonInvivoFlakiness-v1
0, https://github.com/gulyx/jvm-serializers/tr
e/fastJSON-benchmark-only

SC:
8-04
8-U01

eywords:
laky test
ntermittent failure
ield testing
n Vivo testing
oftware testing

A B S T R A C T

Context: Test flakiness is a topmost concern in software test automation. While conducting pre-deployment
testing, those tests that are flagged as flaky are put aside for being either repaired or discarded.
Objective: We hypothesise that some flaky tests could provide useful insights if run in the field, i.e., they could
help identify failures that manifest themselves sporadically during In House testing, but are later experienced
in operation.
Method: We present the first simulation study to investigate the behaviour of flaky tests when moved to the
field. The work compares the behaviour of known flaky tests from an open-source library when executed in
the development environment vs. when executed in a simulation of the field.
Results: Our experimentation over 52 test methods labelled as flaky provides a first confirmation that moving
from the development environment to the field, the behaviour of tests changes. In particular, the failure
frequency of intermittently failing tests can increase, and we could also identify few cases of field failures
that would have been hardly detected during In House testing due to the numerous combinations of inputs
and states. In most cases, such flakiness was rooted in the design of the test method itself, however we could
also identify an actual bug.
Conclusion: The results of our study suggest that the identification of an intermittently failing behaviour could
be a valuable hint for a test engineer, and hence flaky tests should not be dismissed right away.
. Introduction

The problem of flaky tests, i.e., tests that present intermittent out-
omes when re-executed, is increasingly drawing researchers’ attention,
s testified in a recent systematic review of scientific literature [1].
ar from being a purely academic concern though, test flakiness is in
he first place a diffuse practitioners’ pain. In his ICST 2017 keynote
itled ‘‘The state of continuous integration at Google’’,1 Micco reported
hat almost 16% of their 4.2M tests showed some level of flakiness,
hich blocked or delayed releases. Some years later, Pirocanac wrote
Google Testing blog referring to test flakiness as one of the main

hallenges of automated testing.2 In Microsoft [2], data collected over
ive projects for 30 days to analyse the prevalence of flaky tests showed
hat, across those projects, the percentage of builds in which flaky tests
ere observed varied between 14% up to 52%. In Meta, a recent blog
y Machalica et al.3 deals with how to test the tests themselves, given
hat in their experience ‘‘all real-world tests are flaky to some extent, even
f they are implemented following best engineering principles’’.

∗ Corresponding author.
E-mail addresses: morena.barboni@unicam.it (M. Barboni), antonia.bertolino@isti.cnr.it (A. Bertolino), guglielmo.deangelis@iasi.cnr.it (G. De Angelis).

1 Slides available from http://aster.or.jp/conference/icst2017/program/jmicco-keynote.pdf (accessed on Feb 07, 2022).
2 See at https://testing.googleblog.com/2020/12/test-flakiness-one-of-main-challenges.html (accessed on Feb 07, 2022).
3 See at https://engineering.fb.com/2020/12/10/developer-tools/probabilistic-flakiness/ (accessed on July 19th, 2022).

In short, flakiness is a prevalent software testing challenge both
in theory and in practice, which is normally depicted, in both white
and gray literature, as a purely negative phenomenon to eradicate, or
at least to mitigate. In a recent survey [3], many developers qualify
flaky tests as a non-negligible problem, which may impact resource
allocation, test scheduling, and test suite reliability. In his popular blog,
Fowler [4] calls them useless and warns that they could infect the entire
test suite.

While acknowledging the perils of flakiness, in this work we take a
different position: we insinuate that not all flaky tests are necessarily
detrimental, on the contrary, we hypothesise that some flaky tests could
be useful resources for the developers. We think this because in some
cases test flakiness could stem from an elusive bug in the code under
test that is only triggered in specific circumstances; in other words,
some flaky tests could be symptoms of hard-to-detect failures [5].

Hard-to-detect failures escape In House testing, which is performed
in the development environment, but are later eventually experienced
vailable online 23 November 2023
950-5849/© 2023 The Authors. Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.infsof.2023.107373
eceived 5 August 2022; Received in revised form 18 October 2023; Accepted 20 N
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ovember 2023

https://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
mailto:morena.barboni@unicam.it
mailto:antonia.bertolino@isti.cnr.it
mailto:guglielmo.deangelis@iasi.cnr.it
http://aster.or.jp/conference/icst2017/program/jmicco-keynote.pdf
https://testing.googleblog.com/2020/12/test-flakiness-one-of-main-challenges.html
https://engineering.fb.com/2020/12/10/developer-tools/probabilistic-flakiness/
https://doi.org/10.1016/j.infsof.2023.107373
https://doi.org/10.1016/j.infsof.2023.107373
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2023.107373&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Information and Software Technology 167 (2024) 107373M. Barboni et al.

d
s
t
a
t
T
i
f
G
t
r
r
a
p
w
p
d

o
b
w
l
m
t
t
a
c

t
s
w
s
d
s
c
w
l
s
i
i

d
t
p
t
b
s
(

n
a
a
e
o
F
s

2

r
f

in the field (i.e., in production). Gazzola et al. [5] investigated their
characteristics and potential causes, finding that the faults causing such
field failures: (i) are inherently impossible to activate In House, or
(ii) descend from unknown conditions, or (iii) depend on ‘‘uncount-
able’’ many configurations (combinatorial explosion). Since hard-to-
etect failures might be triggered by unpredictable combinations of
ettings and events, they might manifest sporadically during In-House
esting campaigns, causing some tests to exhibit non-deterministic pass
nd failure outcomes. However such tests are likely to be dismissed, as
est engineers are more inclined to ignore a test that fails sporadically.
his inclination to ignore sporadic test failures is rooted in established

ndustry practices, as highlighted by a recent multivocal review on test
lakiness [6]. Facebook’s Probabilistic Flakiness Score (PFS) [7] and
itHub’s impact score [8] are examples of metrics used to quantify

he level of flakiness and prioritise fixes. Sporadically failing tests may
eceive lower severity ratings, relegating them to a lower priority for
esolution. Interviews with practitioners conducted by Habchi et al. [9]
lso highlight the importance of the flake rate in guiding decisions and
rioritising tests for immediate attention. As a result, sporadic failures,
hich could be indicative of hard-to-detect issues, may go unaddressed,
otentially leading to more significant problems when the software is
eployed in the field.

Our research aims to discover if some flaky tests seen in the lab-
ratory can be useful for a test engineer, because their intermittent
ehaviour could actually be the symptom of future field failures. One
ay to do this is by moving the testing activities to the field and

ooking for behavioural changes in the flaky tests. In the last decade,
any approaches are being proposed to continue the testing in produc-

ion [10], referred to as In Vivo testing. In our vision, running the flaky
ests In Vivo means taking advantage of many different configurations
nd object states that naturally occur during production usage, and that
annot be fully explored during In House testing.

In Vivo studies, however, are notoriously complex to set up, as
hey would require a real production system to experiment with. Con-
idering the practical difficulties in accessing a system in operation,
e instead reproduce a production-like environment in which we can

timulate the System Under Test (SUT). We can then rely on simulated
ata to run the tests with different parameters (and from different
tarting states), so as to expose hidden variability and assess which
onditions might lead to a test failure. To carry out one such study,
e need to adapt the test cases designed for execution In House to be

aunched In Vivo, precisely we do not try to reproduce in the field a
etting in which the test can be launched (which would be counter-
ntuitive), but transform the test into a parametric format, thus making
t executable from wherever status it is launched during the simulation.

This work provides several contributions. Conceptually, we intro-
uce here and investigate for the first time the hypothesis that flaky
ests could be useful to hint at hard-to-detect failures. Technically, we
rovide: (i) a detailed illustration of the steps for setting up an In Vivo
esting simulation study; (ii) the first simulation study comparing the
ehaviour of known flaky tests from the Fastjson library (our subject of
tudy, described in Section 4.1) when executed In House vs. In Vivo;
iii) a replication package with the full data and software.

The paper proceeds as follows: in Section 2 we provide background
otions and in Section 3 present the research questions we aim to
nswer. The study subjects are shown in Section 4, while Section 5
nd Section 6 describe the methodology used for this study and the
xperimental set-up, respectively. In Section 7 we discuss the results of
ur study, and potential threats to validity are addressed in Section 8.
inally, Section 9 outlines related work and Section 10 gives a brief
ummary of the findings and identifies areas for further research.

. Background

In this section, we introduce some notions related to the testing-
elated topics that we combine: test flakiness (Section 2.1) and a
2

ramework (Section 2.3) supporting testing In Vivo (Section 2.2).
2.1. Software test flakiness

Test flakiness has received a lot of attention from researchers and
industry practitioners in recent years. However, while all agree on the
relevance of the problem, the same term ‘‘flaky test’’ may be used to
refer to many different natures of non-deterministic behaviour of test
cases [1,3]. Our own recent review of literature [11] showed clearly
that no shared formalised definition yet exists to which we can refer.

To further complicate things, we attempt here to study the char-
acteristics of this phenomenon in a novel context that was never
addressed in the literature before (and we ourselves encountered some
difficulties in mapping the notion of flakiness to this novel context).
Thus, before expressing our research questions, we must clearly state
what we consider to be a flaky test, and how this concept evolves for
(a simulation of) In Vivo testing, aiming at leveraging the operating
conditions in production.

According to our review [11], the most widely accepted definitions
for a flaky test are (1) ‘‘A test that exhibits pass and failure outcomes
despite exercising unchanged code’’ and (2) ‘‘A test that exhibits pass and
failure outcomes although neither the code nor the test has changed’’. Such
definitions are also confirmed by the outcomes of a recent empirical
study surveying views and experiences of software developers about
flaky tests [12]. Thus, when we describe a test as flaky, we imply that
both the test and the exercised code stay the same across different
executions.

As we better explain in Section 5, an In House test generally requires
some modifications to become executable In Vivo. In particular, the
method must be made parametric so that it can take advantage of
the mutable execution context. We must therefore employ a different,
‘‘looser’’ definition of test flakiness for describing the outcomes of such
tests. In this sense, the definition that better fits our requirements is
the one introduced in Strandberg et al.’s study about test flakiness in
the embedded systems domain [13]. In this work, the authors define
an Intermittently Failing test as ‘‘A test case that has been executed
repeatedly while there is a potential evolution in software, hardware or test-
ware, and where the verdict changes over time’’. These authors distinguish
between intermittently failing and flaky tests, in that the latter are more
specific and do not allow changes in the SUT or in the testware, which
they instead allow for the former. According to the proposed definition,
flaky tests are a subset of intermittently failing tests, i.e., a flaky test is
also an intermittently failing test, but not vice versa.

For the rest of this paper, we use the term intermittently failing
to denote the potential non-deterministic behaviour of In Vivo tests.
According to the above explanation, to find out whether an In Vivo
test for which we observed an intermittently failing behaviour is flaky
as well, it must be run In House.

2.2. Field testing

Several works proposed during the last years by independent re-
search groups advocated the need to extend testing activities beyond
the boundaries of both software development and deployment phases.
A recent survey on field-based testing [14] set out to provide a consis-
tent terminology for addressing such kinds of activities. Here, we recall
such definitions and provide some background to better contextualise
the objectives of this study.

Firstly, the term Field (or In Vivo) testing encompasses those
techniques that aim to validate the behaviour of an application in the
field, that is the set of all its (possible) production environments. The
production environment of an application can be further defined as
‘‘any environment where the application can be fully operational’’.

As opposed to In Vivo testing, In House testing activities are
performed in a testing environment completely separated from production.
Sometimes, these can also be empowered by information gathered
during the actual usage of the system (e.g. [15–17]) in which case we

talk about Ex-vivo software testing.



Information and Software Technology 167 (2024) 107373M. Barboni et al.
Fig. 1. Groucho: High level architecture.

Often testing in the field is motivated by the opportunity of leverag-
ing the participation of a wide number of actors/machines. Indeed, it
permits to enact test invocations on the SUT directly in its operational
environment, in some cases even while it is serving actual requests.
Such an opportunity should allow for testing the SUT under many
different configurations which are generally difficult when applying
traditional testing approaches.

2.3. Supporting framework for In Vivo testing

Groucho [10] is a framework for In Vivo testing of Java-based
SUTs that allows a tester to control and safely execute tests at run-
time, when the SUT is running in its operational environment. Groucho
leverages flexible Aspect-Oriented (AO) solutions to modify the SUT so
as to include both the In Vivo testing features and the test logic to be
processed In Vivo.

The high-level architecture of the framework is depicted in Fig. 1:
its core part is structured around four main building blocks grouped in
the logical package Groucho-Core, while other supplemental func-
tionalities are organised in the logical packages: Groucho-Crochet
and Groucho-Lab. Specifically, the Annotations block defines
the meta-information that can enable or regulate the In Vivo testing
activities.

Instrumentation encapsulates the constructs controlling the
activation of testing aspects while the SUT is running in its produc-
tion environment. Specifically, the instrumentation of the SUT relies
on the Java Annotations technology: any instance of the annotation
@TestableInVivo declares the methods to be subject to In Vivo
testing and, among its parameters, specifies the test program to be
executed when an In Vivo testing session is launched. The association
of the annotation @TestableInVivo with some methods in the
SUT can be performed either at the source-code level or by means of
on-the-fly manipulation of plain SUT binaries (i.e., the Bytecode-
Instrumentation-Agent in Fig. 1), including 3rd party or legacy
libraries [18].

The In Vivo interactions between the SUT and Groucho are struc-
tured according to the callback design pattern. Callback is also
responsible for the activation of the isolation policies, and the execution
of the test cases actually codified as test programs.

Groucho structures the common API for the isolation mechanisms
within Isolation. Once an In Vivo testing session has been enabled,
the Groucho framework relies on lightweight isolation mechanisms
that allow testers to checkpoint the current state of the SUT, then to test
it, and finally to restore the SUT back to its state before the activation
of the In Vivo testing session. Groucho distinguishes between two
main approaches to isolation depending on whether the data are stored
in-memory or persisted/exported out-of-memory. In the former case,
Groucho-Crochet automatically grants for a secure preservation of
in-memory data by performing lazy deep copies of the objects involved
in the testing session; all other objects are left unaffected. The copying
relies on lightweight technologies able to introduce a negligible impact
in terms of both consumed resources and overhead. The in-memory iso-
lation policies that are automatically enabled by Groucho-Crochet
3

aim to prevent any field/user data corruption due to the In Vivo testing
session. Testers planning to execute multiple independent test cases
starting from the same run-time state can programmatically request
Isolation to create (and then to revoke) additional isolation layers
within the same In Vivo testing sessions. The in-memory isolation is
native for multi-thread applications without any extra responsibility for
the In Vivo testers. In the latter case (persisted/exported out-of-memory
data), Groucho does not offer any general solution. Specifically, while
it offers some abstract primitives and high-level recommendations,
Groucho delegates to In Vivo testers the responsibility to define SUT-
specific strategies for preserving out-of-memory data possibly affected
during In Vivo testing sessions.

Within the scope of this work, we only referred scenarios with in-
memory data persistence and we only rely on the checkpoint/rollback
strategy offered by Groucho-Crochet. Under these conditions, it
has been proved that the overhead introduced by Groucho is very
low or negligible when the In Vivo test activation probability is kept
reasonably small (e.g., 10–4) [10].

Further technical details about the architecture, use cases, usage
scenarios, detailed performance analysis, and on-the-fly manipulation
of the byte code can be found in [10], or in [18].

3. Objectives and research questions

This study sets the scene for the long-term goal of recognising in
future those types of flakiness that can help identify hard-to-detect bugs
and prevent future operational failures. In the following, we describe
the research questions that we address in this work. Note that, for the
sake of brevity, we use the term In Vivo (or, more generally, in the field)
to denote the simulation study we performed.

RQ1: How do flaky tests behave when they are run using inputs from
the field, and, more specifically, how does their outcome vary with respect
to executing them In House?

This study aims to understand how flaky tests behave if the context
changes from the tester’s defined configuration, while its inherent
objectives, preconditions and expected outcome stay the same. Table 1
summarises the scenarios that we might observe when simulating an In
Vivo testing session. In this work we only consider tests that start from
a flaky state (i.e., they were marked as flaky either by a developer or
by a flakiness detection tool), and we execute them both In House and
In Vivo. The rows report the observable combinations of test outcomes
In House (Col. 2) and In Vivo (Col. 3) and the relative case ID (Col. 4).
Moving a test to the field might give us different insights depending
on the scenario: for instance, a test that consistently passes on our
machine, despite being marked as flaky, might indicate the presence
of a hard-to-detect bug. By moving the test to the field we can re-run it
in different states and pinpoint the conditions under which it possibly
fails.

Note that the labelling introduced in Table 1 are limited to the
specific outcomes we observed from our empirical study. Hence, our
terms Consistently Passing or Consistently Failing only express that the
tests (either In House or In Vivo) behaved stably across all the runs
we launched. Such a labelling should not be considered as a new
assessment of the flakiness of the tests; indeed the whole study stems
from the fact that all the tests are already known to be flaky (i.e., as
detailed in Section 4.1).

RQ2: Can In Vivo testing impact on the perception of flakiness, and,
more specifically, do the flaky tests fail more frequently In Vivo than In
House?

In the hypothesis that some intermittent test behaviour could be
originated by a hard-to-detect bug, by this question we aim to under-
stand whether running In Vivo a test labelled as flaky could help to
more quickly uncover the hidden source of flakiness, by amplifying
its manifestation. In fact, several studies have shown that some flaky
tests must be re-run ‘‘very many times’’ before being detected [19].
From a practical point-of-view, flaky tests that fail quite rarely are less



Information and Software Technology 167 (2024) 107373M. Barboni et al.

b
o

4

c

c
s
a

o
r
a
s
t
o
(
s

t
t

t
J
b
s
o
p
B
a
c
t
p
f
f
b
c
f
i
f
t
b
w
I
f
m
t
d
O
i
c
(
w
a
w
a

4

t
o
S

s
a
e

Table 1
Test Scenarios.

Marked as Observed outcome in house Observed outcome in vivo Case ID

Flaky

Intermittently Failing
Intermittently Failing IF-2-IF
Consistently Passing IF-2-CP
Consistently Failing IF-2-CF

Consistently Passing
Intermittently Failing CP-2-IF
Consistently Passing CP-2-CP
Consistently Failing CP-2-CF

Consistently Failing
Intermittently Failing CF-2-IF
Consistently Passing CF-2-CP
Consistently Failing CF-2-CP

interesting than frequently failing ones, and tend to be ignored [6]. For
example, at Apple [20] a flakiness scoring service has been introduced,
which quantifies flakiness and is referred to support flaky handling
tasks. In this sense, if their frequency of failure is indeed amplified,
moving flaky tests to the field could contribute to more properly
evaluate their relevance. To answer this question, we hence introduce a
measure of the degree of non-determinism of a test, which captures how
frequently a flaky test fails when re-run, i.e., intuitively the perception
of flakiness. Precisely, we define the notion of Frequency of Failure
(i.e., FoF), which measures the percentage of observed failures of a test
over the total number of re-runs.

RQ3: Can some flaky tests be useful indicators of hard-to-detect failures?
Flakiness might stem from badly designed test code, but it could

also be a symptom of a complex and hard-to-detect bug. These are
completely different situations that require different treatments. In par-
ticular, by this question we aim to find initial evidence of the potential
usefulness of some flaky tests in revealing hard-to-detect failures.

4. Study subjects

In this section, we introduce the subject on which we conducted
our study of flakiness in the field. To do this we need both a SUT
which exposes a useful set of flaky tests (described in Section 4.1) and a
enchmark application through which we can simulate the invocation
f the SUT in operation (described in Section 4.2).

.1. SUT: Fastjson

To find a viable subject for our experiment we compiled a list of
riteria that should be respected by the target project:

C1: the project must be an open-source Java product;
C2: the project must have a test suite with several flaky tests of vari-

ous nature (e.g., Order-Dependent, Implementation Dependent).
C3: there must exist an open-source, independent benchmark appli-

cation for stimulating the project.

We specified C1 as Groucho supports In Vivo testing of Java appli-
ations, while C2 ensures that we run the experiment on a reasonably-
ized sample of heterogeneous flaky tests. Lastly, C3 helps to avoid bias
nd to improve the reproducibility of the study.

We then searched the International Dataset of Flaky Tests4 (ID-
FT) for a project that meets the aforementioned criteria. This popular
epository catalogues flaky tests found in real-world projects, providing
variety of information about each method. The database is broadly

plit into a list of unfixed tests and a list of fixed ones, together with
he relative project, category, and eventual Github pull request. Many
f the reported tests were marked either as Implementation Dependent
ID) or as a type of Order Dependent (OD), however other categories
uch as Non Deterministic Order Dependent (NDOD) and Independent

4 http://mir.cs.illinois.edu/flakytests
4

(NDOI) - as defined in [21] - can be found as well. The database
includes contributions from state-of-the-art tools such as IDFlakies [22]
and iFixFlakies [23] and has represented an important resource for the
research community.

After manually analysing all the available projects we found 3
candidates: Biojava,5 wildfly6 and Fastjson.7 These three Java applica-
tions include several flaky methods belonging to different categories.
wildfly has 86 flaky tests, most of which are Implementation or Order
Dependent. Fastjson includes 63 flaky tests, again mostly ID or OD with
the exception of a few methods belonging to the Non Order Dependent
(NOD) category. Lastly, Biojava includes 52 flaky tests, however none
of them were marked as OD making this project less representative.
Overall wildfly has the biggest test set to experiment with, but only
he Fastjson project also complies with C3. Further motivations about
he exclusion of both Biojava and wildfly are discussed in Section 7.6
Fastjson is a popular Java library for converting Java Objects into

heir JSON representation (and vice versa). Its methods, such as to-
SONString() and parseObject(), allow to quickly convert ar-
itrarily complex objects (with deep inheritance hierarchies and exten-
ive use of generic types). Since the system states and configurations
bserved in production might substantially differ from the ones ex-
lored In House, Fastjson makes a suitable subject for our experiment.
esides, its Github repository currently features over 25k stars, 6k forks,
nd 170 contributors, testifying its extensive usage by the developer
ommunity. Table 2 lists the subjects of our experiment. This initial
est pool includes 52 out of the 63 flaky methods of the Fastjson
roject collected in the IDoFT database. 11 methods were excluded
rom the experiment due to some configuration issues that prevented us
rom re-running them locally. Specifically, for each flaky test method
elonging to a certain class, the table reports a unique ID and the
onsidered project version (V.). The latter indicates the Fastjson release
or which each considered test can exhibit a flaky behaviour. This
nformation was derived from the data (i.e., GitHub issue or flakiness-
ixing commit) provided by the IDoFT database. Lastly, the table shows
he specific category (Cat.) of flakiness attributed to each test method
y the IDoFT database. As can be seen, the flaky tests of Fastjson that
e were able to re-run locally can be broadly split into two groups:
mplementation-Dependent (ID) and Order-Dependent (OD). The
ormer includes 37 tests detected by NonDex [24]. These are tests that
ight behave non-deterministically due to ADINS code, that is, code

hat Assumes a Deterministic Implementation of a method with a Non-
eterministic Specification. The remaining 15 tests were marked as
rder-Dependent, that is, tests whose only source of non-determinism

s order dependency [22]. This group includes 11 tests that were further
lassified as Brittle (OD-Brit) and 2 tests that were marked as Victim
OD-Vic). As specified by Shi et al. [23], a Brittle is a test that fails
hen run in isolation but passes when run with some other test(s);
Victim, on the other hand, passes when run in isolation but fails
hen run with some other test(s). These can be used for In Vivo testing
ctivities after some adaptation steps described in Section 5.

.2. Benchmark: jvm-serializers

In Vivo testing consists of launching testing sessions in the produc-
ion environment [14]. As we cannot rely on real end-user sessions for
ur experiments, we must retrieve an application for stimulating the
UT and reproducing a production-like environment.

As reported above, C3 restricted the SUT selection to those case
tudies in IDoFT for which known independent applications were avail-
ble. Fastjson’s GitHub page mentions jvm-serializers8 : a tool for
stimating and comparing the performance of several JSON processors.

5 https://github.com/biojava/biojava
6 https://github.com/wildfly/wildfly
7 https://github.com/alibaba/fastjson
8
 https://github.com/eishay/jvm-serializers

http://mir.cs.illinois.edu/flakytests
https://github.com/biojava/biojava
https://github.com/wildfly/wildfly
https://github.com/alibaba/fastjson
https://github.com/eishay/jvm-serializers


Information and Software Technology 167 (2024) 107373M. Barboni et al.

s
f
r
a
d

(
w
n
a
s
e
a

5

t

Table 2
Experimental subjects.

ID V. Test class Test method Cat.

(1) 1.2.73 ArrayListMultimapTest test_for_multimap ID
(2) 1.2.78 Bug_for_issue_447 test_for_issue ID
(3) 1.2.62 Bug_for_smoothrat6 test_set ID
(4) 1.2.75 Bug_for_xiayucai2012 test_for_xiayucai2012 ID
(5) 1.2.73 Bug_for_yangzhou test_for_issue ID
(6) 1.2.57 DateParseTest9 test_dates_different_timeZones ID
(7) 1.2.54 DateTest test_date OD-Brit
(8) 1.2.54 DateTest_tz test_codec OD-Brit
(9) 1.2.54 DateTest4_indian test_date OD-Brit
(10) 1.2.54 DateTest5_iso8601 test_date OD-Brit
(11) 1.2.54 DefaultExtJSONParser_parseArray test_7 OD-Brit
(12) 1.2.54 DefaultExtJSONParser_parseArray test_8 OD-Brit
(13) 1.2.73 FeatureCollectionTest test_geo ID
(14) 1.2.78 HashMultimapTest test_for_multimap ID
(15) 1.2.51 Issue_717 test_for_issue OD
(16) 1.2.73 Issue1177_1 test_for_issue ID
(17) 1.2.54 Issue1177_2 test_for_issue ID
(18) 1.2.54 Issue1298 test_for_issue OD-Brit
(19) 1.2.54 Issue1298 test_for_issue_1 OD-Brit
(20) 1.2.73 Issue1363 test_for_issue ID
(21) 1.2.73 Issue1363 test_for_issue_1 ID
(22) 1.2.78 Issue1368 test_for_issue ID
(23) 1.2.54 Issue1480 test_for_issue ID
(24) 1.2.73 Issue1492 test_for_issue ID
(25) 1.2.75 Issue1493 test_for_issue ID
(26) 1.2.78 Issue1584 test_for_issue ID
(27) 1.2.54 Issue1679 test_for_issue OD-Brit
(28) 1.2.51 Issue1769 test_for_issue OD-Brit
(29) 1.2.73 Issue1780_JSONObject test_for_issue ID
(30) 1.2.73 Issue1780_Module test_for_issue ID
(31) 1.2.73 Issue1972 test_for_issue ID
(32) 1.2.54 Issue1977 test_for_issue OD-Brit
(33) 1.2.75 Issue2428 test_for_issue ID
(34) 1.2.73 Issue2447 test_for_issue ID
(35) 1.2.73 Issue2447 test_for_issue2 ID
(36) 1.2.78 Issue3082 test_for_issue ID
(37) 1.2.78 Issue3655 test_inherit_from_abstract_class_1 ID
(38) 1.2.78 Issue3655 test_inherit_from_abstract_class_2 ID
(39) 1.2.51 JSONFieldTest5 test_jsonField OD
(40) 1.2.73 JSONObjectTest_readObject test_6 ID
(41) 1.2.73 JSONPath_reverse_test test_reserve ID
(42) 1.2.73 JSONPath_reverse_test test_reserve3 ID
(43) 1.2.54 JSONPParseTest2 test_f ID
(44) 1.2.54 JSONPParseTest3 test_f ID
(45) 1.2.51 JSONSerializerTest2 test_0 OD-Vic
(46) 1.2.78 MaxBufSizeTest test_max_buf OD-Vic
(47) 1.2.78 SortFieldTest test_1 ID
(48) 1.2.73 SqlDateDeserializerTest2 test_sqlDate ID
(49) 1.2.75 TypeUtilsTest test_cast_to_Timestamp_1970... ID
(50) 1.2.73 WriteClassNameTest_Map test_list ID
(51) 1.2.54 WriteDuplicateType test_dupType2 ID
(52) 1.2.73 WriteDuplicateType test_dupType ID
p
H
e
I

5

I
t
a
c
l
t
r
t

This benchmark is also quite popular with over 3k stars and 500
forks on the GitHub repository. jvm-serializers can realistically
imulate a large number of end-user invocations, and as such is a good
it for our experiment. While the benchmark jvm-serializers
uns, it stimulates Fastjson by performing different kinds of invocations
gainst the library and by referencing different usage scenarios that the
esigners of the benchmark found interesting for any JSON processor.

The benchmark has been enabled to host In Vivo testing sessions
more details are available from an online technical report [25]). Also,
e configured the benchmark so that it only runs against Fastjson, and
ot the other supported JSON processors. Such configurations do not
lter the logic of the original benchmark. This version of the jvm-
erializers is part of the replication package presented at the
nd of this article in the section titled: ‘‘Replication package and data
vailability’’.

. Methodology

We aim to investigate how the non-deterministic behaviour of the
5

ests executed in the development environment is reflected in the
roduction environment. The experiment foresees two phases: (1) In
ouse, and (2) In Vivo. In the following, we introduce the purpose of
ach phase (Section 5.1) and the transformation steps needed to enable
n Vivo testing (Section 5.2).

.1. Study phases

n House phase. The In House phase aims to assess the manifestation of
est flakiness in the development environment. To this end, we re-run
ll the flaky tests of Fastjson without modifying their code. For each
lass affected by some flakiness according to the IDoFT repository, we
aunch all the test methods in the class. This step is repeated several
imes; at each iteration, we guarantee that each launch (i.e., a single
un of all the tests in a class) is isolated from the others. To preserve
he test behaviour originally implemented by the Fastjson developers,

we do not put in place any additional isolation measures between tests
belonging to the same class, or between different test classes executed
in the same run. Notably, some of the most popular frameworks
supporting automation in tests execution (e.g., the Maven Surefire



Information and Software Technology 167 (2024) 107373M. Barboni et al.

t
u

s

1
1
1
1
1
1
1
1
1
1
2

t

i
a

t

P
t
t
d
a
p

i
t
m
a
o
a
I
o
i
t
f
d
a
r
t
n
i
f
o
b
t

Plugin, or JUnit 4 with its runner classes) advise that there is no
guarantee on the ordering of tests executions under their default config-
urations. In other words, testers must always assume non-determinism
about tests executions scheduling; alternatively, they must explicitly
declare a specific selection criterion. Nonetheless, this assumption does
not necessarily imply that tests ordering will actually change across
different runs. In order to mitigate any potential bias in our study, we
executed the OD flaky tests (for which flakiness manifestation depends
on their execution ordering) with both default (i.e., non-deterministic)
and randomised mechanisms for scheduling the tests to be executed.
We do not, however, use any particular tool for detecting flakiness
(e.g., NonDex), as we aim to observe the natural behaviour of these
tests in a real development setting.

In Vivo phase. For In Vivo testing we use a parametric version of each
test case. Specifically, each Fastjson test is enabled to be launched from
he operational context reached by a Java application that it is making
se of the Fastjson library.

Each test has been revised so to achieve a parametric version of the
ame test logic originally implemented by the Fastjson developers. Ref-

erence examples about test case parametrisation are discussed below,
while the mitigation of the risks about potential modifications in the
test logic or the injection of biases is discussed in Section 8.

5.2. Enabling In Vivo testing

In the following, we explain the preparation work for our study.
For the sake of length, we only provide here a brief summary of the
needed actions, whereas a detailed description including also some
code examples is included online [25].

Selection of methods to be tested. As described in Section 2.3, we rely
on the Groucho framework for In Vivo testing. Groucho requires test
engineers to indicate those methods whose invocation will trigger an
In Vivo testing session, and for each of them, to refer to an In Vivo test
case to be run when the In Vivo session starts.
1 public boolean invivoIssue1480(Context c) {
2 ...
3 byte[] contextData = (byte[]) c.

getOtherReferencesInContext().get(0);
4 JSONObject obj = InputGenerator.

configureAlibabaJSONObject(contextData);
5 ...
6 RuntimeEnvironmentShield shield = new

RuntimeEnvironmentShield();
7 try {
8 shield.applyCheckpoint(obj);
9 Issue1480 unitTest = new Issue1480();
0 unitTest.configure(obj);
1 unitTest.test_for_issue();
2 System.out.println("Success");
3 }catch(Throwable t){
4 System.out.println(t.getMessage());
5 System.out.println("Failure");
6 } finally {
7 shield.applyRollback(obj);
8 }
9 ...
0 }

Listing 1: In Vivo Test Method

In our context, we played the role of test engineers and established
he relation between the jvm-serializers methods enabling In

Vivo testing sessions and the In Vivo tests hosting the execution of the
flaky tests from Fastjson. The applications of the annotation instances
@TestableInVivo are not further detailed in this paper; but briefly,
we analysed each flaky test in our dataset and we established this
relationship based on the information required by the flaky test and
on the kind of information that would be on top of the run-time stack
6

just before the invocation of the enabling method in the benchmark.
Listing 1 shows an example of In Vivo test that retrieves the op-
erative context on the run-time stack of the benchmark (line 3). If
needed, the data are used to set-up the parameters of the flaky test
from Fastjson (line 4). Even though Groucho already offers in-memory
isolation between the operational context from the benchmark and
the In Vivo testing session, the In Vivo test can implement further
isolation layering; for example, to isolate the execution of different
flaky tests within the same In Vivo session (i.e. line 8, and line 17).
Once completed its set-up, the flaky test is launched (lines 10–11). At
the end of the In Vivo testing session, Groucho restores the run-time
stack.

Fetching the input configurations. Each Fastjson flaky test is executed
starting from a specific state/configuration reached by the
jvm-serializers benchmark at run-time. Thus, each test must
be supplied with information retrieved from the current operational
context. Although generally the in-memory objects accessible from the
run-time stack by the In Vivo testing session can be directly used
to set-up the parameters of the flaky test, this is not always the
case. Sometimes they could not exactly match the parameter types
expected by the considered flaky test. For example, the flaky test
Issue1480 in Listing 1 expects to be configured with a JSONObject
instance. However, if the In Vivo testing session is triggered during
a deserialization operation, the run-time stack will hold contextual
data in the form of a byte array (see line 3 of Listing 1), which
have to be converted in a JSONObject instance before being used to
configure the considered flaky test. It is under the responsibility of test
engineers to grant that the conversion process of the contextual data
as accessible from the run-time stack is correct. Specifically in the case
of Issue1480, we carefully verified that the instantiating procedure
n JSON.parseObject was correct for its purpose and is was not
ffected by any known issue in Fastjson.

To handle such situations we defined a dedicated InputGenera-
or class. More details are available online [25].

arametric test cases derivation. As anticipated, we converted the flaky
est methods in configurable and parametric versions but without al-
ering their test procedures as originally implemented by the Fastjson
evelopers. Although costly in terms of effort for both the development
nd the validation of compliance with the original test code, this
rocess is fundamental to achieve the true potential of In Vivo testing.

Listing 2 shows the parametric version of a test class, whereas List-
ng 3 reports the In House version of the same test class, as conceived by
he Fastjson developers. The original test code must undergo different
odifications. Most importantly, the instantiation of the objects that

re the subject of the tests must be decoupled from the implementation
f the testing procedures. Our suggestion is to include in the test class
dedicated attribute, if not already present (see line 6 in Listing 2).

n addition to the default constructor (line 9), the test class should also
ffer a configuration method (line 16) that can be used to set-up such an
nstance when needed. Any declaration or operation that might pollute
he instance under test must be carefully considered and removed; in
act, the initial value of the instance under test should be exclusively
etermined during the In Vivo testing session from the contextual data
s accessible from the actual run-time stack (line 22). The last step
equires a thorough analysis and redesign of the test statements and of
he underlying oracle mechanism. Indeed, the body of the test code may
eed to be formulated based on any arbitrary state admissible for the
nstance under test, and not just based a specific configuration (i.e., a
resh instantiation of the subject of the test). Similarly, the expected test
utcome, which is usually expressed as a simple hard-coded value, must
e dynamically computed based on the input values observed during
he In Vivo testing session (line 25).
1 package it.cnr.iasi.saks.groucho.lab.instrument.test.

experiments.fastjson.test.V1273;
2 ...
3 public class Issue1780_Module {



Information and Software Technology 167 (2024) 107373M. Barboni et al.

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2

2
2
2
3
3
3
3
3
3

1
1

1
1
1
1
1
1
1

p
a

c
c
o
t
E
w
c
t
a
o
c

(

a
m
t
d
f
o
p
(
p
p
t

(
t
t
t
r
a

p
N
i

s
i
a
c
a
t

t
m

4
5 //Instance under test
6 org.json.JSONObject req;
7
8 //Default configuration
9 public Issue1780_Module(){
0 this .req = new org.json.JSONObject();
1 req.put("id", 1111);
2 req.put("name", "name11");
3 }
4
5 //In vivo configuration
6 public void configure(org.json.JSONObject object){
7 this .req = object;
8 }
9
0 @Test
1 public void test_for_issue() {
2 org.json.JSONObject req = this.req;
3 SerializeConfig config = new SerializeConfig();
4 config.register(new myModule());
5 String expected = buildExpected(req);
6 Assert.assertEquals(expected, JSON.toJSONString(req,

config));
7 }
8
9 public String buildExpected(JSONObject input) {
0 ...
1 }
2 public class myModule implements Module {
3 ...
4 }
5 }

Listing 2: Example of parametric test

1 package com.alibaba.json.bvt.issue_1700;
2 ...
3 public class Issue1780_Module extends TestCase {
4 public void test_for_issue() {
5 org.json.JSONObject req = new org.json.JSONObject

();
6
7 SerializeConfig config = new SerializeConfig();
8 config.register(new myModule());
9 req.put("id", 1111);
0 req.put("name", "name11");
1 Assert.assertEquals("{\"name\":\"name11\",\"id

\":1111}",
2 JSON.toJSONString(req, config));
3 }
4
5 public class myModule implements Module {
6 ...
7 }
8 }

Listing 3: Example of test designed for In House execution

According to the general suggestions discussed above, the specific
rocess we followed to adapt each target test class can be summarised
s follows:

1. Analyse test class: We analysed the target test case(s) to iden-
tify the areas of code that require manual intervention.

2. Isolate test set-up: We included the instance under test as an
attribute of the test class. We defined a default constructor for
the test class, if not already present. Then, we separated the
configuration part of the test from its actual execution. To this
end, we:

• moved the default configuration performed by the target
test case(s) into the default constructor;

• cleaned the test code from unwanted set-up and configu-
ration operations;

• replaced any reference to the hard-coded instance under
test with the attribute of the test class.
7

o

3. Include configuration mechanism: We defined a custom con-
figure() method, which is responsible for initialising the
instance under test with the value retrieved from the execution
context;

4. Redesign test oracle: we updated the logic for computing the
expected output;

5. Parametric test assertions: we parameterised all the test asser-
tions accordingly.

At the end of the process, we modified 40 Java classes: each one in-
luding at least one of the 52 test methods studied. Overall these classes
ounted around 1200 code lines (comments, headers, and import
r package statements excluded). After the parametrisation process
he resulting set of classes counted in total almost 2900 code lines.
ven though in most of the cases the implementations of the changes
ere easy and quite systematic to apply (e.g. adding the method
onfigure() and moving few setting statements in the constructor of

he class), certainly the structural complexity of the classes increased. In
ddition, few classes reported major modifications as for the inclusion
f (at least) an additional ad-hoc private method realising the logic for
omputing the expected outcome of the parametric tests.

Note that, in some cases, it is not possible to fully apply Steps 1–5
we further elaborate on this aspect in Section 7.2).

Clearly, the new test implementation should be functionally equiv-
lent to the one originally conceived by the Fastjson developers. To
itigate the risk of affecting the test logic, each modification applied to

he test has undergone a validation phase. Besides reducing the risk of
istorted test logic, this validation phase helps to ensure that undesired
ailing/passing tests are not caused by any bug introduced during
ur adaptation of the code. Specifically we structured the validation
hase around a simplified peer code review process: one of the authors
i.e. the analyst) is responsible to analyse the original test and to
romote a first sketch of solution for its parametric version; the others
lay the role of code reviewers supporting the analyst in assessing if
he code of the two test versions realise the same logic.

Fig. 2 illustrates the steps of the validation phase. First, the analyst
i.e., one of the authors), that already proposed an initial implementa-
ion, performs several runs (in the order of few tens) of the parametric
est with its default input (i.e, the same input used during In House
esting). The results are then compared to those of the original test
un In House. Any discrepancy among the outcomes is considered as
potential distortion of the test logic during the adaptation process.9

In such a case, the analyst revises the parametric test code until the
results are conforming, or until she reaches a maximum effort value,
which it has been prudentially set up to one week. Such a massive
period has been planned because none of the authors is involved in the
development of Fastjson, thus this week period also considered the time
ossibly required to acquire proper understanding on the SUT code.
evertheless, in practice, all the considered tests were parameterised

n few working hours.
When a parameterised test appears to conform to its original ver-

ion, the analyst and at least one reviewer together revise the proposed
mplementation. If they agree the two implementations conform, the
nalyst performs an additional check to increase our confidence in the
orrectness of the adaptation step. Indeed, the tests we considered are
lready known to be flaky (i.e., by the IDoFT repository). In some cases,
he Fastjson developers addressed the reported flakiness by including

patched versions of such flaky tests in later versions of the project.
When available, the analyst used these refinements to estimate if the
parametric test implementations were sufficiently close to their original
versions. In particular, with reference to a given flaky test 𝑇 whose

9 In our specific setting we are aware that flakiness may have an impact on
he test outcome, and during the adaptation phase we critically revised any
anifested discrepancy. Each time we also checked if the documented source

f that specific flakiness might have influenced such discrepancy.



Information and Software Technology 167 (2024) 107373M. Barboni et al.
Fig. 2. Validation process for parametric In Vivo tests.
parametric version shows outcomes conforming to 𝑇 (see Fig. 2), the
analyst first searches for any accepted patch P for 𝑇 on the Fastjson’s
GitHub code-base. If there are no patches available, no further checks
are applied and we keep the current parametric version of 𝑇 in our
dataset. Otherwise the analyst checks if P can be applied to the para-
metric version of T: if not, the current parametric test version is too far
from the original implementation. In this case the analyst (assisted by a
reviewer) revises the current parametric code until the patch becomes
applicable (or until we reach the maximum effort value). After several
iterations we obtain a set of parametric tests to be run In Vivo.

6. Experiment set-up

Section 4.2 already introduced the usage of an open-source bench-
mark for Fastjson (i.e. jvm-serializers) as the reference appli-
cation we used in order to simulate significant usages of the library.
Specifically, the benchmark includes five JSON Objects of different size
and complexity to be serialised and deserialised multiple times.

In planning the study, we aimed at guaranteeing fairness of execu-
tion across the In House, and the In Vivo phases. Indeed, we kept the
number of repetitions of each test equal in both settings, although this
was not immediate as we could not exactly decide the number of times
an In Vivo test is repeated. As reported in Section 5.2, an In Vivo testing
session is triggered upon the invocation of some configured methods of
the benchmark. The selection of such methods though depends on the
information available on top of the run-time stack in the very moment
of their invocation. Thus, the number of times the In Vivo testing
sessions will be activated depends on the actual frequency such enabler
methods are actually called while the benchmark is running.

To guarantee fairness, for each flaky test we first executed the In
Vivo phase and calculated the times its enabler method were invoked,
then we matched this result with the number of In House repetitions
(which we could control). For example, the In Vivo testing session for
test 45 in Table 2 has been associated with a method in the benchmark
that was frequently invoked; thus test 45 has been run more than
54,000 times In Vivo. Consequently, the same number of repetitions
has been granted for its execution In House.

Nevertheless, in most of the cases, we are able to associate the
activation of In Vivo testing sessions with methods that are invoked
just once during a serialisation or deserialisation in the benchmark. This
set-up allow to easily determine the number of repetitions during the
In Vivo, and the In House runs. Specifically, for each of the five JSON
Objects it includes, the benchmark triggers 2000 iterations of both the
serialisation and the deserialisation procedures. Therefore, this set-up
8

allows us to simulate sufficient realistic end-user invocations for all the
phases (i.e., 10,000 repetitions in the general case).

As anticipated in Section 4, our initial test pool includes 52 flaky
methods (see Table 2) of the Fastjson project collected from the IDoFT
database.

During the In House execution phase we re-run the initial pool of 52
flaky tests on our local machine. As introduced in Section 5, each flaky
test is run together with all the methods present in the corresponding
test class.

In addition, each Order Dependent-Victim (OD-Vic) test was re-
run together with the test class that contains the relative Polluter,
that is, the test that modifies the state on which the Victim depends.
For instance, the MaxBufSizeTest class was run together with the
non-flaky SerializeWriterTest_14 class, as the latter performs
operations that can impact the outcome of test 46 (see Table 2).

Unfortunately, some Order Dependent tests present in the dataset
have not been fixed, and we do not have enough information to
track down the related Polluter test(s). In particular, the test classes
Issue_717 and JSONFieldTest5 (i.e. tests 15, and 46 in Table 2)
were executed in isolation throughout the experiment.

In order to replicate an unbiased execution setting we never forced
any specific test ordering; for this reason, we referred to the same
configurations in place at the Fastjson building system. This way,
we performed seven separate In House testing campaigns: one for
each Fastjson release involved in the experiment. The time required
for running In House all the considered test classes was 222,37 h.
The computational effort was significant as for each test class (and
related Polluters), the isolation has been guaranteed by running 10,000
independent build processes each one exercising just the considered test
class (and related polluters) on a fresh JVM instance.

All the tests were launched on a dedicated host running Ubuntu
20.04.5 LTS and equipped with a quad-core processor, and 6 Giga-byte
of memory.

In order to replicate the set-up described above, please refer to the
section titled: ‘‘Replication package and data availability’’ at the end of
this article.

7. Discussion of results

In this section we discuss the results of our study in relation to the
experimental phases described in Section 5: In House (Section 7.1),
and In Vivo (Section 7.2); we then answer in detail the initial research
questions: RQ1 (Section 7.3), RQ2 (Section 7.4) and RQ3 (Section 7.5).
As introduced in Section 4, our initial test pool includes 52 flaky
methods (see Table 2) of the Fastjson project collected from the IDoFT



Information and Software Technology 167 (2024) 107373M. Barboni et al.

r
a
S

7

t

e
m
m
t
t
t
f

m
t
t

7

V
t
t
d
e
n

t
t
b

g
t

Table 3
Experimental results.

Test ID Test category Case ID Test ID Test category Case ID

(1) ID CP-2-CP (27) OD-Brit CF-2-CF
(2) ID CP-2-CF (28) OD-Brit CF (In-House)
(3) ID CP-2-CF (29) ID CP-2-CP
(4) ID CP-2-CP (30) ID CP-2-CP
(5) ID CP (In-House) (31) ID CP-2-CP
(6) ID IF-2-CP (32) OD-Brit CF-2-CF
(7) OD-Brit CF-2-CF (33) ID CP-2-CP
(8) OD-Brit CF-2-CF (34) ID CP-2-CP
(9) OD-Brit CF-2-CF (35) ID CP-2-CP
(10) OD-Brit CF-2-CF (36) ID CP-2-CP
(11) OD-Brit CF-2-IF (37) ID CP (In-House)
(12) OD-Brit CF-2-CF (38) ID CP (In-House)
(13) ID CP (In-House) (39) OD CP-2-CP
(14) ID CP-2-CP (40) ID CP-2-CP
(15) OD CP (In-House) (41) ID CP-2-CP
(16) ID CP-2-CP (42) ID CP-2-IF
(17) ID CP-2-IF (43) ID CP-2-CF
(18) OD-Brit CF-2-CF (44) ID CP-2-CF
(19) OD-Brit CF-2-CF (45) OD-Vic IF-2-IF
(20) ID CP-2-CP (46) OD-Vic CP-2-CP
(21) ID CP-2-CP (47) ID CP-2-CF
(22) ID CP (In-House) (48) ID CP-2-CP
(23) ID CP-2-CP (49) ID CF-2-IF
(24) ID CP-2-CP (50) ID CP (In-House)
(25) ID CP-2-CP (51) ID CP-2-CP
(26) ID CP-2-CP (52) ID CP-2-CP

database. Table 3 presents the experimental results; each flaky test
method is associated with a category, and a Case ID according to the
notations shown in Table 1. We recall that the Case ID describes how
the test behaved throughout the In House and In Vivo experiments. For
example, CP-2-IF denotes a method that Consistently Passed In House,
but exhibited an Intermittently Failing behaviour In Vivo. Instead,
a notation like CP (In-House) indicates that it was only possible to
etrieve the execution results for the In House phase. (Additional details
bout the tests excluded from the In Vivo execution are provided in
ection 7.2.)

.1. In House phase results

During the In House phase we re-run the initial pool of 52 flaky
ests on our local machine.

Interestingly, most tests (∼73%) exhibited a consistently passing (CP)
behaviour despite being marked as flaky in the IDoFT database. This set
includes 35 Implementation Dependent (ID) tests and 3 Order Depen-
dent (OD) tests, 1 of which was further categorised as Victim (OD-Vic).
For example, let us consider test (23) in Table 3. As described in the
relative GitHub pull request,10 this method checks whether the string
representation of a HashMap matches a hard-coded value. However,
as explained in the official Java specification,11 HashMap makes no
guarantee about the iterating order of map. Therefore, the instability
of the string representation asserted by test (23) constitutes a latent
source of flakiness. Our results seem to confirm that ID flakiness
requires specialised tools like NonDex to be discovered. Similarly,
the consistently passing OD tests in Table 3 never suffered from an
improper state set-up or tear-down operation.

A relatively large percentage of In House tests, about 23%, consis-
tently failed (CF); this includes all 11 Order Dependent-Brittle (OD-Brit)
tests present in the dataset and 1 ID test. This result is quite interesting
as each CF test seems to be failing on our local machine only, which
suggests a configuration-dependent type of flakiness. This suspicion
seems to be confirmed by the flakiness-fixing patches available on

10 https://github.com/alibaba/fastjson/pull/3025
11 https://docs.oracle.com/javase/8/docs/api/?java/util/HashMap.html
9

Fig. 3. Percentage of CP, CF, and IF tests observed during each experimental phase
(calculated considering the 44 adapted tests).

GitHub. Indeed, each test requires the initialisation of the Timezone
and/or Locale properties to pass. Since this set-up either does not exist
or is never scheduled in the appropriate order, each test caused a build
failure during each In House run. However, the same test methods
would pass on a machine in the right Timezone (and/or Locale). This is
an interesting scenario as the flakiness might remain hidden for a long
time due to its specific activation conditions.

As can be seen in Table 3 at Col. 3, only test (6) and test (45)
xhibited an intermittently failing (IF) behaviour when run on our
achine. According to IDoFT, the former method contains an imple-
entation dependence, but there are no developer-confirmed patches

hat can help us to pinpoint the flakiness source. On the other hand,
est (45) was marked as OD-Victim. In this case, the reordering of the
est methods introduced state pollutions that resulted in intermittent
ailures.

Considering the high number of re-runs, we expected to observe
ore intermittent methods at the end of this step. Whether this is due

o some environmental settings or configuration is something we aim
o investigate during the In Vivo phase.

.2. In Vivo phase results

In this section, we present the results of the parametric tests run In
ivo. As shown in Table 3, we were able to adapt and re-run 44 out of

he 52 flaky methods in the initial test pool. 8 tests were excluded from
his phase because it was not possible to apply the adaptation Steps 1–5
escribed in Section 5.2, whereas no tests were ruled out due to issues
ncountered during the validation phase (i.e., the effort threshold was
ever exceeded). For instance, test (37)12 in Table 3 addresses the

automatic serialisation and deserialisation of classes in a specialisation
hierarchy. However, since our data model consists of unrelated JSON
objects, it was not possible to exploit the run-time context of the SUT.
For such reason, we excluded this test (and other similar cases) from
the experiment.

From Fig. 3, the difference between the In Vivo and the In House
experiment is evident; the former resulted in the highest percentage of
both Consistently Failing (∼32%) and Intermittently Failing (∼11%)
ests. Indeed, switching to parametric methods allowed us to leverage
he huge variability proper of the field environment, which would have
een too costly to reproduce In House.

In Table 4 we show the observed test outcomes based on their cate-
ory. For each Case ID we report the number of methods that were ini-
ially categorised as Implementation-Dependent (ID), Order-Dependent

12 https://github.com/alibaba/fastjson/blob/1.2.78/src/test/java/com/
alibaba/json/bvt/issue_3600/Issue3655.java

https://github.com/alibaba/fastjson/pull/3025
https://docs.oracle.com/javase/8/docs/api/?java/util/HashMap.html
https://github.com/alibaba/fastjson/blob/1.2.78/src/test/java/com/alibaba/json/bvt/issue_3600/Issue3655.java
https://github.com/alibaba/fastjson/blob/1.2.78/src/test/java/com/alibaba/json/bvt/issue_3600/Issue3655.java


Information and Software Technology 167 (2024) 107373M. Barboni et al.
Fig. 4. Behavioural evolution of the tests moved In Vivo.
Table 4
Test methods belonging to each case.

Case ID ID OD OD-Vic OD-Brit Tot.

IF-2-IF 0 0 0 0 0
CP-2-IF 2 1 1 0 3
CF-2-IF 1 1 0 1 2

In Vivo IF 3 2 1 1 5
IF-2-CP 1 0 0 0 1
CP-2-CP 22 2 1 0 24
CF-2-CP 0 0 0 0 0

In Vivo CP 23 2 1 0 25
IF-2-CF 0 0 0 0 0
CP-2-CF 5 0 0 0 5
CF-2-CF 0 9 0 9 9

In Vivo CF 5 9 0 9 14

(OD), Order-Dependent Victim (OD-Vic), and Order-Dependent Brittle
(OD-Brit). As shown, 25 test methods never failed when moved to
the field, against the 31 test methods that passed In House. Whereas,
the number of Consistently Failing (CF) and Intermittently Failing (IF)
tests both increased by 3 In the following we analyse the behavioural
evolution (Section 7.3), the Frequency of Failure (Section 7.4), and
the Cause of Failure (Section 7.5) of each In Vivo test to answer the
research questions posed in Section 3.

7.3. Answering RQ1

With RQ1 we aim to investigate the behaviour of flaky tests when
they are run using inputs from the field. We must therefore focus on the
44 tests we were able to run both In House and In Vivo. To make the
analysis more understandable, we illustrate the outcome evolution of
each test in Fig. 4. The Sankey diagram helps us to visualise how each
method behaved in relation to the cases described in Table 1. Here, the
nodes on the left and the nodes on the right represent the possible In
House and In Vivo test outcomes, respectively. The nodes are linked by
arcs that have a width proportional to the number of observed cases.

In the following we discuss the behaviour of the considered tests,
grouping them according to the outcome observed In Vivo: Consistently
Passing (CP), Consistently Failing (CF), and Intermittently Failing (IF).

In Vivo tests that consistently pass. Most of the tests that consistently
pass In Vivo belong to case CP-2-CP, that is, they produced consistently
passing outcomes throughout each In House and each In Vivo test run.
10
Although the number of passing test cases decreased by ∼21,8% with
respect to the In House experiment, the amount of methods marked
as CP-2-CP is still quite surprising. The source of intermittence might
have stayed hidden In Vivo for different reasons; the testing scenario
may be very specific, and thus, it may not reflect real system usage. In
this case, re-running the tests In Vivo does not entail any substantial
difference. The consistently passing behaviour might also depend on
the original flakiness category of the test. Indeed, 22 CP-2-CP methods
were marked as Implementation Dependent. For any such tests, it
might be difficult to observe a failure if the underlying implementation
does not evolve. As shown in Table 4, case CP-2-CP also includes a
single OD-Vic and one uncategorised OD method. These tests always
passed In Vivo because they were never executed starting from an
improperly set state. This means that those settings that sometimes
cause the tests to fail do not correspond to conditions that will occur in
production. This also applies to the single IF-2-CP method – test (6)
– that produced intermittently failing outcomes In House, and turned
consistently passing once it was moved to the field. Since any test is
stripped of its configuration operations during the adaptation phase,
running test (6) In Vivo narrowed down the source of flakiness to the
specific set-up and/or tear-down operations performed within its
class.

In Vivo tests that consistently fail. Most of the consistently passing tests
belong to case CF-2-CF, that is, they already produced consistently
failing outcomes during the In House test runs. A severe bug in the
SUT or an important problem in the test code is the major cause of a
consistently failing test. However, the 9 methods belonging to case CF-
2-CF were all categorised as OD-Brit. Because this type of test can only
pass if we execute it from a specific state, their behaviour acquires a
different meaning In Vivo. The failures are no longer attributable to
a bad set-up because the tests rely on the state encountered during
real executions. On the other hand, the expected state set-up reflects
a very specific scenario that the SUT may never reach at run-time. This
makes us question the actual usefulness of the test cases. Meanwhile,
all the tests belonging to case CP-2-CF were initially marked as ID
by the IDoFT contributors. Their failing behaviour In Vivo might be a
symptom of a severe issue resulting from a shallow pre-release testing
campaign.

In Vivo tests that intermittently fail. As shown in Table 4, 3 ID and 2
OD methods produced non-deterministic outcomes In Vivo. The tests
belonging to case CF-2-IF are not particularly relevant because their
failing behaviour is easily reproducible in the development environ-
ment. A software developer would deal with these tests as soon as



Information and Software Technology 167 (2024) 107373M. Barboni et al.
Table 5
Tests whose was impacted by In Vivo execution.

ID Cat. In House In Vivo Case ID

FoF Out. FoF Out.

(6) ID 0,85 IF 0 CP IF-2-CP
(11) OD-Brit 100 CF 54,2 IF CF-2-IF
(17) ID 0 CP 20 IF CP-2-IF
(41) ID 0 CP 89,92 IF CP-2-IF
(45) OD-Vic 67 IF 72,58 IF CP-2-IF
(49) ID 100 CF 98,72 IF CF-2-IF

possible, either by fixing the problem or by discarding the method
altogether. On the other hand, the two tests belonging to case CP-
2-IF would be perceived as reliable In House. Nonetheless, they start
producing inconsistent results as soon as they are moved to the field.
The intermittent nature of the observed failures should be further
investigated because it might signal a hard-to-detect bug in the SUT. We
investigate this core aspect while answering RQ3. Lastly, we observed
one IF-2-IF test method that produced inconsistent outcomes both In
House and In Vivo. In Section 7.4 we further investigate the frequency
of failure of the considered test methods to understand if and how it is
impacted by the production environment.

Answer to RQ1: The execution of flaky tests by simulating
inputs from the field can concretely affect their behaviour;
the experiment on the simulation of In Vivo testing resulted
in the highest percentage of Consistently Failing (∼32%) and
Intermittently Failing (∼11%) tests. Specifically, ∼16% of all
test methods always passed In House, but consistently or
intermittently failed In Vivo, suggesting an issue that can only
be triggered by specific input or environmental conditions.

7.4. Answering RQ2

With RQ2 we aim to investigate whether running a test In Vivo has
some impact on the perception of flakiness. To this end, we analyse
those test methods that exhibited some intermittence (i.e., In Vivo,
In House, or both) and we compare their resulting Frequency of
Failure (FoF). Recall that in Section 3 we defined the FoF as the
percentage of observed failures of a test over the total number of re-
runs. The considered tests are listed in Table 5, together with their
original flakiness category (Cat.) and Case ID. For each method, the
table also shows the FoF and the test outcome observed both during
the In House (Col. 3 and Col. 4) and the In Vivo (Col. 5 and Col. 6)
phases. In formulating RQ2 we were expecting to be able to observe
some different FoF values, but for most test cases we studied, when
their behaviour changed, this was from consistent to flaky, or the vice
versa. Nevertheless, for 6 test methods that we marked as intermittent,
each one of them displayed either an increase – tests (17), (41),
and (45) – or a decrease – tests (6), (11), and (49) – in FoF. The
remaining 38 tests were non-intermittent throughout the experiments,
that is, they produced deterministic outcomes both In House and In
Vivo (although they might have switched from a CP to a CF state, or
vice versa).

Although we observed few instances of intermittent tests, the vari-
ation in the FoF between the In House and the In Vivo phase is often
significant. Indeed, most methods exhibit a deterministic behaviour In
House and only become intermittent in the field. These state changes
suggest that a field testing approach can help to (re)create those
conditions necessary for the flakiness to emerge. Additionally, there is
one test method (45) that stayed non-deterministic during both runs.
However, its FoF increased by ∼8,3% during the In Vivo experiment.
This increase is particularly interesting considering that test (45),
marked as OD-Vic, required us to apply randomised order scheduling
11
Table 6
Tests belonging to Case CP-2-IF and CP-2-CF.

ID Cat. In House In Vivo CoF Case ID

(2) ID CP CF Too specific scenario CP-2-CF
(3) ID CP CF Implementation dependence CP-2-CF
(17) ID CP IF Implementation dependence CP-2-IF
(41) ID CP IF Bug in the CUT CP-2-IF
(43) ID CP CF Implementation dependence CP-2-CF
(44) ID CP CF Implementation dependence CP-2-CF
(45) OD-Vic IF IF Order dependence IF-2-IF
(47) ID CP CF Implementation dependence CP-2-CF

(As explained in Section 5.1) to observe intermittent failures In House.
Instead, when we used the default, non-deterministic scheduling, we
observed that the tested instance was always exercised from a clean
state, resulting in consistently passing outcomes (please note that we
did not include the latter in Table 5 for the sake of clarity). Even so, the
FoF still increased In Vivo. The reason is simple: the instance under test
traverses many – possibly polluted – states in production. As explained
in our answer to RQ2, a higher In Vivo FoF should always be taken
seriously by the test engineers, especially if it is not constant.

Notably, even a test with a decreased intermittence level can yield
helpful information. For instance, the behavioural evolution of test
(6) reveals a connection between the flakiness and the specific set-up
and/or tear-down operations performed by the original test class.

To conclude our discussion, we focus on those intermittent tests
that consistently failed In House. Running such methods in production
might seem counter-intuitive, but we argue it might be useful in some
situations. For instance, the In House outcome of the CF-2-IF tests
reported in Table 5 depends on the testware set-up. In particular, both
test (11) and test (49) must run in the ‘‘Asia/Shanghai’’ time zone,
but the respective test classes lack this fundamental set-up operation.
These tests regularly failed on our machine in the Rome time zone, but
a developer in Shanghai would see these same tests as CP-2-IF. In the
latter case, running these tests in production – in different time zones
– can help to discover the failure pattern and avoid confusion.

Answer to RQ2: From our simulation study, moving a test to
the field can concretely impact its Frequency of Failures (FoF)
and possibly help to identify the relative cause of failure.

7.5. Answering RQ3

The aim of RQ3 is to determine whether some flaky tests can be
seen as useful indicators of hard-to-detect failures [5], rather than as
a nuisance for the test engineers. Indeed, field testing was introduced
for triggering types of failures that are difficult to reproduce In House.
Thus, we hypothesised that test intermittence observed under specific
conditions can be a symptom of a deeper issue in the code under test.

To answer this question, we investigate the behaviour of some
relevant test methods in relation to their Cause of Failure (CoF),
and also try to investigate if the latter has anything to do with the
specific test category or is entirely unrelated. Therefore, we omit from
the following analysis all those methods that constantly failed (CF) In
House or constantly passed (CP) In Vivo. For each test ID, Table 6 shows
its original flakiness category (Cat.), and the outcome observed both
during the In House and the In Vivo phases. The evolution of the test
outcome is encoded in the respective Case ID as previously described
in Table 1. Lastly, the table summarises the Cause of Failure (CoF)

observed during the In Vivo phase.



Information and Software Technology 167 (2024) 107373M. Barboni et al.

s

I
b
h
i
l
s
o
b

e
i

t
t
c

1

C
5
V
t
H
e
t
s
f
a
s

1

1
1
1
1
1
1

CP-2-IF: Consistently Passing to Intermittently Failing. As shown in Ta-
ble 6, case CP-2-IF includes 2 test methods – (17) and (41) – that
tart from a CP state In House and become IF in the field.

Test (17) was originally marked as flaky by the contributors of the
DoFT, because it includes an implementation dependence. As it can
e seen from Listing 4, the original test assertion on line 6 compares a
ard-coded string against the textual representation of a JSON object
mplemented by a HashMap. As briefly explained in Section 7.1, the
atter does not guarantee any ordering of elements. Despite this latent
ource of flakiness, the test started producing inconsistent outcomes
nly once we fed it a more complex JSON object retrieved from the
enchmark’s data model.

Test (41) was also categorised as ID by the NonDex tool. How-
ver, the intermittent failures observed In Vivo are not related to the
ncorrect ordering of the asserted elements. Unlike test (17), the CoF

can be traced back to an actual bug in the SUT. In fact, the method
JSONPath.reserveToArray() invoked by test (41) (line 5 of
Listing 5) seems to return an incorrectly built string when it takes
in input complex objects. We provide a detailed description of the
bug in the corresponding issue13 raised on GitHub. Thus, running the
est In Vivo helped us to identify a problem in the application code
hat remained undetected due to an inappropriate In House testing
ampaign.

1 public class Issue1177_2 extends TestCase {
2 public void test_for_issue() throws Exception {
3 String text = "{\"a\":{\"x\":\"y\"},\"b\":{\"x\":\"y\"}}";
4 Map<String, Model> jsonObject = JSONObject.parseObject(

text, new TypeReference<Map<String, Model>>(){});
5 ...
6 assertEquals("{\"a\":{\"x\":\"y2\"},\"b\":{\"x\":\"y2\"}}",

JSON.toJSONString(jsonObject));
7 }
8 ...
9 }

Listing 4: Original Issue1177_2 test class

1 public class JSONPath_reverse_test extends TestCase {
2 public void test_reserve() throws Exception {
3 JSONObject object = JSON.parseObject("{\"id\":1001,\"name

\":\"ljw\",\"age\":50}");
4
5 assertEquals("[1001,\"ljw\"]", JSONPath.reserveToArray(

object, "id", "name").toString());
6 assertEquals("[\"ljw\",1001]", JSONPath.reserveToArray(

object, "name", "id").toString());
7 assertEquals("[\"ljw\",[\"ljw\",1001,50]]", JSONPath.

reserveToArray(object, "name", "*").toString());
8 }
9 ...
0 }

Listing 5: Original JSONPath_reverse_test test class

P-2-CF: Consistently Passing to Consistently Failing. This group includes
tests that were marked as CP In House, but consistently failed In

ivo, often because of an implementation dependence. In particular,
ests (3), (44), (45) and (47) rely on a data structure, such as
ashSet, which makes no guarantees as to the iteration order of its
lements. This issue was not exposed In House due to the simplicity of
he data model used for testing. Test (2) on the other hand, requires
ome TimeZone set-up operations to pass In House. When moved to the
ield, the test is stripped of its set-up method, and thus it relies on the
ctual TimeZone of the SUT. In this case, the In House testing is very
pecific and does not reflect the actual usage scenarios.

13 https://github.com/alibaba/fastjson/issues/3936
12
IF-2-IF: Intermittently Failing to Intermittently Failing. This group only
includes test (45), which is an Order-Dependent Victim. As it can be
seen in Listing 6, test_0 performs operations on a serialiser instance
(line 3) which is always assumed to be in a clean state. However, this
is not always the case; if test_3 (line 13) runs before test_0, it will
modify the serialiser state on which the victim depends. This unhandled
state-pollution will cause test_0 to fail whenever the test scheduling
matches the abovementioned order. When conducting the In House
experiment, we intentionally introduced a random test order scheduling
for the class, which led to the observation of several intermittent
failures. However, by moving test_0 In Vivo we were able to observe
a higher FoF and pinpoint the issue more effectively. This is because the
method now relies on a serialiser instance retrieved from the execution
context of the SUT. Upon testing, the serialiser might or might not have
a clean state, causing the OD test to intermittently fail.
1 public class JSONSerializerTest2 extends TestCase {
2 public void test_0() throws Exception {
3 JSONSerializer serializer = new JSONSerializer();
4 int size = JSONSerializerMapTest.size(serializer.

getMapping());
5 serializer.config(SerializerFeature.

WriteEnumUsingToString, false);
6 serializer.config(SerializerFeature.WriteEnumUsingName,

false);
7 serializer.write(Type.A);
8
9 Assert.assertTrue(size < JSONSerializerMapTest.size(

serializer.getMapping()));
0 Assert.assertEquals(Integer.toString(Type.A.ordinal()),

serializer.getWriter().toString());
1 }
2 ...
3 public void test_3() throws Exception {
4 ...
5 }
6 }

Listing 6: Original JSONSerializerTest2 test class

Answer to RQ3: Running the flaky tests in a simulation of the
field allowed us to spot several issues that remained hidden In
House, or to facilitate their manifestation. The observed hard-
to-detect bugs escaped pre-release testing due to the numerous
combinations of inputs and states that cannot be addressed In
House (combinatorial explosion). In most cases, such flakiness
was rooted in the design of the test method itself, however,
the intermittent behaviour of a test method helped us to
identify an actual bug of Fastjson. Thus, some flaky tests might
represent a useful hint for a test engineer, and should not be
light-heartedly discarded.

7.6. Practical implications for developers and researchers

One of the most attractive perspectives posed by In Vivo testing
is the exploration of uncommon SUT states by leveraging execution
conditions from its actual usage. Differently from other controlled
experiments in the field (e.g. canary releases, dark launches, A/B
testing) that support decisions based on feedback from the users [26],
In Vivo testing is a proactive technique that aims at detecting failures
before they manifest to actual users. However, this capability also has
associated trade-offs. In several parts of this work, and with more
emphasis in Section 5.2, we remarked that shifting the analysis of
flaky tests In Vivo leads to several implications that flakiness analysts
(e.g., researchers, testers, developers) have to cope with. For example,
those implications could be roughly expressed in terms of economic
costs or human efforts.

A first implication concerns the effort of setting up an environment

that is able to run flaky test In Vivo. Clearly, flakiness analysts would

https://github.com/alibaba/fastjson/issues/3936


Information and Software Technology 167 (2024) 107373M. Barboni et al.

V
m
T
i
r
c

i
D
h
t
s
t
i
S
t
A
p
t
f
p
t
b
h
t
e
S
h
o
a
s
a
t
c
a
s
i
S
g

S
t
t
e

8

o

8

i
i
v

p
c
t
t
t
e
t
f
c
c
s
s

s
c
w
s
e
a
m

o
b
d
a
c
a
i
p
r
s
a
b
a
s
V
p
t
t
s
m
t

refer to some available framework for In Vivo testing avoiding (if
possible) to invest effort in developing any custom solution. However,
even though an applicable In Vivo testing framework exists, its tech-
nical requirements could require dedicated activities for an operative
integration with the specific technological stack or the application
scenario. For example, while planning an In Vivo testing strategy on
real scenarios (i.e., in production and not in research studies like in
this work) it is important to establish an effective compensation schema
through which the possible side effects from In Vivo activities can be
accepted or avoided. Even though the In Vivo testing framework could
offer effective isolation mechanisms, experimenting with flakiness in a
running production environment must carefully undertake such a need
in all its aspects: technical, or organisational.

A different class of implications concerns the development process
of both the SUT and its test cases. In Vivo testing makes sense only if
tests leverage parameters set from the actual execution context to any
of its admissible values. On the one hand, if the SUT’s development
process already encourages the development of parametric tests, these
tests are ready to be used also In Vivo likely with none or few modifi-
cations for the integration with the specific In Vivo testing framework.
On the other hand, any analyst that is willing to study flakiness In Vivo
on projects strongly built around nonparametric tests has to cope with
a test case conversion process like we did in this work. We agree that
this is a non trivial barrier to the systematic investigation of flakiness
In Vivo, nevertheless we also acknowledge that the development of
parametric tests is a strongly recommended practice in many realistic
settings [27]. As from our specific experience with Groucho as In

ivo testing framework, we found that part of the modifications we
ade during the parametrisation process was quite systematic to apply.
hus, a possible alternative to the manual test case conversion is to

nvest some effort in structuring a semi-automated process that at least
efactors the test by adding the method configure() and properly
onfiguring the constructors of the test class.

A specific class of implications mainly refers to researchers study-
ng potential relations between flakiness and observable field failures.
ifferently from the previous cases, often in this context researchers
ave no control over the development process of the selected SUT:
hey must use the resources the project offers as they are. In this
ense, if the subject of their investigation only uses nonparametric tests,
hus researchers have to invest their effort for transforming the tests
nto a parametric format by following the Steps 1–5 we reported in
ection 5.2. In addition, it is uncommon that researchers have access
o any instance of the SUT deployed in some production environment.
t the same time, it is also uncommon they could rely on operational
rofiles or other sources of information about the actual usage of
he considered subject. Probably this is the most challenging aspect
or researchers. As discussed in Section 4, in this work we had the
ossibility to identify an external toolkit for stimulating the SUT with
hose interactions (considered) the most meaningful. If no external
enchmark is available for the considered SUT, then researchers will
ave to implement by themselves an infrastructure that can replicate
he In Vivo scenario. For example in this work, in order to extend the
xperimentation to Biojava (i.e., one of the other two projects from
ection 4 complying with C1 and C2 but not with C3), we should
ave implemented a workload generator either starting from scratch,
r tracing custom algorithms only referred by scientific publications
nd integrating them as a benchmark. Not only this activity requires
ufficient knowledge of the domain that Biojava targets and none of the
uthors currently has experience in bio-informatics, but also it exposes
he work to bias concerning the In Vivo execution settings. Similar
onsiderations hold for wildfly for which we should have defined
production-like environment where an instance of the application

erver is tested In Vivo while it hosts several running applications. Thus
n conclusion, on the one hand, studying flakiness In Vivo when the
UT has no parametric tests is doable (e.g., Steps 1–5) even if it in
13

eneral requires some effort (few working hours in this work as from v
ection 5.2); on the other hand, when the production environment of
he SUT or its operational profiles are available, then researchers have
o carefully plan activities that bring sufficient confidence on the actual
mulation of the In Vivo settings.

. Threats to validity

In the following, we present the threats that may affect the validity
f the conclusions presented in this work.

.1. Threats to construct validity

Threats to construct concern the assumptions or decisions made dur-
ng the definition or the set-up of the experiment that may potentially
mpact the final results. We identify the following threats to construct
alidity:
Choice of the Case-study: Though the case study is a real-world

roject which is also part of an open dataset referred worldwide, its
hoice clearly may have some impact. We tried to reduce this threat
hrough the formulation of neutral selection criteria to be applied over
he whole IDoFT dataset, although then we had to manually analyse
he resulting set of projects to verify if the actual technological stack of
ach project matched our target operative environment. In addition,
he selection of the case-study had an impact also on the categories of
laky tests actually covered. While the IDoFT dataset includes several
lasses of flaky tests, the experiments on Fastjson in this work only
oncerned flaky tests classified as either ID or OD. In this sense, our
tudy could be considered appropriate only for a subset of the whole
pectrum of software test flakiness.
Realistic Production Environment: We simulated end-user ses-

ions by means of an available open benchmark; also this aspect
ould have affected our experimentation. As explained in Section 4,
e mitigated this risk by including criterion C3 among the case-study

election criteria. The jvm-serializers benchmark matched our
ligibility criteria as it is a project developed independently from us
nd the Fastjson team. Yet, we are aware that real end-user sessions
ay provide wider opportunities for instantiating JSON objects.
Development environment: The In House phase had the purpose

f observing the outcome of the original Fastjson tests reported as flaky
y the IDoFT repository. In other words, we accepted their flakiness and
id not look for configurations different from the ones conceived and
ccepted by the developers’ community. Due to their flaky nature, we
ould have experienced different outcomes for these tests if we pursued
n intensive exploration of the configurations either in Fastjson or in
ts operative building system (e.g., JVM, Maven). About the In Vivo
hase, we use Groucho as In Vivo testing framework. Groucho’s main
esponsibility is to suspend the execution of the SUT, isolate its current
tate and run the tests starting from such a state. Specifically, the
ctivation of the flaky tests from the developers of Fastjson is mediated
y the Groucho’s callback mechanism (see Section 2.3). Currently we
re not aware of issues on the isolation mechanism in Groucho. In this
tudy, for each of the considered flaky tests, the activation of an In
ivo testing session just concerns the execution of one flaky test whose
arameters are configured from the current state of the SUT. Even
hough there is not any explicit study on potential additional flakiness
hat Groucho may introduce, in this work each flaky test has been
tudied in separated In Vivo sessions. Thus, their intermittence (either
anifested or not) is due to those formal parameters and variables each

est implementation uses and that the In Vivo testing session sets with

alues reached from an observed state of the SUT.



Information and Software Technology 167 (2024) 107373M. Barboni et al.

t
e

f
G
e

8.2. Threats to internal validity

This category refers to the extent to which the results obtained are
a function of the systematic observation/manipulation of the variables
in the study.

Test Parametrisation: In order to derive the set of parametric
ests to experiment with during In Vivo testing, we re-implemented
ach target test class shipped with Fastjson. As detailed in Section 5.2,

we carefully planned a strategy guiding the conversion procedure
(i.e. Steps 1–5). In addition, we elaborated a validation procedure
(i.e., see Fig. 2) aiming at achieving enough confidence about the
soundness of each flaky test parametrisation. However, the conversion
and validation procedures are not proof of full compliance between the
original flaky test and its parametric version, and potential mismatches
cannot be excluded.

Input Configuration: In the general case we were able to directly
set-up the parameters of the flaky test with object instances directly
fetched from the current state of the SUT within the In Vivo testing
session. However, as also reported in Section 5.2, in a few cases
we had to extract such parameters from part of the whole context
information available just after the activation of an In Vivo testing
session. as also reported in Section 5.2, in a few cases we had to
extract such parameters from part of the whole context information
available just after the activation of an In Vivo testing session. We
did our best to check that the conversion process of the contextual
data as accessible from the run-time stack was correct and compliant
with the In Vivo testing assumptions (i.e., usage of actual data from
the execution context). In this sense, we decided to exclude from our
experience all those tests whose required parameters were too far from
the available context data. Indeed, they would have required extensive
input manipulations which open to the possibility of severe biases.
However, also in those cases where the conversion procedure was
feasible, we are aware that we may have neglected aspects that could
have affected the observed results.

8.3. Threats to external validity

This category refers to the extent to which the results of our study
can be generalised. We identify the following threats to external valid-
ity:

Generalisation and constructs: Generalisation depends on how
we defined the constructs and the variables we wanted to observe. In
this work, we aimed to understand if In Vivo testing can contribute to
identify any potential relation between test flakiness and hard-to-detect
failures. Focusing on this main goal, we could have missed potential
impacts on other variables not fully addressed by the experience. For
example, in our case we were already aware of which tests were flaky,
but this could not be always the case. Also, we are aware of the
limitations and responsibilities to be faced in order to adopt In Vivo
testing approaches, we agree that they are not applicable in all contexts.

Limited subject set: The whole experience considered a set of 52
tests attributed to several categories of flakiness by the IDoFT reposi-
tory. Furthermore, all these flaky tests belong to only a single project.
This set is too small a sample to make any meaningful generalisation.
Indeed, possible hidden dependencies among the constructs referred
during our experience may not hold in other projects, and so we could
observe different results.

9. Related work

This is the first work that leverages field testing to get insights
into the behaviour of flaky tests. Related work includes studies about
characterising and detecting flaky tests, approaches and tools for field
14

testing, and analyses of field failures. c
Flaky tests. In the last decade, research on flaky tests has been attract-
ing growing interest. For a comprehensive overview of the literature,
we refer the reader to a recent systematic review conducted by Perry
and coauthors [1]. In this review, the authors collect and examine 76
primary studies, which they group into four main research directions:
(i) studies analysing the causes of flakiness, and the characteristics of
flaky tests; (ii) studies assessing the cost and impact of flaky tests; (iii)
approaches for flaky tests detection; and (iv) approaches for mitigating
and fixing flakiness.

The scope of our work is orthogonal to these four directions, as
with regard to flaky tests we investigate how the test environment
(in particular, how moving from in house to the field) impacts on the
intermittent test behaviour. In this sense, we discuss below a few works
that are more closely related to this scope.

A recent study by Strandberg et al. [13] investigates the root
causes of intermittently failing tests in the embedded systems domain.
The authors pinpoint nine factors associated with inconsistent test
behaviour, and show that determining the root causes of intermittent
failures requires more effort with respect to consistent ones. Notably,
they discovered that environmental factors play a relevant role in the
manifestation of test intermittence, which is also the intuition that
drove our research.

Along a similar line of thought, Silva and coauthors [28] show that
the detection of flakiness through repeated execution of tests can be
improved by adding noise in the test environment, because concurrent
events happening during test execution can influence the test outcome.
This is the same concept that inspired our work, however differently
from their tool SHAKER that modifies the test environment by adding
artificial noise, we rely on the concurrent events naturally happening
in the field.

Cordy and coauthors [29] have developed FlakiMe, a laboratory-
controllable environment in which different scenarios and conditions
inducing test flakiness can be simulated. Their strategy clearly takes
an opposite direction to ours, as their purpose is that of facilitating
researchers to take into account the impact of flaky tests when exper-
imenting with testing related techniques. In particular, they show the
use of FlakiMe when studying mutation testing or automated program
repair.

More recently, Parry and coauthors [30] proposed a high-level
approach that leverages machine learning models for reducing the
number of re-run experienced in order to detect flakiness. The ideas
of the work result in the CANNIER framework whose impact has been
validated in combination with several methods for flaky test detection
based of repeated executions. While we acknowledge the importance
of all these works that aim to detect test flakiness, the ultimate goal of
our research goes in a slightly different direction: leveraging flaky tests
to possibly identify faults that are hard-to-detect in the development
environment.

Field testing approaches and tools. Field (or In Vivo) testing approaches
operate in the production environment to uncover flaws that are missed
by In House testing activities. The most prevalent field testing ap-
proaches target the operational instance of the SUT (i.e., online testing).
For example, Netflix engineers purposefully cause interruptions in the
production system to increase its resilience. This approach, known as
Chaos Engineering [31], helps to ensure that complex systems can
withstand turbulent conditions in production.

Murphy et al. [32] designed and implemented Invite, the first In
Vivo testing framework for Java. Invite permits to isolate the test
execution context to mitigate the risk of corruption during In Vivo
testing activities.

In this work, we used Groucho [10], a fully automated framework
or In Vivo testing of Java applications. Unlike previous approaches,
roucho can be applied to the original application code in a transpar-
nt manner. That is, there is no need to access and modify the source

ode of the SUT for enabling In Vivo testing. Indeed, Groucho permits



Information and Software Technology 167 (2024) 107373M. Barboni et al.
fully automatic instrumentation of the SUT, even if the latter is only
available as compiled code.

An exhaustive survey of field testing approaches and tools can be
found in the recent systematic study by Bertolino et al. [14].

Field failures. Some recent works address the limitations of In House
testing. Specifically, they analyse the complexity of different types of
bugs and show how difficult it is for test engineers to reproduce field
failures during pre-release testing activities.

Gazzola et al. [5] investigate the nature of field failures that escape
pre-release testing and manifest themselves in the field. They analyse
the bug reports of five apps from three distinct ecosystems and illustrate
why failures from the identified classes must be addressed at run-
time. The authors identify four main reasons that make certain faults
intrinsically difficult to detect In House: cases impossible to replicate in-
house, combinatorial explosion, unknown application, or environment
conditions.

Rwemalika et al. [33] offer an extensive investigation on the charac-
teristics of pre-release and post-release bugs over 37 industrial projects
from BGL BNP Paribas. Their findings imply that fixing post-release
defects is more difficult, requiring developers to change many source
code and configuration files.

The empirical investigation by Cotroneo et al. [34] exposes the
peculiarities of the bug manifestation process. The authors identify
a collection of failure-exposing criteria and provide a fine-grained
description of defect manifestation. Interestingly, half of the analysed
bugs require at least two workload conditions to surface. Thus, bug
detection activities must consider advanced techniques like field testing
to capture them.

10. Conclusions and future work

We presented the first simulation study that investigates the be-
haviour of tests marked as flaky when executed in the field. Our study
included two phases, namely In House, and In Vivo.

The results gathered from the In House phase were quite inter-
esting; almost all tests selected for the experiment (∼96%) exhibited
a deterministic behaviour despite being marked as flaky by state-of-
the-art detection tools. This finding confirms the need for flakiness
detection tools, but it also requires them to be as flakiness-agnostic
as possible. In fact, most available solutions target a very specific
cause of flakiness (e.g. implementation dependence [24], order de-
pendence [23], concurrency [28]) and must therefore be combined to
exhaustively identify such tests. Furthermore, a significant percentage
of flaky tests (∼25%) consistently failed on our machine due to their
reliance on a specific configuration. This confirms that the sources of
the intermittent behaviour must be searched both in the execution
context and in the configuration settings, which In Vivo testing can
thoroughly explore.

Running the pool of flaky tests In Vivo was extremely insightful.
Firstly, we found an evident difference between the In Vivo and the In
House experiment; the former resulted in the highest percentage of both
Consistently Failing (∼32% vs ∼25%) and Intermittently Failing (∼11%
vs ∼4%) tests. This indicates that running flaky tests using actual inputs
from the field can concretely impact their behaviour. In general, most
of the Consistently Passing tests observed In Vivo were already passing
In House, but we also observed an Intermittently Failing test losing its
intermittent behaviour in the field, which can help to narrow down the
cause of its flakiness. Most notably, we recorded several cases of tests
passing In House and becoming Consistently Failing or Intermittently
Failing in the field, which suggests the presence of an issue that can
only be triggered by specific input or environmental settings.

We then investigated whether running a test In Vivo has some
impact on the perception of flakiness in terms of the test FoF (Frequency
of Failure). Throughout the experiment, we marked 6 test methods as
15

intermittent, and each one of them displayed a significant increase
or a decrease in FoF in the field. Besides, most of them start from a
deterministic state In House and only become intermittent once they
are moved to the field. This evolution suggests that a field testing
approach can help to (re)create those conditions necessary for the
flakiness to emerge, and possibly help to identify the relative cause of
failure.

Our main goal, however, was to understand whether test intermit-
tence could be seen as a useful indicator of hard-to-detect failures
rather than a negative event to be eradicated. Our analysis revealed
that, in most cases, the root cause of an intermittently failing test is
found in the bad design of the test code itself. However, we also found
evidence of a field-intrinsic bug that remained hidden during the In
House phase due to the known problem of combinatorial explosion.
This suggests that some intermittently failing tests could be a valuable
hint for a test engineer, and should not be dismissed right away as
unreliable methods.

Towards such direction, this study lays the ground to further re-
search about non-determinism of tests that could be due to specific
configurations and environment conditions and hence could be useful
to dig out the possible presence of hard-to-detect failures. In future
work, we aim at conducting other empirical studies to explore other
possible relations between the two worlds of In House and In Vivo
testing. In particular, we aim at exploring the possible connection of
flakiness with the results from previous studies about Mandelbugs [35,
36]. Moreover, while in this paper we considered a whole set of flaky
tests, we also aim to go deeper into the characteristics of the test cases
for recognising the ‘‘interesting’’ causes of flakiness, i.e., for under-
standing which are the kinds of flakiness that could be associated with
hard-to-detect failures. In this way future research could investigate
what are the best tools that support the identification of these kinds
of flaky tests, and help testers to distinguish them from uninteresting
flakiness due to bad test design.

Our study certainly presents some limitations. Among the others,
the tests reported within the IDoFT database have a strong focus on
unit testing. This aspect has some, limited, consequences with respect
to the investigation on if/how the behaviour of known intermittent tests
changes when they are executed In Vivo, which is the main objective
of this work. However, we acknowledge that this study did not cover
test intermittence that could directly stem from a distributed envi-
ronment (e.g. integration tests in the context of Web applications, or
Web Services). Studying intermittence In Vivo in these scenarios raises
concerns about the isolation of the test execution from the rest of the
environment. Although Groucho offers abstract primitives for dealing
with data persisted/exported out-of-memory (i.e. see Section 2.3), in
future work we plan to include further qualitative and quantitative
analyses covering also these scenarios.

Our study has been quite cumbersome in terms of the effort we had
to put into parametrising the test cases and rerunning the flaky tests
both In House and In Vivo. Clearly, this is not what we would imply
that testers should do in practice. The implications for the software
development process that descend from our research are related to
some suggestions we could already provide to testers, as for example:
encouraging the development of parametric tests; identifying when a
specific state/configuration of the SUT is reached so that an In Vivo
testing session has to start; or formulating policies that shift In Vivo
the execution for those tests that manifested intermittent outcomes
in the CI pipelines. However, all these topics certainly require better
awareness of the types of flakiness that are due to hard-to-detect
failures, which we plan to develop in future experimentation.

CRediT authorship contribution statement

Morena Barboni: Methodology, Software, Investigation, Vali-
dation, Writing – original draft. Antonia Bertolino: Conceptual-
ization, Methodology, Investigation, Validation, Writing – original
draft. Guglielmo De Angelis: Methodology, Software, Investigation,

Validation, Writing – original draft.



Information and Software Technology 167 (2024) 107373M. Barboni et al.
Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Guglielmo De Angelis reports financial support was provided by
Government of Italy Ministry of Education University and Research.

Replication package and data availability

The replication package that supports complete reproduction of the
results reported in this paper is available from the following Github
repository: https://github.com/IASI-SAKS/groucho/releases/tag/FastJ
sonInvivoFlakiness-v1.0.

The version of the jvm-serializers we referred in this study is
available at: https://github.com/gulyx/jvm-serializers/tree/fastJSON-
benchmark-only. The repository also provides a JAR which distributes
the pre-built version of the benchmark.

Acknowledgements

This paper has been supported by the Italian MIUR PRIN 2017
Project: SISMA (Contract 201752ENYB), and partially by the Italian
Research Group: INdAM-GNCS.

References

[1] O. Parry, G.M. Kapfhammer, M. Hilton, P. McMinn, A survey of flaky tests, ACM
Trans. Softw. Eng. Methodol. 31 (1) (2021) 1–74.

[2] W. Lam, P. Godefroid, S. Nath, A. Santhiar, S. Thummalapenta, Root causing
flaky tests in a large-scale industrial setting, in: Proc. ACM SIGSOFT ISSTA 2019,
Beijing, China, ACM, 2019, pp. 101–111.

[3] M. Eck, F. Palomba, M. Castelluccio, A. Bacchelli, Understanding flaky tests:
the developer’s perspective, in: Proc. ACM ESEC/SIGSOFT FSE 2019, Tallinn,
Estonia, ACM, 2019, pp. 830–840.

[4] M. Fowler, Eradicating non-determinism in tests, Martin Fowler Pers. Blog
(2011).

[5] L. Gazzola, L. Mariani, F. Pastore, M. Pezze, An exploratory study of field failures,
in: Proc. IEEE ISSRE, IEEE, 2017, pp. 67–77.

[6] A. Tahir, S. Rasheed, J. Dietrich, N. Hashemi, L. Zhang, Test flakiness’ causes,
detection, impact and responses: A multivocal review, J. Syst. Softw. 206 (2023)
111837, http://dx.doi.org/10.1016/j.jss.2023.111837.

[7] M. Machalica, W. Chmiel, S. Swierc, R. Sakevych, How do you test your
tests? 2020, Online on https://engineering.fb.com.

[8] J. Raine, Reducing flaky builds by 18x, 2020, Online on https://github.blog.
[9] S. Habchi, G. Haben, M. Papadakis, M. Cordy, Y. Le Traon, A qualitative study

on the sources, impacts, and mitigation strategies of flaky tests, in: Proc. ICST
2022, IEEE, 2022, pp. 244–255.

[10] A. Bertolino, G. De Angelis, B. Miranda, P. Tonella, Run java applications and
test them in-vivo meantime, in: Proc. ICST 2020, Porto, Portugal, IEEE, 2020,
pp. 454–459.

[11] M. Barboni, A. Bertolino, G. De Angelis, What we talk about when we talk about
software test flakiness, in: Proc. QUATIC 2021, Springer International Publishing,
2021, pp. 29–39.

[12] O. Parry, G.M. Kapfhammer, M. Hilton, P. McMinn, Surveying the developer ex-
perience of flaky tests, in: 44th IEEE/ACM International Conference on Software
Engineering: Software Engineering in Practice, ICSE SEIP 2022, Pittsburgh, PA,
USA, May 22–24, 2022, IEEE, 2022, pp. 253–262, http://dx.doi.org/10.1109/
ICSE-SEIP55303.2022.9793965.

[13] P.E. Strandberg, T.J. Ostrand, E.J. Weyuker, W. Afzal, D. Sundmark, Inter-
mittently failing tests in the embedded systems domain, in: S. Khurshid, C.S.
Pasareanu (Eds.), Proc. ACM ISSTA 2020, Virtual Event, USA, ACM, 2020, pp.
337–348.
16
[14] A. Bertolino, P. Braione, G. De Angelis, L. Gazzola, F.M. Kifetew, L. Mariani, M.
Orrù, M. Pezzè, R. Pietrantuono, S. Russo, P. Tonella, A survey of field-based
testing techniques, ACM Comput. Surv. 54 (5) (2021) 92:1–92:39.

[15] S. Elbaum, M. Diep, Profiling deployed software: Assessing strategies and testing
opportunities, IEEE Trans. Softw. Eng. 31 (4) (2005) 312–327.

[16] J. Morán, A. Bertolino, C. de la Riva, J. Tuya, Towards ex vivo testing of
MapReduce applications, in: 2017 IEEE International Conference on Software
Quality, Reliability and Security, QRS, IEEE, 2017, pp. 73–80.

[17] A. Bertolino, G. De Angelis, A. Guerriero, B. Miranda, R. Pietrantuono, S. Russo,
DevOpRET: Continuous reliability testing in DevOps, J. Softw. Evol. Process
(2020).

[18] A. Bertolino, G. De Angelis, B. Miranda, P. Tonella, In vivo test and rollback
of Java applications as they are, Softw. Test. Verif. Reliab. (2023) e1857,
http://dx.doi.org/10.1002/stvr.1857.

[19] A. Alshammari, C. Morris, M. Hilton, J. Bell, FlakeFlagger: Predicting flakiness
without rerunning tests, in: Proc. IEEE/ACM ICSE 2021, Madrid, Spain, IEEE,
2021, pp. 1572–1584.

[20] E. Kowalczyk, K. Nair, Z. Gao, L. Silberstein, T. Long, A. Memon, Modeling and
ranking flaky tests at apple, in: Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Software Engineering in Practice, 2020, pp.
110–119.

[21] W. Lam, S. Winter, A. Astorga, V. Stodden, D. Marinov, Understanding repro-
ducibility and characteristics of flaky tests through test reruns in Java projects,
in: 2020 IEEE 31st International Symposium on Software Reliability Engineering,
ISSRE, IEEE, 2020, pp. 403–413.

[22] W. Lam, R. Oei, A. Shi, D. Marinov, T. Xie, iDFlakies: A framework for detecting
and partially classifying flaky tests, in: Proc. IEEE ICST 2019, Xi’an, China, IEEE,
2019, pp. 312–322.

[23] A. Shi, W. Lam, R. Oei, T. Xie, D. Marinov, iFixflakies: a framework for
automatically fixing order-dependent flaky tests, in: Proc. ACM ESEC/SIGSOFT
FSE 2019, Tallinn, Estonia, ACM, 2019, pp. 545–555.

[24] A. Shi, A. Gyori, O. Legunsen, D. Marinov, Detecting assumptions on determinis-
tic implementations of non-deterministic specifications, in: Proc. IEEE ICST 2016,
Chicago, IL, USA, IEEE, 2016, pp. 80–90.

[25] M. Barboni, A. Bertolino, G. De Angelis, Insights from Running Flaky Tests
into the Field: Extended Version, Tech. Rep., ISTI-2022-TR/007, 2022, http:
//dx.doi.org/10.32079/ISTI-TR-2022/007.

[26] R. Kohavi, R. Longbotham, Online controlled experiments and A/B testing,
Encycl. Mach. Learn. Data Min. 7 (8) (2017) 922–929.

[27] V. Massol, T. Husted, JUnit in Action, Manning, 2004.
[28] D. Silva, L. Teixeira, M. d’Amorim, Shake it! detecting flaky tests caused by

concurrency with shaker, in: Proc. IEEE ICSME 2020, Adelaide, Australia, IEEE,
2020, pp. 301–311.

[29] M. Cordy, R. Rwemalika, A. Franci, M. Papadakis, M. Harman, FlakiMe:
Laboratory-controlled test flakiness impact assessment, in: Proceedings of the
44th International Conference on Software Engineering, ICSE ’22, Association
for Computing Machinery, New York, NY, USA, 2022, pp. 982–994, http://dx.
doi.org/10.1145/3510003.3510194.

[30] O. Parry, G.M. Kapfhammer, M. Hilton, P. McMinn, Empirically evaluating flaky
test detection techniques combining test case rerunning and machine learning
models, Empir. Softw. Eng. 28 (3) (2023) 72, http://dx.doi.org/10.1007/s10664-
023-10307-w.

[31] A. Basiri, N. Behnam, R. de Rooij, L. Hochstein, L. Kosewski, J. Reynolds, C.
Rosenthal, Chaos engineering, IEEE Softw. 33 (3) (2016) 35–41.

[32] C. Murphy, G.E. Kaiser, I. Vo, M. Chu, Quality assurance of software applications
using the in vivo testing approach, in: Proc. ICST 2009, Denver, Colorado, USA,
IEEE, 2009, pp. 111–120.

[33] R. Rwemalika, M. Kintis, M. Papadakis, Y.L. Traon, P. Lorrach, An industrial
study on the differences between pre-release and post-release bugs, in: Proc.
IEEE ICSME 2019, Cleveland, OH, USA, IEEE, 2019, pp. 92–102.

[34] D. Cotroneo, R. Pietrantuono, S. Russo, K.S. Trivedi, How do bugs surface? A
comprehensive study on the characteristics of software bugs manifestation, J.
Syst. Softw. 113 (2016) 27–43.

[35] D. Cotroneo, M. Grottke, R. Natella, R. Pietrantuono, K.S. Trivedi, Fault triggers
in open-source software: An experience report, in: Proc. IEEE ISSRE 2013,
Pasadena, CA, USA, IEEE, 2013, pp. 178–187.

[36] D.G. Cavezza, R. Pietrantuono, J. Alonso, S. Russo, K.S. Trivedi, Reproducibility
of environment-dependent software failures: An experience report, in: Proc. IEEE
ISSRE 2014, Naples, Italy, IEEE, 2014, pp. 267–276.

https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/IASI-SAKS/groucho/releases/tag/FastJsonInvivoFlakiness-v1.0
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
https://github.com/gulyx/jvm-serializers/tree/fastJSON-benchmark-only
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb1
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb1
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb1
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb2
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb2
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb2
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb2
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb2
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb3
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb3
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb3
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb3
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb3
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb4
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb4
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb4
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb5
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb5
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb5
http://dx.doi.org/10.1016/j.jss.2023.111837
https://engineering.fb.com
https://github.blog
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb9
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb9
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb9
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb9
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb9
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb10
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb10
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb10
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb10
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb10
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb11
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb11
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb11
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb11
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb11
http://dx.doi.org/10.1109/ICSE-SEIP55303.2022.9793965
http://dx.doi.org/10.1109/ICSE-SEIP55303.2022.9793965
http://dx.doi.org/10.1109/ICSE-SEIP55303.2022.9793965
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb13
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb13
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb13
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb13
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb13
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb13
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb13
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb14
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb14
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb14
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb14
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb14
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb15
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb15
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb15
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb16
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb16
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb16
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb16
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb16
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb17
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb17
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb17
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb17
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb17
http://dx.doi.org/10.1002/stvr.1857
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb19
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb19
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb19
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb19
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb19
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb20
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb20
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb20
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb20
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb20
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb20
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb20
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb21
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb21
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb21
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb21
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb21
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb21
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb21
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb22
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb22
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb22
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb22
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb22
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb23
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb23
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb23
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb23
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb23
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb24
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb24
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb24
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb24
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb24
http://dx.doi.org/10.32079/ISTI-TR-2022/007
http://dx.doi.org/10.32079/ISTI-TR-2022/007
http://dx.doi.org/10.32079/ISTI-TR-2022/007
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb26
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb26
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb26
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb27
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb28
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb28
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb28
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb28
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb28
http://dx.doi.org/10.1145/3510003.3510194
http://dx.doi.org/10.1145/3510003.3510194
http://dx.doi.org/10.1145/3510003.3510194
http://dx.doi.org/10.1007/s10664-023-10307-w
http://dx.doi.org/10.1007/s10664-023-10307-w
http://dx.doi.org/10.1007/s10664-023-10307-w
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb31
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb31
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb31
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb32
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb32
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb32
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb32
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb32
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb33
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb33
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb33
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb33
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb33
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb34
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb34
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb34
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb34
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb34
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb35
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb35
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb35
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb35
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb35
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb36
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb36
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb36
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb36
http://refhub.elsevier.com/S0950-5849(23)00228-8/sb36

	Flakiness goes live: Insights from an In Vivo testing simulation study
	Introduction
	Background
	Software test flakiness
	Field testing
	Supporting framework for In Vivo testing

	Objectives and Research Questions
	Study Subjects
	SUT: Fastjson
	Benchmark: jvm-serializers

	Methodology
	Study phases
	Enabling In Vivo testing

	Experiment Set-up
	Discussion of results
	In House phase results
	In Vivo phase results
	Answering RQ1
	Answering RQ2
	Answering RQ3
	Practical implications for developers and researchers

	Threats to validity
	Threats to construct validity
	Threats to internal validity
	Threats to external validity

	Related Work
	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Replication Package and Data Availability
	Acknowledgements
	References


