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Abstract
Object detection is a critical and complex problem in computer vision, and deep neural networks have significantly

enhanced their performance in the last decade. There are two primary types of object detectors: two stage and one stage.

Two-stage detectors use a complex architecture to select regions for detection, while one-stage detectors can detect all

potential regions in a single shot. When evaluating the effectiveness of an object detector, both detection accuracy and

inference speed are essential considerations. Two-stage detectors usually outperform one-stage detectors in terms of

detection accuracy. However, YOLO and its predecessor architectures have substantially improved detection accuracy. In

some scenarios, the speed at which YOLO detectors produce inferences is more critical than detection accuracy. This study

explores the performance metrics, regression formulations, and single-stage object detectors for YOLO detectors. Addi-

tionally, it briefly discusses various YOLO variations, including their design, performance, and use cases.
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Abbreviations
AI Artificial intelligence

ANN Artificial neural network

AP Average precision

CNN Convolutional neural network

COCO Common objects in context

CSP Cross-stage-partial

DL Deep learning

E-ELAN Extended-efficient layer aggregation network

FPN Feature pyramid network

FPS Frames per sec

GPU Graphics processing unit

KNN K-nearest neighbor

MAP Mean average precision

MISH Monotonic activation function

ML Machine learning

MPF Multilayer perceptron function

PANET Path aggregation area network

R-CNN Region-based convolutional neural network

ReLU Rectified linear activation unit

SSD Single-shot detector

SVM Support vector machine

YOLO You only look once

1 Introduction

Computer vision is a highly researched field, with efforts

directed toward enabling machines to comprehend and

interpret complex visual content. Object detection is a
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significant challenge in this domain, which involves iden-

tifying and locating objects of interest in images or videos.

Deep learning, a subfield of machine learning and AI,

gained prominence in the early 2000s after artificial neural

networks, multilayer perceptrons, and support vector

machines became popular. However, initially, deep learn-

ing faced scalability issues and high computing power

requirements, which limited its adoption. Still, the avail-

ability of large datasets and powerful computers since 2006

has significantly contributed to the widespread popularity

of deep learning.

Object detection is a method in computer vision that

involves identifying and localizing objects within images

or videos. The main objective is to precisely detect objects’

existence, location, and dimensions in an image or video

and label them with an appropriate class label. This tech-

nique has various applications, including but not limited to

prediction of stock values[1], recognition of speech[2],

object detection [3], recognition of characters [4], intrusion

detection [5], detection of landslides [6], time series

problems [7], classification of text [8], gene-expression [9],

micro-blogs [10], data-handling [11], irregular data with

fault-classification [12], captioning of text from images

[13, 14], aspect-based sentiment analysis [15], and gener-

ation of captions from videos [16]. Object detection models

utilize a range of algorithms and deep learning architec-

tures to detect and classify objects in real-world scenarios.

Object detection can be done on different forms of data,

i.e., images, video, and audio data. The ability of computer

and software systems is to find and identify individual items

within an image or scene. Object detection in the video is

very similar to how it operates in images. Such a tool would

enable the computer to find, recognize, and categorize things

visible in the provided moving images. Object detectors can

identify objects based on various sounds also.

Object detection using machine learning models refers

to a set of algorithms that can automatically identify and

locate objects in images or videos. These models employ

feature extraction, feature selection, and classification

techniques to recognize objects in visual data. To train

these models, labeled images are provided where each

object of interest is labeled with its corresponding class.

The model then utilizes these labeled images to learn

features specific to each class of objects. Several machine

learning models are available for object detection, includ-

ing support vector machines (SVM), decision tree, and

random forests [17, 18]. These models differ in their fea-

ture extraction and classification approach and may per-

form differently based on the task and data at hand. Some

of these models require manual feature engineering, while

others can automatically learn features from the input data.

Deep learning models refer to a class of neural networks

that can automatically identify and locate objects in images

or videos. These models utilize multiple layers of pro-

cessing units to extract complex features from the input

data, which makes them efficient for object detection tasks.

Some examples of models include CNNs, R-CNNs, SSDs,

and you only look once models, which can recognize

objects accurately and detect multiple objects in a single

image or video. Training a deep learning model for object

detection involves providing a large dataset of labeled

images or videos to the model, with each object labeled by

class and bounding-box coordinates. The model learns to

identify and locate objects by minimizing a loss function

that measures the difference between predicted and

ground-truth labels and bounding boxes. These models are

used in applications, such as autonomous driving, surveil-

lance, and robotics.

Object detection, classification, localization, and seg-

mentation (Fig. 1) are three crucial tasks that models aim

to accomplish. Classification refers to identifying the

object’s category in an image or video by assigning a class

label to the entire image or a specific region of interest. For

example, a model can identify a car, a pedestrian, or a

traffic sign in an image. Localization refers to identifying

the object’s location in an image or video by drawing a

bounding box around it, which provides the coordinates of

the object’s position within the image, enabling the model

to locate the object accurately. Segmentation refers to

identifying the pixels that belong to an object in an image

or video, enabling the model to create a pixel-level mask

that outlines the object’s shape. Each segment usually

shares the color texture and intensity of pixels. This tech-

nique is more precise than bounding-box localization and

can be useful in scenarios where precise object boundaries

are necessary, such as medical imaging or satellite imagery

analysis. Object detection models typically aim to perform

all three tasks simultaneously to comprehensively under-

stand the objects in an image or video.

The key implementation steps for object detection are:

1. **Data collection and annotation**: Collect a large

dataset of images or videos with labeled objects. The

labels should include the class of each object and its

corresponding bounding-box coordinates.

2. **Pre-processing of data**: Prepare the data for

training by performing tasks on the data.

3. **Selecting a model**: Choose a suitable object

detection model based on the specific requirements of

the task, such as accuracy, speed, and computational

resources.

4. **Training the model**: Train the selected model on

the labeled dataset using a suitable training algorithm

and optimization technique. This involves adjusting the

weights and biases of the model to minimize the loss

function.
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5. **Validation and testing**: Validate the model on a

separate dataset to check its performance and fine-tune

the hyperparameters if necessary. Test the final model

on a dataset to evaluate its generalization ability.

6. **Deployment**: Deploy the trained model on a

production environment or integrate it into a larger

system for real-world use. This involves optimizing the

model for inference speed and memory usage and

ensuring its compatibility with the target hardware and

software platform.

Training techniques for object detection involve the

methods and strategies used to train models to accurately

detect and locate objects in images or videos. Here are

some common training techniques for object detection:

1. Supervised learning: This is the most common training

technique for object detection. Each object in the

dataset is annotated with its corresponding class label

and bounding-box coordinates. The model learns to

detect and localize objects in the input data by

optimizing a loss function.

2. Transfer learning: This technique involves using a pre-

trained model. This can save time and computing

resources, as the model has already learned general

features useful for object detection.

3. Augmentation of data: It can help improve the model’s

generalization ability to new and unseen data.

4. One-shot learning: This technique involves training the

model to detect objects with only one or a few

examples of each class. It can be useful in scenarios

where obtaining a large labeled dataset is difficult.

5. Active learning: Involves selecting the most informa-

tive and uncertain samples from a pool of unlabeled

data and presenting them to a human annotator for

labeling. The labeled data is then used to train the

object detection model, and the process is repeated

iteratively to improve the model’s performance.

6. Reinforcement learning: This involves training the

object detection model using a reward-based system,

where the model learns to maximize a reward signal by

detecting objects accurately. Reinforcement learning

can be useful in scenarios where the object detection

task involves complex and dynamic environments,

such as robotics or autonomous driving.

A crucial component of computer vision is object

detection. Using video surveillance, healthcare, and in-

vehicle sensing in the business world is possible. Object

detection, a crucial yet challenging problem in computer

vision, has advanced considerably over the past decade.

Nevertheless, this field has made much progress; each year,

the research community sets a new standard for excellence.

Deep neural networks and the massive processing capacity

of NVIDIA graphics processing units made this possible.

There have been two distinct periods in the development of

object detection:

• Up until 20th, conventional computer vision methods

were in use.

• When AlexNet triumphed in the ImageNet-Visual-

Recognition-challenge-in-2012, a new era for convolu-

tional neural networks was initiated.

In Fig. 2, the development of object detection algo-

rithms is depicted. Early object detection methods, such as

Viola-Jones, Histogram of Oriented Gradients, and

Deformable Parts Model, relied on manual feature extrac-

tion from the image, such as edges, corners, and gradients,

and traditional machine learning algorithms.

After that, cutting edge image classification architec-

tures were adopted as feature extractors in object detection.

Both issues are connected and depend on discovering

reliable high-level characteristics. Therefore, rich feature

hierarchies for accurate object detection and semantic

segmentation introduced R-CNN and demonstrated how

we might employ the convolutional features for object

Fig. 1 Image classification and object detection

Page 3 of 29   126 

123



detection. Recent years have seen tremendous advance-

ment in object detection. Deep learning detection tech-

niques can be divided into two stages.

• Two-stage object detection: Object region proposal is

the first step in a two-stage process, including object

classification from region proposal and bounding-box

regression. Although slower than other detectors, this

detector has the highest accuracy. These object detec-

tors include the (RCNN), (Faster-RCNN), and (Mask-

RCNN) algorithms.

• One-stage object detection eliminates the object region

suggestion step and predicts the bounding box from

images. These detectors are much faster than two-stage.

However, they have trouble picking up minute items.

Single-stage detectors are suitable for practical appli-

cations due to their quick inference speed. Single-stage

detectors, such as SSD, YOLO, EfficientDet, etc.

belong to the second category of detectors.

This section provides an overview of computer vision

and deep learning, object detection, and related termi-

nologies, key implementation steps, a timeline of how

object detection algorithms have developed, and the

review’s main contributions. Our analysis will focus on an

in-depth examination of the details of the designs of YOLO

and their architectural successors. The optimizations

brought to each successor and the fierce competition

between various two-stage object detectors.

This is the outline of the research. In Sect. 2, the study

looks at a few survey papers on YOLO architectures. In

Sect. 3, we will review the different YOLO versions,

YOLO’s design concepts, and the many pre-trained models

used in them. In Sect. 4, we will review the datasets, and

Fig. 2 Evolution of object

detection algorithms

Fig. 3 Timeline of YOLO algorithms
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evaluation metrics of YOLO. Section 5 compares the

analysis of YOLO versions regarding performance, archi-

tectures, and input size, providing some statistics on their

relative effectiveness. Section 6 provides a detailed anal-

ysis of challenges and future research directions. Finally,

we wrap up the paper with the conclusion.

2 Related Work

2.1 Prior Analysis in YOLO Algorithms

Only survey studies have been published, but they all

provide a solid overview of the history of YOLO algo-

rithms. The authors in [19] presented a review of two-stage

and one-stage techniques, an architectural overview of

YOLO versions, and a comparison analysis among them. In

this paper [20], the author focused on an overview of the

YOLO versions through public data.

2.2 Novelty and Contributions

Most evaluations and reviews cover the one-stage and two-

stage object detection techniques. As far as we know, this

assessment addresses single-stage techniques using certain

YOLO algorithms. Here, we thoroughly analyze YOLO

algorithms based on fundamental architectures, benefits

and drawbacks, comparative & incremental approaches in

this field, well-known datasets, outcomes, and potential

future applications. The contributions include the

following:

(a) Highlight each stage’s difficulties and significance in

the object detection process.

(b) Single-stage object detector’s necessity and a thor-

ough analysis of YOLO’s incremental architectural

features, suggested optimization methods, and

YOLOs-based applications.

(c) Illustration of comparisons made between several

versions of YOLO in terms of performance and

outcomes, as well as discussion of potential direc-

tions for future study in single -stage object

detectors.

3 Evolution of YOLO Algorithms

The basic principles, designs, and incremental methods are

presented in this section over various YOLO algorithms

and represented in Fig. 3.

Fig. 4 Localization and detection of objects based on YOLO architecture

Table 1 Features of YOLO

(V1)
Key features YOLO (V1)

Architecture Single neural network for both object localization and classification

Input resolution 448 9 448 pixels

Bounding boxes Predicts bounding boxes with class probabilities

Object classes 20

Training Trained on VOC 2012 and ImageNet datasets using darknet framework

Activation function Leaky ReLU

Pre-processing Resizing and normalization

Post-processing Non-max suppression
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The basic terms related to YOLO architecture are

briefed below.

CNN: Object detection is a crucial task in computer

vision, and CNNs have played a significant role in

advancing this field. CNNs can extract relevant features

from images and use them to classify and locate objects

within the image, making them well suited for this task.

The Region-based CNN (R-CNN) family of algorithms is a

popular approach for object detection using CNNs. These

algorithms generate a set of region proposals, use a CNN to

feature extraction from each proposal, and use these fea-

tures to classify and refine the object’s location within each

proposal. Advancements in object detection using CNN’s

include faster and more accurate algorithms, which have

greatly improved the speed and accuracy of object

detection.

Convolutional layer: DenseNet-169 is a layered archi-

tecture that is used for classification, which incorporates

convolutional layers. When an input is fed into a convo-

lutional layer, a filter is applied to activate it. This process

Table 2 An architectural

framework for Darknet-19

based on layer-wise operations

Layer Number of filters Filter size/stride Output size

Conv Layer 1 32 3 9 224 9 224

maxpool layer 1 2 9 2/2 112 9 112

conv Layer 2 64 3 9 3 112 9 112

maxpool layer 2 2 9 2/2 56 9 56

conv Layer 3 124 3 9 3 56� 56

64 1 9 1

128 3 9 3

maxpool layer 3 2 9 2/2 28 9 28

conv Layer 4 256 3 9 3 28� 28

128 1 9 1

256 3 9 3

maxpool layer 4 2 9 2/2 14� 14

conv Layer 5 512 3 9 3 14� 14

256 1 9 1

512 3 9 3

256 1 9 1

512 3 9 3

maxpool layer 5 2 9 2/2 7 9 7

conv layer 6 1024 3 9 3 7 9 7

512 1 9 1

1024 3 9 3

512 1 9 1

1024 3 9 3

Conv global avgpoolSoftmax 1000 1 9 1

Global

7 9 7

1000

Table 3 Summarizing the key

features of YOLO (V2)
Key features YOLO (V2)

Architecture Single neural network for both object localization and classification

Input resolution 416 9 416 pixels

Bounding boxes Predicts bounding boxes with class probabilities and anchor boxes

Object classes 80

Training Trained on COCO dataset using darknet framework with data augmentation

Activation function Leaky ReLU

Pre-processing Resizing and normalization with data augmentation

Post-processing Non-max suppression with region proposal network (RPN) and anchor boxes
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generates a feature map that shows the relative importance

of different features within the data. The activation func-

tion, ReLU, is then applied to the feature map. A dot-

product operation is calculated to compute the convolu-

tional layer output. In the DenseNet-169 architecture, a

convolutional layer with dimensions d 9 d is applied after

a square neuron layer of size S� S, resulting in an output

of size S� d þ 1ð Þ S� d þ 1ð Þ. Equation (1) provides a

way to compute the non-linear feed to the components ij,

by incorporating input from all the cells in the first layer

slij ¼
Xd�1

x¼0

Xd�1

y¼0

lxyL
l�1
iþxð Þ jþyð Þ: ð1Þ

The non-linearity of the model is assessed through

Eq. (2)

Ll
ij ¼ kðslijÞ: ð2Þ

Max-pooling-layer: Max pooling is a technique that

involves subsampling a tensor’s entire dimension while

preserving its depth. Overlapping max pooling refers to

contiguous windows where the maximum value extends

beyond the window boundaries. To improve convergence

and generalization while avoiding scaling issues, it is rec-

ommended to include a maxpool layer. This layer can be

connected to every convolution layer or a subset of them.

Equation (3) illustrates how the max pooling is performed

over a max-pooling layer Mp using a filter size of k with

dimensions kx; ky; kz

Mp ¼
kx � k þ 1ð Þ

s
�

ky � k þ 1
� �

s
� kz: ð3Þ

Global-average-pooling: The global average pooling

layer, which does not have any trainable parameters, can

replace the flattening layer typically placed after the last

pooling layer in a convolutional neural network. This

technique significantly reduces the input and prepares the

network for the subsequent classification layer. In fully

connected layers, overfitting is a concern that can be

addressed using dropout, and the global average pooling

layer can help with this. Global-average-pooling layers can

perform an even more extensive form of dimensionality

reduction by reducing a tensor with original dimensions of

l� b� h to dimensions of 1� 1� d. For each hb feature

map, the global average pooling layer normalizes it to a

single value by taking the mean of all lb values.

Fig. 5 The architecture of YOLO (V3)

Table 4 Summarizing the key features of YOLO (V3)

Key features YOLO (V3)

Architecture Darknet-53 backbone and three detection heads with feature maps of different resolutions

Input resolution Configurable input resolution up to 608 9 608 pixels

Bounding boxes Predicts bounding boxes with class probabilities and objectness score Object classes

Object classes COCO dataset with 80 object classes

Training Trained on COCO dataset using darknet framework

Loss function The multi-scale loss combines binary cross-entropy, confidence loss, and regression loss

Activation function Leaky ReLU

Pre-processing Random resizing and data augmentation

Post-processing Non-max suppression with dynamic threshold based on objectness score and IoU threshold
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Fully connected layer (FCL): A fully connected neural

network layer establishes a linear connection between input

and output neurons. The information learned from lower

levels can then be used to classify data at the FCL. An

advantage of FCL is that they can handle input data with no

structural assumptions. To interpret the activation at a

given layer with dimensions l1 � l2 � l3, a multilayer per-

ceptron function (MPF) is constructed from a class prob-

ability distribution. The final layer of the MPF-based

multilayer perceptron will have 1 9 1 9 d output neurons,

where m is the total number of layers in the network.

Equation (4) is used to compute the MPF

pl
0

i ¼ f
Xxli

j¼1

wl
i;j � pli

0
@

1
A: ð4Þ

The purpose of the fully connected structure would be to

provide a probability interpretation of each category by

altering the weight parameters wl
i;j based on the feature

map produced by the linear combination of the convolu-

tional, non-linearity, rectification, and pooling layers.

Softmax layer: When the input is negative, the result is

extremely low, but when the input is large, the result is

high. The softmax function takes a vector of numbers as

input, where each element can be either a positive or

Fig. 6 YOLO (V4) possible

attributes

Fig. 7 Compares CSPNet and

DenseNet architecture used in

YOLO (V4)

Table 5 Summarizing the key features of YOLO (V4)

Key features YOLO (V4)

Architecture Single neural network for both object localization

and classification

Input

resolution

Can be trained on multiple resolutions (up to

608 9 608)

Backbone

network

CSPDarknet-53

Bounding

boxes

Predicts bounding boxes with class probabilities and

confidence scores

Object classes 80

Training Trained on COCO dataset using the darknet

framework

Loss function Custom loss function combining binary cross-

entropy, focal loss, and object loss

Activation

function

Mish

Pre-processing Random crop and color distortion
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negative number, or zero. The softmax assessment yields a

probability distribution with the normalization factor

included in the denominator thanks to the normalization

factor.

3.1 YOLO (V1)

On June 8th, 2015, YOLO (V1) [21] was introduced. It

employs a convolutional neural network that involves two

main processes: fully connected layers to predict output

probabilities and coordinates, and early convolutional

layers to extract image features. The model’s architecture

is inspired by the googlenet framework, and was trained

and evaluated on the pascal dataset 2007 and 2012 using

the Darknet framework. In YOLO (V1), googlenet incep-

tion modules are replaced with (1 9 1) convolutional fil-

ters followed by (3 9 3) filters, except for the first layer

which uses a (7 9 7) filter. Figure 4 illustrates that YOLO

(V1) has 24 convolution layers and two fully connected

layers. Only four of the convolutional or max-pooling

layers have additional layers following them. This version

of the method highlights the use of (1 9 1) convolution

and global average pooling.

The authors spent around a week training and tuning the

model using the ImageNet 2012 dataset, using the top 20

layers, an average pooling layer, and a fully connected

layer. In addition, four more convolutional layers and two

fully connected layers with random initializations are

added to the model to further fine-tune it for object

detection. Large localization errors and limited recall are

Table 6 Key features of Scaled

YOLO (V4)
Key features Scaled YOLO (V4)

Architecture Single neural network for both object detection and classification

Input resolution Multiple input sizes (e.g., 640 9 640, 768 9 768, 896 9 896)

Bounding boxes Predicts bounding boxes with class probabilities

Object classes 80 (COCO dataset)

Training Trained on COCO dataset using Darknet framework and random augmentations

Loss function YOLOv4 loss with focal loss and label smoothing

Activation

function

Mish activation

Backbone CSPDarknet53 or CSPResNeXt50 (depending on configuration)

Neck SPP, PAN, or SAM

Head YOLOv3-style detection head with custom anchor boxes

Training

techniques

Mosaic data augmentation, self-adversarial training, DropBlock regularization, cosine

annealing scheduler

Optimizer Gradient descent with warmup and linear scaling of learning rate

Pre-processing Random crop and resize with letterboxing

Post-processing NMS with an threshold of 0.5

Table 7 Key features of PP-YOLO

Key features YOLO (V4)

Architecture Single-shot detection neural network for object

localization and classification

Input

resolution

640 9 640 pixels

Bounding

boxes

Predicts bounding boxes with class probabilities

Object classes 80

Training Trained on COCO dataset using the PyTorch

framework

Loss function IoU loss, GIoU loss, and objectness loss

Activation

function

Mish

Pre-processing Resizing and normalization

Post-

processing

Nms

Fig. 8 YOLO (V5) possible attributes

Page 9 of 29   126 

123



Table 8 Key features of YOLO (V5)

Key features YOLO (V5)

Architecture Single neural network for both object detection and classification

Input resolution The configurable resolution, typically 640 9 640

Bounding boxes Predicts bounding boxes with class probabilities and confidence score

Object classes Customizable, depending on the dataset

Training Trained using PyTorch framework with various datasets, such as COCO, VOC, and Open Images

Loss function Combined loss function consisting of focal loss, binary cross-entropy, and smooth L1 loss

Activation

function

SiLU (Swish)

Pre-processing Random scaling, translation, rotation techniques are used

Post-processing Non-maximum suppression and confidence thresholding

Key

improvements

Improved architecture with focus on backbone, feature pyramid, and anchor generation; better accuracy, speed, and memory

efficiency compared to previous versions

Architecture Single neural network for both object detection and classification

Table 9 Key features of YOLO-X

Key features YOLO-X

Architecture Single neural network for both object localization and classification

Input resolution 416 9 416 pixels

Bounding boxes Predicts bounding boxes with class probabilities

Object classes 80

Training Trained on COCO dataset using darknet framework and GC-SGD optimizer

Loss function Binary cross-entropy loss with focal loss

Activation function Mish activation

Pre-processing Resizing and normalization

Post-processing Non-max suppression

Fig. 9 Image represents the YOLO-R architecture
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two key issues with this implementation of YOLO com-

pared to two-stage object detectors.

A Fast-yolo variant of YOLO (V1) with a simpler model

is suggested for quicker object recognition. There are nine

convolutional layers with weaker filters in them. YOLO-

lite [22] is a different version of YOLO designed specifi-

cally for nonGPU machines for real-time object recogni-

tion. The authors show that shallower networks may detect

objects without explicitly requiring accelerators. Addi-

tionally, they show that the existence of batch normaliza-

tion hinders shallow neural network’s object detection

ability. Table 1 summarizes the features of YOLO.

3.2 YOLO (V2)

The ‘‘YOLO9000: Better, Faster, Stronger [23]’’ paper was

released by Redmon and Farhadi in 2017 at the CVPR

conference. In this study, the authors offered two cutting

edge YOLO variations, YOLOv2 and YOLO9000, which

were identical but had different training approaches. Over

9000 categories can be searched using YOLO (V2), the

successor to YOLO (V1). Most object detection methods

now in use can only classify objects into a small number of

categories. This is due to a lack of tagged object data.

Therefore, writers experimented with scaling the object

detection task for more categories. More than 9418 types of

object instances were produced due to combining the

COCO dataset and ImageNet.

The architecture of YOLO (V2) is influenced by (VGG

and Network in Network). As shown in Table 2, it employs

the darknet-19 structure, which consists of max-pooling

layers and 19 convolutional layers. In contrast to the base

version, it contains a lot more functionality. For model

training, various data-augmentation methods, including

random crops, rotations, and many more, are used; never-

theless, this version has trouble detecting smaller object-

s. In addition to using pre-existing features like global

average pooling and one-to-one convolution, authors also

introduced fresh approaches to optimization. Table 3

summarizes the key features of YOLO (V2).

3.3 YOLO (V3)

The third iteration of YOLO (V3) was introduced in Joseph

Redmon and Ali Farhadi’s paper ‘‘YOLOv3: An Incre-

mental Improvement [24]’’ in 2018. Although slightly

larger than the prior models, this one was still adequate in

speed and accuracy. An enhanced version of YOLO (V1),

YOLO (V2), and YOLO (V3) is available. In movies, live

streams, or still photographs, an item is recognized in real

time using the YOLOv3 algorithm. While the first version

of YOLO had localization issues, the second version had

difficulties detecting smaller items. Using the COCO

dataset [24], the third iteration of YOLO addresses the

problems above and provides a quick and easy way to find

items. This version excels at handling smaller objects, but

struggles with medium and large objects.

YOLO (V3) design is built on the Darkent53 frame-

works. It is a network with 53 convolutional layers that

employ 3 9 3 and 1 9 1 convolutional filters and certain

shortcut connections. It is twice as quick as ReNet152

without sacrificing performance. Figure 5 illustrates the

general architecture that underpins YOLO (V3).

Feature Pyramid Network (FPN) served as an inspiration

for YOLO (V 3). It uses FPN like up-sampling, skip con-

nections, and strategies like residual blocks. Like FPN,

YOLO (V3) detects objects using feature maps and (1 9 1)

convolution. Three different scales of feature maps are

produced by it. The input is down-sampled by 32, 16, and 8

factors. The output tensor is a (13 9 13) feature map (i.e.)

converted into a (1 9 1) convolution after an initial 81

series of convolutions. Second, a 16-step stride is used to

make the detection after the 94th layer. A (26 9 26) feature

map is produced by adding convolutions to the 79th layer

before concatenating it with the 61st layer on a 2 9 up-

sampling basis. Following applying an 8 stride, the detec-

tion is completed utilizing the 106th layer and a 52 9 52

feature map.

Fine grained features are extracted by concatenating

down-sampled and up-sampled feature maps to detect tiny

objects. Three different feature maps

52� 52; 13� 13; 26� 26ð Þ are employed to distinguish

between large, small, and medium-sized objects. Table 4

summarizes the key features of YOLO (V3).

3.4 YOLO (V4)

The YOLO (V4) architecture is the result of a series of

experiments and studies that aim to improve the accuracy

and speed of the convolutional neural network. The authors

of the paper ‘‘YOLOv4: Optimal Speed and Accuracy of

Object Detection’’ published in 2020. It aims to create an

object detector suitable for production systems. YOLO

(V4) has surpassed all previous versions in terms of both

speed and accuracy. Figure 6 presents the key features of

YOLO (V4).

To create the YOLO (V4) architecture, the authors

compared CSP-ResNeXt50, CSP-Darknet53, and Effi-

cientNetB3. They chose CSP-Darknet53, which has 29

convolutional layers with 3 9 3 filters and about 27.6 M

parameters, as the backbone network, because it outper-

forms the other architectures. Figure 7 shows that CSPNets

provide rich gradient combinations at low computational

cost.

Classification in COCO [25] is accomplished with

ImageNet pre-trained model. This study employed spatial
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Table 10 Key features of

YOLO-R
Key features YOLO-R

Architecture Single neural network for both object localization and classification using ResNet

backbone

Input resolution 608 9 608 pixels

Bounding boxes Predicts bounding boxes with class probabilities

Object classes 80

Training Trained on COCO dataset using PyTorch framework

Loss function YOLOv3 loss with additional regression loss for box refinement

Activation

function

The mish activation function is used instead of ReLU

Pre-processing Random resized crop and color distortion

Post-processing Non-max suppression

Table 11 Key features of PP-

YOLO(V2)
Key feature PP-YOLO (V2)

Architecture Single-stage detector with anchor-free and feature aggregation techniques

Input resolution Configurable, typically around 608 9 608 pixels

Bounding boxes Predicts bounding boxes with class probabilities

Object classes 80 (COCO dataset)

Training Trained on COCO dataset using PaddlePaddle deep learning framework

Loss function IoU loss with focal loss

Activation function Mish

Pre-processing Data augmentation and normalization

Post-processing Non-maximum suppression (NMS)

Fig. 10 Image representing the

possible attributes of YOLO

(V6)
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Table 12 Key features of

YOLO (V6)
Key features YOLO (V6)

Architecture Single-stage object detection framework

Input resolution Can be trained on multiple resolutions (up to 640 9 640)

Backbone network EfficientRep

Bounding boxes Predicts bounding boxes with class probabilities and confidence score

Object classes 80

Training Trained on COCO dataset using PyTorch framework

Loss function YOLOv6 used Varifocal loss (VFL) for classification and Distribution

Focal loss (DFL) for detection

Activation function SiLU

Pre-processing Padding Gray borders

Post-processing Non-maximum suppression

Fig. 11 Image representing the

possible attributes of YOLO

(V7)

Table 13 Key features of

YOLO (V7)
Key features YOLO (V7)

Architecture ELAN-efficient layer aggregation network

Input resolution Can be trained on multiple resolutions (1280 9 1280)

Backbone network CBS, E-ELAN, MP, and SPPCSPC modules

Bounding boxes Predicts bounding boxes with class probabilities and confidence score

Object classes 80

Training Trained on COCO dataset using PyTorch framework

Loss function Localization loss (Lbox), confidence loss (Lobj), and classification loss (Lcls)

Activation function Leaky Relu

Pre-processing Compound scaling method

Post-processing Non-maximum suppression
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pyramid pooling (SPP), a method also utilized by RCNN.

Linked layers cap the input and output volumes after a

CNN. In this version, input is not resized or manipulated.

SPP translates CNN inputs to fully connected layer outputs.

Path-Aggregation Network is a technique that uses adap-

tive feature-pooling and is preferred over feature-pyramid-

network as a bottom–up path augmentation method.

Table 5 summarizes the key features of YOLO (V4).

3.5 Scaled YOLO V4

The authors presented a paper named ‘‘SCALED-

YOLOV4: SCALING CROSS STAGE PARTIAL NET-

WORK’’ [26]. By effectively extending the network’s

design and scale, Scaled-YOLOv4 improves on the Google

Research Brain team’s EfficientDet model.

Regarding speed and accuracy, the suggested detection

network, which is based on the Cross-Stage Partial method,

outperforms past benchmarks from small and large object

identification models. The scaling technique makes a net-

work’s depth, breadth, resolution, and structure susceptible

to change.

On the other hand, the simplified variant known as

ScaledYOLO (V4) tiny uses TensorRT optimization (batch

size = 4) to reach 22.0% AP at a rate of approximately 443

FPS. The scaled YOLO (V4) is different from YOLO (V4)

in the following aspects:

• Optimized network scaling techniques are used in

ScaledYOLOv4.

• Increased network training speed with modified activa-

tions for width and height.

• CSP connections and MISH activation are used in the

Neck (Path-Aggregation Network) as part of improved

network architecture.

The YOLOv4 network was trained on multiple resolu-

tions using a single network rather than training a network

for each resolution. Table 6 summarizes the key features of

ScaledYOLO (V4).

3.6 PP-YOLO

In August 2020, researchers published a paper on ‘‘PP-

YOLO: AN EFFECTIVE AND EFFICIENT IMPLE-

MENTATION OF OBJECT DETECTOR’’ [27]. The PP-

YOLO32 object detector is constructed using YOLO (V3)

architecture. Darknet and PyTorch are the two frameworks

in which YOLO versions are previously implemented.

The main objective is a PP-YOLO object detector that

could be immediately used in real-world application sce-

narios and had a fairly balanced efficacy and efficiency.

And the Paddle Detection development kit’s motive aligns

with this objective. Combining these tips and tactics makes

the detector more effective and efficient and shows how

each step improves performance.

Table 14 Key features of

YOLO (V8)
Key features YOLO (V8)

Architecture The modified version of the SPP-YOLO

Input resolution Can be trained on multiple resolutions (608 9 608)

Backbone network CSPDarknet53 architecture

Bounding boxes Predicts bounding boxes and class probabilities for an object

Object classes 80

Training Trained on COCO dataset using PyTorch framework

Loss function VFL Loss as classification loss and DFL loss ? CIOU loss as classification loss

Activation function Leaky Relu

Pre-processing Mosaic data augmentation and class-specific anchor boxes

Post-processing Non-maximum suppression

Fig. 12 Results before and after

processing through NMS
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Like YOLO (V4), the PP-YOLO model also combines

various existing tricks to reduce model parameters and

flops while improving the detector accuracy and ensuring

the detector speed remains almost the same. PP-YOLO did

not examine Darknet53, ResNext50, or apply Neural-

Architecture-Search to find model hyperparameters, unlike

YOLO (V4). Table 7 summarizes the key features of PP-

YOLO.

With all these tricks and techniques combined, PP-

YOLO achieved 45.2% mAP and 72.9 FPS when trained

on a volta 100 GPU with batch-size-one. This detector

surpasses YOLO (V4), EfficientDet, and RetinaNet in

efficiency and effectiveness. The PP-YOLO detector con-

sists of three sections:

Fig. 13 A Sample images from the MSCOCO dataset. B Image representing Classes in MSCOCO dataset
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• The suggested model utilized a ResNet50-vd-dc as the

backbone. Fully convolutional networks serve as the

object detector’s backbone, helping to extract feature

maps from the input image. It shares many character-

istics with a trained image classification model. The

final stage of the architecture in the proposed backbone

model substitutes deformable convolutions for the

33convolution layer. ResNet50-vd has a significantly

lower amount of parameters and flops than Darknet-53.

Due to this, a man AP of 39.1 was achieved, which is

better than YOLO (V3).

• Detectionneck: The Feature Pyramid Network con-

structs a pyramid of features.

• The detection head, the last step in the pipeline for

detecting objects, makes predictions about the box

coordinates of objects. The PP-YOLO head is identical

to the YOLO (V3) head. A 33 convolution layer

forecasts the output and then an 11convolution layer.

3.7 YOLO (V5)

‘‘Glenn Jocher,’’ CEO of ‘‘Ultralytics,’’ posted YOLO (V5)

on GitHub 2 months after YOLO (V4) in 2020. A collec-

tion of object detection architectures already trained on the

MS-COCO dataset is available in YOLO (V5). The debut

of EfficientDet and YOLOv4 came after it. The fact that

this is the only YOLO object detector without a research

report caused some controversy initially. Still, as soon as

its capabilities were demonstrated, the controversy was

disproved. The important features of YOLO (V5) are rep-

resented in Fig. 8.

Fig. 14 A Sample images of Pascal VOC. B Classes of Pascal VOC
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The most recent and cutting edge version of the YOLO

object detection series, YOLO (V5), has raised the bar for

object detection models with its constant effort and 58

open-source contributors. A set of compound-scaled object

detection models known as YOLO (V5) was developed

using the COCO dataset. This model has several useful

features, such as the ability to perform test-time augmen-

tation, model ensembling, hyperparameter evolution, and

export to various formats including ONNX, CoreML, and

TFLite.

Although YOLO (V5) is not a direct replacement for

YOLO (V4), its structural architecture is the same. The

following are its components:

• An image, patch, or other piece of data is presented to

the system as input.

• The neural network that makes up the system’s

backbone is what learns everything. YOLOv5’s

Cross-Stage Partial (CSP) Networks are its skeleton.

• Neck: Feature pyramids are built using the neck. Before

being transmitted for prediction, it has layers that mix

and combine visual characters. PANet serves as YOLO

V5’s neck.

• Head: The head receives the output from the neck and

uses it to generate predictions for both classes and

boxes. The head might be either one or two stages for

dense or sparse prediction.

YOLO(V5) separates processed photos into vari-

ous portions after processing them using a single neu-

ral network. Using an automatic anchoring tech-

nique, each part receives its oanchor box; this in-

creases accuracy. The entire process is auto-

Table 15 Comparison analysis of YOLO (V7) with other models

YOLO (V7) compared

with

Characteristics

YOLO:V4 With YOLO(V7), 36% less processing is required, 75% fewer parameters are used, and 1.5% more AP (average

precision) is achieved

YOLO-R With YOLO(V7), the number of parameters is reduced by 43%, computation is reduced by 15%, and AP is higher by

0.4%

YOLO:V5 With YOLO(V7)-tiny, 127 FPS are gained, and 10.7% more accuracy is achieved on AP than YOLO(V5)-N

YOLO:V6 The YOLO(V7)-real-time model on the COCO dataset is 13.7% more accurate than YOLO(V6)-(56.8% AP)

PP-YOLO With the same AP of 51.4%, YOLO(V7) achieves 161 FPS as opposed to only 78 FPS with PP-YOLOE-L. Thus, the

inference speed of YOLO(V7) is 106% faster. YOLO(V7) is 41% more efficient in terms of parameter usage

Table 16 Comparative analysis in terms of architecture

Model Backbone Architecture

YOLO: V1 [21] Darknet-53 Fully convolutional

YOLO: V2 [23] Darknet-19 Fully convolutional

YOLO: V3 [24] Darknet-53 Feature pyramid network (FPN)

YOLO: V4 [36] CSPDarknet-53 CSP (cross-stage partial) architecture

YOLO: V5 [37] CSPDarknet-53 CSP (cross-stage partial) architecture

YOLOX [28] FPN Decoupled head and backbone

YOLOTiny [22] SqueezeNet or CSPDarknet Lightweight architecture with few layers

YOLO-R [38] CSPDarknet-53 Cross-stage partial network with object refinement

PP-YOLO [27] CSPDarknet-53 Spatial pyramid pooling and path aggregation

PP-YOLO(V2) [39] CSPDarknet-53 Spatial pyramid pooling and path aggregation

Scaled-YOLOv4 [26] CSPDarknet-53 CSP (cross-stage partial) architecture with SPP

YOLO: V6 [29] CSPStackRepblock RepPAN

YOLO: V7 [30] RepConv 3-Stacked ELAN

CSPDarknet

Compound scaling method

YOLO: V8 [40] Modified CSPDarknet-53 Feature pyramid network
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mated, and if the default anchor boxes are inaccu-

rate, a new anchor box computa-

tion is made. WitThestem analyses and forecasts the out-

come. Table 8 summarizes the key features of YOLO (V5).

3.8 YOLO-X

‘‘YOLOX: Exceeding YOLO Series in 2021 [28]’’ was

published by the authors in 2021. Only YOLO (V1) is

anchor-free, although YOLOX is too. Decoupled heads

data-augmentation approaches and Sim-OTA are used to

obtain state-of-the-art results. As part of CVPR 2021’s

Workshop on Autonomous Driving, YOLOX came in first

with their YOLOX-L model. On the MS-COCO dataset,

YOLOX-Nano achieved 25.3% AP, exceeding NanoDet by

1.8% AP. The COCO accuracy increased from 44.3 to

47.3% after adding various modifications to YOLOv3. At

68.9 frames per second on Tesla V100, YOLOX-L model

achieved 50.0% average precision on COCO, exceeding

YOLOv5-L by 1.8% AP.

Developers and researchers can use YOLO-X, since it

was implemented in the PyTorch framework. OnNX,

TensorRT, and OpenVino deployment versions are also

Table 17 Performance results for different versions of YOLOs

Yolo version Dataset used FPS mAP AP50

YOLO: V1 [21] ‘‘Voc 2007 ? Voc 2012’’ 45 63.4 –

FAST–YOLO ‘‘Voc 2007 ? Voc 2012’’ 155 52.7 –

YOLO:V2 [23] ‘‘Voc 2007 ? Voc 2012’’ 40 78.6 44

YOLO–LITE [22] ‘‘Voc 2007 ? Voc 2012’’ 21 33.77 –

YOLO:V3 [24] MSCOCO 20 – 57.9

YOLO:V4 [36] MSCOCO 62 – 65.7

YOLO:V5-L [37] MSCOCO 113 – 67.3

PP-YOLO [27] MSCOCO 73 – 65.2

PP-YOLOV2 [39] MSCOCO 50.3 – 69

YOLO: V6-L [29] MSCOCO 98 – 70

YOLO: V7 [30] MSCOCO 161 – 69.7

YOLO: V8 [40] MSCOCO 280 – 53.9

YOLO: X-X [28] MSCOCO 58 – 69.6

Fig. 15 Plot on performance results for different versions of YOLO’s

  126 Page 18 of 29

123



Table 18 Performance results of YOLO’s concerning different input sizes

Yolo version Input size Dataset mAP FPS

YOLO:V1 [21] 448 9 448 Voc 2007 ? Voc 2012 63.4 45

FAST-YOLO [41] 448 9 448 Voc 2007 ? Voc 2012 52.7 155

YOLO: V2 [23] 288 9 288 Voc 2007 ? Voc 2012 69.0 91

YOLO: V2 [23] 352 9 352 Voc 2007 ? Voc 2012 73.7 81

YOLO: V2 [23] 416 9 416 Voc 2007 ? Voc 2012 76.8 67

YOLO: V2 [23] 480 9 480 Voc 2007 ? Voc 2012 77.8 59

YOLO: V2 [23] 544 9 544 Voc 2007 ? Voc 2012 78.6 40

YOLO: V2 [23] 608 9 608 Mscoco 48.1 40

Tiny-YOLO (V2). [23] 416 9 416 Voc 2007 ? Voc 2012 57.1 207

YOLO: V3 [24] 320 9 320 Mscoco 51.5 45

YOLO: V3 [24] 416 9 416 Mscoco 55.3 35

YOLO: V3 [24] 608 9 608 Mscoco 57.9 20

YOLO: V4 [36] 416 9 416 Mscoco 62.8 38

YOLO: V4 [36] 512 9 512 Mscoco 64.9 31

YOLO: V4 [36] 608 9 608 Mscoco 65.7 23

Table 19 Performance results of YOLO’s concerning different parameters and flops

Model Backbone Input size # Params # GFLOPs AP50 (COCO)

YOLO:V4 [36] CSPDarknet-53 608 63.1 M 134.4 43.5

YOLOv4-tiny [36] CSPDarknet-53 416 6.3 M 6.1 28.8

YOLO:V5 [37] CSPDarknet-53 640 87.5 M 307.6 50.0

YOLO (V5-x) [37] CSPDarknet-53 640 141.8 M 441.8 53.4

YOLO (V5-S) [37] CSPDarknet-lite 640 12.7 M 22.4 39.3

YOLO (V5-M) [37] CSPDarknet-lite 640 27.6 M 51.3 47.7

YOLO (V5-L) [37] CSPDarknet-lite 640 48.8 M 94.6 50.1

YOLO(V5-x) [37] CSPDarknet-lite 640 85.5 M 166.4 51.2

YOLO-R [38] CSPResNeXt-50 640 63.9 M 236.0 50.6

PP-YOLO [27] Darknet-53 640 47.1 M 140.6 45.9

YOLO (X-S) [28] FPN 640 9.0 M 26.8 39.6

YOLO (X-M). [28] FPN 640 25.3 M 73.8 46.4

YOLO (X-L). [28] FPN 640 54.2 M 155.6 50.0

YOLO (X-X). [28] FPN 640 99.1 M 281.9 51.2

YOLO (V6-S) [29] CSPStackRepblock 640 17.2 M 44.2 43.1

YOLO (V6-n) [29] CSPStackRepblock 416 4.3 M 4.7 30.8

YOLO (V6-n) [29] CSPStackRepblock 640 4.3 M 11.1 35.0

YOLO(V6-tiny) [29] CSPStackRepblock 640 15.0 M 36.7 41.3

YOLO(V7) [30] RepConv 3-Stacked ELAN CSPDarknet 640 36.9 M 104.7G 69.7

YOLO(V7-X). [30] RepConv 3-Stacked ELAN CSPDarknet 640 71.3 M 189.9G 71.1

YOLO(V7-tiny) [30] RepConv 3-Stacked ELAN CSPDarknet 416 6.2 M 5.8 52.8

YOLO(V7-E6) [30] RepConv 3-Stacked ELAN CSPDarknet 1280 97.2 M 515.2G 73.5

YOLO(V7-E6E). [30] RepConv 3-Stacked ELAN CSPDarknet 1280 151.7 M 843.2G 74.4

YOLO(V8-n) [40] Modified CSPDarknet-53 640 3.2 8.7 37.3

YOLO(V8-s) [40] Modified CSPDarknet-53 640 11.2 28.6 44.9

YOLO(V8-m) [40] Modified CSPDarknet-53 640 25.9 78.9 50.2

YOLO(V8-l) [40] Modified CSPDarknet-53 640 43.7 165.2 52.9

YOLO(V8-x) [40] Modified CSPDarknet-53 640 68.2 257.8 53.9
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available for YOLOX. Table 9 summarizes the key features

of YOLO-X.

3.9 YOLO-R

YOLO-R, unlike YOLO (V1)–YOLO (V5), has a different

approach in terms of authorship, design, and model

infrastructure, specifically for object identification. While

YOLO stands for ‘‘You Only Look Once, ‘‘YOLO-R

stands for You Only Learn One Representation’’. The

YOLO-R network incorporates both implicit information

and explicit knowledge, which are both considered

beneficial for learning based on data and input. YOLO-R is

based on the co-encoding of implicit–explicit knowledge,

similar to mammalian brains. It creates a unified network

that can represent multiple tasks simultaneously. This is

achieved through a convolutional neural network with

multi-task learning, which performs three notable proce-

dures: kernel space alignment, prediction fine-tuning, and

kernel space alignment. Figure 9 demonstrates that a neural

network that is already trained with explicit knowledge

performs better when implicit knowledge is added.

YOLO-R achieved comparable object-detection preci-

sion to Scaledyolo (V4) but increased inference speed by

Table 20 Performance results of

YOLO’s concerning different

hyperparameters

YOLO version Activation function Optimizer Momentum Weight decay Learning rate

YOLO: V1 [21] Leaky ReLU SGD 0.9 0.0005 0.001

YOLO: V2 [23] Leaky ReLU Adam 0.9 0.0005 0.001

YOLO: V3 [24] Mish SGD 0.937 0.0005 0.001

YOLO: V4 [36] Mish Adam 0.9 0.0005 0.001

Scaled YOLO: V4 [26] Mish Adam 0.9 0.0005 0.001

YOLO: V5 [37] SiLU Adam 0.9 0.0005 0.0001

YOLO-R [38] Leaky ReLU Adam 0.9 0.0005 0.001

YOLO-X [28] Mish GC-SGD 0.9 0.0005 0.01

YOLO: V6 [29] Leaky ReLU Adam 0.9 0.0005 0.01

YOLO: V7 [30] Leaky ReLU Adam, sgd 0.9 0.0005 0.01

YOLO: V8 [40] Leaky ReLU Adam, sgd 0.9 0.0005 0.001

Table 21 Performance results of

YOLO’s concerning COCO

dataset

Algorithm Dataset mAP@0.5 (COCO) mAP (PASCAL VOC) FPS (ImageNet)

YOLO: V1 COCO 63.4 66.4 45

YOLO: V2 COCO 78.6 78.6 40

YOLO: V3 COCO 82.1 83.0 22

YOLO: V4 COCO 43.5–49.8* 43.2–50.0* 44–65*

PP-YOLO COCO 43.5–49.9* 43.6–50.0* 72–73*

YOLO: V5 COCO 50.2–57.9* 57.1–68.8* 129–248*

PP-YOLOv2 COCO 51.5–57.5* 56.4–68.4* 72–73*

Scaled YOLOv4 COCO 52.5–53.7* – 93–141*

YOLO:X COCO 54.3–58.3* – 142–170*

YOLO:R COCO 42.0–49.8* – –

Table 22 Performance results of YOLO’s concerning Open Images dataset

Algorithm Dataset mAP@0.5 (open images) mAP@0.5 (COCO) mAP (PASCAL VOC) FPS (ImageNet)

YOLO:V3 [24] Open Images 34.9 – – 22

YOLO:V4 [36] Open Images 47.1 43.5–49.8* 43.2–50.0* 44–65*

PP-YOLO: V2 [42] Open Images 48.9 51.5–57.5* 56.4–68.4* 72–73*

YOLO:V5 Open Images 54.0 50.2–57.9* 57.1–68.8* 129–248*

YOLO-R Open Images 58.5 42.0–49.8* – –

Asterisk symbol indicates the performance of the model can vary based on the hardware used for testing
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88%. YOLO-R mean average precision is 3.8% greater

than PP-YOLO (V2) according to the study paper. Table 10

provides a summary of YOLO-R.

3.10 PP-YOLOV2

‘‘PP-YOLO (V2): A Practical Object Detector,’’ was

released by Baidu in 2021 and made a significant impact in

the object detection field. This project aimed to create a fast

and accurate object detector, building on the success of the

original PP-YOLO. The authors used a strategy of assem-

bling different methods and procedures and emphasized

ablation studies to create a well-balanced and effective

detector. PP-YOLO(V2) incorporated several enhance-

ments that significantly improved performance, increasing

mean average precision from 45.9 to 49.5% on the msco-

co2017 test dataset. Moreover, it achieved a high frame

rate of 68.9 FPS at 640 9 640 image resolution. Unlike

PP-YOLO, which used only the ResNet-50 backbone

architecture, PP-YOLO(V2) used two different backbone

architectures.

When the detector’s ResNet50 backbone was changed to

ResNet101, PP-YOLO(V2) reached ‘‘50.3%’’ mAP,

matching YOLO V5x’s performance but outperforming it

significantly of speed by approximately 16%. Table 11

summarizes the key features of PP-YOLO(V2).

3.11 YOLO (V6)

YOLO (V6) aimed to address the practical issues when

working with industrial applications. Meituan Visual

Intelligence Department developed the target detection

framework, MT-YOLO V6 [29], in 2022.

YOLO (V6) is a single-stage object detection frame-

work with a hardware-friendly architecture. Detection

precision and inference speed is superior to YOLO (V5).

The main attributes related to YOLO (V6) are shown in

Fig. 10.

The YOLOv6 architecture is focused on the primary

advancements.

EfficientRep backbone: This backbone architecture is

different from YOLO V5 CSP-Backbone and has been

designed to have powerful representational abilities and

optimize hardware processing resources.

Rep-PAN neck: Regarding the neck design, a more

effective feature fusion network was created for YOLO

(V6) based on the hardware neural network design idea

structure. It was designed to improve hardware consump-

tion and better balance accuracy and speed.

A decoupled head: In YOLO (V6), the Decoupled Head

structure was used, simplifying the decoupling head’s

design while balancing the pertinent operators’ represen-

tative capacity and the computational burden on the

hardware.

Effective training strategies: The anchor-free paradigm,

SimOTA-label-assignment strategy, and SIOU Bounding-

box regression loss are used by YOLOv6 to increase

detection accuracy.

Model deployment is made significantly simpler by

YOLO (V6)’s support for a variety of deployment tech-

niques. YOLO (V6) has 2 9 faster inference time and

greater mean Average Precision (mAP) than V5. Table 12

summarizes the key features of YOLO (V6).

Table 23 Performance results of YOLO’s concerning KITTI dataset

Algorithm Dataset mAP@0.5 (KITTI) mAP@0.5 (COCO) mAP (PASCAL VOC) FPS (ImageNet)

YOLO:V3 [24] KITTI 71.6 – – 22

YOLO:V4 [36] KITTI 74.3 43.5–49.8* 43.2–50.0* 44–65*

PP-YOLO V2 [42] KITTI 79.3 51.5–57.5* 56.4–68.4* 72–73*

YOLO:V5 KITTI 85.2 50.2–57.9* 57.1–68.8* 129–248*

Asterisk symbol indicates the performance of the model can vary based on the hardware used for testing

Table 24 Performance results of YOLO’s concerning Visual Genome dataset

Algorithm Dataset mAP@0.5 (KITTI) mAP@0.5 (COCO) mAP (PASCAL VOC) FPS (ImageNet)

YOLO:V3[24] Visual Genome 12.0 – – 22

YOLO:V4[36] Visual Genome 13.4 43.5–49.8* 43.2–50.0* 44–65*

PP-YOLO V2 [42] Visual Genome 15.2 51.5–57.5* 56.4–68.4* 72–73*

YOLO:V5 Visual Genome 21.3 50.2–57.9* 57.1–68.8* 129–248*

Asterisk symbol indicates the performance of the model can vary based on the hardware used for testing
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3.12 YOLO (V7)

YOLO (V7) [30] object detector whose outstanding fea-

tures transform the computer vision market in 2022. The

official YOLO (V7) offers incredible speed and accuracy

compared to its earlier iterations. No pre-trained weights

are employed; instead, YOLO (V7) weights are trained

using Microsoft’s COCO dataset. The main attributes of

YOLO (V7) are shown in Fig. 11.

The YOLO (V7) architecture’s primary focal features

include the following:

‘‘Extended-Efficient Layer Aggregation Network (E-

ELAN)’’ mainly concentrates on the computational density

and model architectural characteristics. By regulating the

gradient route, ELAN’s key benefit was that improving

learning and convergence capabilities of deeper networks.

‘‘Model Scaling for Concatenation-Based Models’’:

Concatenation-based model scaling involves scaling cal-

culation block depth and transmission layer width.

‘‘Re-parameterized convolution that is planned’’: A

RepConvN layer without identity connections can take the

place of ‘‘Rep-Conv’’.

‘‘Coarse for auxiliary and fine for lead loss’’: This label

assigner uses ground-truth labels and predictions for heads

to create labels for training and auxiliary heads. Effec-

tiveness of YOLO (V7) Object Detection.

Table 25 YOLOs-based detection and recognition applications

References Yolo

model used

Application Key characteristics

[43] YOLO: V1 Garbage-detection and

classification

The proposed model can obtain a high accurate rate of 69.70% with a faster speed and a

lower model size, and is more robust

[44] YOLO: V1 Binocular-intelligent-

system

Target detection with yolo-lite

Camera processing using Raspberry Pi 3B ?

[45] YOLO: V1 Teat-detection The Haar-cascade-based-classifier is used to detect objects

[46] YOLO: V2 Multiple-vehicle-

detection

A updated YOLO has been implemented on traffic flow and scene adjustments

Depending on the vehicle characteristics, fine-tuning parameters is required

[47] YOLO: V2 ‘‘Medical-face-mask

detection’’

YOLO V2 detects face masks using ‘‘ResNet-50’’ as a transfer learning model

[48] YOLO: V2 ‘‘Traffic-light-color-

recognition’’

Traffic light recognition using YOLO V2

A color space transformation is performed using HSV

[49] YOLO: V2 Shuttlecock-detection Modified Tiny-YOLO-v2 captures sematic data

[50] YOLO: V3 pole detection and

counting from video

YOLO(V3) is used for pole detection

[51] YOLO: V3 embedded-applications For multi-scale object detection, a new model mini-Yolov3 is proposed

[52] YOLO: V3 Electronic-component-

detection

Darknet-53 is applied as a feature extractor. Modification in output layers of YOLO to

improve performance

[53] YOLO: V4 ‘‘Human-Detection’’ ‘‘Usage of arial-thermal-imaging for multiscale object detection’’

[54] YOLO: V4 ‘‘Ship-Detection’’ High-speed ship detection using Multichannel fusion

[55] YOLO: V4 Apple-flower-detection YOLO (V4) model with CSP-Darknet53 was used for detection

[56] YOLO: V5 Detection-of-heavy-good

vehicles

Detection of heavy vehicles in areas to protect from climatic conditions

[57] YOLO: V5 Rice-leaf-disease-

classification

Using YOLO V5, they classify diseases of rice leaves accurately and quickly

[58] YOLO: V5 Disease-detection-in-bell

pepper-plant

Bell pepper bacterial spot disease was fully detected

YOLO (V5) produces more accurate findings than other models

[59] YOLO: V5 Accident detection Accident detection using YOLOv5 is presented on CADP dataset

[60] YOLO: V7 Pedestrian detection Yolo v7 and pix2pixGAN is used to detect pedestrians in low light conditions

[61] YOLO: V7 Multiple-object-tracking Multiple object tracking in USV videos

[62] YOLO: V7 Detection-of-damaged-

racks

Proposed framework used for monitoring pallet racking in warehouses, distribution

centers, and manufacturing facilities is essential

[63] YOLO: V8 Helmet-detection Few-shot data sampling

[64] YOLO: V8 Apple-crop detection Detection and segmentation of trunk and branch using principal component analysis

[65] YOLO: V8 Fracture detection YOLO v8 is used for fracture detection in pediatric wrist trauma X-ray images
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The most recent piece in the YOLO series is YOLO

(V7). Based on the prior work, this network considerably

enhances the detection speed and accuracy. As part of the

research, E-ELAN is recommended as the overall design

and explains how cardinality expand-shuffles-merges to

continuously improve the learning capacity of the network.

E-ELAN can direct different groups of computational

blocks to understand various features.

YOLO (V7) is still a young algorithm that is still being

developed. The difficulties that the developers are trying to

solve still have a lot of room for advancement. The algo-

rithm will be very helpful in resolving many computer

vision problems once it becomes widely used. Table 13

summarizes the key features of YOLO (V7).

3.13 YOLO (V8)

Ultralytics, the company behind the development of YOLO

(V5), released YOLO (V8) in January 2023. While there

are no published papers on this version yet, it has been

noted that YOLOv8 follows the recent trend of anchor-free

models, resulting in fewer box predictions and faster non-

maximum suppression (NMS). Additionally, YOLO (V8)

uses mosaic augmentation during training. However, it has

been observed that using this technique throughout the

entire training process can be harmful, so it has been dis-

abled for the last ten epochs. YOLO (V8) is available both

as a command line interface (CLI) tool and as a PIP

package, and it includes various integrations for labeling,

training, and deployment.

This statement implies that YOLO V8x was tested on

the MS-COCO dataset using the test-dev 2017 split and

achieved an average precision (AP) score of 53.9% when

evaluated on images with a size of 640 pixels. In com-

parison, YOLO V5 achieved an AP of 50.7% on the same

input size. Table 14 summarizes the key features of YOLO

(V8).

4 Training Parameters, Datasets,
and Evaluation Metrics

4.1 Training Parameters

Here are some common training parameters used in YOLO

and its variants:

1. Batch size: The batch size determines the number of

images that are processed in a single forward/backward

pass of the neural network during training. A larger

batch size can improve training speed, but it also

requires more memory.

2. Learning rate: The learning rate controls how much the

model’s parameters are adjusted with each update

during training. A higher learning rate can lead to

faster training but may also cause the model to

converge on a suboptimal solution. A lower learning

rate may result in slower training, but the model is

more likely to converge to a better solution.

3. Number of epochs: The number of epochs is the

number of times the entire training dataset is processed

during training. A higher number of epochs can lead to

overfitting, while too few epochs can result in

underfitting.

4. Augmentation of data: It refers to the process of

creating new training data from existing data by

applying transformations, such as rotation, scaling,

and flipping. Data augmentation can help improve the

model’s ability to generalize to new data and reduce

overfitting.

5. Objectness threshold: The objectness threshold is the

minimum score required for an object to be considered

a positive detection. Increasing the objectness thresh-

old can reduce false positives, but it can also increase

false negatives.

6. Intersection over Union (IoU) threshold: The IoU

threshold is used to determine whether a predicted

bounding box overlaps with ground-truth bounding

box. Increasing the IoU threshold can increase the

accuracy of the model but can also result in fewer

positive detections.

4.1.1 Multi-scale Training in YOLO

It is a technique used to enhance the performance of the

YOLO model in detecting objects. Unlike traditional

training, where the model is trained on a fixed input image

size, multi-scale training involves training the model on

multiple scales of input images. During training, input

images are randomly resized to different scales, and the

model is trained on batches of images with different scales.

The YOLO model is updated with the gradients computed

from the loss function for each image scale, allowing it to

effectively detect objects at different scales. This technique

is helpful in scenarios where objects of various sizes may

be present.

4.1.2 Attention Mechanisms in YOLO

These mechanisms used in different computer vision tasks,

including detecting objects. In YOLO, attention mecha-

nisms can help concentrate the model’s attention on

specific image parts critical for object detection. One

technique of utilizing attention mechanisms in YOLO is
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spatial attention. This involves weighting the network’s

feature maps based on their relevance to the detection task.

Afterward, these attention weights are utilized to adjust the

feature maps before the final object detection step.

Another approach is channel-wise attention, which

involves weighing the feature maps based on their rele-

vance to the detection task across channels. This can be

achieved by calculating a channel-wise attention vector

based on the feature map’s global statistics, such as mean

and variance. The channel-wise attention vector is then

applied to re-weight the feature maps before the final object

detection step. YOLO (V4) introduced Spatial Pyramid

Pooling (SPP) attention, a new mechanism that uses a

spatial pyramid pooling layer to extract multi-scale features

from the image. A convolutional block is then utilized to

apply various attention mechanisms to the feature maps.

Overall, utilizing attention mechanisms in YOLO can

enhance the model’s accuracy and speed by focusing on the

most relevant parts of the image.

4.1.3 Non-maximum Suppression

It is a technique used in object detection models to improve

their accuracy by removing redundant bounding boxes.

Since object detection models tend to generate multiple

bounding boxes with varying confidence scores for the

same object, NMS helps to filter out those boxes that are

irrelevant or redundant, and retains only the most precise

ones. Figure 12 illustrates the effect of NMS on an object

detection model’s output by reducing the number of

overlapping bounding boxes.

4.1.4 Activation Functions

Activation functions play a crucial role in deep learning

models, including YOLO and its variants, by introducing

non-linearity to the output of each layer. Here are some

commonly used activation functions in YOLO and its

variants:

1. RectifiedLinearUnit: A simple and widely used acti-

vation function that returns the input if positive, and 0

otherwise. It is defined as f xð Þ ¼ max 0; xð Þ.
2. LeakyReLU: A variant of ‘‘ReLU’’ that adds a small

slope to the negative values to avoid dying neurons. It

is defined as f xð Þ ¼ max ax; xð Þ, where a is a small

positive constant.

3. Swish: A relatively new activation function that is a

smoothed version of ReLU, defined as

f xð Þ ¼ x� sigmodi xð Þ.
4. Mish: Another novel activation function similar to

Swish, but with a more gradual transition from linear to

non-linear behavior. It is defined as

f xð Þ ¼ x� tanh softplus xð Þð Þ.
5. Hardswish: A faster and more memory-efficient variant

of Swish that uses the thresholded linear function

instead of the sigmoid function.

6. Sigmoid: A commonly used activation function for

binary classification tasks, defined as

f xð Þ ¼ 1= 1þ e�xð Þ.
7. Softmax: A function used to convert a vector of real

numbers into a probability distribution over several

classes, often used in the final layer of a classification

network.

8. The choice of activation function can significantly

impact the performance and convergence speed of a

deep learning model. Different activation functions

may be more suitable for different tasks and architec-

tures, so their selection should be carefully evaluated.

4.2 Datasets

The most commonly used and recognized datasets for

computer vision applications is the MS-COCO dataset, as

illustrated in Fig. 13a and b. The dataset contains fewer

categories, but each category has more entries. It has 91

distinct categories of items, such as people, dogs, trains,

and other everyday objects. Many occurrences are

observed in each category [31], along with various attri-

butes per image.

The Pascal Visual Object Classes [32] is another dataset

for objects (categorization, segmentation, and detection).

From 4 classes in 2005 to 20 classes in 2007, the dataset

community consistently made contributions, putting it on

par with more current developments. Figure 14a and b lists

the many classes of Pascal VOC. The training dataset

consists of approximately 11,530 pictures, 27,540 Regions

of Interest, and 6929 segmentations.

Several other datasets are commonly used as follows:

ImageNet [33]: This dataset includes over 1 million

labeled images of objects from 1000 different categories.

Although ImageNet is commonly used for image clas-

sification tasks, it has also been used as a pre-training

dataset for object detection models.

KITTI [34]: This dataset includes images and videos

captured from a car driving around urban environments,

with annotations for various objects, such as cars,

pedestrians, and cyclists. KITTI is often used to test

object detection models designed for use in autonomous

vehicles.

Open Images [25]: This dataset includes millions of

images with annotations for various objects, including

some rare and unusual classes. Open Images is a large
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and diverse dataset for training and testing object

detection models.

Visual Genome [35]: This dataset includes images with

rich annotations describing the objects, attributes, and

relationships in the scene. Visual Genome has been used

to train object detection models that can reason about the

context and relationships between objects in the scene.

4.3 Evaluation Metrics

Several evaluation metrics are used in YOLO and its

variants for object detection. Here are some of the most

commonly used ones:

1. Average precision (AP): Average precision (AP) is a

widely used metric in object detection that measures

the model’s accuracy in detecting objects at different

levels of precision. It calculates the area under the

precision–recall curve (AUC-PR) for different thresh-

olds. The formula for calculating AP is shown in

Eq. (5)

AP ¼
Xn

i¼1

Ri � Ri�1ð ÞPi: ð5Þ

2. Intersection over Union (IoU): Intersection over Union

(IoU) is a metric that measures the overlap between the

predicted bounding box and the ground-truth bounding

box. It is calculated as the ratio of the intersection area

to the union area of the two boxes. The formula for

calculating IoU is shown in Eq. (6)

IoU ¼ Area of Overlap

Area of Union
: ð6Þ

3. Mean Average Precision (mAP): Mean Average

Precision (mAP) is the average of the AP’s calculated

at different levels of precision. It is used to measure the

model’s overall performance across all classes. The

mAP can be calculated as shown in Eq. (7)

mAP ¼ 1

N

XN

i¼1

APi: ð7Þ

4. False-Positive Rate (FPR): The false Positive Rate

(FPR) is the proportion of negative samples incorrectly

classified as positive. It is used to measure the model’s

performance in detecting false positives. The formula

for calculating FPR is as shown in Eq. (8)

FPR ¼ False Positive

False Positiveþ True Negative
: ð8Þ

5. Recall: The recall is the proportion of positive samples

model correctly identifies. It is used to measure the

model’s performance in detecting true positives. The

formula for calculating Recall is as shown in Eq. (9)

Recall ¼ True Positive

True Positiveþ False Negative
: ð9Þ

5 Comparison Analysis of YOLO in Different
Aspects

In this section, a comparison analysis of different YOLO

models in different aspects. The comparison analysis of

YOLO V7 concerning other models is shown in Table 15.

Table 16 compares YOLO versions. The darknet is

where YOLOs are implemented. As mentioned before, this

version has several optimizations. Multi-scale training

improves YOLO (V2) model’s performance and conclu-

sions. As we can see, YOLO(V3) introduced the FPN

architecture to improve performance in detecting objects at

different scales. YOLO(V4) and YOLO(V5) improved the

architecture using the CSP (Cross-stage Partial) architec-

ture. YOLO-X, on the other hand, introduced a decoupled

head and backbone architecture to achieve better perfor-

mance with fewer parameters. YOLO-Tiny uses a light-

weight architecture with a few layers to reduce the

computational cost, making it suitable for deployment on

mobile devices with limited computational resources.

YOLO (V6) address practical issues relating to industrial

applications. YOLO (V7) offers incredible speed and

accuracy.

Table 17 and Fig. 15 show YOLO version performance

in terms of frames per sec (FPS), mean average precision

(mAP), and average precision (AP). A single- or two-stage

technique may be utilized depending on the applications

and dataset.

Table 18 analyzes YOLO’s performance with varied

input sizes. Performance results of YOLO’s concerning

different parameters and flops are analyzed and shown in

Table 19. Note that the AP50 (COCO) metric is the

Average Precision (AP) at 50% IoU threshold on the

COCO validation dataset.

Table 20 summarizes the activation function, optimizer,

momentum, weight decay, and learning rate used in dif-

ferent versions of the YOLO object detection algorithm.

Table 21 shows that YOLOv5 has the highest mAP@0.5

on the COCO dataset among the listed algorithms, fol-

lowed by PP-YOLOv2 and YOLOv3. Scaled YOLOv4,

PP-YOLO, and YOLOv4 also have high mAP@0.5 scores

but lower FPS compared to YOLOv5 and PP-YOLOv2.

Here is a comparison Table 22 of YOLO-based algorithms

on Open Images dataset and other popular object detection

datasets.
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Here is a comparison Table 23 of YOLO-based algo-

rithms on KITTI dataset and other popular object detection

datasets.

Here is a comparison Table 24 of YOLO-based algo-

rithms on Visual Genome dataset and other popular object

detection datasets.

Finally, Table 25 lists some YOLO-based detection and

recognition applications.

The tables summarize the work regarding illustrative

comparisons, empirical findings, and practical

implications.

6 Challenges and Future Directions

Here are some challenges in detection of objects:

1. Variability in object appearance: Objects in images can

have different shapes, sizes, and colors, which makes it

difficult to detect them accurately.

2. Occlusion: Objects in real-world scenarios can be

partially or fully occluded by other objects or envi-

ronmental factors such as shadows or reflections,

making it challenging for the detection model to locate

them.

3. Scale variation: Objects can appear at different scales

in an image or video, and detecting them at all scales is

computationally expensive.

4. Illumination changes: Changes in lighting conditions

can affect the appearance of objects, making it difficult

for the model to recognize them accurately.

5. Limited training data: Training an accurate object

detection model requires a large labeled data, which

can be time-consuming and expensive to collect and

annotate.

6. Computational complexity: In this model, it can be

computationally expensive, requiring powerful hard-

ware such as GPUs to train and deploy them.

Here are some potential future directions for object

detection models:

1. One potential development area for object detection

models is improving their speed and efficiency. While

many current models are highly accurate, they can be

computationally expensive and time-consuming, espe-

cially in real-time applications. Future research could

focus on developing more lightweight and efficient

models without sacrificing too much in terms of

accuracy.

2. Another potential development area is improving the

robustness of object detection models. Current models

are often highly dependent of the data and can struggle

to generalize to new and different environments. Future

research could focus on developing more adaptable and

flexible models that can perform well even in highly

variable and dynamic environments.

3. Developing more specialized and task-specific object

detection models is another potential direction. While

many current models are general purpose and can be

used for various applications, there are often specific

use cases where a more specialized model would be

more effective. For example, a model designed

specifically for detecting objects in medical images

might be more effective than a general-purpose model.

4. Finally, another potential development area is integrat-

ing object detection models with other models and

technologies, such as natural language processing or

augmented reality. By combining object detection with

other technologies, it may be possible to create more

sophisticated and powerful applications to understand

and interact with the world in new and exciting ways.

7 Conclusion

This study provides a detailed understanding of the YOLO

architecture and its variants, along with their strengths and

weaknesses, making them a great resource for anyone

interested in object detection with YOLO. This research

paper presents a detailed analysis of the latest progress in

object detection using YOLO and its various variants. The

paper discusses the evolution of the YOLO architecture

and the improvements made in each version. Also dis-

cusses various techniques used to improve the performance

of YOLO and its variants, including multi-scale training,

feature pyramid networks, and attention mechanisms.

Additionally, the paper compares the performance of

YOLO and its variants with other state-of-the-art object

detection algorithms on various benchmark datasets.

Overall, the paper concludes that YOLO and its variants

have achieved state-of-the-art performance on various

benchmark datasets regarding accuracy, speed, and mem-

ory consumption. The paper also highlights the limitations

of YOLO and its variants, such as their inability to detect

small objects and their sensitivity to object aspect ratios.

The paper suggests that future research can address the

limitations of YOLO and its variants, explore new archi-

tectures, and develop techniques to improve their accuracy

and speed further. Additionally, the paper highlights the

potential applications of object detection algorithms in

various domains, such as autonomous driving, robotics,

and surveillance systems.
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