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Abstract
Intrusion detection (ID) methods are security frameworks designed to safeguard network information systems. The strength of 
an intrusion detection method is dependent on the robustness of the feature selection method. This study developed a multi-
level random forest algorithm for intrusion detection using a fuzzy inference system. The strengths of the filter and wrapper 
approaches are combined in this work to create a more advanced multi-level feature selection technique, which strengthens 
network security. The first stage of the multi-level feature selection is the filter method using a correlation-based feature 
selection to select essential features based on the multi-collinearity in the data. The correlation-based feature selection used 
a genetic search method to choose the best features from the feature set. The genetic search algorithm assesses the merits of 
each attribute, which then delivers the characteristics with the highest fitness values for selection. A rule assessment has also 
been used to determine whether two feature subsets have the same fitness value, which ultimately returns the feature subset 
with the fewest features. The second stage is a wrapper method based on the sequential forward selection method to further 
select top features based on the accuracy of the baseline classifier. The selected top features serve as input into the random 
forest algorithm for detecting intrusions. Finally, fuzzy logic was used to classify intrusions as either normal, low, medium, 
or high to reduce misclassification. When the developed intrusion method was compared to other existing models using 
the same dataset, the results revealed a higher accuracy, precision, sensitivity, specificity, and F1-score of 99.46%, 99.46%, 
99.46%, 93.86%, and 99.46%, respectively. The classification of attacks using the fuzzy inference system also indicates that 
the developed method can correctly classify attacks with reduced misclassification. The use of a multi-level feature selection 
method to leverage the advantages of filter and wrapper feature selection methods and fuzzy logic for intrusion classification 
makes this study unique.
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Abbreviations
AIDS  Anomaly-based intrusion detection system
BIDS  Behavior-based intrusion detection system
CFS-SFS  Feature selection and sequential forward 

selection
DDoS  Distributed denial-of-service
DM  Data mining
DoS  Denial of service
FCBF  Fast-based correlation features
FCBFiP  Fast-based correlation features in pieces
FNs  False negatives
FOCUS  Fog computing-based security
FPs  False positives
GA  Genetic search
GSA  Genetic search algorithm
HIDS  Host-based intrusion detection system
ID  Intrusion detection
IDSs  Intrusion detection systems
IoT  Internet of things
KIDS  Knowledge-based intrusion detection system
MCFS  Multi-cluster feature selection
MIDS  Misuse-based intrusion detection system
MITM  Man in the middle
ML  Machine learning
NIDS  Network-based intrusion detection system
Pr  Probing attack
R2L  Remote-to-local
RF  Random forest
SFS  Sequential forward selection
SIDS  Signature-based intrusion detection system
U2R  User-to-root
VPN  Virtual private network

1 Introduction

The internet has formed an integral part of people's daily 
lives, and a great deal of data must be protected from cyber-
crimes [1]. The importance of the internet to daily human 
activities has caused attackers to perpetuate many cyber-
crime activities. The attackers are always looking for new 
methods to steal users' confidential data by exploiting a vul-
nerability in the computer networks. The main goal of data 
security is to develop security models to ensure data confi-
dentiality, integrity, and availability on networks [2, 3]. The 
motivation to prevent security breaches against information 
systems on networks has prompted researchers to develop 
security models capable of detecting intrusions. Develop-
ing intrusion detection systems (IDSs) aims to distinguish 
between intrusion and normal attacks.

IDSs are security frameworks designed to protect infor-
mation systems on networks. IDS can be classified based 
on their environments [4] and detection mechanisms [5–7]. 

IDSs are further classified based on their environment as 
host-based IDS (HIDS) and network-based IDS (NIDS) [8]. 
Host-based IDS can be defined as the IDS designed to detect 
attacks and vulnerabilities on the host computer. On the 
other hand, network-based IDS monitors the whole network 
boundary to identify intrusive traffic on the network before 
penetrating the host computers. Based on their detection 
mechanisms, IDSs are further classified as signature-based 
IDS (SIDS) and anomaly-based IDS (AIDS). Signature-
based IDS, also known as knowledge-based intrusion detec-
tion system (KIDS) or misuse-based intrusion detection sys-
tem (MIDS), compare incoming patterns with known attack 
database to detect deviations from known attack patterns. 
The false alarm rate for SIDS is extremely low but cannot 
detect new and unknown attacks. Therefore, researchers are 
focusing more on anomaly detection. Anomaly-based IDS, 
sometimes known as behavior-based intrusion detection 
systems (BIDS), is a better method for detecting unknown 
attacks by recognizing deviations of incoming patterns with 
a normal profile behavior. The advantage of AIDS is the 
ability to detect new attacks from any deviations from nor-
mal patterns, but one major drawback is the possibility of a 
high false alarm rate [9].

Several IDS which have been developed are still suscep-
tible to attacks [10, 11]. Although many machine learning 
(ML) algorithms have been deployed for IDS to increase 
detection accuracy, existing IDS methods continue to strug-
gle to achieve good results [9]. Researchers have affirmed the 
importance of feature selection methods in IDSs to increase 
detection accuracy. Feature selection is a method that can be 
used during the preprocessing stage to improve the accuracy 
of the base classifiers. The filter method is a more popular 
method for feature selection based on the dataset analysis 
for choosing the most important features without consider-
ing the base classifier performance. On the other hand, the 
wrapper method considers the base classifier performance 
for choosing the best feature subsets to increase classifier 
accuracy. The embedded method is considered relatively 
close to the wrapper method because it uses essential func-
tions and considers the classifier performance for the choice 
of a better feature subset. The filter method has a faster pro-
cessing time than the other feature selection methods with 
slow processing time.

Data mining algorithms have been frequently applied in 
implementing IDSs [12]. However, many developed data 
mining methods are either single or hybrid. This study 
developed a multi-level random forest algorithm for intru-
sion detection using a fuzzy inference system. The devel-
oped IDS method uses correlation-based feature selection 
and sequential forward selection (CFS-SFS) for the multi-
level selection of features. The first phase of the multi-
level features selection used a method called correlation-
based feature selection to filter out irrelevant features. 
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The output of the filtered features serves as input to the 
sequential forward feature selection, a wrapper method for 
selecting the most relevant features. The selected relevant 
features finally serve as input to the random forest classi-
fier for intrusions detection. To know the severity level of 
a detected intrusion and prevent misclassification, fuzzy 
logic was used to classify an intrusion as either small, 
medium-small, medium-large, or large.

1.1  Motivations

Three forms of feature selection methods are available 
they are (i) wrapper, (ii) filtering, and (iii) embedding 
[13]. Techniques like filtering and embedding are found 
in different selection methods. While the latter employs 
both strategies, the first two are distinct. The wrapper tech-
nique relies on the accuracy of a predetermined learn-
ing algorithm in resolving a specific issue. The chosen 
features are evaluated based on their performance. There 
are two steps in the wrapper approach. It first looks for a 
subset of features, and then, in a subsequent phase, it uses 
the learning algorithm, which functions as a black box, to 
evaluate the features that have been chosen. These stages 
are repeated iteratively until a predetermined stopping cri-
terion is satisfied. The wrapper technique has a problem 
because the search space for any n features is 2n , it poses 
a problem for datasets with enormous dimensions. Differ-
ent approaches have been developed to address the high-
dimensional issue, such as best-first search, hill-climbing, 
and branch-and-bound search. Genetic algorithms can also 
improve the locally optimal training performance. The fea-
ture selection filtering techniques are separate from the 
learning algorithms and are more effective than wrapper 
approaches. However, the chosen features may not be the 
best due to a lack of a specific learning algorithm. There-
fore, the filter methods are divided into two steps. A set 
of ranking criteria is used to rank the features first. Each 
feature can be ranked separately using a univariate feature 
ranking algorithm, or it can be multivariate, with a batch 
ranking of multiple features. The second stage extracts 
the characteristics using the aforementioned rating criteria 
[14].

This study addresses the issue of selecting a set of unique 
attributes that can improve an IDS’s classification accuracy. 
When a class label is present, the feature selection tech-
nique is simplified by calculating each feature’s impact on 
the class label’s predictions. Even when class labels are pre-
sent, feature selection can be done unsupervised (supervised 
learning). This strategy ensures that the feature subset of 
the original attributes contains the optimal number of fea-
tures and is more accurate at detection. The most critical 
stage is choosing the best representative features using ML-
based algorithms. By eliminating redundant and irrelevant 

characteristics, dimensionality reduction is used to mini-
mize the number of features. However, the calculation cost 
is higher when determining the ideal number of features 
from data with many features. This work employs a genetic 
search algorithm (GSA) to find the best features to improve 
classification performance. This task involved fine-tuning 
parameters while the GSA for the feature optimization prob-
lem was being implemented. The current approach also cre-
ates a novel fitness function for the task at hand. The GSA 
quickly converges and offers the best features with higher 
prediction accuracy when the settings are fine tuned.

1.2  Contributions

The study key contributions are as follows:

(a) The design of a multi-level feature selection method to 
combine the advantages of the filter and wrapper fea-
ture selection methods, using the best features chosen, 
created the hybrid GSA model to train ML classifiers.

(b) The use of a random forest classifier to improve detec-
tion accuracy

(c) The design of a fuzzy logic model for intrusion clas-
sification reduces the likelihood of misclassification.

(d) The proposed model's effectiveness is compared with 
cutting-edge intrusion detection systems and traditional 
feature selection approaches.

2  Related Work

In cybersecurity, ML is critical for detecting malicious and 
intrusive traffic. In other words, ML algorithms are frequently 
used in Internet of Things (IoT) risk management to iden-
tify IoT traffic. However, due to poor feature selection, ML 
approaches misclassify a wide range of malicious traffic in 
a secure IoT network. Therefore, selecting a feature set with 
enough data to identify smart IoT anomalies accurately and 
intrusion traffic is critical to solving the problem. This section 
discusses a few studies on IoT anomalies and intrusion attacks. 
In addition, several studies have demonstrated the effectiveness 
of feature selection techniques in the field of network security.

Anomaly and intrusion detection in IoT networks have 
received a lot of attention in recent years, and experts 
are working hard to find a solution [11]. Various types of 
cybersecurity solutions are suggested and used in an IoT 
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network platform to protect computers and IoT applications 
from attacks and unauthorized access [15–19]. In 2017, for 
example, IoT distributed denial-of-service (DDoS) attacks 
increased by up to 172% [20, 21]. Similarly, when com-
pared to 2013, the number of malicious attacks in 2017 
has increased several times, with the vast majority of their 
attacks, such as Botnet attacks and others, being quite dan-
gerous, according to a Kaspersky lab study [22]. Anderson 
proposed the first intrusion detection system in 1980 to 
combat the issue of cyberattacks [23]. The authors in [24] 
then presented a real-time intrusion detection expert systems 
paradigm, which was able to identify breaches, intrusions, 
leaks, Trojan horses, and other threats. However, their model 
employed assumptions to find malicious network attacks. 
Additionally, their analysis placed a particular emphasis on 
user activity to detect irregular processes. The man-in-the-
middle (MITM) vulnerabilities have suddenly worsened 
thanks to DDoS [25]; however, these pose a significant dan-
ger to the IoT, and other researchers work hard to precisely 
identify, detect, and implement a plan to safeguard IoT net-
works against such dangerous intrusions.

Similarly, a novel approach called fog computing-based 
security (FOCUS) was unveiled in 2018 by authors in [26]. 
This technique is mainly employed to protect the IoT net-
work against malware-based intrusions. The virtual private 
network (VPN), in their suggested concept, is employed 
to protect IoT communication pathways and channels [27, 
28]. Additionally, in an IoT network context, their proposed 
security system can transmit notifications throughout DDoS 
attacks [29, 30]. Their study validated proof of concept for 
results evaluation, and they experimented on the proposed 
model to test the system's effectiveness. However, their 
experimental findings demonstrated that the suggested 
approach effectively percolates harmful attempts with a 
slight reduction in response time and bandwidth utilization.

The feature selection method is crucial and indispensable 
during data processing. However, feature selection entails 
choosing useful features from many attributes and eliminat-
ing unnecessary ones that do not offer identification-related 
information. In this regard, in [31], the authors reviewed 
some effective feature selection techniques based on correla-
tion measurement techniques. They created a new method 
for the fast-based correlation features (FCBF) algorithm's 
functions to improve industrial IoT network capabilities. 
However, they convert the FCBF technique into the fast-
based correlation features in pieces (FCBFiP) method for 
their experiments. The main goal was to partition the feature 
space into equal-sized segments. They suggested this strat-
egy and enhanced the correlation and ML models running 
on each node. However, their suggested model performs 
better regarding model accuracy and throughput. Authors 

in [32] created a novel technique for identifying attacks 
coming from IoT devices, suggested an anomaly identifica-
tion approach that extracts system performance, evaluated 
it experimentally, and used autoencoders to identify unusual 
network traffic coming from IoT devices. However, they uti-
lized two well-known IoT-based botnet assaults to evaluate 
the suggested strategy, and some business devices in the IoT 
network were compromised by Mirai as well. Their sug-
gested method can detect attacks on IoT devices, according 
to experimental findings. Similarly, authors in [33] proposed 
a features selection strategy to improve the functionality of 
IoT anomaly detection hardware. The data correlation vari-
ation between the IoT sensors was monitored in real time to 
detect identical deployed sensors, and the sensors with the 
highest correlation variances were selected as the features 
for anomaly classification. They investigated the window 
size for data calculation and clustering using curve align-
ment. Multi-cluster feature selection (MCFS) was then used 
to select the online feature selection scenario. They demon-
strated that the proposed method effectively reduces the false 
negative (FN) rate of detecting IoT infrastructure anomalies.

In addition to the previously mentioned security technolo-
gies, for instance, attack [34, 35], and crucial management 
[36], the management of evidence [35] can be utilized for IoT 
security as well. However, in the literature review above, it 
was clear that finding a reliable and consistent feature set for 
anomaly and intrusion detection to classify IoT network data is 
crucial. The attributes selection method's main notion entails 
four critical steps. The subset generation, which produces a 
feature set; evaluation of the subset, in which the features are 
assessed through analysis; decision-making process, where 
decisions are made to either approve or reject a feature accord-
ing to specific guidelines and subset validation.

2.1  Feature Selection

Feature selection methods are variable reduction techniques 
that can convert features from a high-dimensional space to 
a low-dimensional space while maintaining the classifica-
tion algorithms’ efficiency [37]. In another word, feature 
selection is the extraction of the best features required for 
the development of a classifier with high detection accuracy 
and low false alarm. The goal of feature selection methods 
is to remove uncorrelated variables from the set of features 
while keeping the data useful to the classification model. 
Handling Big Data for ML is required in most fields today, 
including cybersecurity. Security data is proliferating, and 
intelligent and efficient management is required [25]. Data 
mining (DM) and machine learning (ML) techniques for 
high-dimensional datasets focus on generating relevant 
insights by minimizing dataset features. The dimensionality 
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constraint is the primary issue that must be addressed to 
implement DM and ML techniques [25] A “dimensional-
ity constraint” is data that is dispersed in high-dimensional 
space. This harms low-dimensional space learning meth-
ods [38]. Another issue is overfitting, which reduces the 
accuracy of the ML model when the data contains a large 
number of characteristics. A high feature count also gener-
ates a higher memory and computational cost [39]. The best 
solution to the high dimensionality problem is to reduce the 
dimensions of a given dataset using state-of-the-art feature 
reduction techniques. Feature selection can reduce dimen-
sions [40, 41]. This technique converts numerous features of 
big data into a new, low-dimensional feature space. Feature 
selection refers to selecting the most appropriate feature sub-
set from the provided input feature vector to assist the ML 
model train effectively.

In the real world, the datasets have noise that adds unnec-
essary and redundant characteristics. Eliminating the noise 
from the data helps accelerate the learning process, thus 
improving the classifier’s classification performance while 
lowering the false positives (FPs) and FNs [42]. There are 
two types of feature selection techniques: supervised and 
unsupervised. Supervised feature selection methods are typi-
cally created to solve classification or regression issues [43]. 
These strategies are used to separate the feature subset from 
the original features provided to estimate the targets in a 
regression analysis or to be able to discriminate between the 
classes of data that are accessible [44].

2.1.1  Genetic Search

A search method based on a genetic algorithm is called a 
genetic search (GA). Using computers to imitate the process 
of natural evolution served as the inspiration for GA. The 
GA was initially proposed as an ML algorithm by authors in 
[45]. The algorithm is an iterative one that normally starts 
with an initial population of random individual programs. 
The evaluation of their fitness measures determines the 
best individual programs in the population. Every iteration 
results in the next population of the fittest individuals, thanks 
to computerized genetic recombination and mixing.

2.1.2  Correlation‑Based Feature Selection

Correlation-based feature selection (CFS) is a filter-based 
feature selection method that selects features based on their 
correlation with the class. The feature–class relationship is 
evaluated and the relationship with the highest correlation 
is chosen for selection. Based on this feature evaluation, the 
GSA assesses each characteristic’s attributes and creates 
elements with the best fitness value. If two feature subsets 

have the same fitness values, the genetic search additionally 
employs rule evaluation to return the feature subset with the 
fewest number of subgroups.

2.1.3  Sequential Forward Selection

Sequential forward selection (SFS) is a wrapper method that 
performs a bottom-to-up search process. The SFS starts from 
an empty set and sequentially adds features from the full 
feature set with already selected features that result in the 
highest classifier accuracy.

2.2  Random Forest Algorithm

Random forest (RF) is an ensemble method of decision trees. 
The algorithm works by producing a different number of 
decision trees from different samples and takes their major-
ity vote for the classification decision. The benefit of RF is 
that increased precision can be attained without the risk of 
overfitting.

2.3  Fuzzy Logic

Fuzzy logic is described as a multi-valued algebra in which 
the truth values are all intermediate values between 0 and 1, 
inclusive [46]. Fuzzy logic has become a popular applica-
tion for problems relating to uncertainty and classification 
[47–50]. The advantage of using fuzzy logic for intrusion 
detection is that one can capture the overlapping severity 
grades of intrusions.

3  Methodology

This study developed a multi-level random forest algo-
rithm for intrusion detection using a fuzzy inference sys-
tem (ML-RFID-FIS). The developed ML-RFID-FIS is 
divided into four major phases: dataset preprocessing, 
feature selection, detection, and classification. The data-
set preprocessing phase involves feature encoding and 
normalization to make the data interpretable and easily 
understood by the ML model. Training and testing sets 
were created from the dataset. 80% of the data are in the 
training set, while the remaining 20% are for the testing 
set. The feature selection phase used a multi-level feature 
selection approach to blend the advantages of the filter 
and wrapper methods. The first stage (filter method) of 
the multi-level feature selection used correlation-based 
feature selection to select essential features based on the 
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multi-collinearity in the data. The second stage (wrapper 
method) used a sequential forward selection method to 
further select top features based on the accuracy of the 
baseline classifier. This is because the filter methods are 
not affected by the classifier, hence the wrapper method. 
The random forest technique is then used to detect intru-
sions using the chosen top features. Fuzzy logic was used 
to classify intrusions as either normal, low, medium, or 
high to reduce misclassification. Python programming lan-
guage was used for the implementation. Figure 1 describes 
the architecture of the developed ML-RFID-FIS.

3.1  Dataset Description

The NSL-KDD dataset was adopted for implementation 
due to its effectiveness in intrusion detection [51]. NSL-
KDD is a dataset that has been proposed as a solution to 
some of the issues in the existing IDS datasets. The dataset 
is a perfect representation of real networks. It can be used 
as a standard benchmark dataset for the design of IDS 
relating to Internet traffics. The 41 attributes in the dataset 
are classified as either normal or anomalous. The charac-
teristics can be broken down into three categories: time 
based (19 features), connection based (9 features), and 
content based (13 features). Four types of attacks may be 
distinguished from the dataset: probing, denial of service 
(DoS), user-to-root (U2R), and remote-to-local (R2L).

(a) Probing attack (Pr): This is the accumulation of system 
information by testing it to discover vulnerabilities that 
can be used to compromise it later. Some of the probing 
attacks are ipsweep, portsweep, nmap, and satan.

(b) Denial of service (DOS): An attack in which the host 
system is flooded by unwanted messages by the attacker 
preventing authorized users from gaining access to 
resources or services. Some examples of DoS attacks 
are Neptune, Smurf, tear drop, pod, and mail bomb.

(c) User-to-root attack (U2R): The attacker begins the 
attack using a regular user account to gain entry to the 
system. The attack then exploits the system flaws to 
gain access to resources that should normally be una-
vailable to them. Examples of U2R are buffer overflow, 
loadmodule, and Perl.

(d) Remote-to-local attack (R2L): This is an intrusion com-
mitted by an attacker with authorization to send packets 
to a machine connected to the network with no identity 
on that machine. The attacker exploits some system 
flaws to attain remote access to the machine as a user. 
Examples are Guess_passwd, imap, and spy.

Fig. 1  Architecture for the multi-level random forest for intrusion detection using fuzzy inference system

Table 1  Summary of the dataset Dataset Number of instances

TR1 6175 (65% of TR)
TR2 3325 (35% of TR)
TE 4500
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3.2  Dataset Preprocessing Phase

The training data (TR) for the implementation consists of 9500 
randomly chosen records from the NSL-KDD training file, 
while the testing data (TE) comprises 4500 randomly chosen 
records from the NSL-KDD test file. Additionally, numeric 
encoding is used for symbolic properties (such as protocol 
type, service, flag, and class). The TR is split into two parti-
tions: TR1 and TR2 of 65% and 35%, respectively. Table 1 
shows the summary of the dataset.

Data normalization was done to scale the data because of 
the variation in the units and magnitude of the data. The Min-
MaxScaler method was used to reduce the data between 0 and 
1 as shown in Eq. 1:

where Xnorm is the normalized score; Xmax and Xmin 
are the highest and lowest values of the feature in the data, 
respectively.

3.3  Feature Selection Phase

The feature selection phase used a multi-level feature selec-
tion approach to blend the advantages of the filter and wrap-
per methods. The first stage (filter method) of the multi-level 
feature selection used correlation-based feature selection to 
select essential features based on the multi-collinearity in the 
data. The association between each attribute and the class is 
computed as part of the correlation-based feature selection. 
A feature Vi is said to be relevant to the class if and only 
if there exists some vi and c for which p

(
Vi = vi

)
> 0 as 

described in Eq. 2:

where C denotes a given class, c denotes class subsets, 
Vi denotes a candidate feature, and vi denotes the feature 
subsets.

The correlation between each attribute and class can be 
predicted as in Eq. 3:

where k is the number of components and rzc is the cor-
relation between the summed components and the outside 
variable. The average correlation between the components 
and the external variable is denoted by rzi , and the average 
correlation between the components is denoted by rii.

(1)Xnorm =
X − Xmin

Xmax − Xmin

(2)p
(
C = c|Vi = vi

)
≠ p(C = c)

(3)rzc =
krzi√

k + k(k − 1)rii

Each attribute-class association was evaluated using the 
genetic search technique, and it returns the chosen charac-
teristics with the highest fitness value (Eq. 4). A rule-based 
strategy was designed to return the feature subset with the 
least number of features having the same fitness as those 
feature subsets having more features. In other words, if the 
fitness value of two feature subsets is equal, the feature sub-
set with the fewest features is what a rule evaluator returns.

where X is a feature subset, A is the average cross-valida-
tion accuracy of the baseline classifier, S is the number of 
instances or training samples, and F is the number of subset 
features.

The second stage (wrapper method) of the multi-level fea-
ture selection used the sequential forward selection method 
to further select top features based on the accuracy of the 
baseline classifier. This is because the filter methods are not 
affected by the classifier, hence the wrapper method. The 
sequential forward selection method starts from the empty 
set (Eq. 5) and sequentially selects the next final best fea-
ture X+ that results in the highest accuracy J(Yk +X+) of the 
baseline classifier when combined with the features Yk that 
have already been selected (Eq. 6).

where Yo denotes the empty feature set.

where X+ denotes the next best feature, Yk denotes already 
selected features, X denotes added features, and argmax 
denotes the highest accuracy.

3.4  Detection Phase

The proposed network intrusion detection phase used a ran-
dom forest algorithm as the baseline classifier. The selected 
final features were used as the training dataset for the ran-
dom forest algorithm. The training dataset was partitioned 
into TR1 and TR2 of 65% and 35%, respectively. The ran-
dom forest algorithm builds decision trees on the TR1 and 
TR2 partitions and takes their majority vote for intrusion 
detection classification. The algorithms that describe the 
methodology are as follows:

Algorithm 1 first used the multi-step feature selection to 
reduce the features into the most optimal feature set. Then 
the selected optimal features serve as input into algorithm 2. 

(4)fitness(X) =
3

4
A +

1

4
=
(
1 −

S + F

2

)

(5)Yo = {�}

(6)X+ = argmax
X∉Yk

[
J
(
Yk + X

)]
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The detector is a C4.5 decision tree that builds a tree of 
rules to appropriately separate the dataset into its respec-
tive classes (intrusion, normal) during the training phase. 
The input features are categorized as incursion or normal 
throughout the testing phase using the tree of rules. The C4.5 
decision tree was constructed using algorithm 2. Recursively 
choosing the optimal attribute to divide the data is how the 
algorithm operates (Step 7) and then growing the tree's leaf 
nodes (Steps 11 and 12) until the stopping requirement is 
satisfied (Step 1).

The decision tree is expanded by adding a new node using 
the createNode() function. A decision tree node either has 
a test condition or class label expressed as a node. label, or 

a test condition, denoted as a node.test_cond. For each tree 
in the forest (step 16), T(i) refers to the ith bootstrap, and the 
procedure chooses a bootstrap sample from T. Then using a 
decision tree learning algorithm, a decision tree is learned. 
A randomly chosen subset of the features f ⊆ F , where F is 
the set of features, was chosen at each tree node. The node 
then divides based on f’s best feature rather than F’s. F is 
significantly smaller in practice than f. Sometimes the most 
computationally demanding part of decision tree learning 
is choosing which feature to split. Limiting the available 
functionalities and features, thus, significantly decreasing 
the computational complexity component of decision tree 
learning, accelerating the tree's learning process in process. 
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3.5  Classification Phase

The following concepts and definitions of fuzzy logic are 
used in the fuzzy extension to intrusion classification:

3.5.1  Fuzzy Set

The attacks represented by the dataset and categorized into 
four types make up the fuzzy set (Eq. 7) for the intrusion 
categorization: probing, denial of service (DoS), user-to-root 
(U2R), and remote-to-local (R2L). The defined fuzzy set’s 
members are present in varying degrees in 0 and 1:

where A denotes the fuzzy membership set and 
Probing,DoS,U2R, andR2L denote the fuzzy inputs.

(7)A = {Probing,DoS,U2R,R2L}

Table 2  Fuzzy value range Linguistic value Value range

Normal 0.1 ≤ x < 0.3

Low 0.3 ≤ x < 0.6

Medium 0.6 ≤ x < 0.8

High 0.8 ≤ x ≤ 1.0
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3.5.2  Linguistic Variables

According to Eq.  8, the linguistic variables represent 
the membership level for the specified fuzzy set A. It is 
employed to demonstrate the level of categorization for a 
specific class attribute value.

where mA(x) denotes the degree of membership for mem-
bership set A and normal, low,medium, andhigh denotes the 
linguistic variables.

3.5.3  Fuzzification

Since the linguistic variables are divided into four grades, 
Eq. 9 triangle membership function was modified to fit the 
situation. The crisp values were transformed into fuzzy val-
ues by fuzzification. Table 2 displays the fuzzy range of 
values for the fuzzification procedure.

(8)mA(x) = {normal, low,medium, high}

(9)�A(x; [a, b, c]) =

⎧⎪⎪⎨⎪⎪⎩

0, if x = a
x−a

c−a
, if x ∈ [a, c]

b−x

c−b
, if x ∈ [b, c]

0, if x ≥ c

where x represents the x-coordinate of real values and a, b, c 
represents the y-coordinate between 0 and 1.

3.5.4  Fuzzy Rules

The rule of thumb defined a total of 16 rules. Given that 
four linguistic factors were employed, we have  24 = 16 rules. 
Table 3 displays the rules established with the assistance of 
subject-matter experts. The modified fuzzy logic evaluated 
its rules using the AND function by taking the minimum 
values.

3.5.5  Inference Engine

The idea of the fuzzy rules established on the membership 
set for intrusion classification is used by the fuzzy infer-
ence engine. These fuzzy rules are intended to predict the 

Table 3  Sample rule base #No Probing DoS U2R R2L Intrusion classification 
(conclude)

Non-zero 
min no

1 0.25 0.25 0.25 0.25 Normal 0.25
2 0.25 0.5 0.5 0.5 Low 0.25
3 0.25 0.75 0.75 0.75 Medium 0.25
4 0.25 0.9 0.9 0.9 Medium 0.25
5 0.5 0.25 0.25 0.25 Normal 0.25
6 0.5 0.5 0.5 0.5 Low 0.5
7 0.5 0.75 0.75 0.75 Medium 0.5
8 0.5 0.9 0.9 0.9 High 0.5
9 0.75 0.25 0.25 0.25 Normal 0.25
10 0.75 0.5 0.5 0.5 Low 0.5
11 0.75 0.75 0.75 0.75 Medium 0.75
12 0.75 0.9 0.9 0.9 High 0.75
13 0.9 0.25 0.25 0.25 Normal 0.25
14 0.9 0.5 0.5 0.5 Low 0.5
15 0.9 0.75 0.75 0.75 Medium 0.75
16 0.9 0.9 0.9 0.9 High 0.9

Table 4  Attack labeling

Attacks Data labeling

Normal 0
Denial of service (DoS) 1
Probing 2
Remote-to-local (R2L) 3
User-to-root (U2R) 4
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severity grade for a particular intrusion class. The fuzzy 
inference technique used root mean square (RMS) to support 
its conclusions. The RMS was used to combine the different 

possibilities of rules that lead to the same conclusion. It cal-
culates the center of gravity by adding all the results from 
the same firing rules.

Table 5  List of features No. Name of feature No. Name of feature No. Name of feature

1 Duration 15 Su_attempted 29 Same_srv_rate
2 Protocol_type 16 Num_root 30 Diff_srv_rate
3 Service 17 Num_file_creations 31 Srv_diff_host_rate
4 Flag 18 Num_shells 32 Dst_host_count
5 Src_bytes 19 Num_access_files 33 Dst_host_srv_count
6 Dst_bytes 20 Num_outbound_cmds 34 Dst_host_same_srv_rate
7 Land 21 Is_host_login 35 Dst_host_diff_srv_rate
8 Wrong_fragment 22 Is_guest_login 36 Dst_host_same_src_port_rate
9 Urgent 23 Count 37 Dst_host_srv_diff_host_rate
10 Hot 24 Srv_count 38 Dst_host_serror_rate
11 Num_failed_logins 25 Serror_rate 39 Dst_host_srv_serror_rate
12 Logged_in 26 Srv_serror_rate 40 Dst_host_rerror_rate
13 Num_compromised 27 Rerror_rate 41 Dst_host_srv_rerror_rate
14 Root_shell 28 Srv_rerror_rate 42 Label

Table 6  Category of attack types

Attack types Category

Back, Land, Neptune, Pod, Smurf, Teardrop, Mailbomb, Apache2, Processtable, Udpstorm, Worm DoS
Ipsweep, Nmap, Portsweep, Satan, Mscan, Saint Probing
Ftp_Write, Guess_Passwd, Imap, Multihop, Phf, Spy, Warezclient, Warezmaster, Warezmaster, Sendmail, Named, Snmpgetattack, 

Snmpguess, Xlock, Xsnoop, Httptunnel
R2L

Buffer_Overflow, Loadmodule, Perl, Rootkit, Ps, Sqlattack, Xterm U2R

Table 7  Features selected after correlation-based feature selection

1 Dst_Host_Srv_Serror_Rate 7 Is_Guest_Login
2 Same_Srv_Rate 8 Dst_Host_Srv_Diff_Host_

Rate
3 Dst_Host_Same_Src_Port_

Rate
9 Num_Failed_Logins

4 Count 10 Dst_Host_Serror_Rate
5 Srv_Serror_Rate 11 Serror_Rate
6 Dst_Host_Diff_Srv_Rate 12 Wrong_Fragment

Table 8  Features selected after sequential feature selection

1 ‘Duration’ 7 ‘dst_host_count’
2 ‘Service’ 8 ‘dst_host_diff_srv_rate’
3 ‘Flag’ 9 ‘dst_host_same_src_port_rate’
4 ‘src_bytes’ 10 ‘dst_host_srv_diff_host_rate’
5 ‘srv_count’,
6 ‘diff_srv_rate’

Table 9  Confusion matrix 
before feature selection

Normal DoS Probe U2R R2L

Labels 0 1 2 3 4
Normal 0 5565 1766 127 1 0
DoS 1 94 9399 217 0 1
Probe 2 201 953 1266 1 0
U2R 3 1 2878 6 0 0
R2L 4 0 66 0 1 0
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The RMS equation is given in Eq. 10:

where R2

1
+ R2

2
+ R2

3
+⋯ + R2

n
 denotes values of several 

rules in the fuzzy rule base, all leading to the same result.
The classification steps are summarized in Algorithm 3. 

(10)
√∑

R
2

=

√
R2

1
+ R2

2
+ R2

3
+⋯ + R2

n

Table 10  Rates of attacks before feature selection

Labels TP TN FP FN

Normal 0 5565 14788 296 1894
DoS 1 9399 7169 5663 312
Probe 2 1266 19772 344 1155
U2R 3 0 19655 3 2885
R2L 4 0 2247 1 67

Table 11  Evaluation metrics 
before feature selection of the 
random forest

Metrics Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-score (%)

Overall Labels 72.00 72.01 72.00 93.01 72.01
Normal 0 90.29 94.95 74.61 98.04 83.56
DoS 1 73.50 62.40 96.79 55.87 75.88
Probe 2 93.35 78.63 52.29 98.29 62.81
U2R 3 87.19 0.00 0.00 99.98 0.00
R2L 4 99.70 0.00 0.00 100.00 0.00

Fig. 2  Model performance on 
the attack types before feature 
selection

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Labels 0 1 2 3 4

Overall Normal DoS Probe U2R R2L

Accuracy Precision Sensi�vity Specificity F1 Score

Table 12  Confusion matrix 
after feature selection

Normal DoS Probe U2R R2L

Labels 0 1 2 3 4
Normal 0 15389 4 13 29 3
DoS 1 16 10635 1 0 0
Probe 2 27 5 2767 0 0
U2R 3 44 0 0 745 0
R2L 4 15 0 0 4 5
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4  Experimental Implementation 
of the Proposed System

4.1  Implementation

The experiment was carried out on the NSL-KDD dataset. 
The configurations used in carrying out the implementa-
tion are intel(R) Core(TM) i5-3230 M CPU @ 2.60 GHz, 
2601 MHz, 2 Core(s), 4 Logical Processor(s) @ 2.60 GHz 
with 4 GB RAM running on 64-bit Windows 10 operating 

system and Python 3.8. Numpy, Scikit-Learn, and Pandas 
libraries are among the python packages used. The experi-
mentation for the developed ML-RFID-FIS method was 
implemented with correlation-based feature selection, 
sequential forward selection, and a random forest clas-
sifier. The NSL-KDD dataset was loaded using panda's 
library.

4.2  Dataset Preprocessing

The data were preprocessed and cleaned by checking for null 
data, invalid values, and transformations like normalization 
and changing of categorical variables to numerical variables 
(Table 4). The data had 41 columns, excluding the target 
column (Table 5). Table 6 shows the attack types and their 
categories.

4.3  Feature Selection

The correlation-based feature selection, a filter method, was 
used to extract the first set of relevant features based on their 

Table 13  Rate of attacks after feature selection

Labels TP TN FP FN

Normal 0 15389 14,162 102 49
DoS 1 10635 19,041 9 17
Probe 2 2767 26889 14 32
U2R 3 745 28880 33 44
R2L 4 5 29675 3 19

Table 14  Evaluation metrics 
after feature selection of the 
ML-RFID-FIS

Metrics Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-score (%)

Overall Labels 99.46 99.46 99.46 93.86 99.46
Normal 0 99.49 99.34 99.68 99.28 99.51
DoS 1 99.91 99.92 99.84 99.95 99.88
Probe 2 93.85 99.50 98.86 99.95 99.18
U2R 3 99.74 95.76 94.42 99.89 95.09
R2L 4 99.93 62.50 20.83 99.99 31.25
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metrics. The correlation-based feature selection reduced the 
number of features from 41 to 29, discarding the rest. The 
features that were dropped are shown in Table 7. Next, the 
sequential feature selection received the 29 features and 
selected the relevant features. Finally, the sequential fea-
ture selection reduced the 29 features to 10 features, and the 
features were used for the development of the model. The 
features selected are shown in Table 8.

4.4  Results and Discussion

To better understand the classification error of the attack 
types in the dataset, Table 9 displays the confusion matrix 
before feature selection. Table 9 for the NSL-KDD dataset 
makes it clear that the constructed model can distinguish 
between the various assault types correctly. Only 1766 out 
of the total samples categorized as normal have the wrong 
classification of DoS, 127 of the total samples categorized 
as normal had been incorrectly labeled as Probe, and only 1 
sample out of the whole number of normal samples is mis-
takenly labeled as U2R. Similar to this, only 94 out of all 

samples from a DoS assault are incorrectly labeled as nor-
mal, the classification of 217 of the total samples used in the 
DoS attack as Probe, and one of the total samples from the 
DoS assault is incorrectly categorized as R2L. Just 201 out 
of the total samples from the Probe attack have been incor-
rectly classed as normal, only 953 out of the total samples 
from the Probe assault have the incorrect DoS classification, 
and only 1 out of the total samples from the Probe attack is 
incorrectly categorized as U2R. Only 1 of the total samples 
from the U2R attack is incorrectly categorized as normal, 
only 2878 out of the total samples from the U2R attack have 
the incorrect DoS classification, and just 6 out of the total 
samples used in the U2R attack are mistakenly labeled as 
probes. Only 66 out of the total samples from the R2L attack 
have been incorrectly labeled as DoS, and only 1 of the total 
samples from the R2L attack is incorrectly categorized as 
a U2R. It might be said that most mistakes result from mis-
classifying U2R attacks as DoS attacks.

Table 10 shows the rates of attacks before feature selec-
tion. It can be observed that the DoS attack has the highest 
number of correct classifications of 9,399 compared to the 

Table 15  Overall performance comparison of the ML-RFID-FIS

Algorithm Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-score (%)

C4.5 tree 92.97 91.34 90.84 93.93 91.14
Decision table 88.22 85.64 85.23 94.85 85.13
Bagging 93.97 93.71 90.83 97.84 92.25
KNN 90.76 88.62 87.87 90.67 88.22
Logistic 92.44 91.81 88.62 97.13 90.24
Naïve Bayes 79.27 66.62 95.13 93.65 78.42
Bayesian Logistic Regression 81.36 91.63 86.51 84.12 89.74
Naïve Bayes Multinomial 79.07 74.13 72.23 84.82 73.17
Multilayer Perceptron 90.64 96.54 79.25 97.87 87.88
Random forest 72.00 72.01 72.00 93.01 72.01
ML-RFID-FIS 99.46 99.46 99.46 93.86 99.46
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Fig. 3  Graphical representation of model performance on the attack types before feature selection
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other attack types while R2L has the lowest false alarm rate 
compared to the other attack types. Table 11 and Fig. 2 show 
the evaluation metrics before the feature selection of the ran-
dom forest model. The random forest model has an overall 
accuracy, precision, sensitivity, specificity, and F1-score of 
72.00%, 72.01%, 72.00%, 93.01%, and 72.01%, respectively. 
These results showed that the accuracy value for intrusion 
detection is low for the baseline classifier before the feature 
selection method. The results in Table 11 indicate that an 
ordinary random forest without the developed multi-level 
feature selection is unable to correctly differentiate the dif-
ferent attack types in the dataset. The ordinary random forest 
could not differentiate U2R and R2L attacks with 0.00% and 
0.00% F1-score, respectively. The results also suggest poor 
classification results for Normal, DoS, and Probe attacks 
with F1-score of 83.56%, 75.88%, and 62.81%, respectively. 
Therefore, the overall results in Table 11 are a pointer to the 

need for the developed multi-level feature selection method 
to enhance the random forest algorithm.

To better understand the classification error of the attack 
types in the dataset, Table 12 displays the confusion matrix 
after feature selection. The proposed model can correctly 
distinguish between the various attack kinds. Only 4 out of 
the total samples categorized as normal are DoS, 13 of the 
total samples classified as normal are mistakenly labeled as 
Probe, only 29 out of the total samples that belong to normal 
are incorrectly labeled as U2R, and just 3 out of the total 
samples that correspond to normal are incorrectly labeled as 
R2L. Similarly to this, just 16 out of all the samples from the 
DoS assault are incorrectly labeled as normal, and only 1 of 
the total samples from the DoS attack is mistakenly labeled 
as a probe. Only 27 out of the total samples from the Probe 
attack have the incorrect classification, and just 5 out of the 
total samples from the Probe assault are incorrectly labeled 
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Fig. 4  Graphical representation of model performance on the attack types after feature selection
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Fig. 6  Fuzzy inference system 
editor for intrusion classification

Fig. 7  Membership function 
editor for each of the fuzzy 
variables
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Fig. 8  The rule editor

Fig. 9  The rule viewer
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as DoS. Only 44 of the total samples from the U2R attack 
have the wrong classification, and only 745 of the total sam-
ples from the U2R attack have been incorrectly identified as 
U2R. Only 15 out of the total samples from the R2L attack 
have the wrong classification, only 4 out of the total samples 
from the R2L attack have been incorrectly labeled as U2R, 
and just 5 out of the total samples that are part of the R2L 
attack are incorrectly labeled as R2L. It can be said that most 
mistakes result from mistaking a U2R attack for a distinctive 
and normal attack.

Table 13 shows the rates of attacks after feature selec-
tion. It can be observed that the normal class has the high-
est number of correct classifications at 15,389 compared to 
the other attack types while R2L has the lowest false alarm 
rate compared to the other attack types. Table 14 shows the 
evaluation metrics after the feature selection of the devel-
oped ML-RFID-FIS model. The ML-RFID-FIS model has 
an overall accuracy, precision, sensitivity, specificity, and 
F1-score of 99.46%, 99.46%, 99.46%, 93.86%, and 99.46%, 
respectively. The results in Table 14 indicate that a random 
forest with the developed multi-level feature selection can 

correctly differentiate the different attack types in the data-
set. The developed method could differentiate Normal, DoS, 
Probe, U2R, and R2L attacks with 99.51%, 99.88%, 99.18%, 
95.09%, and 31.25%, respectively. The results also suggest 
poor classification results for R2L attacks with an F1-score 
of 31.25%. Therefore, the overall results in Table 14 are 
a pointer to the need for the developed multi-level feature 
selection method to enhance the random forest algorithm. 
These results showed that the accuracy value for intrusion 
detection is high for the developed ML-RFID-FIS model 
after the application of the multi-level feature selection 
method. The justification for the high accuracy can be 
attributed to the efficacy of the multi-level feature selec-
tion method and the ability of the random forest to deal 
with overfitting without affecting the overall classification 
accuracy.

Table 15 shows the comparison of the developed model 
with other existing ML algorithms using the same dataset 
based on reduced features for intrusion detection. Most 
of the ML algorithms on intrusion detection obtained an 
F1-score of at least 72% classification rates. The F1-score 
of ML-RFID-FIS is better at 99.46% compared to bagging 
with the closest score of 92.25%. The results suggest ran-
dom forest as the least ML algorithm for the classification 
of intrusions with an F1-score of 72.01%. The outcomes 
demonstrated that the optimum IDS method is ML-RFID-
FIS while the worst ID method is random forest across the 
evaluation metrics. The results showed that the developed 
ML-RFID-FIS is an improvement over the standalone 
random forest with accuracy, precision, sensitivity, speci-
ficity, and F1-score of 99.46%, 99.46%, 99.46%, 93.86%, 
and 99.46%, respectively, of ML-RFID-FIS compared to 
72.00%, 72.01%, 72.00%, 93.01%, and 72.01% of random 
forest. These results are a justification that the developed 
method can provide better results than the traditional ML 
algorithms. Overall, the results demonstrated that the vari-
ous ML methods on the same dataset performed in a well-
balanced manner.

Table 16  Rule viewer adjustment for intrusion classification

No Probing DoS U2R R2L Intrusion 
severity 
level

1 0.5 0.657 0.882 0.827 Medium
2 0.918 0.898 0.973 0.827 High
3 0.5 0.5 0.5 0.5 Low
4 0.882 0.935 0.882 0.936 High
5 0.336 0.343 0.3 0.864 Low
6 0.591 0.0833 0.627 0.882 Low
7 0.136 0.0833 0.209 0.118 Normal
8 0.3 0.806 0.645 0.445 Low
9 0.9 0.9 0.9 0.9 High
10 0.75 0.9 0.9 0.9 High

Table 17  The comparison of the proposed model with other existing models using the same dataset

Authors Model Accuracy Precision Sensitivity Specificity F1-score

Su et al. (2020) [52] BAT-MC 84.3 84.7 85 85.1 84.9
Raghuvanshi et al. (2022) [53] SVM 98.0 97.4 96.7 – 96.9
Rawat et al. (2022) [54] PCA + DNN 76.0 76.4 75.7 75.9 76.0
Rastogi et al. (2022) [55] RF 98.7 98.9 99.0 97.5 98.5

K-NN 98.3 98.9 98.0 98.7 98.3
Sherin et al. (2022) [56] Stacked Model 90.0 90 89.7 – –
Esmaeili et al. (2022) [57] BiLSTM 82.3 83.0 82.9 83.0 82.4
Ahanger et al. (2021) [58] SVM 99.1 98.7 96.0 99.5 99.0
Ahmadi et al. [59] CART + Chi-square 80.6 96.0 69.0 – 80.0
Proposed Model ML-RFID-FIS 99.46% 99.46% 99.46% 93.86% 99.46%
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The graphical representation of the performance rate 
of each class label of the developed ML-RFID-FIS model 
before the feature selection is shown in Fig. 3. Similarly, 
Fig. 4 shows the graphical representation of the perfor-
mance rate of each class label of the developed ML-RFID-
FIS model after the selection of features. Figure 5 shows 
the overall performance comparison for the developed ML-
RFID-FIS. The graph showed that the developed model 
exhibited the highest value of performance compared to the 
other models.

Figure 6 shows the fuzzy inference system editor where 
the fuzzy input variables for intrusion classification are 
added between the 0 and 1 intervals. The fuzzy input 
variables include Probing, DoS, U2R, and R2L. Figure 7 
shows the membership function editor for each of the 
fuzzy variables. This is the editor that enables the defini-
tion of linguistic variables for the various fuzzy variables 
within a specified fuzzy range of values indicated by nor-
mal, low, medium, and high. These linguistic variables 
allow fuzzification of the fuzzy variables within the speci-
fied range of values. Figure 8 shows the rule editor for the 
defined fuzzy variables and linguistic variables. The rule 
editor is where rules are defined and added based on expert 
knowledge. The rule of thumb defined a total of 16 rules. 
Figure 9 shows the rule viewer for variables combina-
tion and adjustments. The various variables are combined 
through the adjustment of their fuzzy values to produce a 
unique decision output for intrusion classification.

Table 16 shows the rule viewer adjustments for intru-
sion classification. The result of the rule adjustment 
showed the severity level of an intrusion. The result 
showed that an intrusion is classified as a medium when 
the four attack variables in order are low, medium, high, 
and high, respectively (rule #1). As another result, an 
intrusion is classified as high when all four attack variables 
are high (rule #2). Similarly, an intrusion is classified as 
low when all the input variables are medium (rule #3). An 
intrusion is classified as high if all four attack variables are 
high (rule #4). The other results are interpreted similarly. 
These results showed that on average, an intrusion will 
produce a low severity level. On some other occasions, an 
intrusion will produce a high severity level.

4.5  Comparative Analysis with Existing Models

To unbiasedly evaluate the reliability and distinction of 
the suggested model network, a comparison of the pro-
posed model with a few current cutting-edge models was 
carried out. Table 17 compares the ML-RFID-FIS perfor-
mances with some of the aforementioned previous state-
of-the-art techniques while utilizing the same NSL-KDD 
dataset. According to the table, the ML-RFID-FIS model 
outperforms all other models in terms of performance 

measures. With its ML-based design, the ML-RFID-
FIS model is capable of extracting and selecting its fea-
tures. The developed ML-RFID-FIS model performed 
better with accuracy, precision, sensitivity, specificity, 
and F1-score of 99.46%, 99.46%, 99.46%, 93.86%, and 
99.46%, respectively, when compared to the other models. 
The models under comparison are recent techniques devel-
oped to classify network traffic using the same NSL-KDD 
dataset but the developed model outperforms the recent 
techniques. The methods under comparison are not only 
recent efforts on intrusion detection but are very relevant 
with remarkable accuracies. Table 17 displays the com-
parative findings between these studies and the developed 
method using the same NSL-KDD dataset.

In terms of accuracy, the developed feature selection 
method performs better than the existing models. The 
developed feature selection method performs better in 
terms of accuracy than the alternatives. Our developed 
feature selection strategy produced a feature set that pro-
vides excellent classification accuracy, precision, and 
recall with minimal computing complexity. Using 10 of 
the 41 features, the model had an accuracy of 99.46%, 
which was its highest. The importance of the developed 
model lies in reducing the overfitting effect by removing 
unnecessary features based on the developed multi-level 
feature selection technique.

5  Conclusion and Future Work

This research developed a multi-level random forest algo-
rithm for intrusion detection using a fuzzy inference sys-
tem. The multi-level feature selection method combines 
the advantages of the filter and wrapper methods. The 
first stage of the multi-level feature selection is the fil-
ter method using a correlation-based feature selection to 
select essential features based on the multi-collinearity in 
the data. Next, the top features from the feature set were 
chosen using a genetic search strategy in correlation-based 
feature selection. The GSA assesses each attribute’s mer-
its, which then delivers the characteristics with the highest 
fitness values for selection. Additionally, it employed a 
rule evaluation to determine whether two feature subsets 
had the same fitness value, yielding the feature subset that 
contains the fewest features. The second stage is a wrapper 
method based on the sequential forward selection method 
to further select top features based on the accuracy of the 
baseline classifier. The selected top features serve as input 
into the random forest algorithm for detecting intrusions. 
Fuzzy logic was used to classify intrusions as either nor-
mal, low, medium, or high to reduce misclassification. 
When the developed intrusion method was compared to 
other existing models using the same dataset, the results 
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revealed a higher accuracy, precision, sensitivity, specific-
ity, and F1-score of 99.46%, 99.46%, 99.46%, 93.86%, and 
99.46%, respectively. The classification of attacks using 
the fuzzy inference system also indicates that the devel-
oped method can correctly classify attacks with reduced 
misclassification. Future research could focus on develop-
ing deep learning architectures that use cutting-edge opti-
mization techniques. The fuzzy logic linguistic variables 
might be expanded to include more severity classes for 
improved intrusion classification.
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